1
|
Rai MN, Rhodes B, Jinga S, Kanchupati P, Ross E, Carlson SR, Moose SP. Efficient mutagenesis and genotyping of maize inbreds using biolistics, multiplex CRISPR/Cas9 editing, and Indel-Selective PCR. PLANT METHODS 2025; 21:43. [PMID: 40128730 PMCID: PMC11934539 DOI: 10.1186/s13007-025-01365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
CRISPR/Cas9 based genome editing has advanced our understanding of a myriad of important biological phenomena. Important challenges to multiplex genome editing in maize include assembly of large complex DNA constructs, few genotypes with efficient transformation systems, and costly/labor-intensive genotyping methods. Here we present an approach for multiplex CRISPR/Cas9 genome editing system that delivers a single compact DNA construct via biolistics to Type I embryogenic calli, followed by a novel efficient genotyping assay to identify desirable editing outcomes. We first demonstrate the creation of heritable mutations at multiple target sites within the same gene. Next, we successfully created individual and stacked mutations for multiple members of a gene family. Genome sequencing found off-target mutations are rare. Multiplex genome editing was achieved for both the highly transformable inbred line H99 and Illinois Low Protein1 (ILP1), a genotype where transformation has not previously been reported. In addition to screening transformation events for deletion alleles by PCR, we also designed PCR assays that selectively amplify deletion or insertion of a single nucleotide, the most common outcome from DNA repair of CRISPR/Cas9 breaks by non-homologous end-joining. The Indel-Selective PCR (IS-PCR) method enabled rapid tracking of multiple edited alleles in progeny populations. The 'end to end' pipeline presented here for multiplexed CRISPR/Cas9 mutagenesis can be applied to accelerate maize functional genomics in a broader diversity of genetic backgrounds.
Collapse
Affiliation(s)
- Maruti Nandan Rai
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Champaign, IL, 61801, USA
| | - Brian Rhodes
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Stephen Jinga
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Praveena Kanchupati
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Champaign, IL, 61801, USA
| | - Edward Ross
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Champaign, IL, 61801, USA
| | - Shawn R Carlson
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Stephen P Moose
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Champaign, IL, 61801, USA.
| |
Collapse
|
2
|
Xia S, Qi X, Yang J, Deng Q, Wang X. Identification and characterisation of 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) family transcription factors involved in sugar accumulation and abscisic acid signalling in grape ( Vitis vinifera). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24207. [PMID: 39453909 DOI: 10.1071/fp24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024]
Abstract
The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .
Collapse
Affiliation(s)
- Shuang Xia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xinyuan Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jinli Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Qiaoyun Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiuqin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
3
|
Chen J, Wang Z, Tan K, Huang W, Shi J, Li T, Hu J, Wang K, Wang C, Xin B, Zhao H, Song W, Hufford MB, Schnable JC, Jin W, Lai J. A complete telomere-to-telomere assembly of the maize genome. Nat Genet 2023:10.1038/s41588-023-01419-6. [PMID: 37322109 DOI: 10.1038/s41588-023-01419-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
A complete telomere-to-telomere (T2T) finished genome has been the long pursuit of genomic research. Through generating deep coverage ultralong Oxford Nanopore Technology (ONT) and PacBio HiFi reads, we report here a complete genome assembly of maize with each chromosome entirely traversed in a single contig. The 2,178.6 Mb T2T Mo17 genome with a base accuracy of over 99.99% unveiled the structural features of all repetitive regions of the genome. There were several super-long simple-sequence-repeat arrays having consecutive thymine-adenine-guanine (TAG) tri-nucleotide repeats up to 235 kb. The assembly of the entire nucleolar organizer region of the 26.8 Mb array with 2,974 45S rDNA copies revealed the enormously complex patterns of rDNA duplications and transposon insertions. Additionally, complete assemblies of all ten centromeres enabled us to precisely dissect the repeat compositions of both CentC-rich and CentC-poor centromeres. The complete Mo17 genome represents a major step forward in understanding the complexity of the highly recalcitrant repetitive regions of higher plant genomes.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Zijian Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Junpeng Shi
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Tong Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jiang Hu
- Grandomics Biosciences, Wuhan, P. R. China
| | - Kai Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Chao Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
- Sanya Institute of China Agricultural University, Sanya, P. R. China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China.
