1
|
Warren ME, Pickett BE, Adams BJ, Villalva C, Applegate A, Robison RA. Comparative sequence analysis elucidates the evolutionary patterns of Yersinia pestis in New Mexico over thirty-two years. PeerJ 2023; 11:e16007. [PMID: 37780382 PMCID: PMC10541020 DOI: 10.7717/peerj.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
Background Yersinia pestis, a Gram-negative bacterium, is the causative agent of plague. Y. pestis is a zoonotic pathogen that occasionally infects humans and became endemic in the western United States after spreading from California in 1899. Methods To better understand evolutionary patterns in Y. pestis from the southwestern United States, we sequenced and analyzed 22 novel genomes from New Mexico. Analytical methods included, assembly, multiple sequences alignment, phylogenetic tree reconstruction, genotype-phenotype correlation, and selection pressure. Results We identified four genes, including Yscp and locus tag YPO3944, which contained codons undergoing negative selection. We also observed 42 nucleotide sites displaying a statistically significant skew in the observed residue distribution based on the year of isolation. Overall, the three genes with the most statistically significant variations that associated with metadata for these isolates were sapA, fliC, and argD. Phylogenetic analyses point to a single introduction of Y. pestis into the United States with two subsequent, independent movements into New Mexico. Taken together, these analyses shed light on the evolutionary history of this pathogen in the southwestern US over a focused time range and confirm a single origin and introduction into North America.
Collapse
Affiliation(s)
- Mary E. Warren
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Byron J. Adams
- Department of Biology, Brigham Young University, Provo, UT, United States
- Monte L. Bean Life Science Museum, Provo, UT, United States
| | - Crystal Villalva
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Alyssa Applegate
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
2
|
Hess KL, Jewell CM. Phage display as a tool for vaccine and immunotherapy development. Bioeng Transl Med 2020; 5:e10142. [PMID: 31989033 PMCID: PMC6971447 DOI: 10.1002/btm2.10142] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages, or phages, are viruses that specifically infect bacteria and coopt the cellular machinery to create more phage proteins, eventually resulting in the release of new phage particles. Phages are heavily utilized in bioengineering for applications ranging from tissue engineering scaffolds to immune signal delivery. Of specific interest to vaccines and immunotherapies, phages have demonstrated an ability to activate both the innate and adaptive immune systems. The genome of these viral particles can be harnessed for DNA vaccination, or the surface proteins can be exploited for antigen display. More specifically, genes that encode an antigen of interest can be spliced into the phage genome, allowing antigenic proteins or peptides to be displayed by fusion to phage capsid proteins. Phages therefore present antigens to immune cells in a highly ordered and repetitive manner. This review discusses the use of phage with adjuvanting activity as antigen delivery vehicles for vaccination against infectious disease and cancer.
Collapse
Affiliation(s)
- Krystina L. Hess
- U.S. Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMaryland
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMaryland
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMaryland
- U.S. Department of Veterans AffairsBaltimoreMaryland
| |
Collapse
|
3
|
Bishop AH. The signatures of microorganisms and of human and environmental biomes can now be used to provide evidence in legal cases. FEMS Microbiol Lett 2019; 366:5303725. [PMID: 30689874 DOI: 10.1093/femsle/fnz021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/26/2019] [Indexed: 12/28/2022] Open
Abstract
The microorganisms with which we share our world go largely unnoticed. We are, however, beginning to be able to exploit their apparently silent presence as witnesses to events that are of legal concern. This information can be used to link forensic samples to criminal events and even perpetrators. Once dead, our bodies are rapidly colonised, internally and externally. The progress of these events can be charted to inform how long and even by what means a person has died. A small number of microbial species could actually be the cause of such deaths as a result of biocrime or bioterrorism. The procedures and techniques to respond to such attacks have matured in the last 20 years. The capability now exists to identify malicious intent, characterise the threat agent to isolate level and potentially link it to perpetrators with a high level of confidence.
