1
|
Musetti B, Kun A, Menchaca D, Rodríguez-Haralambides A, Varela J, Thomson L, Bahnson EM. Cannabis sativa extracts inhibit LDL oxidation and the formation of foam cells in vitro, acting as potential multi-step inhibitors of atherosclerosis development. PLoS One 2024; 19:e0310777. [PMID: 39705234 DOI: 10.1371/journal.pone.0310777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/04/2024] [Indexed: 12/22/2024] Open
Abstract
Atherosclerotic disease is the leading cause of death world-wide. Our goal was to explore the effect of phytocannabinoids on the molecular mechanisms triggering the development of the atheromatous lesion. Three cannabis sativa extracts of different chemotypes were chemically characterized by UPLC-DAD. The capacity of the extracts to prevent the oxidation of LDL, the formation of foam cells and the activation of an inflammatory response by J774 cells, were monitored by UV-Vis spectrometry, confocal-microscopy and western blot. Three varieties of cannabis sativa, with high (E1), intermediate (E2) and low (E3) THC/CBD ratios were selected. The three cannabis extracts inhibited the oxidation of LDL by copper ions and the formation of foam cells by J774.1 cells challenged with oxLDL (ED50 5-12 μg mL-1). The effect of the cannabinoid extracts on the endocytic process was independent of the canonical cannabinoid receptors, CB1 and CB2, but related to the action of non-canonical receptors (TRPV1, TRPV4 and GPR55), involved in calcium signaling. Decreased levels of CD36 and OLR1 scavenger receptors were, at least partially, responsible for the diminished uptake of oxLDL induced by phytocannabinoids. The downregulation of CD36 and OLR1 could be explained by the observed inhibitory effect of the cannabis extracts on the activation of the NFκB pathway by oxLDL. Phytocannabinoids interfere with the main events leading to the development of the atheromatous plaque, opening new venues on atherosclerosis therapy.
Collapse
Affiliation(s)
- Bruno Musetti
- Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Enzimología, Universidad de la República, Montevideo, Uruguay
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Alejandra Kun
- Facultad de Ciencias, Biología Celular del Sistema Nervioso Periférico-DPAN-IIBCE, Instituto de Investigaciones Biológicas Clemente Estable, Sección Bioquímica, Montevideo, Uruguay
- CIBERNED-España, Madrid, Spain
| | - David Menchaca
- Laboratorio Química Bioanalítica, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Uruguay
| | - Alejandra Rodríguez-Haralambides
- Laboratorio Química Bioanalítica, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Uruguay
| | - Javier Varela
- Facultad de Ciencias, Laboratorio de Química Orgánica y Medicinal, de la República, Uruguay
| | - Leonor Thomson
- Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Enzimología, Universidad de la República, Montevideo, Uruguay
| | - Edward M Bahnson
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
2
|
Zhao SL, Liu D, Ding LQ, Liu GK, Yao T, Wu LL, Li G, Cao SJ, Qiu F, Kang N. Schisandra chinensis lignans improve insulin resistance by targeting TLR4 and activating IRS-1/PI3K/AKT and NF-κB signaling pathways. Int Immunopharmacol 2024; 142:113069. [PMID: 39241520 DOI: 10.1016/j.intimp.2024.113069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Schisandra chinensis, a traditional Chinese medicine, has been widely applied in China to treat diabetes and its complications. The aim of this study was to discover the active compounds and explain related molecular mechanism contributing to the anti-diabetic effect of Schisandra chinensis. Herein, the therapeutic effects of Schisandra chinensis extracts on type 2 diabetes mellitus (T2DM) were firstly confirmed in vivo. Subsequently, various lignans were isolated from Schisandra chinensis and tested for hypoglycemic activity in palmitic acid-induced insulin-resistant HepG2 (IR-HepG2) cells. Among these lignans, R-biar-(7S,8R)-6,7,8,9-tetrahydro-1,2,3,12,13,14-hexamethoxy-7,8-dimethyl-7-dibenzo [a, c] cyclooctenol (compound 2) and Gomisin A (compound 4) were identified significantly increased the glucose consumption in IR-HepG2 cells. Meanwhile, compounds 2 and 4 activated the insulin receptor substrate-1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/Ak strain transforming (AKT) pathway, which regulates glucose transporter 2 (GLUT2) and glucose-6-phosphatase (G6Pase), essential for gluconeogenesis and glucose uptake. These compounds also inhibited the nuclear factor-κB (NF-κB) signaling pathway, reducing interleukin-6 (IL-6) levels. Importantly, the hypoglycemic effects of compounds 2 and 4 were diminished after Toll-like receptor 4 (TLR4) knockdown. Cellular thermal shift assays confirmed increased TLR4 protein stability upon treatment with these compounds, indicating direct binding to TLR4. Furthermore, TLR4 knockdown reversed the effects of compounds 2 and 4 on the NF-κB and IRS-1/PI3K/AKT pathways. Taken together, compounds 2 and 4 alleviate IR by targeting TLR4, thereby modulating the NF-κB and IRS-1/PI3K/AKT pathways. These findings suggest that compounds 2 and 4 could be developed as therapeutic agents for T2DM.
Collapse
Key Words
- Gomisin A
- IRS-1/PI3K/AKT pathway
- Insulin resistance (IR)
- NF-κB pathway
- R-biar-(7S,8R)-6,7,8,9-tetrahydro-1,2,3,12,13,14-hexamethoxy-7,8- dimethyl-7-dibenzo[a,c]cyclooctenol
- Toll like receptor 4 (TLR4)
Collapse
Affiliation(s)
- Shao-Li Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Da Liu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li-Qin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guan-Ke Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tie Yao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin-Lin Wu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Msweli S, Pakala SB, Syed K. NF-κB Transcription Factors: Their Distribution, Family Expansion, Structural Conservation, and Evolution in Animals. Int J Mol Sci 2024; 25:9793. [PMID: 39337282 PMCID: PMC11432056 DOI: 10.3390/ijms25189793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The Nuclear Factor Kappa B (NF-κB) transcription factor family consists of five members: RelA (p65), RelB, c-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). This family is considered a master regulator of classical biochemical pathways such as inflammation, immunity, cell proliferation, and cell death. The proteins in this family have a conserved Rel homology domain (RHD) with the following subdomains: DNA binding domain (RHD-DBD) and dimerization domain (RHD-DD). Despite the importance of the NF-κB family in biology, there is a lack of information with respect to their distribution patterns, evolution, and structural conservation concerning domains and subdomains in animals. This study aims to address this critical gap regarding NF-κB proteins. A comprehensive analysis of NF-κB family proteins revealed their distinct distribution in animals, with differences in protein sizes, conserved domains, and subdomains (RHD-DBD and RHD-DD). For the first time, NF-κB proteins with multiple RHD-DBDs and RHD-DDs have been identified, and in some cases, this is due to subdomain duplication. The presence of RelA/p65 exclusively in vertebrates shows that innate immunity originated in fishes, followed by amphibians, reptiles, aves, and mammals. Phylogenetic analysis showed that NF-κB family proteins grouped according to animal groups, signifying structural conservation after speciation. The evolutionary analysis of RHDs suggests that NF-κB family members p50/p105 and c-Rel may have been the first to emerge in arthropod ancestors, followed by RelB, RelA, and p52/p100.
Collapse
Affiliation(s)
- Siphesihle Msweli
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| | - Suresh B. Pakala
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500-046, India
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| |
Collapse
|
4
|
Chaudhri EN, Abbott JM, Islam NN, Weber CA, Coban MA, Bilgili A, Squire JD, Mantia S, Wierenga KJ, Caulfield TR. Statistical Mechanics Metrics in Pairing and Parsing In Silico and Phenotypic Data of a Novel Genetic NFκB1 (c.T638A) Variant. Genes (Basel) 2023; 14:1855. [PMID: 37895204 PMCID: PMC10606260 DOI: 10.3390/genes14101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Mutations in NFκB1, a transcriptional regulator of immunomodulating proteins, are a known cause of inborn errors of immunity. Our proband is a 22-year-old male with a diagnosis of common variable immunodeficiency (CVID), cytopenias with massive splenomegaly, and nodular regenerative hyperplasia of the liver. Genetic studies identified a novel, single-point mutation variant in NFκB1, c. T638A p. V213E. (2) Methods: Next-generation panel sequencing of the patient uncovered a novel single-point mutation in the NFκB1 gene that was modeled using the I-TASSER homology-modeling software, and molecular dynamics were assessed using the YASARA2 software (version 20.14.24). (3) Results: This variant replaces valine with glutamic acid at position 213 in the NFκB1 sequence. Molecular modeling and molecular dynamic studies showed altered dynamics in and around the rel homology domain, ankyrin regions, and death domain of the protein. We postulate that these changes alter overall protein function. (4) Conclusions: This case suggests the pathogenicity of a novel variant using protein-modeling techniques and molecular dynamic simulations.
Collapse
Affiliation(s)
- Eman N. Chaudhri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Jessica M. Abbott
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Naeyma N. Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Caleb A. Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Ahmet Bilgili
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | | | - Sarah Mantia
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA (K.J.W.)
| | - Klaas J. Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA (K.J.W.)
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| |
Collapse
|
5
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Lu D, Li Z, Zhu P, Yang Z, Yang H, Li Z, Li H, Li Z. Whole-transcriptome analyses of sheep embryonic testicular cells infected with the bluetongue virus. Front Immunol 2022; 13:1053059. [PMID: 36532076 PMCID: PMC9751015 DOI: 10.3389/fimmu.2022.1053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction bluetongue virus (BTV) infection triggers dramatic and complex changes in the host's transcriptional profile to favor its own survival and reproduction. However, there is no whole-transcriptome study of susceptible animal cells with BTV infection, which impedes the in-depth and systematical understanding of the comprehensive characterization of BTV-host interactome, as well as BTV infection and pathogenic mechanisms. Methods to systematically understand these changes, we performed whole-transcriptome sequencing in BTV serotype 1 (BTV-1)-infected and mock-infected sheep embryonic testicular cells, and subsequently conducted bioinformatics differential analyses. Results there were 1504 differentially expressed mRNAs, 78 differentially expressed microRNAs, 872 differentially expressed long non-coding RNAs, and 59 differentially expressed circular RNAs identified in total. Annotation from the Gene Ontology, enrichment from the Kyoto Encyclopedia of Genes and Genomes, and construction of competing endogenous RNA networks revealed differentially expressed RNAs primarily related to virus-sensing and signaling transduction pathways, antiviral and immune responses, inflammation, and development and metabolism related pathways. Furthermore, a protein-protein interaction network analysis found that BTV may contribute to abnormal spermatogenesis by reducing steroid biosynthesis. Finally, real-time quantitative PCR and western blotting results showed that the expression trends of differentially expressed RNAs were consistent with the whole-transcriptome sequencing data. Discussion this study provides more insights of comprehensive characterization of BTV-host interactome, and BTV infection and pathogenic mechanisms.
