1
|
Siew WS, Tang YQ, Goh BH, Yap WH. The senescent marker p16INK4a enhances macrophage foam cells formation. Mol Biol Rep 2024; 51:1021. [PMID: 39331194 DOI: 10.1007/s11033-024-09946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND The senescence marker p16INK4a, which constitutes part of the genome 9p21.3 cardiovascular disease (CVD) risk allele, is believed to play a role in foam cells formation. This study aims to unravel the role of p16INK4a in mediating macrophage foam cells formation, cellular senescence, and autophagy lysosomal functions. METHODS The mammalian expression plasmid pCMV-p16INK4a was used to induce p16INK4a overexpression in THP-1 macrophages. Next, wild-type and p16INK4a-overexpressed macrophages were incubated with oxidized LDL to induce foam cells formation. Lipids accumulation was evaluated using Oil-red-O staining and cholesterol efflux assay, as well as expression of scavenger receptors CD36 and LOX-1. Cellular senescence in macrophage foam cells were determined through analysis of senescence-associated β-galactosidase activity and other SASP factors expression. Meanwhile, autophagy induction was assessed through detection of autophagosome formation and LC3B/p62 markers expression. RESULTS The findings showed that p16INK4a enhanced foam cells formation with increased scavenger receptors CD36 and LOX-1 expression and reduced cholesterol efflux in THP-1 macrophages. Besides, β-galactosidase activity was enhanced, and SASP factors such as IL-1α, TNF-α, and MMP9 were up-regulated. In addition, p16INK4a is also shown to induce autophagy, as well as increasing autophagy markers LC3B and p62 expression. CONCLUSIONS This study provides insights on p16INK4a in mediating macrophages foam cells formation, cellular senescence, and foam cells formation.
Collapse
Affiliation(s)
- Wei Sheng Siew
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Selangor, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia.
| |
Collapse
|
2
|
Schepers M, Paes D, Tiane A, Rombaut B, Piccart E, van Veggel L, Gervois P, Wolfs E, Lambrichts I, Brullo C, Bruno O, Fedele E, Ricciarelli R, Ffrench-Constant C, Bechler ME, van Schaik P, Baron W, Lefevere E, Wasner K, Grünewald A, Verfaillie C, Baeten P, Broux B, Wieringa P, Hellings N, Prickaerts J, Vanmierlo T. Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis. Brain Behav Immun 2023; 109:1-22. [PMID: 36584795 DOI: 10.1016/j.bbi.2022.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Dean Paes
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Elisabeth Piccart
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lieve van Veggel
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Pascal Gervois
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Genova, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Genova, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Ricciarelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Experimental Medicine, Section of General Pathology, University of Genova, Genova, Italy
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Marie E Bechler
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pauline van Schaik
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Evy Lefevere
- Rewind Therapeutics NV, Gaston Geenslaan 2, B-3001, Leuven, Belgium
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Belgium
| | - Paulien Baeten
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Paul Wieringa
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium.
| |
Collapse
|
3
|
Bogie JFJ, Mailleux J, Wouters E, Jorissen W, Grajchen E, Vanmol J, Wouters K, Hellings N, van Horssen J, Vanmierlo T, Hendriks JJA. Scavenger receptor collectin placenta 1 is a novel receptor involved in the uptake of myelin by phagocytes. Sci Rep 2017; 7:44794. [PMID: 28317919 PMCID: PMC5357964 DOI: 10.1038/srep44794] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
Myelin-containing macrophages and microglia are the most abundant immune cells in active multiple sclerosis (MS) lesions. Our recent transcriptomic analysis demonstrated that collectin placenta 1 (CL-P1) is one of the most potently induced genes in macrophages after uptake of myelin. CL-P1 is a type II transmembrane protein with both a collagen-like and carbohydrate recognition domain, which plays a key role in host defense. In this study we sought to determine the dynamics of CL-P1 expression on myelin-containing phagocytes and define the role that it plays in MS lesion development. We show that myelin uptake increases the cell surface expression of CL-P1 by mouse and human macrophages, but not by primary mouse microglia in vitro. In active demyelinating MS lesions, CL-P1 immunoreactivity was localized to perivascular and parenchymal myelin-laden phagocytes. Finally, we demonstrate that CL-P1 is involved in myelin internalization as knockdown of CL-P1 markedly reduced myelin uptake. Collectively, our data indicate that CL-P1 is a novel receptor involved in myelin uptake by phagocytes and likely plays a role in MS lesion development.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jo Mailleux
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Elien Wouters
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Winde Jorissen
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Elien Grajchen
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jasmine Vanmol
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| |
Collapse
|
4
|
Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016; 354:472-477. [PMID: 27789842 DOI: 10.1126/science.aaf6659] [Citation(s) in RCA: 843] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