Collapse
Affiliation(s)
- A H Bishop
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Devon, PL4 8AA, UK
| |
Collapse
|
4
|
Abstract
Over the past decade, a genomics revolution, made possible through the development of high-throughput sequencing, has triggered considerable progress in the study of ancient DNA, enabling complete genomes of past organisms to be reconstructed. A newly established branch of this field, ancient pathogen genomics, affords an in-depth view of microbial evolution by providing a molecular fossil record for a number of human-associated pathogens. Recent accomplishments include the confident identification of causative agents from past pandemics, the discovery of microbial lineages that are now extinct, the extrapolation of past emergence events on a chronological scale and the characterization of long-term evolutionary history of microorganisms that remain relevant to public health today. In this Review, we discuss methodological advancements, persistent challenges and novel revelations gained through the study of ancient pathogen genomes.
Collapse
|
5
|
Furstenau TN, Cocking JH, Sahl JW, Fofanov VY. Variant site strain typer (VaST): efficient strain typing using a minimal number of variant genomic sites. BMC Bioinformatics 2018; 19:222. [PMID: 29890941 PMCID: PMC5996513 DOI: 10.1186/s12859-018-2225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Targeted PCR amplicon sequencing (TAS) techniques provide a sensitive, scalable, and cost-effective way to query and identify closely related bacterial species and strains. Typically, this is accomplished by targeting housekeeping genes that provide resolution down to the family, genera, and sometimes species level. Unfortunately, this level of resolution is not sufficient in many applications where strain-level identification of bacteria is required (biodefense, forensics, clinical diagnostics, and outbreak investigations). Adding more genomic targets will increase the resolution, but the challenge is identifying the appropriate targets. VaST was developed to address this challenge by finding the minimum number of targets that, in combination, achieve maximum strain-level resolution for any strain complex. The final combination of target regions identified by the algorithm produce a unique haplotype for each strain which can be used as a fingerprint for identifying unknown samples in a TAS assay. VaST ensures that the targets have conserved primer regions so that the targets can be amplified in all of the known strains and it also favors the inclusion of targets with basal variants which makes the set more robust when identifying previously unseen strains. RESULTS We analyzed VaST's performance using a number of different pathogenic species that are relevant to human disease outbreaks and biodefense. The number of targets required to achieve full resolution ranged from 20 to 88% fewer sites than what would be required in the worst case and most of the resolution is achieved within the first 20 targets. We computationally and experimentally validated one of the VaST panels and found that the targets led to accurate phylogenetic placement of strains, even when the strains were not a part of the original panel design. CONCLUSIONS VaST is an open source software that, when provided a set of variant sites, can find the minimum number of sites that will provide maximum resolution of a strain complex, and it has many different run-time options that can accommodate a wide range of applications. VaST can be an effective tool in the design of strain identification panels that, when combined with TAS technologies, offer an efficient and inexpensive strain typing protocol.
Collapse
Affiliation(s)
- Tara N Furstenau
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Jill H Cocking
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Viacheslav Y Fofanov
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA.
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA.
| |
Collapse
|
6
|
Markman DW, Antolin MF, Bowen RA, Wheat WH, Woods M, Gonzalez-Juarrero M, Jackson M. Yersinia pestis Survival and Replication in Potential Ameba Reservoir. Emerg Infect Dis 2018; 24:294-302. [PMID: 29350155 PMCID: PMC5782900 DOI: 10.3201/eid2402.171065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plague ecology is characterized by sporadic epizootics, then periods of dormancy. Building evidence suggests environmentally ubiquitous amebae act as feral macrophages and hosts to many intracellular pathogens. We conducted environmental genetic surveys and laboratory co-culture infection experiments to assess whether plague bacteria were resistant to digestion by 5 environmental ameba species. First, we demonstrated that Yersinia pestis is resistant or transiently resistant to various ameba species. Second, we showed that Y. pestis survives and replicates intracellularly within Dictyostelium discoideum amebae for ˃48 hours postinfection, whereas control bacteria were destroyed in <1 hour. Finally, we found that Y. pestis resides within ameba structures synonymous with those found in infected human macrophages, for which Y. pestis is a competent pathogen. Evidence supporting amebae as potential plague reservoirs stresses the importance of recognizing pathogen-harboring amebae as threats to public health, agriculture, conservation, and biodefense.