Collapse
Affiliation(s)
- Danfeng Lu
- School of Medicine, Kunming University, Kunming, Yunnan, China
| | - Zhuoyue Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
7
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
8
|
Luo T, Wang Y, Tang H, Zhou F, Chen Y, Pei B, Wang J. An AAV-Based NF-κB-Targeting Gene Therapy (rAAV-DMP-miR533) to Inflammatory Diseases. J Inflamm Res 2022; 15:3447-3466. [PMID: 35726215 PMCID: PMC9206518 DOI: 10.2147/jir.s362732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background The inflammatory diseases pose a great threat to human health. Variant anti-inflammatory agents have been therefore developed. However, the current anti-inflammatory drugs are still challenged by low response and side effects. There remain great unmet treatments to inflammatory diseases. Methods In this work, we fabricate a recombinant adeno-associated virus (rAAV), rAAV-DMP-miR533, by packaging a DNA molecule DMP-miR533 into AAV, in which DMP is a NF-κB-activatable promoter composed of a NF-κB decoy and a minimal promoter and miR533 codes an artificial microRNA targeting NF-κB RELA. We evaluate the in vitro and in vivo anti-inflammatory effect of the virus with inflammatory cells and the mice of three typical inflammatory diseases including the dextran sulphate sodium-induced acute colitis, imiquimod-induced psoriasis, and collagen-induced arthritis. Results We found that rAAV-DMP-miR533 had marked anti-inflammatory effect in both cells and mice. In addition, rAAV-DMP-miR533 showed biosafety in mice. Conclusion This study thus provides a promising gene therapy to variant inflammatory diseases by directly targeting NF-κB, an established hub regulator of inflammation.
Collapse
Affiliation(s)
- Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Yile Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Hailin Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Fei Zhou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, People's Republic of China
| | - Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Bing Pei
- Department of Clinical Laboratory, the Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, 223800, People's Republic of China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
9
|
Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing Res Rev 2022; 75:101569. [PMID: 35051643 DOI: 10.1016/j.arr.2022.101569] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Growth differentiation factor 15 (GDF15) is recently emerging not only as a stress-related mitokine, but also as a key player in the aging process, being one of the most up-regulated protein with age and associated with a variety of age-related diseases (ARDs). Many data indicate that GDF15 has protective roles in several tissues during different stress and aging, thus playing a beneficial role in apparent contrast with the observed association with many ARDs. A possible detrimental role for this protein is then hypothesized to emerge with age. Therefore, GDF15 can be considered as a pleiotropic factor with beneficial activities that can turn detrimental in old age possibly when it is chronically elevated. In this review, we summarize the current knowledge on the biology of GDF15 during aging. We also propose GDF15 as a part of a dormancy program, where it may play a role as a mediator of defense processes aimed to protect from inflammatory damage and other stresses, according to the life history theory.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Cristina Giuliani
- Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy; Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Witte HM, Künstner A, Hertel N, Bernd HW, Bernard V, Stölting S, Merz H, von Bubnoff N, Busch H, Feller AC, Gebauer N. Integrative genomic and transcriptomic analysis in plasmablastic lymphoma identifies disruption of key regulatory pathways. Blood Adv 2022; 6:637-651. [PMID: 34714908 PMCID: PMC8791589 DOI: 10.1182/bloodadvances.2021005486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmablastic lymphoma (PBL) represents a clinically heterogeneous subtype of aggressive B-cell non-Hodgkin lymphoma. Targeted-sequencing studies and a single-center whole-exome sequencing (WES) study in HIV-positive patients recently revealed several genes associated with PBL pathogenesis; however, the global mutational landscape and transcriptional profile of PBL remain elusive. To inform on disease-associated mutational drivers, mutational patterns, and perturbed pathways in HIV-positive and HIV-negative PBL, we performed WES and transcriptome sequencing (RNA-sequencing) of 33 PBL tumors. Integrative analysis of somatic mutations and gene expression profiles was performed to acquire insights into the divergent genotype-phenotype correlation in Epstein-Barr virus-positive (EBV+) and EBV- PBL. We describe a significant accumulation of mutations in the JAK signal transducer and transcription activator (OSMR, STAT3, PIM1, and SOCS1), as well as receptor tyrosine-kinase RAS (ERBB3, NRAS, PDGFRB, and NTRK) pathways. We provide further evidence of frequent perturbances of NF-κB signaling (NFKB2 and BTK). Induced pathways, identified by RNA-sequencing, closely resemble the mutational profile regarding alterations accentuated in interleukin-6/JAK/STAT signaling, NF-κB activity, and MYC signaling. Moreover, class I major histocompatibility complex-mediated antigen processing and cell cycle regulation were significantly affected by EBV status. An almost exclusive upregulation of phosphatidylinositol 3-kinase/AKT/mTOR signaling in EBV+ PBL and a significantly induced expression of NTRK3 in concert with recurrent oncogenic mutations in EBV- PBL hint at a specific therapeutically targetable mechanism in PBL subgroups. Our characterization of a mutational and transcriptomic landscape in PBL, distinct from that of diffuse large B-cell lymphoma and multiple myeloma, substantiates the pathobiological independence of PBL in the spectrum of B-cell malignancies and thereby refines the taxonomy for aggressive lymphomas.
Collapse
Affiliation(s)
- Hanno M. Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Axel Künstner
- Medical Systems Biology Group, and
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Nadine Hertel
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Heinz-Wolfram Bernd
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Stephanie Stölting
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Hauke Busch
- Medical Systems Biology Group, and
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Alfred C. Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| |
Collapse
|
11
|
Tyrosol, at the Concentration Found in Maltese Extra Virgin Olive Oil, Induces HL-60 Differentiation towards the Monocyte lineage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tyrosol is a phenolic found in extra virgin olive oil (EVOO). In a Maltese monocultivar EVOO, it was present at a concentration of 9.23 ppm. The HL-60 acute myeloid leukaemia cell line, which can be differentiated to both monocytes and neutrophils, was exposed to tyrosol at this concentration and analysed for evidence of differentiation and effects of cytotoxicity. The polyphenol induced a 1.93-fold increase in cellular oxidative activity (p-value 0.044) and enhanced surface expression of CD11b and CD14. This indicates that tyrosol induces monocytic-like differentiation. An RNA-seq analysis confirmed the upregulation of monocyte genes and the loss of neutrophil genes concomitant with the bi-potential promyelocyte precursor moving down the monocytic pathway. A cell cycle analysis showed an accumulation of cells in the Sub G0/G1 phase following tyrosol exposure for 5 days, which coincided with an increase in apoptotic and necrotic markers. This indicates differentiation followed by cell death, unlike the positive monocyte differentiation control PMA. This selective cytotoxic effect following differentiation indicates therapeutic potential against leukaemia.
Collapse
|
12
|
Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S. NF-κB and Its Regulators During Pregnancy. Front Immunol 2021; 12:679106. [PMID: 34025678 PMCID: PMC8131829 DOI: 10.3389/fimmu.2021.679106] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Correa
- Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico
| | - Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
13
|
Fonseca Dos Reis E, Viney M, Masuda N. Network analysis of the immune state of mice. Sci Rep 2021; 11:4306. [PMID: 33619299 PMCID: PMC7900184 DOI: 10.1038/s41598-021-83139-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/21/2021] [Indexed: 11/09/2022] Open
Abstract
The mammalian immune system protects individuals from infection and disease. It is a complex system of interacting cells and molecules, which has been studied extensively to investigate its detailed function, principally using laboratory mice. Despite the complexity of the immune system, it is often analysed using a restricted set of immunological parameters. Here we have sought to generate a system-wide view of the murine immune response, which we have done by undertaking a network analysis of 120 immune measures. To date, there has only been limited network analyses of the immune system. Our network analysis identified a relatively low number of communities of immune measure nodes. Some of these communities recapitulate the well-known T helper 1 vs. T helper 2 cytokine polarisation (where ordination analyses failed to do so), which validates the utility of our approach. Other communities we detected show apparently novel juxtapositions of immune nodes. We suggest that the structure of these other communities might represent functional immunological units, which may require further empirical investigation. These results show the utility of network analysis in understanding the functioning of the mammalian immune system.