| |
Collapse
|
4
|
Wang L, Li H, Li J, Li G, Zahid MS, Li D, Ma C, Xu W, Song S, Li X, Wang S. Transcriptome analysis revealed the expression levels of genes related to abscisic acid and auxin biosynthesis in grapevine ( Vitis vinifera L.) under root restriction. FRONTIERS IN PLANT SCIENCE 2022; 13:959693. [PMID: 36092429 PMCID: PMC9449541 DOI: 10.3389/fpls.2022.959693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The root system is essential for the stable growth of plants. Roots help anchor plants in the soil and play a crucial role in water uptake, mineral nutrient absorption and endogenous phytohormone formation. Root-restriction (RR) cultivation, a powerful technique, confines plant roots to a specific soil space. In the present study, roots of one-year-old "Muscat Hamburg" grapevine under RR and control (nR) treatments harvested at 70 and 125 days after planting were used for transcriptome sequencing, and in total, 2031 (nR7 vs. nR12), 1445 (RR7 vs. RR12), 1532 (nR7 vs. RR7), and 2799 (nR12 vs. RR12) differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment analysis demonstrated that there were several genes involved in the response to different phytohormones, including abscisic acid (ABA), auxin (IAA), ethylene (ETH), gibberellins (GAs), and cytokinins (CTKs). Among them, multiple genes, such as PIN2 and ERF113, are involved in regulating vital plant movements by various phytohormone pathways. Moreover, following RR cultivation, DEGs were enriched in the biological processes of plant-type secondary cell wall biosynthesis, the defense response, programmed cell death involved in cell development, and the oxalate metabolic process. Furthermore, through a combined analysis of the transcriptome and previously published microRNA (miRNA) sequencing results, we found that multiple differentially expressed miRNAs (DEMs) and DEG combinations in different comparison groups exhibited opposite trends, indicating that the expression levels of miRNAs and their target genes were negatively correlated. Furthermore, RR treatment indeed significantly increased the ABA content at 125 days after planting and significantly decreased the IAA content at 70 days after planting. Under RR cultivation, most ABA biosynthesis-related genes were upregulated, while most IAA biosynthesis-related genes were downregulated. These findings lay a solid foundation for further establishing the network through which miRNAs regulate grapevine root development through target genes and for further exploring the molecular mechanism through which endogenous ABA and IAA regulate root architecture development in grapevine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Baldauf JA, Liu M, Vedder L, Yu P, Piepho HP, Schoof H, Nettleton D, Hochholdinger F. Single-parent expression complementation contributes to phenotypic heterosis in maize hybrids. PLANT PHYSIOLOGY 2022; 189:1625-1638. [PMID: 35522211 PMCID: PMC9237695 DOI: 10.1093/plphys/kiac180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The dominance model of heterosis explains the superior performance of F1-hybrids via the complementation of deleterious alleles by beneficial alleles in many genes. Genes active in one parent but inactive in the second lead to single-parent expression (SPE) complementation in maize (Zea mays L.) hybrids. In this study, SPE complementation resulted in approximately 700 additionally active genes in different tissues of genetically diverse maize hybrids on average. We established that the number of SPE genes is significantly associated with mid-parent heterosis (MPH) for all surveyed phenotypic traits. In addition, we highlighted that maternally (SPE_B) and paternally (SPE_X) active SPE genes enriched in gene co-expression modules are highly correlated within each SPE type but separated between these two SPE types. While SPE_B-enriched co-expression modules are positively correlated with phenotypic traits, SPE_X-enriched modules displayed a negative correlation. Gene ontology term enrichment analyses indicated that SPE_B patterns are associated with growth and development, whereas SPE_X patterns are enriched in defense and stress response. In summary, these results link the degree of phenotypic MPH to the prevalence of gene expression complementation observed by SPE, supporting the notion that hybrids benefit from SPE complementation via its role in coordinating maize development in fluctuating environments.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | | | - Lucia Vedder
- Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, 53115 Bonn, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Hans-Peter Piepho
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Heiko Schoof
- Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, 53115 Bonn, Germany
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210, USA
| | | |
Collapse
|
6
|
Fattel L, Psaroudakis D, Yanarella CF, Chiteri KO, Dostalik HA, Joshi P, Starr DC, Vu H, Wimalanathan K, Lawrence-Dill CJ. Standardized genome-wide function prediction enables comparative functional genomics: a new application area for Gene Ontologies in plants. Gigascience 2022; 11:6568997. [PMID: 35426911 PMCID: PMC9012101 DOI: 10.1093/gigascience/giac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Genome-wide gene function annotations are useful for hypothesis generation and for prioritizing candidate genes potentially responsible for phenotypes of interest. We functionally annotated the genes of 18 crop plant genomes across 14 species using the GOMAP pipeline. Results By comparison to existing GO annotation datasets, GOMAP-generated datasets cover more genes, contain more GO terms, and are similar in quality (based on precision and recall metrics using existing gold standards as the basis for comparison). From there, we sought to determine whether the datasets across multiple species could be used together to carry out comparative functional genomics analyses in plants. To test the idea and as a proof of concept, we created dendrograms of functional relatedness based on terms assigned for all 18 genomes. These dendrograms were compared to well-established species-level evolutionary phylogenies to determine whether trees derived were in agreement with known evolutionary relationships, which they largely are. Where discrepancies were observed, we determined branch support based on jackknifing then removed individual annotation sets by genome to identify the annotation sets causing unexpected relationships. Conclusions GOMAP-derived functional annotations used together across multiple species generally retain sufficient biological signal to recover known phylogenetic relationships based on genome-wide functional similarities, indicating that comparative functional genomics across species based on GO data holds promise for generating novel hypotheses about comparative gene function and traits.
Collapse
Affiliation(s)
- Leila Fattel
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Dennis Psaroudakis
- Department of Plant Pathology and Microbiology, 1344 Advanced Teaching & Research Bldg, 2213 Pammel Drive, Ames, Iowa 50011, USA
| | - Colleen F Yanarella
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Kevin O Chiteri
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Haley A Dostalik
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Parnal Joshi
- Department of Veterinary Microbiology and Preventive Medicine, 1800 Christensen Drive, Ames, Iowa 50011-1134, USA
| | - Dollye C Starr
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Ha Vu
- Department of Genetics, Development and Cell Biology, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames, Iowa 50011-1079, USA
| | - Kokulapalan Wimalanathan
- Department of Genetics, Development and Cell Biology, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames, Iowa 50011-1079, USA
| | - Carolyn J Lawrence-Dill
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
- Department of Genetics, Development and Cell Biology, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames, Iowa 50011-1079, USA
| |
Collapse
|
7
|
Sáenz Rodríguez MN, Cassab GI. Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. PLANTS (BASEL, SWITZERLAND) 2021; 10:1274. [PMID: 34201525 PMCID: PMC8309072 DOI: 10.3390/plants10071274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Maize illustrates one of the most complex cases of embryogenesis in higher plants that results in the development of early embryo with distinctive organs such as the mesocotyl, seminal and primary roots, coleoptile, and plumule. After seed germination, the elongation of root and mesocotyl follows opposite directions in response to specific tropisms (positive and negative gravitropism and hydrotropism). Tropisms represent the differential growth of an organ directed toward several stimuli. Although the life cycle of roots and mesocotyl takes place in darkness, their growth and functions are controlled by different mechanisms. Roots ramify through the soil following the direction of the gravity vector, spreading their tips into new territories looking for water; when water availability is low, the root hydrotropic response is triggered toward the zone with higher moisture. Nonetheless, there is a high range of hydrotropic curvatures (angles) in maize. The processes that control root hydrotropism and mesocotyl elongation remain unclear; however, they are influenced by genetic and environmental cues to guide their growth for optimizing early seedling vigor. Roots and mesocotyls are crucial for the establishment, growth, and development of the plant since both help to forage water in the soil. Mesocotyl elongation is associated with an ancient agriculture practice known as deep planting. This tradition takes advantage of residual soil humidity and continues to be used in semiarid regions of Mexico and USA. Due to the genetic diversity of maize, some lines have developed long mesocotyls capable of deep planting while others are unable to do it. Hence, the genetic and phenetic interaction of maize lines with a robust hydrotropic response and higher mesocotyl elongation in response to water scarcity in time of global heating might be used for developing more resilient maize plants.