Collapse
|
7
|
Melman SD, Ettestad PE, VinHatton ES, Ragsdale JM, Takacs N, Onischuk LM, Leonard PM, Master SS, Lucero VS, Kingry LC, Petersen JM. Human case of bubonic plague resulting from the bite of a wild Gunnison's prairie dog during translocation from a plague-endemic area. Zoonoses Public Health 2017; 65:e254-e258. [PMID: 29110441 DOI: 10.1111/zph.12419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Indexed: 02/01/2023]
Abstract
Plague is a zoonotic disease (transmitted mainly by fleas and maintained in nature by rodents) that causes severe acute illness in humans. We present a human plague case who became infected by the bite of a wild Gunnison's prairie dog, and a good practical example of the One Health approach that resulted in a rapid public health response. The exposure occurred while the animal was being transported for relocation to a wildlife refuge after being trapped in a plague enzootic area. This is the first report of a human plague case resulting from the bite of a Gunnison's prairie dog. Additionally, we present an observation of a longer incubation period for plague in captive prairie dogs, leading to a recommendation for a longer quarantine period for prairie dogs during translocation efforts.
Collapse
Affiliation(s)
- S D Melman
- Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - P E Ettestad
- Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - E S VinHatton
- Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - J M Ragsdale
- New Mexico Department of Agriculture, Veterinary Diagnostic Services, Albuquerque, NM, USA
| | - N Takacs
- New Mexico Department of Agriculture, Veterinary Diagnostic Services, Albuquerque, NM, USA
| | - L M Onischuk
- Scientific Laboratory Division, New Mexico Department of Health, Albuquerque, NM, USA
| | - P M Leonard
- Scientific Laboratory Division, New Mexico Department of Health, Albuquerque, NM, USA
| | - S S Master
- Scientific Laboratory Division, New Mexico Department of Health, Albuquerque, NM, USA
| | | | - L C Kingry
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - J M Petersen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
8
|
Substitutions of short heterologous DNA segments of intragenomic or extragenomic origins produce clustered genomic polymorphisms. Proc Natl Acad Sci U S A 2016; 113:15066-15071. [PMID: 27956618 DOI: 10.1073/pnas.1615819114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In a screen for unexplained mutation events we identified a previously unrecognized mechanism generating clustered DNA polymorphisms such as microindels and cumulative SNPs. The mechanism, short-patch double illegitimate recombination (SPDIR), facilitates short single-stranded DNA molecules to invade and replace genomic DNA through two joint illegitimate recombination events. SPDIR is controlled by key components of the cellular genome maintenance machinery in the gram-negative bacterium Acinetobacter baylyi. The source DNA is primarily intragenomic but can also be acquired through horizontal gene transfer. The DNA replacements are nonreciprocal and locus independent. Bioinformatic approaches reveal occurrence of SPDIR events in the gram-positive human pathogen Streptococcus pneumoniae and in the human genome.