Collapse
Affiliation(s)
| | - Mark Viney
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, 14260, USA. .,Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, 14260, USA. .,Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
14
|
Zanin M, Aitya NA, Basilio J, Baumbach J, Benis A, Behera CK, Bucholc M, Castiglione F, Chouvarda I, Comte B, Dao TT, Ding X, Pujos-Guillot E, Filipovic N, Finn DP, Glass DH, Harel N, Iesmantas T, Ivanoska I, Joshi A, Boudjeltia KZ, Kaoui B, Kaur D, Maguire LP, McClean PL, McCombe N, de Miranda JL, Moisescu MA, Pappalardo F, Polster A, Prasad G, Rozman D, Sacala I, Sanchez-Bornot JM, Schmid JA, Sharp T, Solé-Casals J, Spiwok V, Spyrou GM, Stalidzans E, Stres B, Sustersic T, Symeonidis I, Tieri P, Todd S, Van Steen K, Veneva M, Wang DH, Wang H, Wang H, Watterson S, Wong-Lin K, Yang S, Zou X, Schmidt HH. An Early Stage Researcher's Primer on Systems Medicine Terminology. NETWORK AND SYSTEMS MEDICINE 2021; 4:2-50. [PMID: 33659919 PMCID: PMC7919422 DOI: 10.1089/nsm.2020.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nadim A.A. Aitya
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - José Basilio
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Jan Baumbach
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Arriel Benis
- Faculty of Technology Management, Holon Institute of Technology (HIT), Holon, Israel
| | - Chandan K. Behera
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Magda Bucholc
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Filippo Castiglione
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics, and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Blandine Comte
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Tien-Tuan Dao
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Xuemei Ding
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland, Galway, Republic of Ireland
| | - David H. Glass
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Nissim Harel
- Faculty of Sciences, Holon Institute of Technology (HIT), Holon, Israel
| | - Tomas Iesmantas
- Department of Mathematics and Natural Sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilinka Ivanoska
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Alok Joshi
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222), Medicine Faculty, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Badr Kaoui
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Daman Kaur
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Liam P. Maguire
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Paula L. McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Niamh McCombe
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - João Luís de Miranda
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Portalegre, Portalegre, Portugal
- Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Annikka Polster
- Centre for Molecular Medicine Norway (NCMM), Forskningparken, Oslo, Norway
| | - Girijesh Prasad
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ioan Sacala
- Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania
| | - Jose M. Sanchez-Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic–Central University of Catalonia, Vic, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - George M. Spyrou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Egils Stalidzans
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tijana Sustersic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - Ioannis Symeonidis
- Center for Research and Technology Hellas, Hellenic Institute of Transport, Thessaloniki, Greece
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Stephen Todd
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Altnagelvin, United Kingdom
| | - Kristel Van Steen
- BIO3-Systems Genetics, GIGA-R, University of Liege, Liege, Belgium
- BIO3-Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and School of Systems Science, Beijing Normal University, Beijing, China
| | - Haiying Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Hui Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Su Yang
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Xin Zou
- Shanghai Centre for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Harald H.H.W. Schmidt
- Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Wang R, Wu G, Dai T, Lang Y, Chi Z, Yang S, Dong D. Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation. Exp Ther Med 2020; 21:66. [PMID: 33365066 PMCID: PMC7716641 DOI: 10.3892/etm.2020.9498] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Interstitial fibrosis is a typical feature of all progressive renal diseases. The process of fibrosis is frequently coupled with the presence of pro-fibrotic factors and inflammation. Naringin is a dihydroflavone compound that has been previously reported to exhibit anti-fibrotic effects in the liver, where it prevents oxidative damage. In the present study, a rat model of renal interstitial fibrosis and fibrosis cell model were established to evaluate the effects of naringin on inflammatory proteins and fibrosis markers in kidney of rats and NRK-52E cells, and to elucidate the role of the TGF-β/Smad signaling pathway in this mechanism. Compared with those in fibrotic NRK-52E cells that were stimulated by transforming growth factor-β (TGF-β), gene expression levels of α-smooth muscle actin (α-SMA), collagen 1 (COL1A1), collagen 3 (COL3A1), interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) were all found to be significantly decreased in fibrotic NRK-52E cells following treatment with naringin (50, 100 and 200 ng/ml). Results from the histopathological studies showed that naringin treatment preserved the renal tissue structure and reduced the degree of fibrosis in the kidney tissues of rats that underwent unilateral ureteral obstruction (UUO). In addition, naringin administration reduced the expression of α-SMA, COL1A1, COL3A1, IL-1β, IL-6 and TNF-α in the kidneys of rats following UUO. The current study, using western blot analysis, indicated that naringin also downregulated the activation of Smad2/3 and the expression of Smad4, high-mobility group protein B1, activator protein-1, NF-κB and cyclooxygenase-2 whilst upregulating the expression of Smad7 in fibrotic NRK-52E cells and rats in the UUO group. In conclusion, naringin could antagonize renal interstitial fibrosis by regulating the TGF-β/Smad pathway and the expression of inflammatory factors.
Collapse
Affiliation(s)
- Ruichen Wang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Gaolei Wu
- Department of Pharmacy, Dalian Municipal Women and Children's Medical Center, Dalian, Liaoning 116037, P.R. China
| | - Tiantian Dai
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yitian Lang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhongchao Chi
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
16
|
Transcriptome Analysis Identifies Novel Prognostic Genes in Osteosarcoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8081973. [PMID: 33082842 PMCID: PMC7559853 DOI: 10.1155/2020/8081973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Osteosarcoma (OS), a malignant primary bone tumor often seen in young adults, is highly aggressive. The improvements in high-throughput technologies have accelerated the identification of various prognostic biomarkers for cancer survival prediction. However, only few studies focus on the prediction of prognosis in OS patients using gene expression data due to small sample size and the lack of public datasets. In the present study, the RNA-seq data of 82 OS samples, along with their clinical information, were collected from the TARGET database. To identify the prognostic genes for the OS survival prediction, we selected the top 50 genes of contribution as the initial candidate genes of the prognostic risk model, which were ranked by random forest model, and found that the prognostic model with five predictors including CD180, MYC, PROSER2, DNAI1, and FATE1 was the optimal multivariable Cox regression model. Moreover, based on a multivariable Cox regression model, we also developed a scoring method and stratified the OS patients into groups of different risks. The stratification for OS patients in the validation set further demonstrated that our model has a robust performance. In addition, we also investigated the biological function of differentially expressed genes between two risk groups and found that those genes were mainly involved with biological pathways and processes regarding immunity. In summary, the identification of novel prognostic biomarkers in OS would greatly assist the prediction of OS survival and development of molecularly targeted therapies, which in turn benefit patients' survival.
Collapse
|
17
|
Nakano R, Kitanaka T, Namba S, Kitanaka N, Suwabe Y, Konno T, Yamazaki J, Nakayama T, Sugiya H. Non-Transcriptional and Translational Function of Canonical NF- κB Signaling in Activating ERK1/2 in IL-1 β-Induced COX-2 Expression in Synovial Fibroblasts. Front Immunol 2020; 11:579266. [PMID: 33117381 PMCID: PMC7576893 DOI: 10.3389/fimmu.2020.579266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
The pro-inflammatory cytokine interleukin 1β (IL-1β) induces the synthesis of prostaglandin E2 by upregulating cyclooxygenase-2 (COX-2) in the synovial tissue of individuals with autoimmune diseases, such as rheumatoid arthritis (RA). IL-1β-mediated stimulation of NF-κB and MAPK signaling is important for the pathogenesis of RA; however, crosstalk(s) between NF-κB and MAPK signaling remains to be understood. In this study, we established a model for IL-1β-induced synovitis and investigated the role of NF-κB and MAPK signaling in synovitis. We observed an increase in the mRNA and protein levels of COX-2 and prostaglandin E2 release in cells treated with IL-1β. NF-κB and ERK1/2 inhibitors significantly reduced IL-1β-induced COX-2 expression. IL-1β induced the phosphorylation of canonical NF-κB complex (p65 and p105) and degradation of IκBα. IL-1β also induced ERK1/2 phosphorylation but did not affect the phosphorylation levels of p38 MAPK and JNK. IL-1β failed to induce COX-2 expression in cells transfected with siRNA for p65, p105, ERK1, or ERK2. Notably, NF-κB inhibitors reduced IL-1β-induced ERK1/2 phosphorylation; however, the ERK1/2 inhibitor had no effect on the phosphorylation of the canonical NF-κB complex. Although transcription and translation inhibitors had no effect on IL-1β-induced ERK1/2 phosphorylation, the silencing of canonical NF-κB complex in siRNA-transfected fibroblasts prevented IL-1β-induced phosphorylation of ERK1/2. Taken together, our data indicate the importance of the non-transcriptional/translational activity of canonical NF-κB in the activation of ERK1/2 signaling involved in the IL-1β-induced development of autoimmune diseases affecting the synovial tissue, such as RA.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shinichi Namba
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Nanako Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Suwabe
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jun Yamazaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
18
|
Mohammadtursun N, Li Q, Abuduwaki M, Jiang S, Zhang H, Sun J, Dong J. Loki zupa alleviates inflammatory and fibrotic responses in cigarette smoke induced rat model of chronic obstructive pulmonary disease. Chin Med 2020; 15:92. [PMID: 32874197 PMCID: PMC7457355 DOI: 10.1186/s13020-020-00373-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Loki zupa formula is kind of a traditional medicines which used to treat airway diseases, especially those caused by abnormal phlegm, such as cough, asthma and chronic bronchitis. The study aim was to explore the anti-inflammatory and anti-remodeling effects of Loki zupa by using a cigarette-smoke induced rat model of chronic obstructive pulmonary disease. Methods The rats were divided into five groups: the normal group, the model group, the LZ 4 g/kg and LZ8g/kg group, and the positive control group. Rats were exposed to cigarette smoke for 24 weeks to induce a COPD rat model. Lung function was assessed. Histopathological changes were recorded using Haematoxylin–eosin and Masson’s trichrome staining. Mucus hypersecretion was evaluated by PAS staining. Inflammatory factors were measured in blood serum and bronchial alveolar lavage fluid using an enzyme-linked immunosorbent assay. Malondialdehyde and superoxide dismutase and glutathione S-transferase levels were tested by biochemical methods. Gene expression patterns were evaluated using GN-GeneChip Clariom S Array for rat from Affymetrix. And top upregulated and downregulated genes validated by qPCR. And these genes was also compared with gene transcriptomic data from smoker patients with emphysema and non-smokers in GEO dataset. IL-6/PLAGA2A signalling protein expression was assessed by western blot and immunohistochemistry. TGF-β1and smad2/3 signalling expressions were analysed by western Blot. Results Loki zupa improved COPD rats lung function as compared to the model group and pathological changes including inflammatory cell infiltration and goblet cell metaplasia was alleviated in rats treated with Loki zupa Inflammatory factors IL-6, TNF-α, IL-1β and TGF-β1 decreased while significant increase was observed in blood serum IL-10 content in rats treated with Loki zupa. And IL-6 and TNF-α level in bronchial alveolar lavage fluid showed same expression trend in blood serum, while there was no change in MMP-9 content. It also increased antioxidant enzyme SOD and GPX activity while reducing the lipid peroxidation. Gene microarray analysis showed that there were 355 differentially expressed gene in LZ treated COPD rat lung as compared to model group. Both microarray and qPCR results showed that top differentially expressed genes nxt1 (up regulated) and pla2g2a (down regulated) expression were also reversed by LZ treatment. And protein expression level of IL-6 and pla2g2a was also elevated in CS exposed rats while significant reduction was observed in LZ treated rats. Accordingly, Loki zupa inhibited Collagen-1 upstream protein expression of TGF-β/smad2/3 signalling pathway. Conclusion These results demonstrated that Loki zupa showed protective effects in the lung of the COPD rat model. This mainly because of Loki zupa exerts anti-inflammatory effects by blocking IL-6/pla2g2a signalling and inhibiting inflammatory gene expression and attenuates fibrotic responses by inhibiting TGF-β/smad2/3 signalling pathway.