Collapse
Affiliation(s)
- Mery Nair Sáenz Rodríguez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Col. Chamilpa, Morelos, Cuernavaca 62210, Mexico;
| | | |
Collapse
|
8
|
Yuan Y, Liu C, Zhao G, Gong X, Dang K, Yang Q, Feng B. Transcriptome analysis reveals the mechanism associated with dynamic changes in fatty acid and phytosterol content in foxtail millet (Setaria italica) during seed development. Food Res Int 2021; 145:110429. [PMID: 34112429 DOI: 10.1016/j.foodres.2021.110429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Foxtail millet (Setaria italica) is an excellent source of beneficial natural fatty acids and phytosterols. However, the mechanisms underlying the dynamic changes of fatty acids and phytosterols during seed development are unknown. In this study, a comprehensive dynamic change analysis of the bioactive compounds during seed development was conducted in two cultivars with different crude fat content (high-fat, JG 35 [5.40%]; and low-fat, JG 39 [2.90%]). GC-FID/MS analysis showed that the proportion of unsaturated fatty acids (UFAs) were higher than the saturated fatty acids (SFAs). UFA content first increased, then decreased during seed development, while SFA content showed the opposite trend. Oil contents continuously increased with seed development, especially at the S2 stage. Phytosterol contents initially increased, then decreased with seed development. Transcriptome analysis revealed that 152 genes were associated with fatty acid metabolism and phytosterol biosynthesis, of which 46 and 62 were related to UFA and phytosterol biosynthesis, respectively. Furthermore, the key genes involved in fatty acid synthesis (ACCase and FATA/B), triacylglycerol biosynthesis (LACS, GPAT, and DGAT), and phytosterols synthesis (CAS1, STM1, EGR6, and DWF1) were overexpressed. This led to maximum UFA, oil, and phytosterol accumulation in JG 35 at the S2 stage. This study reveals the mechanism behind the dynamic changes of fatty acid and phytosterol contents in foxtail millet during seed development.
Collapse
Affiliation(s)
- Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Chunjuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Guan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xiangwei Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Ke Dang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Li Z, Zhou P, Della Coletta R, Zhang T, Brohammer AB, H O'Connor C, Vaillancourt B, Lipzen A, Daum C, Barry K, de Leon N, Hirsch CD, Buell CR, Kaeppler SM, Springer NM, Hirsch CN. Single-parent expression drives dynamic gene expression complementation in maize hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:93-107. [PMID: 33098691 DOI: 10.1111/tpj.15042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Single-parent expression (SPE) is defined as gene expression in only one of the two parents. SPE can arise from differential expression between parental alleles, termed non-presence/absence (non-PAV) SPE, or from the physical absence of a gene in one parent, termed PAV SPE. We used transcriptome data of diverse Zea mays (maize) inbreds and hybrids, including 401 samples from five different tissues, to test for differences between these types of SPE genes. Although commonly observed, SPE is highly genotype and tissue specific. A positive correlation was observed between the genetic distance of the two inbred parents and the number of SPE genes identified. Regulatory analysis showed that PAV SPE and non-PAV SPE genes are mainly regulated by cis effects, with a small fraction under trans regulation. Polymorphic transposable element insertions in promoter sequences contributed to the high level of cis regulation for PAV SPE and non-PAV SPE genes. PAV SPE genes were more frequently expressed in hybrids than non-PAV SPE genes. The expression of parentally silent alleles in hybrids of non-PAV SPE genes was relatively rare but occurred in most hybrids. Non-PAV SPE genes with expression of the silent allele in hybrids are more likely to exhibit above high parent expression level than hybrids that do not express the silent allele, leading to non-additive expression. This study provides a comprehensive understanding of the nature of non-PAV SPE and PAV SPE genes and their roles in gene expression complementation in maize hybrids.
Collapse
Affiliation(s)
- Zhi Li
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Tifu Zhang
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
10
|
Maritim TK, Seth R, Parmar R, Sharma RK. Multiple-genotypes transcriptional analysis revealed candidates genes and nucleotide variants for improvement of quality characteristics in tea (Camellia sinensis (L.) O. Kuntze). Genomics 2020; 113:305-316. [PMID: 33321202 DOI: 10.1016/j.ygeno.2020.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/18/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Tea quality is a polygenic trait that exhibits tremendous genetic variability due to accumulation of array of secondary metabolites. To elucidate global molecular insights controlling quality attributes, metabolite profiling and transcriptome sequencing of twelve diverse tea cultivars was performed in tea shoots harvested during quality season. RP-HPLC-DAD analysis of quality parameters revealed significant difference in catechins, theanine and caffeine contents. Transcriptome sequencing resulted into 50,107 non-redundant transcripts with functional annotations of 81.6% (40,847) of the transcripts. Interestingly, 2872 differentially expressed transcripts exhibited significant enrichment in 38 pathways (FDR ≤ 0.05) including secondary metabolism, amino acid and carbon metabolism. Thirty-eight key candidates reportedly involved in biosynthesis of fatty acid derived volatiles, volatile terpenes, glycoside hydrolysis and key quality related pathways (flavonoid, caffeine and theanine-biosynthesis) were highly expressed in catechins-rich tea cultivars. Furthermore, enrichment of candidates involved in flavonoid biosynthesis, transcriptional regulation, volatile terpene and biosynthesis of fatty acid derived volatile in Protein-Protein Interactome network revealed well-coordinated regulation of quality characteristics in tea. Additionally, ascertainment of 23,649 non-synonymous SNPs and validation of candidate SNPs present in quality related genes suggests their potential utility in genome-wide mapping and marker development for expediting breeding of elite compound-rich tea cultivars.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh- 201 002, India; Tea Breeding and Genetic Improvement Division, KALRO-Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh- 201 002, India.