Advanced atherosclerotic lesions contain senescent cells, but the role of these cells in atherogenesis remains unclear. Using transgenic and pharmacological approaches to eliminate senescent cells in atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr-/-) mice, we show that these cells are detrimental throughout disease pathogenesis. We find that foamy macrophages with senescence markers accumulate in the subendothelial space at the onset of atherosclerosis, where they drive pathology by increasing expression of key atherogenic and inflammatory cytokines and chemokines. In advanced lesions, senescent cells promote features of plaque instability, including elastic fiber degradation and fibrous cap thinning, by heightening metalloprotease production. Together, these results demonstrate that senescent cells are key drivers of atheroma formation and maturation and suggest that selective clearance of these cells by senolytic agents holds promise for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bennett G Childs
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tobias Wijshake
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA. Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Abstract
Coronary artery disease (or coronary heart disease), is the leading cause of mortality in many of the developing as well as the developed countries of the world. Cholesterol-enriched plaques in the heart's blood vessels combined with inflammation lead to the lesion expansion, narrowing of blood vessels, reduced blood flow, and may subsequently cause lesion rupture and a heart attack. Even though several environmental risk factors have been established, such as high LDL-cholesterol, diabetes, and high blood pressure, the underlying genetic composition may substantially modify the disease risk; hence, genome composition and gene-environment interactions may be critical for disease progression. Ongoing scientific efforts have seen substantial advancements related to the fields of genetics and genomics, with the major breakthroughs yet to come. As genomics is the most rapidly advancing field in the life sciences, it is important to present a comprehensive overview of current efforts. Here, we present a summary of various genetic and genomics assays and approaches applied to coronary artery disease research.
Collapse
Affiliation(s)
- Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5233, USA
| | - Clint L Miller
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5233, USA
| | - Robert Wirka
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5233, USA
| | - Juyong B Kim
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5233, USA
| | - Daniel M DiRenzo
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5233, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5233, USA.
| |
Collapse
|
6
|
Kong Y, Sharma RB, Nwosu BU, Alonso LC. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 2016; 59:1579-93. [PMID: 27155872 PMCID: PMC4930689 DOI: 10.1007/s00125-016-3967-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes, fuelled by the obesity epidemic, is an escalating worldwide cause of personal hardship and public cost. Diabetes incidence increases with age, and many studies link the classic senescence and ageing protein p16(INK4A) to diabetes pathophysiology via pancreatic islet biology. Genome-wide association studies (GWASs) have unequivocally linked the CDKN2A/B locus, which encodes p16 inhibitor of cyclin-dependent kinase (p16(INK4A)) and three other gene products, p14 alternate reading frame (p14(ARF)), p15(INK4B) and antisense non-coding RNA in the INK4 locus (ANRIL), with human diabetes risk. However, the mechanism by which the CDKN2A/B locus influences diabetes risk remains uncertain. Here, we weigh the evidence that CDKN2A/B polymorphisms impact metabolic health via islet biology vs effects in other tissues. Structured in a bedside-to-bench-to-bedside approach, we begin with a summary of the evidence that the CDKN2A/B locus impacts diabetes risk and a brief review of the basic biology of CDKN2A/B gene products. The main emphasis of this work is an in-depth look at the nuanced roles that CDKN2A/B gene products and related proteins play in the regulation of beta cell mass, proliferation and insulin secretory function, as well as roles in other metabolic tissues. We finish with a synthesis of basic biology and clinical observations, incorporating human physiology data. We conclude that it is likely that the CDKN2A/B locus influences diabetes risk through both islet and non-islet mechanisms.
Collapse
Affiliation(s)
- Yahui Kong
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Rohit B Sharma
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Benjamin U Nwosu
- Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Wasiak S, Gilham D, Tsujikawa LM, Halliday C, Norek K, Patel RG, McLure KG, Young PR, Gordon A, Kulikowski E, Johansson J, Sweeney M, Wong NC. Data on gene and protein expression changes induced by apabetalone (RVX-208) in ex vivo treated human whole blood and primary hepatocytes. Data Brief 2016; 8:1280-8. [PMID: 27570805 PMCID: PMC4990638 DOI: 10.1016/j.dib.2016.07.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/05/2016] [Accepted: 07/22/2016] [Indexed: 01/20/2023] Open
Abstract
Apabetalone (RVX-208) inhibits the interaction between epigenetic regulators known as bromodomain and extraterminal (BET) proteins and acetyl-lysine marks on histone tails. Data presented here supports the manuscript published in Atherosclerosis “RVX-208, a BET-inhibitor for Treating Atherosclerotic Cardiovascular Disease, Raises ApoA-I/HDL and Represses Pathways that Contribute to Cardiovascular Disease” (Gilham et al., 2016) [1]. It shows that RVX-208 and a comparator BET inhibitor (BETi) JQ1 increase mRNA expression and production of apolipoprotein A-I (ApoA-I), the main protein component of high density lipoproteins, in primary human and African green monkey hepatocytes. In addition, reported here are gene expression changes from a microarray-based analysis of human whole blood and of primary human hepatocytes treated with RVX-208.