Collapse
Affiliation(s)
- Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China.,College of Xinjiang Uyghur Medicine, Hotan, China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | | | - Shan Jiang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Hu Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| |
Collapse
|
19
|
Li Q, Liu J, Liu W, Chu Y, Zhong J, Xie Y, Lou X, Ouyang X. LOX-1 Regulates P. gingivalis-Induced Monocyte Migration and Adhesion to Human Umbilical Vein Endothelial Cells. Front Cell Dev Biol 2020; 8:596. [PMID: 32793587 PMCID: PMC7394702 DOI: 10.3389/fcell.2020.00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the main periodontal bacteria. This pathogen was reported to enhance monocyte migration and adhesion to endothelial cells in atherosclerosis. The scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays a pivotal role in atherogenesis. The aim of this study was to investigate whether LOX-1 modulates P. gingivalis-mediated monocyte migration and adhesion to endothelial cells and how it works. The results showed that the migration and adhesion of monocytic THP-1 cells to human umbilical vein endothelial cells (HUVECs) were significantly enhanced when HUVECs or THP-1 cells were challenged with P. gingivalis. Meanwhile, the expression level of LOX-1 in both HUVECs and THP-1 cells were also significantly increased by P. gingivalis stimulation. It is well known that ligand/receptor pairs monocyte chemoattractant protein-1 (MCP-1)/CC chemokine receptor 2 (CCR2), selectins/Integrins, and cell adhesion molecules (CAMs)/Integrins mediate monocyte migration and adhesion to endothelial cells. In this study, LOX-1 was demonstrated to be crucially involved in P. gingivalis-induced THP-1 cell migration and adhesion to HUVECs, by regulating expression of ligands MCP-1, intercellular adhesion molecule-1 (ICAM-1) and E-selectin in HUVECs and that of their receptors CCR2 and Integrin αMβ2 in THP-1 cells. The nuclear factor-kappa B (NF-κB) signaling pathway was proved to be involved in this process. In conclusion, LOX-1 plays a crucial role in P. gingivalis-induced monocyte migration and adhesion to endothelial cells. This result implies LOX-1 may act as a bridge in linking periodontitis to atherosclerosis.
Collapse
Affiliation(s)
- Qian Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenyi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi Chu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China.,First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jinsheng Zhong
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Xie
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xinzhe Lou
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
20
|
Marhl M, Grubelnik V, Magdič M, Markovič R. Diabetes and metabolic syndrome as risk factors for COVID-19. Diabetes Metab Syndr 2020; 14:671-677. [PMID: 32438331 PMCID: PMC7205616 DOI: 10.1016/j.dsx.2020.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Clinical evidence exists that patients with diabetes are at higher risk for Coronavirus disease 2019 (COVID-19). We investigated the physiological origins of this clinical observation linking diabetes with severity and adverse outcome of COVID-19. METHODS Publication mining was applied to reveal common physiological contexts in which diabetes and COVID-19 have been investigated simultaneously. Overall, we have acquired 1,121,078 publications from PubMed in the time span between 01-01-2000 and 17-04-2020, and extracted knowledge graphs interconnecting the topics related to diabetes and COVID-19. RESULTS The Data Mining revealed three pathophysiological pathways linking diabetes and COVID-19. The first pathway indicates a higher risk for COVID-19 because of a dysregulation of Angiotensin-converting enzyme 2. The other two important physiological links between diabetes and COVID-19 are liver dysfunction and chronic systemic inflammation. A deep network analysis has suggested clinical biomarkers predicting the higher risk: Hypertension, elevated serum Alanine aminotransferase, high Interleukin-6, and low Lymphocytes count. CONCLUSIONS The revealed biomarkers can be applied directly in clinical practice. For newly infected patients, the medical history needs to be checked for evidence of a long-term, chronic dysregulation of these biomarkers. In particular, patients with diabetes, but also those with prediabetic state, deserve special attention.
Collapse
Affiliation(s)
- Marko Marhl
- Faculty of Medicine, University of Maribor, SI-2000, Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000, Maribor, Slovenia; Faculty of Education, University of Maribor, SI-2000, Maribor, Slovenia.
| | - Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000, Maribor, Slovenia
| | - Marša Magdič
- Faculty of Medicine, University of Maribor, SI-2000, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000, Maribor, Slovenia; Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000, Maribor, Slovenia.
| |
Collapse
|
21
|
Zhang B, Lai L, Tan Y, Liang Q, Bai F, Mai W, Huang Q, Ye Y. Hepatoprotective effect of total flavonoids of Mallotus apelta (Lour.) Muell.Arg. leaf against carbon tetrachloride-induced liver fibrosis in rats via modulation of TGF-β1/Smad and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112714. [PMID: 32105750 DOI: 10.1016/j.jep.2020.112714] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/06/2019] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mallotus apelta (Lour.) Muell.Arg. is a well-known traditional Chinese medicine (TCM) used for anti-inflammatory, hemostasis and chronic hepatitis. AIM The purpose of this study was to explore the antifibrotic effect of total flavonoids of Mallotus apelta leaf (TFM) and its potential mechanism. METHODS Hepatic fibrosis was induced by carbon tetrachloride (CCl4) in rats. The CCl4-induced rats received intragastric administration of colchicine (0.2 mg/kg per day), TFM (25, 50, 100 mg/kg per day) and the equal vehicle was given to normal rats. Pathological evaluation in hepatic tissue were examined by hematoxylin and eosin (HE) staining. And the levels of serum biochemical parameters were detected by automatic biochemical analysis. Meanwhile, the collagen deposition in liver was observed by staining with Masson's trichrome. Collagenic parameters and inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA) kits. Additionally, corresponding assay kit was used to estimate the antioxidant enzyme and lipid peroxidation. In order to explore the potential mechanism of anti-fibrotic effects in TFM, the expressions of liver fibrosis related gene and protein were analyzed by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. RESULTS The CCl4-induced hepatic fibrosis were inhibited dose-dependently in rats by TFM. The results showed that the key hallmarks of liver injury including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin (ALB) and total protein (TP) in the serum were reversed in CCl4-induced hepatic fibrosis rats which were treated by TFM. Furthermore, TFM significantly alleviates collagen accumulation and reduces the contents of hydroxyproline (Hyp), Type III precollagen (PC-III), collagen I (Col I), hyaluronic acid (HA) and laminin (LN). RT-PCR and Western blot results showed that TFM markedly inhibits liver fibrosis hallmark factor α-smooth muscle actin (α-SMA) expressions in CCl4-induced hepatic fibrosis rats. Moreover, TFM alleviated the oxidative stress and lipid peroxidation in rats induced by CCl4. TFM also attenuated the pro-inflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) via inhibiting nuclear factor-κB (NF-κB) activation. Meanwhile, transforming growth factor-β1 (TGF-β1)/Smad signaling pathway was inhibited by TFM treatment. CONCLUSIONS TFM can alleviate CCl4-induced hepatic fibrosis in rats, which potential mechanism may be due to its ability of reducing ECM accumulation, improving antioxidant and regulating TGF-β1/Smad signaling pathways and NF-κB-dependent inflammatory response.
Collapse
Affiliation(s)
- Bo Zhang
- Guangxi Medical University, Guangxi, China.
| | - Ling Lai
- Guangxi Medical University, Guangxi, China.
| | - Yanjun Tan
- Guangxi Medical University, Guangxi, China.
| | | | | | | | - Qiujie Huang
- Guangxi University of Chinese Medicine, Guangxi, China.
| | - Yong Ye
- Guangxi Medical University, Guangxi, China.
| |
Collapse
|
22
|
Welcome MO, Mastorakis NE. Stress-induced blood brain barrier disruption: Molecular mechanisms and signaling pathways. Pharmacol Res 2020; 157:104769. [PMID: 32275963 DOI: 10.1016/j.phrs.2020.104769] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Stress is a nonspecific response to a threat or noxious stimuli with resultant damaging consequences. Stress is believed to be an underlying process that can trigger central nervous system disorders such as depression, anxiety, and post-traumatic stress disorder. Though the pathophysiological basis is not completely understood, data have consistently shown a pivotal role of inflammatory mediators and hypothalamo-pituitary-adrenal (HPA) axis activation in stress induced disorders. Indeed emerging experimental evidences indicate a concurrent activation of inflammatory signaling pathways and not only the HPA axis, but also, peripheral and central renin-angiotensin system (RAS). Furthermore, recent experimental data indicate that the HPA and RAS are coupled to the signaling of a range of central neuro-transmitter, -mediator and -peptide molecules that are also regulated, at least in part, by inflammatory signaling cascades and vice versa. More recently, experimental evidences suggest a critical role of stress in disruption of the blood brain barrier (BBB), a neurovascular unit that regulates the movement of substances and blood-borne immune cells into the brain parenchyma, and prevents peripheral injury to the brain substance. However, the mechanisms underlying stress-induced BBB disruption are not exactly known. In this review, we summarize studies conducted on the effects of stress on the BBB and integrate recent data that suggest possible molecular mechanisms and signaling pathways underlying stress-induced BBB disruption. Key molecular targets and pharmacological candidates for treatment of stress and related illnesses are also summarized.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
23
|
Artigas-Jerónimo S, Pastor Comín JJ, Villar M, Contreras M, Alberdi P, León Viera I, Soto L, Cordero R, Valdés JJ, Cabezas-Cruz A, Estrada-Peña A, de la Fuente J. A Novel Combined Scientific and Artistic Approach for the Advanced Characterization of Interactomes: The Akirin/Subolesin Model. Vaccines (Basel) 2020; 8:vaccines8010077. [PMID: 32046307 PMCID: PMC7157757 DOI: 10.3390/vaccines8010077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
The main objective of this study was to propose a novel methodology to approach challenges in molecular biology. Akirin/Subolesin (AKR/SUB) are vaccine protective antigens and are a model for the study of the interactome due to its conserved function in the regulation of different biological processes such as immunity and development throughout the metazoan. Herein, three visual artists and a music professor collaborated with scientists for the functional characterization of the AKR2 interactome in the regulation of the NF-κB pathway in human placenta cells. The results served as a methodological proof-of-concept to advance this research area. The results showed new perspectives on unexplored characteristics of AKR2 with functional implications. These results included protein dimerization, the physical interactions with different proteins simultaneously to regulate various biological processes defined by cell type-specific AKR–protein interactions, and how these interactions positively or negatively regulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in a biological context-dependent manner. These results suggested that AKR2-interacting proteins might constitute suitable secondary transcription factors for cell- and stimulus-specific regulation of NF-κB. Musical perspective supported AKR/SUB evolutionary conservation in different species and provided new mechanistic insights into the AKR2 interactome. The combined scientific and artistic perspectives resulted in a multidisciplinary approach, advancing our knowledge on AKR/SUB interactome, and provided new insights into the function of AKR2–protein interactions in the regulation of the NF-κB pathway. Additionally, herein we proposed an algorithm for quantum vaccinomics by focusing on the model proteins AKR/SUB.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Juan J. Pastor Comín
- Centro de Investigación y Documentación Musical CIDoM-UCLM-CSIC, Facultad de Educación de Ciudad Real, Ronda Calatrava 3, 13071 Ciudad Real, Spain;
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Israel León Viera
- León Viera Studio, Calle 60 No. 338 M por 31, Colonia Alcalá Martín, Mérida 97000, Mexico;
| | | | - Raúl Cordero
- Raúl Cordero Studio, Calle Rio Elba 21-8, Colonia Cuauhtémoc, CDMX 06500, Mexico;
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic;
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | | | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence:
| |
Collapse
|
24
|
Singh VK, Sarkar SK, Saxena A, Koner BC. Effect of Subtoxic DDT Exposure on Glucose Uptake and Insulin Signaling in Rat L6 Myoblast-Derived Myotubes. Int J Toxicol 2019; 38:303-311. [DOI: 10.1177/1091581819850577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to persistent organic pollutants including dichlorodiphenyltrichloroethane (DDT) induces insulin resistance. But the mechanism is not clearly known. The present study was designed to explore the effect of subtoxic DDT exposure on (1) insulin-stimulated glucose uptake, (2) malondialdehyde (MDA) level and total antioxidant content, (3) activation of redox sensitive kinases (RSKs), and (4) insulin signaling in rat L6 myoblast-derived myotubes. Exposure to 30 mg/L and 60 mg/L of DDT for 18 hours dose dependently decreased glucose uptake and antioxidant content in myotubes and increased MDA levels. The exposures did not alter tumor necrosis factor α (TNF-α) level as determined by enzyme-linked immunosorbent assay, despite decreased messenger RNA expression following DDT exposures. Phosphorylation of c-Jun N-terminal kinases and IκBα, an inhibitory component of nuclear factor κB (NFκB), was increased, suggesting activation of RSKs. The level of tyrosine phosphorylation of insulin receptor substrate 1 and serine phosphorylation of protein kinase B (Akt) on insulin stimulation decreased in myotubes with exposure to subtoxic concentrations of DDT, but there was no change in tyrosine phosphorylation level of insulin receptors. We conclude that subtoxic DDT exposure impairs insulin signaling and thereby induces insulin resistance in muscle cells. Data show that oxidative stress-induced activation of RSKs is responsible for impairment of insulin signaling on DDT exposure.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Sajib Kumar Sarkar
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | | |
Collapse
|
25
|
On chaotic dynamics in transcription factors and the associated effects in differential gene regulation. Nat Commun 2019; 10:71. [PMID: 30622249 PMCID: PMC6325146 DOI: 10.1038/s41467-018-07932-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
The control of proteins by a transcription factor with periodically varying concentration exhibits intriguing dynamical behaviour. Even though it is accepted that transcription factors vary their dynamics in response to different situations, insight into how this affects downstream genes is lacking. Here, we investigate how oscillations and chaotic dynamics in the transcription factor NF-κB can affect downstream protein production. We describe how it is possible to control the effective dynamics of the transcription factor by stimulating it with an oscillating ligand. We find that chaotic dynamics modulates gene expression and up-regulates certain families of low-affinity genes, even in the presence of extrinsic and intrinsic noise. Furthermore, this leads to an increase in the production of protein complexes and the efficiency of their assembly. Finally, we show how chaotic dynamics creates a heterogeneous population of cell states, and describe how this can be beneficial in multi-toxic environments. It is becoming clear that the dynamics of transcription factors may be important for gene regulation. Here, the authors study the implications of oscillatory and chaotic dynamics of NF-κB and demonstrate that it allows a degree of control of gene expression and can generate phenotypic heterogeneity.