| |
Collapse
|
11
|
Zheng C, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. Intricate genetic variation networks control the adventitious root growth angle in apple. BMC Genomics 2020; 21:852. [PMID: 33261554 PMCID: PMC7709433 DOI: 10.1186/s12864-020-07257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background The root growth angle (RGA) typically determines plant rooting depth, which is significant for plant anchorage and abiotic stress tolerance. Several quantitative trait loci (QTLs) for RGA have been identified in crops. However, the underlying mechanisms of the RGA remain poorly understood, especially in apple rootstocks. The objective of this study was to identify QTLs, validate genetic variation networks, and develop molecular markers for the RGA in apple rootstock. Results Bulked segregant analysis by sequencing (BSA-seq) identified 25 QTLs for RGA using 1955 hybrids of the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., large RGA) and ‘M9’ (M. pumila Mill., small RGA). With RNA sequencing (RNA-seq) and parental resequencing, six major functional genes were identified and constituted two genetic variation networks for the RGA. Two single nucleotide polymorphisms (SNPs) of the MdLAZY1 promoter damaged the binding sites of MdDREB2A and MdHSFB3, while one SNP of MdDREB2A and MdIAA1 affected the interactions of MdDREB2A/MdHSFB3 and MdIAA1/MdLAZY1, respectively. A SNP within the MdNPR5 promoter damaged the interaction between MdNPR5 and MdLBD41, while one SNP of MdLBD41 interrupted the MdLBD41/MdbHLH48 interaction that affected the binding ability of MdLBD41 on the MdNPR5 promoter. Twenty six SNP markers were designed on candidate genes in each QTL interval, and the marker effects varied from 0.22°-26.11°. Conclusions Six diagnostic markers, SNP592, G122, b13, Z312, S1272, and S1288, were used to identify two intricate genetic variation networks that control the RGA and may provide new insights into the accuracy of the molecular markers. The QTLs and SNP markers can potentially be used to select deep-rooted apple rootstocks.
Collapse
Affiliation(s)
- Caixia Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
House MA, Swanton CJ, Lukens LN. The neonicotinoid insecticide thiamethoxam enhances expression of stress-response genes in Zea mays in an environmentally specific pattern. Genome 2020; 64:567-579. [PMID: 33242262 DOI: 10.1139/gen-2020-0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that thiamethoxam (TMX), a neonicotinoid insecticide, can affect plant responses to environmental stressors, such as neighboring weeds. The molecular mechanisms behind both stable and environmentally specific responses to TMX likely involve genes related to defense and stress responses. We investigated the effect of a TMX seed treatment on global gene expression in maize coleoptiles both under normal conditions and under low ratio red to far-red (R:FR) light stress induced by the presence of neighboring plants. The neighboring plant treatment upregulated genes involved in biotic and abiotic stress responses and affected specific photosynthesis and cell-growth related genes. Low R:FR light may enhance maize resistance to herbivores and pathogens. TMX appears to compromise resistance. The TMX treatment stably repressed many genes that encode proteins involved in biotic stress responses, as well as cell-growth genes. Notably, TMX effects on many genes' expression were conditional on the environment. In response to low R:FR, plants treated with TMX engage genes in the JA pathway, as well as other stress-related response pathways. Neighboring weeds may condition TMX-treated plants to become more stress tolerant.