Collapse
|
8
|
Wang W, Oh S, Koester M, Abramowicz S, Wang N, Tall AR, Welch CL. Enhanced Megakaryopoiesis and Platelet Activity in Hypercholesterolemic, B6-Ldlr-/-, Cdkn2a-Deficient Mice. ACTA ACUST UNITED AC 2016; 9:213-22. [PMID: 27098250 DOI: 10.1161/circgenetics.115.001294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/13/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Genome-wide association studies for coronary artery disease/myocardial infarction revealed a 58 kb risk locus on 9p21.3. Refined genetic analyses revealed unique haplotype blocks conferring susceptibility to atherosclerosis per se versus risk for acute complications in the presence of underlying coronary artery disease. The cell proliferation inhibitor locus, CDKN2A, maps just upstream of the myocardial infarction risk block, is at least partly regulated by the noncoding RNA, ANRIL, overlapping the risk block, and has been associated with platelet counts in humans. Thus, we tested the hypothesis that CDKN2A deficiency predisposes to increased platelet production, leading to increased platelet activation in the setting of hypercholesterolemia. METHODS AND RESULTS Platelet production and activation were measured in B6-Ldlr(-/-)Cdkn2a(+/-) mice and a congenic strain carrying the region of homology with the human 9p21.3/CDKN2A locus. The strains exhibit decreased expression of CDKN2A (both p16(INK4a) and p19(ARF)) but not CDKN2B (p15(INK4b)). Compared with B6-Ldlr(-/-) controls, both Cdkn2a-deficient strains exhibited increased platelet counts and bone marrow megakaryopoiesis. The platelet overproduction phenotype was reversed by treatment with cyclin-dependent kinase 4/6 inhibitor, PD0332991/palbociclib, that mimics the endogenous effect of p16(INK4a). Western diet feeding resulted in increased platelet activation, increased thrombin/antithrombin complex, and decreased bleeding times in Cdkn2a-deficient mice compared with controls. CONCLUSIONS Together, the data suggest that one or more Cdkn2a transcripts modulate platelet production and activity in the setting of hypercholesterolemia, amenable to pharmaceutical intervention. Enhanced platelet production and activation may predispose to arterial thrombosis, suggesting an explanation, at least in part, for the association of 9p21.3 and myocardial infarction.
Collapse
Affiliation(s)
- Wei Wang
- From the Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY
| | - Seon Oh
- From the Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY
| | - Mark Koester
- From the Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY
| | - Sandra Abramowicz
- From the Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY
| | - Nan Wang
- From the Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY
| | - Alan R Tall
- From the Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY
| | - Carrie L Welch
- From the Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY.
| |
Collapse
|
9
|
Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab 2015; 26:176-84. [PMID: 25744911 DOI: 10.1016/j.tem.2015.01.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWASs) provide an unprecedented opportunity to examine, on a large scale, the association of common genetic variants with complex diseases like type 2 diabetes (T2D) and cardiovascular disease (CVD), thus allowing the identification of new potential disease loci. Using this approach, numerous studies have associated SNPs on chromosome 9p21.3 situated near the cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) locus with the risk for coronary artery disease (CAD) and T2D. However, identifying the function of the nearby gene products (CDKN2A/B and ANRIL) in the pathophysiology of these conditions requires functional genomic studies. We review the current knowledge, from studies using human and mouse models, describing the function of CDKN2A/B gene products, which may mechanistically link the 9p21.3 risk locus with CVD and diabetes.