Collapse
|
26
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018; 10:v10100538. [PMID: 30279347 PMCID: PMC6212953 DOI: 10.3390/v10100538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
27
|
Li S, Sun W, Zheng H, Tian F. Microrna-145 accelerates the inflammatory reaction through activation of NF-κB signaling in atherosclerosis cells and mice. Biomed Pharmacother 2018; 103:851-857. [PMID: 29710501 DOI: 10.1016/j.biopha.2018.03.173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammation, which is a major cause of morbidity and mortality in the world. Accumulative evidences have demonstrated that miRNAs exert crucial roles in the development of AS. However, the effects of miR-145 and its underlying molecular mechanism remain incompletely clear. The aim of the present study is to explore the function of miR-145 in the occurrence and development of AS through investigating its role in inflammatory reactions. High-fat diet (HFD)-treated ApoE-/- mice were used as an in vivo model of atherosclerosis (AS). OxLDL-induced macrophages was employed as cell models of atherosclerosis. RT-PCR was used to evaluate the transfected efficiency of miR-145 mimic and inhibitor. RT-PCR and ELISA were performed to detect the expression of miR-145, and inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), C-C motif chemokine ligand 2 (CCL-2), CCL-4 and CCL-7. Western blotting was used to evaluate the protein expression of nuclear factor κB (NF-κB) and its related proteins such as phosphorylated-signal transducer and activator of transcription 3 (p-STAT3), p-IκBα and acetylated p65 (ac-p65). Hematoxylin and eosin (H&E) staining were conducted to examine atherosclerotic lesion. Immunohistochemistry was carried out to detect the expression of α-smooth muscle Actin (α-SMA) and CD68. Luciferase reporter assay were carried out to examine the effect of miR-145 on the transcriptional activity of NF-κB. Our results showed that over-expression of miR-145 promoted the expression of IL-1β, TNF-α, CCL-2, CCL-4 and CCL-7 through promotion of NF-κB, p-IκBα, p-STAT3 and ac-p65 expression in vivo and in vitro. Besides, down-regulation of miR-145 expression relieved the aortic sinus lesion, increased the number of VSMCs and decreased the number of macrophages. In conclusion, our study demonstrated that miR-145 accelerated the inflammatory reaction through activation of NF-κB signaling in AS.
Collapse
Affiliation(s)
- Sheng Li
- Department of Cardiology, Jining No. 1 People's Hospital, Jining City, Shandong Province, 272000, China
| | - Wenlei Sun
- Department of Cardiology, Jining No. 1 People's Hospital, Jining City, Shandong Province, 272000, China
| | - Hongjian Zheng
- Department of Cardiology, Jining No. 1 People's Hospital, Jining City, Shandong Province, 272000, China
| | - Feifei Tian
- Department of Cardiology, Jining No. 1 People's Hospital, Jining City, Shandong Province, 272000, China.
| |
Collapse
|
28
|
Dal Lin C, Gola E, Brocca A, Rubino G, Marinova M, Brugnolo L, Plebani M, Iliceto S, Tona F. miRNAs may change rapidly with thoughts: The Relaxation Response after myocardial infarction. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Mubaraki MA, Dkhil MA, Hafiz TA, Khalil MF, Al-Shaebi EM, Delic D, Elshaikh K, Al-Quraishy S. Vitamin D receptor regulates intestinal inflammatory response in mice infected with blood stage malaria. Microb Pathog 2018; 117:299-303. [PMID: 29496525 DOI: 10.1016/j.micpath.2018.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
Malaria is a harmful disease affecting both tropical and subtropical countries and causing sometimes fatal complications. The effects of malaria-related complications on the intestine have been relatively neglected, and the reasons for the intestinal damage caused by malaria infection are not yet clear. The present study aims to evaluate the influence of intestinal vitamin D receptor on host-pathogen interactions during malaria induced in mice by Plasmodium chabaudi. To induce the infection, animals were infected with 106P. chabaudi-parasitized erythrocytes. Mice were sacrificed on day 8 post-infection. The infected mice experienced a significant body weight loss and parasitaemia affecting about 46% of RBCs. Infection caused marked pathological changes in the intestinal tissue indicated by shortening of the intestine and villi. Moreover, the phagocytic activity of macrophages increased significantly (P < 0.01) in the infected villi compared to the non-infected ones. Infection by the parasite also induced marked upregulation of nuclear factor-kappa B, inducible nitric oxide synthase, Vitamin D Receptor, interleukin-1β, tumour necrosis factor alpha and interferon gamma-mRNA. It can be implied from this that vitamin D receptor has a role in regulating malarial infection.
Collapse
Affiliation(s)
- Murad A Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt.
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mona F Khalil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt; Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, 1982, Dammam, Saudi Arabia
| | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Denis Delic
- Boehringer-Ingelheim Pharma, Biberach, Germany
| | - Kamal Elshaikh
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt; Department of Biology, Faculty of Science, Taibah University, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
30
|
Leonardi GC, Accardi G, Monastero R, Nicoletti F, Libra M. Ageing: from inflammation to cancer. IMMUNITY & AGEING 2018; 15:1. [PMID: 29387133 PMCID: PMC5775596 DOI: 10.1186/s12979-017-0112-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
Ageing is the major risk factor for cancer development. Hallmark of the ageing process is represented by inflammaging, which is a chronic and systemic low-grade inflammatory process. Inflammation is also a hallmark of cancer and is widely recognized to influence all cancer stages from cell transformation to metastasis. Therefore, inflammaging may represent the biological phenomena able to couple ageing process with cancer development. Here we review the molecular and cellular pathway involved in age-related chronic inflammation along with its potential triggers and their connection with cancer development.
Collapse
Affiliation(s)
- Giulia C Leonardi
- 1Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Giulia Accardi
- 2Department of Pathobiology and Medical Biotechnologies, Immunosenescence and Ageing Group, University of Palermo, Palermo, Italy
| | - Roberto Monastero
- 3Department of Experimental Biomedicine and Clinical Neurosciences, Neurology Section, University of Palermo, Palermo, Italy
| | - Ferdinando Nicoletti
- 1Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- 1Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| |
Collapse
|
31
|
Zhang Y, Sun H, Zhang J, Brasier AR, Zhao Y. Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification-Mass Spectrometry-based Protein-Protein Interaction Analysis. J Proteome Res 2017; 16:3068-3082. [PMID: 28726418 DOI: 10.1021/acs.jproteome.7b00432] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Affinity purification-mass spectrometry (AP-MS) has become the method of choice for discovering protein-protein interactions (PPIs) under native conditions. The success of AP-MS depends on the efficiency of trypsin digestion and the recovery of the tryptic peptides for MS analysis. Several different protocols have been used for trypsin digestion of protein complexes in AP-MS studies, but no systematic studies have been conducted on the impact of trypsin digestion conditions on the identification of PPIs. Here, we used NFκB/RelA and Bromodomain-containing protein 4 (BRD4) as baits and test five distinct trypsin digestion methods (two using "on-beads," three using "elution-digestion" protocols). Although the performance of the trypsin digestion protocols change slightly depending on the different baits, antibodies and cell lines used, we found that elution-digestion methods consistently outperformed on-beads digestion methods. The high-abundance interactors can be identified universally by all five methods, but the identification of low-abundance RelA interactors is significantly affected by the choice of trypsin digestion method. We also found that different digestion protocols influence the selected reaction monitoring (SRM)-MS quantification of PPIs, suggesting that optimization of trypsin digestion conditions may be required for robust targeted analysis of PPIs.