Collapse
Affiliation(s)
- Megan A House
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Clarence J Swanton
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Lewis N Lukens
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
13
|
Yan Z, Shen Z, Li Z, Chao Q, Kong L, Gao ZF, Li QW, Zheng HY, Zhao CF, Lu CM, Wang YW, Wang BC. Genome-wide transcriptome and proteome profiles indicate an active role of alternative splicing during de-etiolation of maize seedlings. PLANTA 2020; 252:60. [PMID: 32964359 DOI: 10.1007/s00425-020-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
AS events affect genes encoding protein domain composition and make the single gene produce more proteins with a certain number of genes to satisfy the establishment of photosynthesis during de-etiolation. The drastic switch from skotomorphogenic to photomorphogenic development is an excellent system to elucidate rapid developmental responses to environmental stimuli in plants. To decipher the effects of different light wavelengths on de-etiolation, we illuminated etiolated maize seedlings with blue, red, blue-red mixed and white light, respectively. We found that blue light alone has the strongest effect on photomorphogenesis and that this effect can be attributed to the higher number and expression levels of photosynthesis and chlorosynthesis proteins. Deep sequencing-based transcriptome analysis revealed gene expression changes under different light treatments and a genome-wide alteration in alternative splicing (AS) profiles. We discovered 41,188 novel transcript isoforms for annotated genes, which increases the percentage of multi-exon genes with AS to 63% in maize. We provide peptide support for all defined types of AS, especially retained introns. Further in silico prediction revealed that 58.2% of retained introns have changes in domains compared with their most similar annotated protein isoform. This suggests that AS acts as a protein function switch allowing rapid light response through the addition or removal of functional domains. The richness of novel transcripts and protein isoforms also demonstrates the potential and importance of integrating proteomics into genome annotation in maize.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhe Li
- Precision Scientific (Beijing) Co., Ltd., Beijing, 100085, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China
| | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Qing-Wei Li
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cai-Feng Zhao
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cong-Ming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying-Wei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
14
|
Dissanayake R, Braich S, Cogan NOI, Smith K, Kaur S. Characterization of Genetic and Allelic Diversity Amongst Cultivated and Wild Lentil Accessions for Germplasm Enhancement. Front Genet 2020; 11:546. [PMID: 32587602 PMCID: PMC7298104 DOI: 10.3389/fgene.2020.00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Intensive breeding of cultivated lentil has resulted in a relatively narrow genetic base, which limits the options to increase crop productivity through selection. Assessment of genetic diversity in the wild gene pool of lentil, as well as characterization of useful and novel alleles/genes that can be introgressed into elite germplasm, presents new opportunities and pathways for germplasm enhancement, followed by successful crop improvement. In the current study, a lentil collection consisting of 467 wild and cultivated accessions that originated from 10 diverse geographical regions was assessed, to understand genetic relationships among different lentil species/subspecies. A total of 422,101 high-confidence SNP markers were identified against the reference lentil genome (cv. CDC Redberry). Phylogenetic analysis clustered the germplasm collection into four groups, namely, Lens culinaris/Lens orientalis, Lens lamottei/Lens odemensis, Lens ervoides, and Lens nigricans. A weak correlation was observed between geographical origin and genetic relationship, except for some accessions of L. culinaris and L. ervoides. Genetic distance matrices revealed a comparable level of variation within the gene pools of L. culinaris (Nei’s coefficient 0.01468–0.71163), L. ervoides (Nei’s coefficient 0.01807–0.71877), and L. nigricans (Nei’s coefficient 0.02188–1.2219). In order to understand any genic differences at species/subspecies level, allele frequencies were calculated from a subset of 263 lentil accessions. Among all cultivated and wild lentil species, L. nigricans exhibited the greatest allelic differentiation across the genome compared to all other species/subspecies. Major differences were observed on six genomic regions with the largest being on Chromosome 1 (c. 1 Mbp). These results indicate that L. nigricans is the most distantly related to L. culinaris and additional structural variations are likely to be identified from genome sequencing studies. This would provide further insights into evolutionary relationships between cultivated and wild lentil germplasm, for germplasm improvement and introgression.
Collapse
Affiliation(s)
- Ruwani Dissanayake
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shivraj Braich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - Kevin Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, Hamilton, VIC, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
15
|
Howlader J, Robin AHK, Natarajan S, Biswas MK, Sumi KR, Song CY, Park JI, Nou IS. Transcriptome Analysis by RNA-Seq Reveals Genes Related to Plant Height in Two Sets of Parent-hybrid Combinations in Easter lily (Lilium longiflorum). Sci Rep 2020; 10:9082. [PMID: 32494055 PMCID: PMC7270119 DOI: 10.1038/s41598-020-65909-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
In this study, two different hybrids of Easter lily (Lilium longiflorum), obtained from two cross combinations, along with their four parents were sequenced by high–throughput RNA–sequencing (RNA–Seq) to find out differentially expressed gene in parent-hybrid combinations. The leaf mRNA profiles of two hybrids and their four parents were RNA–sequenced with a view to identify the potential candidate genes related to plant height heterosis. In both cross combinations, based to morphological traits mid–parent heterosis (MPH) was higher than high–parent heterosis (HPH) for plant height, leaf length, and number of flowers whereas HPH was higher than MPH for flowering time. A total of 4,327 differentially expressed genes (DEGs) were identified through RNA–Seq between the hybrids and their parents based on fold changes (FC) ≥ 2 for up– and ≤ –2 for down–regulation. Venn diagram analysis revealed that there were 703 common DEGs in two hybrid combinations, those were either up– or down–regulated. Most of the commonly expressed DEGs exhibited higher non–additive effects especially overdominance (75.9%) rather than additive (19.4%) and dominance (4.76%) effects. Among the 384 functionally annotated DEGs identified through Blast2GO tool, 12 DEGs were up–regulated and 16 of them were down–regulated in a similar fashion in both hybrids as revealed by heat map analysis. These 28 universally expressed DEGs were found to encode different types of proteins and enzymes those might regulate heterosis by modulating growth, development and stress–related functions in lily. In addition, gene ontology (GO) analysis of 260 annotated DEGs revealed that biological process might play dominant role in heterotic expression. In this first report of transcriptome sequencing in Easter lily, the notable universally up-regulated DEGs annotated ABC transporter A family member–like, B3 domain–containing, disease resistance RPP13/1, auxin–responsive SAUR68–like, and vicilin–like antimicrobial peptides 2–2 proteins those were perhaps associated with plant height heterosis. The genes expressed universally due to their overdominace function perhaps influenced MPH for greater plant height― largely by modulating biological processes involved therein. The genes identified in this study might be exploited in heterosis breeding for plant height of L. longiflorum.