Collapse
|
9
|
Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda. PLoS Negl Trop Dis 2016; 10:e0004360. [PMID: 26866815 PMCID: PMC4750964 DOI: 10.1371/journal.pntd.0004360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023] Open
Abstract
Background Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Since the 1990s, Africa has accounted for the majority of reported human cases. In Uganda, plague cases occur in the West Nile region, near the border with Democratic Republic of Congo. Despite the ongoing risk of contracting plague in this region, little is known about Y. pestis genotypes causing human disease. Methodology/Principal Findings During January 2004–December 2012, 1,092 suspect human plague cases were recorded in the West Nile region of Uganda. Sixty-one cases were culture-confirmed. Recovered Y. pestis isolates were analyzed using three typing methods, single nucleotide polymorphisms (SNPs), pulsed field gel electrophoresis (PFGE), and multiple variable number of tandem repeat analysis (MLVA) and subpopulations analyzed in the context of associated geographic, temporal, and clinical data for source patients. All three methods separated the 61 isolates into two distinct 1.ANT lineages, which persisted throughout the 9 year period and were associated with differences in elevation and geographic distribution. Conclusions/Significance We demonstrate that human cases of plague in the West Nile region of Uganda are caused by two distinct 1.ANT genetic subpopulations. Notably, all three typing methods used, SNPs, PFGE, and MLVA, identified the two genetic subpopulations, despite recognizing different mutation types in the Y. pestis genome. The geographic and elevation differences between the two subpopulations is suggestive of their maintenance in highly localized enzootic cycles, potentially with differing vector-host community composition. This improved understanding of Y. pestis subpopulations in the West Nile region will be useful for identifying ecologic and environmental factors associated with elevated plague risk. Plague, a severe and often fatal zoonotic disease, is caused by the bacterium Yersinia pestis. Currently, the majority of human cases have been reported from resource limited areas of Africa, where the proximity to commensal rats and other small mammals increases the likelihood for human contact with infected animals or their fleas. Over a 9 year time period, >1000 suspect cases were recorded in the West Nile region of Uganda within the districts of Arua and Zombo. Culture-confirmed cases were shown by three independent typing methods to be due to two distinct 1.ANT genetic subpopulations of Y. pestis. The two genetic subpopulations persisted throughout the 9 year time period, consistent with their ongoing maintenance in local enzootic cycles. Additionally, the two subpopulations were found to differ with respect to geographic location and elevation, with SNP Group 1 strains being found further north and at lower elevations as compared to SNP Group 2. The relative independence of the two Y. pestis subpopulations is suggestive of their maintenance in distinct foci involving enzootic cycles with differing vector-host community composition.
Collapse
|
10
|
Kingry LC, Rowe LA, Respicio-Kingry LB, Beard CB, Schriefer ME, Petersen JM. Whole genome multilocus sequence typing as an epidemiologic tool for Yersinia pestis. Diagn Microbiol Infect Dis 2015; 84:275-80. [PMID: 26778487 DOI: 10.1016/j.diagmicrobio.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 01/14/2023]
Abstract
Human plague is a severe and often fatal zoonotic disease caused by Yersinia pestis. For public health investigations of human cases, nonintensive whole genome molecular typing tools, capable of defining epidemiologic relationships, are advantageous. Whole genome multilocus sequence typing (wgMLST) is a recently developed methodology that simplifies genomic analyses by transforming millions of base pairs of sequence into character data for each gene. We sequenced 13 US Y. pestis isolates with known epidemiologic relationships. Sequences were assembled de novo, and multilocus sequence typing alleles were assigned by comparison against 3979 open reading frames from the reference strain CO92. Allele-based cluster analysis accurately grouped the 13 isolates, as well as 9 publicly available Y. pestis isolates, by their epidemiologic relationships. Our findings indicate wgMLST is a simplified, sensitive, and scalable tool for epidemiologic analysis of Y. pestis strains.