Collapse
Affiliation(s)
- Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Jing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| |
Collapse
|
32
|
Li Y, Zhang X, Yang W, Li C, Chu Y, Jiang H, Shen Z. Mechanism of the protective effects of the combined treatment with rhynchophylla total alkaloids and sinapine thiocyanate against a prothrombotic state caused by vascular endothelial cell inflammatory damage. Exp Ther Med 2017; 13:3081-3088. [PMID: 28587383 DOI: 10.3892/etm.2017.4357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect and the underlying mechanism of the combined treatment of rhynchophylla total alkaloids (RTA) and sinapine thiocyanate for protection against a prothrombotic state (PTS) associated with the tumor necrosis factor-alpha (TNF-α)-induced inflammatory injury of vascular endothelial cells (VECs). A TNF-α-induced VEC inflammatory injury model was established, and cell morphology of VECs was evaluated using scanning electron microscopy. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to examine the mRNA and protein expression of coagulation-related factors, including nuclear factor-κB (NF-κB), transforming growth factor-β1 (TGF-β1), tissue factor (TF), plasminogen activator inhibitor (PAI-1), protease-activation receptors (PAR-1) and protein kinase C (PKC-α) in VECs. Combined treatment with RTA and sinapine thiocyanate was demonstrated to reduce, to a varying extent, the mRNA and protein expression of NF-κB, TGF-β1, TF, PAR-1, PKC-α and PAI-1. Furthermore, combined treatment with RTA and sinapine thiocyanate was able to downregulate the expression of coagulation-related factors in injured VECs, thereby inhibiting the PTS induced by vascular endothelial injury. The underlying mechanism is partially associated with the TF-mediated activation of the thrombin-receptor signaling pathway that suppresses coagulation during inflammation and balances fibrinolysis in order to inhibit fibrin generation and deposition.
Collapse
Affiliation(s)
- Yunlun Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Xinya Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Wenqing Yang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Chao Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yanjun Chu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Haiqiang Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Zhenzhen Shen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
33
|
Di Daniele N, Noce A, Vidiri MF, Moriconi E, Marrone G, Annicchiarico-Petruzzelli M, D’Urso G, Tesauro M, Rovella V, De Lorenzo A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017; 8:8947-8979. [PMID: 27894098 PMCID: PMC5352455 DOI: 10.18632/oncotarget.13553] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity symbolizes a major public health problem. Overweight and obesity are associated to the occurrence of the metabolic syndrome and to adipose tissue dysfunction. The adipose tissue is metabolically active and an endocrine organ, whose dysregulation causes a low-grade inflammatory state and ectopic fat depositions. The Mediterranean Diet represents a possible therapy for metabolic syndrome, preventing adiposopathy or "sick fat" formation.The Mediterranean Diet exerts protective effects in elderly subjects with and without baseline of chronic diseases. Recent studies have demonstrated a relationship between cancer and obesity. In the US, diet represents amount 30-35% of death causes related to cancer. Currently, the cancer is the second cause of death after cardiovascular diseases worldwide. Furthermore, populations living in the Mediterranean area have a decreased incidence of cancer compared with populations living in Northern Europe or the US, likely due to healthier dietary habits. The bioactive food components have a potential preventive action on cancer. The aims of this review are to evaluate the impact of Mediterranean Diet on onset, progression and regression of metabolic syndrome, cancer and on longevity.
Collapse
Affiliation(s)
- Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Annalisa Noce
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Maria Francesca Vidiri
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Eleonora Moriconi
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Giulia Marrone
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | | | - Gabriele D’Urso
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Valentina Rovella
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| |
Collapse
|
34
|
Pauletto M, Segarra A, Montagnani C, Quillien V, Faury N, Le Grand J, Miner P, Petton B, Labreuche Y, Fleury E, Fabioux C, Bargelloni L, Renault T, Huvet A. Long dsRNAs promote an anti-viral response in Pacific oyster hampering ostreid herpesvirus 1 replication. J Exp Biol 2017; 220:3671-3685. [DOI: 10.1242/jeb.156299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
Double stranded RNA-mediated genetic interference (RNAi) is a widely used reverse genetic tool for determining the loss-of-function phenotype of a gene. Here, the possible induction of an immune response by long dsRNA was tested in a marine bivalve, i.e. Crassostrea gigas, as well as the specific role of the subunit 2 of the nuclear factor κB inhibitor (IκB2). This gene is a candidate of particular interest for functional investigations in the context of massive mortality oyster events as Cg-IκB2 mRNA levels exhibited significant variation depending on the amount of ostreid herpesvirus 1 (OsHV-1) DNA detected. In the present study, dsRNAs targeting Cg-IκB2 and Green Fluorescence Protein genes were injected in vivo into oysters before being challenged by OsHV-1. Survival appeared close to 100% in both dsRNA injected conditions associated with a low detection of viral DNA and a low expression of a panel of 39 OsHV-1 genes as compared to infected control. Long dsRNA molecules, both Cg-IκB2- and GFP-dsRNA, may have induced an anti-viral state controlling the OsHV-1 replication and precluding the understanding of the Cg-IκB2 specific role. Immune-related genes including Cg-IκB1, Cg-Rel1, Cg-IFI44, Cg-PKR, and Cg-IAP appeared activated in dsRNA-injected condition potentially hampering viral replication and thus conferring a better resistance to OsHV-1 infection. We revealed that long dsRNA-mediated genetic interference triggered an anti-viral state in the oyster, emphasizing the need of new reverse genetics tools for assessing immune gene function and avoiding off-target effects in bivalves.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Amélie Segarra
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | - Caroline Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Virgile Quillien
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Nicole Faury
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | | | - Philippe Miner
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Bruno Petton
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Yannick Labreuche
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Elodie Fleury
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Caroline Fabioux
- Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, rue de l'Ile d'Yeu, 44000 Nantes, France
| | - Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| |
Collapse
|
35
|
Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7190943. [PMID: 28116037 PMCID: PMC5225393 DOI: 10.1155/2016/7190943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.
Collapse
|
36
|
Kempaiah P, Dokladny K, Karim Z, Raballah E, Ong'echa JM, Moseley PL, Perkins DJ. Reduced Hsp70 and Glutamine in Pediatric Severe Malaria Anemia: Role of Hemozoin in Suppressing Hsp70 and NF-κB activation. Mol Med 2016; 22:570-584. [PMID: 27579474 DOI: 10.2119/molmed.2016.00130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/16/2016] [Indexed: 01/22/2023] Open
Abstract
Severe malarial anemia [SMA, hemoglobin (Hb) <5.0 g/dL] is a leading cause of global morbidity and mortality among children residing in Plasmodium falciparum transmission regions. Exploration of molecular pathways through global gene expression profiling revealed that SMA was characterized by decreased HSPA1A, a heat shock protein (Hsp) 70 coding gene. Hsp70 is a ubiquitous chaperone that regulates Nuclear Factor-kappa B (NF-κB) signaling and production of pro-inflammatory cytokines known to be important in malaria pathogenesis (e.g., IL-1β, IL-6 and TNF-α). Since the role of host Hsp70 in malaria pathogenesis is unexplored, we investigated Hsp70 and molecular pathways in children with SMA. Validation experiments revealed that leukocytic HSP70 transcripts were reduced in SMA relative to non-severe malaria, and that intraleukocytic hemozoin (PfHz) was associated with lower HSP70. HSP70 was correlated with reticulocyte production and Hb. Since glutamine (Gln) up-regulates Hsp70, modulates NF-κB activation, and attenuates over-expression of pro-inflammatory cytokines, circulating Gln was measured in children with malaria. Reduced Gln was associated with increased risk of developing SMA. Treatment of cultured peripheral blood mononuclear cells (PBMCs) with PfHz caused a time-dependent decrease in Hsp70 transcripts/protein, and NF-κB activation. Gln treatment of PBMCs overcame PfHz-induced suppression of HSP70 transcripts/protein, reduced NF-κB activation, and suppressed over-expression of IL-1β, IL-6 and TNF-α. Findings here demonstrate that SMA is characterized by reduced intraleukocytic HSP70 and circulating Gln, and that PfHz-induced suppression of HSP70 can be reversed by Gln. Thus, Gln supplementation may offer important immunotherapeutic options for futures studies in children with SMA.
Collapse
Affiliation(s)
- Prakasha Kempaiah
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Zachary Karim
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Evans Raballah
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kisumu, Kenya
| | - John M Ong'echa
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kisumu, Kenya
| | - Pope L Moseley
- Departments of Medicine and Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kisumu, Kenya
| |
Collapse
|
37
|
Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Nageshwar Reddy D, Talukdar R. NF-κB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 2016; 16:477-88. [PMID: 27282980 DOI: 10.1016/j.pan.2016.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
Abstract
The incidence of acute pancreatitis (AP) is increasing globally and mortality could be high among patients with organ failure and infected necrosis. The predominant factors responsible for the morbidity and mortality of AP are systemic inflammatory response syndrome and multiorgan dysfunction. Even though preclinical studies have shown antisecretory agents (somatostatin), antioxidants (S-adenosyl methionine [SAM], selenium), protease inhibitors, platelet activating factor inhibitor (Lexipafant), and anti-inflammatory immunomodulators (eg. prostaglandin E, indomethacin) to benefit AP in terms of reducing the severity and/or mortality, most of these agents have shown heterogeneous results in clinical studies. Several years of experimental studies have implicated nuclear factor-kappa B (NF-κB) activation as an early and central event in the progression of inflammation in AP. In this manuscript, we review the literature on the role of NF-κB in the pathogenesis of AP, its early intraacinar activation, and how it results in progression of the disease. We also discuss why anti-protease, antisecretory, and anti-inflammatory agents are unlikely to be effective in clinical acute pancreatitis. NF-κB, being a central molecule that links the initial acinar injury to systemic inflammation and perpetuate the inflammation, we propose that more studies be focussed towards targeted inhibition of NF-κB activity. Direct NF-κB inhibition strategies have already been attempted in patients with various cancers. So far, peroxisome proliferator activator receptor gamma (PPAR-γ) ligand, pyrrolidine dithiocarbamate (PDTC), proteasome inhibitor and calpain I inhibitor have been shown to have direct inhibitory effects on NF-κB activation in experimental AP.