Collapse
Affiliation(s)
- Jewel Howlader
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea.,Department of Horticulture, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea.,Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sathishkumar Natarajan
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Kanij Rukshana Sumi
- Department of Fisheries Science, Chonnam National University, 50, Daehak-ro, Yeosu, Jeonnam, 59626, Republic of Korea.,Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Cheon Young Song
- Department of Floriculture, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 54874, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
16
|
Bao P, Luo J, Liu Y, Chu M, Ren Q, Guo X, Tang B, Ding X, Qiu Q, Pan H, Wang K, Yan P. The seasonal development dynamics of the yak hair cycle transcriptome. BMC Genomics 2020; 21:355. [PMID: 32393236 PMCID: PMC7216598 DOI: 10.1186/s12864-020-6725-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mammalian hair play an important role in mammals’ ability to adapt to changing climatic environments. The seasonal circulation of yak hair helps them adapt to high altitude but the regulation mechanisms of the proliferation and differentiation of hair follicles (HFs) cells during development are still unknown. Here, using time series data for transcriptome and hormone contents, we systematically analyzed the mechanism regulating the periodic expression of hair development in the yak and reviewed how different combinations of genetic pathways regulate HFs development and cycling. Results This study used high-throughput RNA sequencing to provide a detailed description of global gene expression in 15 samples from five developmental time points during the yak hair cycle. According to clustering analysis, we found that these 15 samples could be significantly grouped into three phases, which represent different developmental periods in the hair cycle. A total of 2316 genes were identified in these three consecutive developmental periods and their expression patterns could be divided into 9 clusters. In the anagen, genes involved in activating hair follicle growth are highly expressed, such as the WNT pathway, FGF pathway, and some genes related to hair follicle differentiation. In the catagen, genes that inhibit differentiation and promote hair follicle cell apoptosis are highly expressed, such as BMP4, and Wise. In the telogen, genes that inhibit hair follicle activity are highly expressed, such as DKK1 and BMP1. Through co-expression analysis, we revealed a number of modular hub genes highly associated with hormones, such as SLF2, BOP1 and DPP8. They may play unique roles in hormonal regulation of events associated with the hair cycle. Conclusions Our results revealed the expression pattern and molecular mechanisms of the seasonal hair cycle in the yak. The findings will be valuable in further understanding the alpine adaptation mechanism in the yak, which is important in order to make full use of yak hair resources and promote the economic development of pastoral plateau areas.
Collapse
Affiliation(s)
- Pengjia Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou, 730050, China
| | - Jiayu Luo
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanbin Liu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou, 730050, China
| | - Qingmiao Ren
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou, 730050, China
| | - Bolin Tang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou, 730050, China
| | - Qiang Qiu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heping Pan
- Northwest Minzu University Life Science and Engineering College, Lanzhou, 730030, China.
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China. .,Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou, 730050, China.
| |
Collapse
|
17
|
Malviya MK, Li CN, Solanki MK, Singh RK, Htun R, Singh P, Verma KK, Yang LT, Li YR. Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113. PLoS One 2020; 15:e0231206. [PMID: 32267863 PMCID: PMC7141665 DOI: 10.1371/journal.pone.0231206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
The diazotrophic Burkholderia anthina MYSP113 is a vital plant growth-promoting bacteria and sugarcane root association. The present study based on a detailed analysis of sugarcane root transcriptome by using the HiSeq-Illumina platform in response to the strain MYSP113. The bacterium was initially isolated from the rhizosphere of sugarcane. To better understand biological, cellular, and molecular mechanisms, a de novo transcriptomic assembly of sugarcane root was performed. HiSeq-Illumina platformwas employed for the sequencing of an overall of 16 libraries at a 2×100 bp configuration. Differentially expressed genes (DEGs) analysis identified altered gene expression in 370 genes (total of 199 up-regulated genes and 171 down-regulated genes). Deciphering the huge datasets, concerning the functioning and production of biological systems, a high throughput genome sequencing analysis was attempted with Gene ontology functional analyses and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The report revealed a total of 148930 unigenes. 70414 (47.28%) of them were annotated successfully to Gene Ontology (GO) terms. 774 at 45 days, 4985 of 30 days and 15 days of 6846 terms were significantly regulated. GO analysis revealed that many genes involved in the metabolic, oxidation-reduction process and biological regulatory processes in response to strain MYSP113 and significantly enriched as compare to the control. Moreover, KEGG enriched results show that differentially expressed genes were classified into different pathway categories involved in various processes, such as nitrogen metabolism, plant hormone signal transduction, etc. The sample correlation analyses could help examine the similarity at the gene expression level. The reliability of the observed differential gene expression patterns was validated with quantitative real-time PCR (qRT-PCR). Additionally, plant enzymes activities such as peroxidase and superoxide dismutase were significantly increased in plant roots after the inoculation of strain MYSP113. The results of the research may help in understanding the plant growth-promoting rhizobacteria and plant interaction.
Collapse
Affiliation(s)
- Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, Guangxi, China
| | - Chang-Ning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Manoj Kumar Solanki
- Department of Food Quality & Safety, Institute for Post-Harvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, Guangxi, China
| | - Reemon Htun
- Department of Biotechnology, Mandalay Technological University, Mandalay, Myanmar
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, Guangxi, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, Guangxi, China
| | - Li-Tao Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
18
|
Abstract
Since the early days of the genome era, the scientific community has relied on a single 'reference' genome for each species, which is used as the basis for a wide range of genetic analyses, including studies of variation within and across species. As sequencing costs have dropped, thousands of new genomes have been sequenced, and scientists have come to realize that a single reference genome is inadequate for many purposes. By sampling a diverse set of individuals, one can begin to assemble a pan-genome: a collection of all the DNA sequences that occur in a species. Here we review efforts to create pan-genomes for a range of species, from bacteria to humans, and we further consider the computational methods that have been proposed in order to capture, interpret and compare pan-genome data. As scientists continue to survey and catalogue the genomic variation across human populations and begin to assemble a human pan-genome, these efforts will increase our power to connect variation to human diversity, disease and beyond.