Collapse
Affiliation(s)
- Sarah Anissa Hannou
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France; Centre National de la Recherche Scientifique (CNRS), UMR 8199, Lille, France
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Department of Internal Medicine, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Réjane Paumelle
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France
| | - Bart Staels
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France.
| |
Collapse
|
10
|
Tilstam PV, Gijbels MJ, Habbeddine M, Cudejko C, Asare Y, Theelen W, Zhou B, Döring Y, Drechsler M, Pawig L, Simsekyilmaz S, Koenen RR, de Winther MPJ, Lawrence T, Bernhagen J, Zernecke A, Weber C, Noels H. Bone marrow-specific knock-in of a non-activatable Ikkα kinase mutant influences haematopoiesis but not atherosclerosis in Apoe-deficient mice. PLoS One 2014; 9:e87452. [PMID: 24498325 PMCID: PMC3911989 DOI: 10.1371/journal.pone.0087452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022] Open
Abstract
Background The Ikkα kinase, a subunit of the NF-κB-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikkα mutant knock-in on haematopoiesis and atherosclerosis in mice. Methods and Results Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (IkkαAA/AAApoe−/−) or with Ikkα+/+Apoe−/− BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in IkkαAA/AAApoe−/− BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of IkkαAA/AAApoe−/− vs Ikkα+/+Apoe−/− BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from IkkαAA/AAApoe−/− vs Ikkα+/+Apoe−/− mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Conclusion Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of IkkαAA mutant BM did not affect atherosclerosis in Apoe−/− mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach.
Collapse
Affiliation(s)
- Pathricia V. Tilstam
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Marion J. Gijbels
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mohamed Habbeddine
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Céline Cudejko
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Yaw Asare
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Wendy Theelen
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Baixue Zhou
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maik Drechsler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lukas Pawig
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Sakine Simsekyilmaz
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Rory R. Koenen
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Menno P. J. de Winther
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
- August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alma Zernecke
- Rudolf Virchow Center and Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
- Department of Vascular Surgery, Klinikum rechts der Isar Technical University Munich, Munich, Germany
- German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
- * E-mail: (CW); (HN)
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- * E-mail: (CW); (HN)
| |
Collapse
|
11
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Since 2007, genome-wide association studies (GWAS) have led to the identification of numerous loci of atherosclerotic cardiovascular disease. The majority of these loci harbor genes previously not known to be involved in atherogenesis. In this review, we summarize the recent progress in understanding the pathophysiology of genetic variants in atherosclerosis. RECENT FINDINGS Fifty-eight loci with P < 10⁻⁷ have been identified in GWAS for coronary heart disease and myocardial infarction. Of these, 23 loci (40%) overlap with GWAS loci of classical risk factors such as lipids, blood pressure, and diabetes mellitus, suggesting a potential causal relation. The vast majority of the remaining 35 loci (60%) are at genomic regions where the mechanism in atherogenesis is unclear. Loci most frequently found in independent GWAS were at Chr9p21.3 (ANRIL/CDKN2B-AS1), Chr6p24.1 (PHACTR1), and Chr1p13.3 (CELSR2, PSRC1, MYBPHL, SORT1). Recent work suggests that Chr9p21.3 exerts its effects through epigenetic regulation of target genes, whereas mechanisms at Chr6p24.1 remain obscure, and Chr1p13.3 affects plasma LDL cholesterol. SUMMARY Novel GWAS loci indicate that our understanding of atherosclerosis is limited and implicate a role of hitherto unknown mechanisms, such as epigenetic gene regulation in atherogenesis.
Collapse
Affiliation(s)
- Lesca M Holdt
- Institute of Laboratory Medicine, University Hospital Munich-LMU and Ludwig-Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is driven by cardiovascular risk factors that cause the recruitment of circulating immune cells beneath the vascular endothelium. Infiltrated monocytes differentiate into different macrophage subtypes with protective or pathogenic activities in vascular lesions. We discuss current knowledge about the molecular mechanisms that regulate lesional macrophage proliferation and apoptosis, two processes that occur during atherosclerosis development and regulate the number and function of macrophages within the atherosclerotic plaque. RECENT FINDINGS Lesional macrophages in early phases of atherosclerosis limit disease progression by phagocytizing modified lipoproteins, cellular debris and dead cells that accumulate in the plaque. However, macrophages in advanced lesions contribute to a maladaptive, nonresolving inflammatory response that can lead to life-threatening acute thrombotic diseases (myocardial infarction or stroke). Macrophage-specific manipulation of genes involved in cell proliferation and apoptosis modulates lesional macrophage accumulation and atherosclerosis burden in mouse models, and studies are beginning to elucidate the underlying mechanisms. SUMMARY Despite recent advances in our understanding of macrophage proliferation and apoptosis in atherosclerotic plaques, it remains unclear whether manipulating these processes will be beneficial or harmful. Advances in these areas may translate into more efficient therapies for the prevention and treatment of atherothrombosis.
Collapse
Affiliation(s)
- Vicente Andrés
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|