Collapse
Affiliation(s)
- Aparna Jakkampudi
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - Ramaiah Jangala
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - B Ratnakar Reddy
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - Sasikala Mitnala
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - D Nageshwar Reddy
- Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Rupjyoti Talukdar
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India; Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India.
| |
Collapse
|
38
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
39
|
Tsuchiya H, Nakano R, Konno T, Okabayashi K, Narita T, Sugiya H. Activation of MEK/ERK pathways through NF-κB activation is involved in interleukin-1β-induced cyclooxygenease-2 expression in canine dermal fibroblasts. Vet Immunol Immunopathol 2015; 168:223-32. [PMID: 26549149 DOI: 10.1016/j.vetimm.2015.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 12/30/2022]
Abstract
The proinflammatory cytokine interleukin-1β (IL-1β) induced cyclooxygenases-2 (COX-2) mRNA expression and lipid mediator prostaglandin E2 release and in a time- and dose-dependent manner in canine dermal fibroblasts. The MEK inhibitor U0126 and the ERK inhibitor FR180204 clearly inhibited IL-1β-induced prostaglandin E2 release and COX-2 mRNA expression. IL-1β enhanced ERK1/2 phosphorylation, which was attenuated by inhibitors of MEK and ERK. The NF-κB inhibitor BAY 11-7082 also suppressed IL-1β-induced prostaglandin E2 release and COX-2 mRNA expression. Treatment of fibroblasts with IL-1β led to the phosphorylation of p65 and degradation of IκBα occurred, indicating that IL-1β treatment activated NF-κB. MEK and ERK1/2 inhibitors had no effect on the phosphorylation of p65 subunit induced by IL-1β, whereas the NF-κB inhibitor completely blocked IL-1β-induced phosphorylation of ERK1/2. We also observed that IκBα-knockdown enhanced the phosphorylation of p65 and ERK1/2. These findings suggest that stimulation of MEK/ERK signaling pathway by NF-κB activation regulates IL-1β-induced COX-2 expression and subsequent prostaglandin E2 release in canine dermal fibroblasts.
Collapse
Affiliation(s)
- Hisashi Tsuchiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Ken Okabayashi
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
40
|
Ostan R, Lanzarini C, Pini E, Scurti M, Vianello D, Bertarelli C, Fabbri C, Izzi M, Palmas G, Biondi F, Martucci M, Bellavista E, Salvioli S, Capri M, Franceschi C, Santoro A. Inflammaging and cancer: a challenge for the Mediterranean diet. Nutrients 2015; 7:2589-621. [PMID: 25859884 PMCID: PMC4425163 DOI: 10.3390/nu7042589] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022] Open
Abstract
Aging is considered the major risk factor for cancer, one of the most important mortality causes in the western world. Inflammaging, a state of chronic, low-level systemic inflammation, is a pervasive feature of human aging. Chronic inflammation increases cancer risk and affects all cancer stages, triggering the initial genetic mutation or epigenetic mechanism, promoting cancer initiation, progression and metastatic diffusion. Thus, inflammaging is a strong candidate to connect age and cancer. A corollary of this hypothesis is that interventions aiming to decrease inflammaging should protect against cancer, as well as most/all age-related diseases. Epidemiological data are concordant in suggesting that the Mediterranean Diet (MD) decreases the risk of a variety of cancers but the underpinning mechanism(s) is (are) still unclear. Here we review data indicating that the MD (as a whole diet or single bioactive nutrients typical of the MD) modulates multiple interconnected processes involved in carcinogenesis and inflammatory response such as free radical production, NF-κB activation and expression of inflammatory mediators, and the eicosanoids pathway. Particular attention is devoted to the capability of MD to affect the balance between pro- and anti-inflammaging as well as to emerging topics such as maintenance of gut microbiota (GM) homeostasis and epigenetic modulation of oncogenesis through specific microRNAs.
Collapse
Affiliation(s)
- Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Catia Lanzarini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Elisa Pini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Maria Scurti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Claudia Bertarelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Massimo Izzi
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Giustina Palmas
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Fiammetta Biondi
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Elena Bellavista
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- IRCCS, Institute of Neurological Sciences, Via Altura 3, 40139 Bologna, Italy.
- National Research Council of Italy, CNR, Institute for Organic Synthesis and Photoreactivity (ISOF), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| |
Collapse
|
41
|
Cappuccio A, Tieri P, Castiglione F. Multiscale modelling in immunology: a review. Brief Bioinform 2015; 17:408-18. [PMID: 25810307 DOI: 10.1093/bib/bbv012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/30/2015] [Indexed: 01/26/2023] Open
Abstract
One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases.
Collapse
Affiliation(s)
- Antonio Cappuccio
- Laboratory of Integrative biology of human dendritic cells and T cells, U932 Immunity and cancer, Institut Curie, 26 Rue d`Ulm, 75005 Paris, France
| | - Paolo Tieri
- Institute for Applied Mathematics (IAC), National Research Council of Italy (CNR), Via dei Taurini 19, 00185 Rome, Italy
| | - Filippo Castiglione
- Institute for Applied Mathematics (IAC), National Research Council of Italy (CNR), Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
42
|
Wang W, Nag SA, Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 2015; 22:264-89. [PMID: 25386819 PMCID: PMC6690202 DOI: 10.2174/0929867321666141106124315] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/12/2014] [Accepted: 10/30/2014] [Indexed: 11/22/2022]
Abstract
The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated with increased disease-free survival in patients with breast cancer. In this review article, we focus on the role of the NFκB signaling pathways in the development and progression of breast cancer and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology evaluations of these agents from the bench to the bedside.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree A. Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
43
|
Tieri P, Zhou X, Zhu L, Nardini C. Multi-omic landscape of rheumatoid arthritis: re-evaluation of drug adverse effects. Front Cell Dev Biol 2014; 2:59. [PMID: 25414848 PMCID: PMC4220167 DOI: 10.3389/fcell.2014.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/26/2014] [Indexed: 12/19/2022] Open
Abstract
Objective: To provide a frame to estimate the systemic impact (side/adverse events) of (novel) therapeutic targets by taking into consideration drugs potential on the numerous districts involved in rheumatoid arthritis (RA) from the inflammatory and immune response to the gut-intestinal (GI) microbiome. Methods: We curated the collection of molecules from high-throughput screens of diverse (multi-omic) biochemical origin, experimentally associated to RA. Starting from such collection we generated RA-related protein-protein interaction (PPI) networks (interactomes) based on experimental PPI data. Pharmacological treatment simulation, topological and functional analyses were further run to gain insight into the proteins most affected by therapy and by multi-omic modeling. Results: Simulation on the administration of MTX results in the activation of expected (apoptosis) and adverse (nitrogenous metabolism alteration) effects. Growth factor receptor-bound protein 2 (GRB2) and Interleukin-1 Receptor Associated Kinase-4 (IRAK4, already an RA target) emerge as relevant nodes. The former controls the activation of inflammatory, proliferative and degenerative pathways in host and pathogens. The latter controls immune alterations and blocks innate response to pathogens. Conclusions: This multi-omic map properly recollects in a single analytical picture known, yet complex, information like the adverse/side effects of MTX, and provides a reliable platform for in silico hypothesis testing or recommendation on novel therapies. These results can support the development of RA translational research in the design of validation experiments and clinical trials, as such we identify GRB2 as a robust potential new target for RA for its ability to control both synovial degeneracy and dysbiosis, and, conversely, warn on the usage of IRAK4-inhibitors recently promoted, as this involves potential adverse effects in the form of impaired innate response to pathogens.
Collapse
Affiliation(s)
- Paolo Tieri
- IAC - Istituto per le Applicazioni del Calcolo "Mauro Picone," CNR - Consiglio Nazionale delle Ricerche Rome, Italy ; Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences - Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Shanghai, China
| | - XiaoYuan Zhou
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences - Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Shanghai, China
| | - Lisha Zhu
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences - Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Shanghai, China
| | - Christine Nardini
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences - Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Shanghai, China
| |
Collapse
|
44
|
Moni MA, Liò P. Network-based analysis of comorbidities risk during an infection: SARS and HIV case studies. BMC Bioinformatics 2014; 15:333. [PMID: 25344230 PMCID: PMC4363349 DOI: 10.1186/1471-2105-15-333] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 09/19/2014] [Indexed: 01/02/2023] Open
Abstract
Background Infections are often associated to comorbidity that increases the risk of medical conditions which can lead to further morbidity and mortality. SARS is a threat which is similar to MERS virus, but the comorbidity is the key aspect to underline their different impacts. One UK doctor says "I’d rather have HIV than diabetes" as life expectancy among diabetes patients is lower than that of HIV. However, HIV has a comorbidity impact on the diabetes. Results We present a quantitative framework to compare and explore comorbidity between diseases. By using neighbourhood based benchmark and topological methods, we have built comorbidity relationships network based on the OMIM and our identified significant genes. Then based on the gene expression, PPI and signalling pathways data, we investigate the comorbidity association of these 2 infective pathologies with other 7 diseases (heart failure, kidney disorder, breast cancer, neurodegenerative disorders, bone diseases, Type 1 and Type 2 diabetes). Phenotypic association is measured by calculating both the Relative Risk as the quantified measures of comorbidity tendency of two disease pairs and the ϕ-correlation to measure the robustness of the comorbidity associations. The differential gene expression profiling strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response and statistically dysregulates a large number of genes, pathways and PPIs subnetworks in different pathologies such as chronic heart failure (21 genes), breast cancer (16 genes) and bone diseases (11 genes). HIV-1 induces comorbidities relationship with many other diseases, particularly strong correlation with the neurological, cancer, metabolic and immunological diseases. Similar comorbidities risk is observed from the clinical information. Moreover, SARS and HIV infections dysregulate 4 genes (ANXA3, GNS, HIST1H1C, RASA3) and 3 genes (HBA1, TFRC, GHITM) respectively that affect the ageing process. It is notable that HIV and SARS similarly dysregulated 11 genes and 3 pathways. Only 4 significantly dysregulated genes are common between SARS-CoV and MERS-CoV, including NFKBIA that is a key regulator of immune responsiveness implicated in susceptibility to infectious and inflammatory diseases. Conclusions Our method presents a ripe opportunity to use data-driven approaches for advancing our current knowledge on disease mechanism and predicting disease comorbidities in a quantitative way. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-333) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammad Ali Moni
- Computer Laboratory, University of Cambridge, William Gates Building, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK.
| | | |
Collapse
|
45
|
Astragalus polysaccharides mediated preventive effects on bronchopulmonary dysplasia in rats. Pediatr Res 2014; 76:347-54. [PMID: 25029259 DOI: 10.1038/pr.2014.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/30/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a multifactor chronic lung disease that mainly affects premature infants. In this study, we investigate the preventive effects of Astragalus polysaccharides (APS) on BPD, and explore its potential molecular mechanisms. METHODS Lung tissues of newborn Sprague-Dawley rats from the control group, the room air plus low-dose APS group, the room air plus high-dose APS group, the BPD model group, the low-dose APS group (20 mg/kg d), and the high-dose APS group (40 mg/kg d) were examined at the 4th, 10th, and 14th d of life. The pathomorphological change was evaluated by hematoxylin-eosin staining. The content levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by the assay kit. Moreover, the protein and/or mRNA expression levels of NF-κBp65, CD31, ICAM-1, and TNF-α were also detected by corresponding methods. RESULTS APS decreased the inflammatory cells infiltrating compared with the BPD group. For the APS group, the activity of SOD was increased and the content of MDA was reduced compared with the BPD group at any time point. The protein and mRNA expression levels of NF-κBp65, ICAM-1, and TNF-α were all decreased, while the protein expression level of CD31 was increased in the APS-treated group, with the most significant difference of the high-dose group (P < 0.01) compared with the BPD group after birth on the 4th, 10th, and 14th d. CONCLUSION APS can reduce airway remodeling and alveolar damage by its modulation of inflammatory mediators and antioxidation, suggesting some protective effects on BPD of neonatal rats.