Collapse
Affiliation(s)
- Luke C Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Lori A Rowe
- Division of Scientific Resources, Biotechnology Core Facility Branch, Centers for Disease Prevention and Control, Atlanta, GA 30329
| | - Laurel B Respicio-Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Charles B Beard
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Martin E Schriefer
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523.
| |
Collapse
|
11
|
Vogler AJ, Keim P, Wagner DM. A review of methods for subtyping Yersinia pestis: From phenotypes to whole genome sequencing. INFECTION GENETICS AND EVOLUTION 2015; 37:21-36. [PMID: 26518910 DOI: 10.1016/j.meegid.2015.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/28/2022]
Abstract
Numerous subtyping methods have been applied to Yersinia pestis with varying success. Here, we review the various subtyping methods that have been applied to Y. pestis and their capacity for answering questions regarding the population genetics, phylogeography, and molecular epidemiology of this important human pathogen. Methods are evaluated in terms of expense, difficulty, transferability among laboratories, discriminatory power, usefulness for different study questions, and current applicability in light of the advent of whole genome sequencing.
Collapse
Affiliation(s)
- Amy J Vogler
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA.
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA; Translational Genomics Research Institute North, Flagstaff, AZ 86001, USA.
| | - David M Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA.
| |
Collapse
|
12
|
Gilchrist CA, Turner SD, Riley MF, Petri WA, Hewlett EL. Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev 2015; 28:541-63. [PMID: 25876885 PMCID: PMC4399107 DOI: 10.1128/cmr.00075-13] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed.
Collapse
Affiliation(s)
- Carol A Gilchrist
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen D Turner
- Department of Public Health, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret F Riley
- Department of Public Health, School of Medicine, University of Virginia, Charlottesville, Virginia, USA School of Law, University of Virginia, Charlottesville, Virginia, USA Batten School of Leadership and Public Policy, University of Virginia, Charlottesville, Virginia, USA
| | - William A Petri
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Erik L Hewlett
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Lowell JL, Antolin MF, Andersen GL, Hu P, Stokowski RP, Gage KL. Single-Nucleotide Polymorphisms Reveal Spatial Diversity Among Clones of Yersinia pestis During Plague Outbreaks in Colorado and the Western United States. Vector Borne Zoonotic Dis 2015; 15:291-302. [PMID: 25988438 PMCID: PMC4449629 DOI: 10.1089/vbz.2014.1714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In western North America, plague epizootics caused by Yersinia pestis appear to sweep across landscapes, primarily infecting and killing rodents, especially ground squirrels and prairie dogs. During these epizootics, the risk of Y. pestis transmission to humans is highest. While empirical models that include climatic conditions and densities of rodent hosts and fleas can predict when epizootics are triggered, bacterial transmission patterns across landscapes, and the scale at which Y. pestis is maintained in nature during inter-epizootic periods, are poorly defined. Elucidating the spatial extent of Y. pestis clones during epizootics can determine whether bacteria are propagated across landscapes or arise independently from local inter-epizootic maintenance reservoirs. MATERIAL AND METHODS We used DNA microarray technology to identify single-nucleotide polymorphisms (SNPs) in 34 Y. pestis isolates collected in the western United States from 1980 to 2006, 21 of which were collected during plague epizootics in Colorado. Phylogenetic comparisons were used to elucidate the hypothesized spread of Y. pestis between the mountainous Front Range and the eastern plains of northern Colorado during epizootics. Isolates collected from across the western United States were included for regional comparisons. RESULTS By identifying SNPs that mark individual clones, our results strongly suggest that Y. pestis is maintained locally and that widespread epizootic activity is caused by multiple clones arising independently at small geographic scales. This is in contrast to propagation of individual clones being transported widely across landscapes. Regionally, our data are consistent with the notion that Y. pestis diversifies at relatively local scales following long-range translocation events. We recommend that surveillance and prediction by public health and wildlife management professionals focus more on models of local or regional weather patterns and ecological factors that may increase risk of widespread epizootics, rather than predicting or attempting to explain epizootics on the basis of movement of host species that may transport plague.
Collapse
Affiliation(s)
- Jennifer L. Lowell
- Department of Health Sciences, Carroll College, Helena, Montana
- Department of Biology, Colorado State University, Fort Collins, Colorado
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Michael F. Antolin
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Gary L. Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Ping Hu
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | - Kenneth L. Gage
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|