Collapse
Affiliation(s)
- Rachel M Sherman
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Steven L Salzberg
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Baldauf JA, Vedder L, Schoof H, Hochholdinger F. Robust non-syntenic gene expression patterns in diverse maize hybrids during root development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:865-876. [PMID: 31638701 DOI: 10.1093/jxb/erz452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Distantly related maize (Zea mays L.) inbred lines exhibit an exceptional degree of structural genomic diversity, which is probably unique among plants. This study systematically investigated the developmental and genotype-dependent regulation of the primary root transcriptomes of a genetically diverse panel of maize F1-hybrids and their parental inbred lines. While we observed substantial transcriptomic changes during primary root development, we demonstrated that hybrid-associated gene expression patterns, including differential, non-additive, and allele-specific transcriptome profiles, are particularly robust to these developmental fluctuations. For instance, differentially expressed genes with preferential expression in hybrids were highly conserved during development in comparison to their parental counterparts. Similarly, in hybrids a major proportion of non-additively expressed genes with expression levels between the parental values were particularly conserved during development. Importantly, in these expression patterns non-syntenic genes that evolved after the separation of the maize and sorghum lineages were systemically enriched. Furthermore, non-syntenic genes were substantially linked to the conservation of all surveyed gene expression patterns during primary root development. Among all F1-hybrids, between ~40% of the non-syntenic genes with unexpected allelic expression ratios and ~60% of the non-syntenic differentially and non-additively expressed genes were conserved and therefore robust to developmental changes. Hence, the enrichment of non-syntenic genes during primary root development might be involved in the developmental adaptation of maize roots and thus the superior performance of hybrids.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Lucia Vedder
- Institute for Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Welgemoed T, Pierneef R, Sterck L, Van de Peer Y, Swart V, Scheepers KD, Berger DK. De novo Assembly of Transcriptomes From a B73 Maize Line Introgressed With a QTL for Resistance to Gray Leaf Spot Disease Reveals a Candidate Allele of a Lectin Receptor-Like Kinase. FRONTIERS IN PLANT SCIENCE 2020; 11:191. [PMID: 32231673 PMCID: PMC7083176 DOI: 10.3389/fpls.2020.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/07/2020] [Indexed: 05/03/2023]
Abstract
Gray leaf spot (GLS) disease in maize, caused by the fungus Cercospora zeina, is a threat to maize production globally. Understanding the molecular basis for quantitative resistance to GLS is therefore important for food security. We developed a de novo assembly pipeline to identify candidate maize resistance genes. Near-isogenic maize lines with and without a QTL for GLS resistance on chromosome 10 from inbred CML444 were produced in the inbred B73 background. The B73-QTL line showed a 20% reduction in GLS disease symptoms compared to B73 in the field (p = 0.01). B73-QTL leaf samples from this field experiment conducted under GLS disease pressure were RNA sequenced. The reads that did not map to the B73 or C. zeina genomes were expected to contain novel defense genes and were de novo assembled. A total of 141 protein-coding sequences with B73-like or plant annotations were identified from the B73-QTL plants exposed to C. zeina. To determine whether candidate gene expression was induced by C. zeina, the RNAseq reads from C. zeina-challenged and control leaves were mapped to a master assembly of all of the B73-QTL reads, and differential gene expression analysis was conducted. Combining results from both bioinformatics approaches led to the identification of a likely candidate gene, which was a novel allele of a lectin receptor-like kinase named L-RLK-CML that (i) was induced by C. zeina, (ii) was positioned in the QTL region, and (iii) had functional domains for pathogen perception and defense signal transduction. The 817AA L-RLK-CML protein had 53 amino acid differences from its 818AA counterpart in B73. A second "B73-like" allele of L-RLK was expressed at a low level in B73-QTL. Gene copy-specific RT-qPCR confirmed that the l-rlk-cml transcript was the major product induced four-fold by C. zeina. Several other expressed defense-related candidates were identified, including a wall-associated kinase, two glutathione s-transferases, a chitinase, a glucan beta-glucosidase, a plasmodesmata callose-binding protein, several other receptor-like kinases, and components of calcium signaling, vesicular trafficking, and ethylene biosynthesis. This work presents a bioinformatics protocol for gene discovery from de novo assembled transcriptomes and identifies candidate quantitative resistance genes.
Collapse
Affiliation(s)
- Tanya Welgemoed
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Kevin Daniel Scheepers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Dave K. Berger,
| |
Collapse
|
21
|
A genetic characterization of Korean waxy maize (Zea mays L.) landraces having flowering time variation by RNA sequencing. Sci Rep 2019; 9:20023. [PMID: 31882845 PMCID: PMC6934685 DOI: 10.1038/s41598-019-56645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022] Open
Abstract
Maize is the second-most produced crop in the Korean peninsula and has been continuously cultivated since the middle of the 16th century, when it was originally introduced from China. Even with this extensive cultivation history, the diversity and properties of Korean landraces have not been investigated at the nucleotide sequence level. We collected 12 landraces with various flowering times and performed RNA-seq in the early vegetative stage. The transcriptomes of 12 Korean landraces have been analyzed for their genetic variations in coding sequence and genetic relationships to other maize germplasm. The Korean landraces showed specific genetic characteristics and were closely related to a Chinese inbred line. Flowering-time related gene profiles pointed to multiple causes for the variation of flowering time within Korean landraces; the profiles revealed significant positive and negative correlations among genes, allowing us to infer possible mechanisms for flowering time variation in maize. Our results demonstrate the value of transcriptome-based genetic and gene expression profiles for information on possible breeding resources, which is particularly needed in Korean waxy landraces.