Collapse
|
46
|
Newton R, Wernisch L. A meta-analysis of multiple matched copy number and transcriptomics data sets for inferring gene regulatory relationships. PLoS One 2014; 9:e105522. [PMID: 25148247 PMCID: PMC4141782 DOI: 10.1371/journal.pone.0105522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments.
Collapse
Affiliation(s)
- Richard Newton
- Biostatistics Unit, Medical Research Council, Cambridge, United Kingdom
- * E-mail:
| | - Lorenz Wernisch
- Biostatistics Unit, Medical Research Council, Cambridge, United Kingdom
| |
Collapse
|
47
|
Porter KA, Duffy EB, Nyland P, Atianand MK, Sharifi H, Harton JA. The CLRX.1/NOD24 (NLRP2P) pseudogene codes a functional negative regulator of NF-κB, pyrin-only protein 4. Genes Immun 2014; 15:392-403. [PMID: 24871464 DOI: 10.1038/gene.2014.30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
Pseudogenes are duplicated yet defunct copies of functional parent genes. However, some pseudogenes have gained or retained function. In this study, we consider a functional role for the NLRP2-related, higher primate-specific, processed pseudogene NLRP2P, which is closely related to Pyrin-only protein 2 (POP2/PYDC2), a regulator of nuclear factor-κB (NF-κB) and the inflammasome. The NLRP2P open-reading frame on chromosome X has features consistent with a processed pseudogene (retrotransposon), yet encodes a 45-amino-acid, Pyrin-domain-related protein. The open-reading frame of NLRP2P shares 80% identity with POP2 and is under purifying selection across Old World primates. Although widely expressed, NLRP2P messenger RNA is upregulated by lipopolysaccharide in human monocytic cells. Functionally, NLRP2P impairs NF-κB p65 transactivation by reducing activating phosphorylation of RelA/p65. Reminiscent of POP2, NLRP2P reduces production of the NF-κB-dependent cytokines tumor necrosis factor alpha and interleukin (IL)-6 following toll-like receptor stimulation. In contrast to POP2, NLRP2P fails to inhibit the ASC-dependent NLRP3 inflammasome. In addition, beyond regulating cytokine production, NLRP2P has a potential role in cell cycle regulation and cell death. Collectively, our findings suggest that NLRP2P is a resurrected processed pseudogene that regulates NF-κB RelA/p65 activity and thus represents the newest member of the POP family, POP4.
Collapse
Affiliation(s)
- K A Porter
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - E B Duffy
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - P Nyland
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - M K Atianand
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - H Sharifi
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - J A Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
48
|
Castri P, Lee YJ, Ponzio T, Maric D, Spatz M, Bembry J, Hallenbeck J. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kappaB-dependent signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:640-51. [PMID: 24333653 DOI: 10.1016/j.bbamcr.2013.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 01/09/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) and its cleavage products regulate cell viability and NF-kappaB activity when expressed in neurons. PARP-1 cleavage generates a 24 kDa (PARP-1(24)) and an 89 kDa fragment (PARP-1(89)). Compared to WT (PARP-1WT), the expression of an uncleavable PARP-1 (PARP-1(UNCL)) or of PARP-1(24) conferred protection from oxygen/glucose deprivation (OGD) or OGD/restoration of oxygen and glucose (ROG) damage in vitro, whereas expression of PARP-1(89) was cytotoxic. Viability experiments were performed in SH-SY5Y, a human neuroblastoma cell line, as well as in rat primary cortical neurons. Following OGD, the higher viability in the presence of PARP-1UNCL or PARP-1(24) was not accompanied with decreased formation of poly(ADP-riboses) or higher NAD levels. PARP-1 is a known cofactor for NF-kappaB, hence we investigated whether PARP-1 cleavage influences the inflammatory response. All PARP-1 constructs mimicked PARP-1WT in regard to induction of NF-kappaB translocation into the nucleus and its increased activation during ischemic challenge. However, expression of PARP-1(89) construct induced significantly higher NF-kB activity than PARP-1WT; and the same was true for NF-kappaB-dependent iNOS promoter binding activity. At a protein level, PARP-1UNCL and PARP-1(24) decreased iNOS (and lower levels of iNOS transcript) and COX-2, and increased Bcl-xL The increased levels of NF-kB and iNOS transcriptional activities, seen with cytotoxic PARP-189, were accompanied by higher protein expression of COX-2 and iNOS (and higher levels of INOS transcript) and lower protein expression of Bcl-xL Taken together, these findings suggest that PARP-1 cleavage products may regulate cellular viability and inflammatory responses in opposing ways during in vitro models of "ischemia".
Collapse
|
49
|
Punsawad C. Effect of malaria components on blood mononuclear cells involved in immune response. Asian Pac J Trop Biomed 2014; 3:751-6. [PMID: 23998019 DOI: 10.1016/s2221-1691(13)60151-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
During malaria infection, elevated levels of pro-inflammatory mediators and nitric oxide production have been associated with pathogenesis and disease severity. Previous in vitro and in vivo studies have proposed that both Plasmodium falciparum hemozoin and glycosylphosphatidylinositols are able to modulate blood mononuclear cells, contributing to stimulation of signal transduction and downstream regulation of the NF-κB signaling pathway, and subsequently leading to the production of pro-inflammatory cytokines, chemokines, and nitric oxide. The present review summarizes the published in vitro and in vivo studies that have investigated the mechanism of intracellular signal transduction and activation of the NF-κB signaling pathway in blood mononuclear cells after being inducted by Plasmodium falciparum malaria components. Particular attention is paid to hemozoin and glycosylphosphatidylinositols which reflect the important mechanism of signaling pathways involved in immune response.
Collapse
Affiliation(s)
- Chuchard Punsawad
- School of Medicine, Walailak University, 222 Thasala District, Nakhon Si Thammarat 80161, Thailand.
| |
Collapse
|
50
|
Li Y, Li JS, Li WW, Li SY, Tian YG, Lu XF, Jiang SL, Wang Y. Long-term effects of three Tiao-Bu Fei-Shen therapies on NF-κB/TGF-β1/smad2 signaling in rats with chronic obstructive pulmonary disease. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:140. [PMID: 24766819 PMCID: PMC4006455 DOI: 10.1186/1472-6882-14-140] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 04/16/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND The three Tiao-Bu Fei-Shen (Bufei Jianpi, Bufei Yishen, Yiqi Zishen) granules have been confirmed for their beneficial clinical efficacy in chronic obstructive pulmonary disease (COPD) patients on reducing frequency and duration of acute exacerbation, improving syndromes, pulmonary function and exercise capacity. But the short- or long-term mechanism of them is not fully clear. Nuclear factor (NF)-κB/transforming growth factor (TGF)-β1/smad2 signaling pathway is involved in the progress of inflammation and remodeling in chronic obstructive pulmonary disease COPD. This study aimed to explore the long-term effects mechanism of Tiao-Bu Fei-Shen granules by regulating NF-κB/TGF-β/Smads signaling in rats with COPD. METHODS Sprague Dawley rats were randomized into control, model, Bufei Jianpi, Bufei Yishen, Yiqi Zishen and aminophylline groups. COPD rats, induced by cigarette smoke and bacterial infections exposures, were administrated intragastricly by normal saline, Bufei Jianpi, Bufei Yishen, Yiqi Zishen granules or aminophylline from week 9 through 20, respectively. At week 20 and 32, lung tissues were harvested. Immunohistochemistry was used to detect interleukin (IL)-1β and tumor necrosis factor (TNF)-α, quantitative real-time polymerase chain reaction (qRT-PCR) was used for TGF-β1 and Smad2 mRNA analysis, western blotting was used to determine the phosphorylation of NF-κB (p-NF-κB) and IκBα (p-IκBα). RESULTS COPD rats had marked airway injury, such as chronic airway inflammation and remodeling, emphysema, which were improved in the three traditional Chinese medicines (TCM)-treated animals. The levels of IL-1β, TNF-α, p-NF-κB, p-IκBα, TGF-β1 and Smad2 were significantly higher in COPD rats than in controls, while they were dramatically reduced in the three TCM- and aminophylline-treated groups. At the meantime, all these endpoints were significantly lower in three TCM-treated groups than in aminophylline group, especially in Bufei Jianpi and Bufei Yishen groups. Compared to week 20, all endpoints decreased significantly in three TCM groups at week 32. CONCLUSION The three Tiao-Bu Fei-Shen therapies can reduce pulmonary inflammation and remodeling in COPD and have significant long-term effects. NF-κB/TGF-β1/smad2 signaling might be involved in the mechanism.
Collapse
Affiliation(s)
- Ya Li
- Institute of Respiratory Disease, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Jian-sheng Li
- Institute of Respiratory Disease, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
- Institute of Gerontology, Henan University of Traditional Chinese Medicine, Longzihu University Park, Zhengzhou, Henan 450046, China
| | - Wei-wei Li
- Institute of Gerontology, Henan University of Traditional Chinese Medicine, Longzihu University Park, Zhengzhou, Henan 450046, China
| | - Su-yun Li
- Institute of Respiratory Disease, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Yan-ge Tian
- Institute of Gerontology, Henan University of Traditional Chinese Medicine, Longzihu University Park, Zhengzhou, Henan 450046, China
| | - Xiao-fan Lu
- Institute of Gerontology, Henan University of Traditional Chinese Medicine, Longzihu University Park, Zhengzhou, Henan 450046, China
| | - Su-li Jiang
- Institute of Gerontology, Henan University of Traditional Chinese Medicine, Longzihu University Park, Zhengzhou, Henan 450046, China
| | - Ying Wang
- Institute of Gerontology, Henan University of Traditional Chinese Medicine, Longzihu University Park, Zhengzhou, Henan 450046, China
| |
Collapse
|