Collapse
|
22
|
Advances in Molecular Genetics and Genomics of African Rice ( Oryza glaberrima Steud). PLANTS 2019; 8:plants8100376. [PMID: 31561516 PMCID: PMC6843444 DOI: 10.3390/plants8100376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
African rice (Oryza glaberrima) has a pool of genes for resistance to diverse biotic and abiotic stresses, making it an important genetic resource for rice improvement. African rice has potential for breeding for climate resilience and adapting rice cultivation to climate change. Over the last decade, there have been tremendous technological and analytical advances in genomics that have dramatically altered the landscape of rice research. Here we review the remarkable advances in knowledge that have been witnessed in the last few years in the area of genetics and genomics of African rice. Advances in cheap DNA sequencing technologies have fuelled development of numerous genomic and transcriptomic resources. Genomics has been pivotal in elucidating the genetic architecture of important traits thereby providing a basis for unlocking important trait variation. Whole genome re-sequencing studies have provided great insights on the domestication process, though key studies continue giving conflicting conclusions and theories. However, the genomic resources of African rice appear to be under-utilized as there seems to be little evidence that these vast resources are being productively exploited for example in practical rice improvement programmes. Challenges in deploying African rice genetic resources in rice improvement and the genomics efforts made in addressing them are highlighted.
Collapse
|
23
|
Zager JJ, Lange I, Srividya N, Smith A, Lange BM. Gene Networks Underlying Cannabinoid and Terpenoid Accumulation in Cannabis. PLANT PHYSIOLOGY 2019; 180:1877-1897. [PMID: 31138625 PMCID: PMC6670104 DOI: 10.1104/pp.18.01506] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/15/2019] [Indexed: 05/21/2023]
Abstract
Glandular trichomes are specialized anatomical structures that accumulate secretions with important biological roles in plant-environment interactions. These secretions also have commercial uses in the flavor, fragrance, and pharmaceutical industries. The capitate-stalked glandular trichomes of Cannabis sativa (cannabis), situated on the surfaces of the bracts of the female flowers, are the primary site for the biosynthesis and storage of resins rich in cannabinoids and terpenoids. In this study, we profiled nine commercial cannabis strains with purportedly different attributes, such as taste, color, smell, and genetic origin. Glandular trichomes were isolated from each of these strains, and cell type-specific transcriptome data sets were acquired. Cannabinoids and terpenoids were quantified in flower buds. Statistical analyses indicated that these data sets enable the high-resolution differentiation of strains by providing complementary information. Integrative analyses revealed a coexpression network of genes involved in the biosynthesis of both cannabinoids and terpenoids from imported precursors. Terpene synthase genes involved in the biosynthesis of the major monoterpenes and sesquiterpenes routinely assayed by cannabis testing laboratories were identified and functionally evaluated. In addition to cloning variants of previously characterized genes, specifically CsTPS14CT [(-)-limonene synthase] and CsTPS15CT (β-myrcene synthase), we functionally evaluated genes that encode enzymes with activities not previously described in cannabis, namely CsTPS18VF and CsTPS19BL (nerolidol/linalool synthases), CsTPS16CC (germacrene B synthase), and CsTPS20CT (hedycaryol synthase). This study lays the groundwork for developing a better understanding of the complex chemistry and biochemistry underlying resin accumulation across commercial cannabis strains.
Collapse
Affiliation(s)
- Jordan J Zager
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | | | - B Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
24
|
Arslan M, Devisetty UK, Porsch M, Große I, Müller JA, Michalski SG. RNA-Seq analysis of soft rush (Juncus effusus): transcriptome sequencing, de novo assembly, annotation, and polymorphism identification. BMC Genomics 2019; 20:489. [PMID: 31195970 PMCID: PMC6567414 DOI: 10.1186/s12864-019-5886-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Juncus effusus L. (family: Juncaceae; order: Poales) is a helophytic rush growing in temperate damp or wet terrestrial habitats and is of almost cosmopolitan distribution. The species has been studied intensively with respect to its interaction with co-occurring plants as well as microbes being involved in major biogeochemical cycles. J. effusus has biotechnological value as component of Constructed Wetlands where the plant has been employed in phytoremediation of contaminated water. Its genome has not been sequenced. RESULTS In this study we carried out functional annotation and polymorphism analysis of de novo assembled RNA-Seq data from 18 genotypes using 249 million paired-end Illumina HiSeq reads and 2.8 million 454 Titanium reads. The assembly comprised 158,591 contigs with a mean contig length of 780 bp. The assembly was annotated using the dammit! annotation pipeline, which queries the databases OrthoDB, Pfam-A, Rfam, and runs BUSCO (Benchmarking Single-Copy Ortholog genes). In total, 111,567 contigs (70.3%) were annotated with functional descriptions, assigned gene ontology terms, and conserved protein domains, which resulted in 30,932 non-redundant gene sequences. Results of BUSCO and KEGG pathway analyses were similar for J. effusus as for the well-studied members of the Poales, Oryza sativa and Sorghum bicolor. A total of 566,433 polymorphisms were identified in transcribed regions with an average frequency of 1 polymorphism in every 171 bases. CONCLUSIONS The transcriptome assembly was of high quality and genome coverage was sufficient for global analyses. This annotated knowledge resource can be utilized for future gene expression analysis, genomic feature comparisons, genotyping, primer design, and functional genomics in J. effusus.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr, 15, Leipzig, Germany.,Institute for Biology V (Environmental Research), RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | | | - Martin Porsch
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120, Halle (Saale), Germany.,Core Facility Deep Sequencing, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Ivo Große
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Jochen A Müller
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr, 15, Leipzig, Germany.
| | - Stefan G Michalski
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| |
Collapse
|
25
|
Gage JL, Vaillancourt B, Hamilton JP, Manrique-Carpintero NC, Gustafson TJ, Barry K, Lipzen A, Tracy WF, Mikel MA, Kaeppler SM, Buell CR, de Leon N. Multiple Maize Reference Genomes Impact the Identification of Variants by Genome-Wide Association Study in a Diverse Inbred Panel. THE PLANT GENOME 2019; 12:180069. [PMID: 31290926 DOI: 10.3835/plantgenome2018.09.0069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Use of a single reference genome for genome-wide association studies (GWAS) limits the gene space represented to that of a single accession. This limitation can complicate identification and characterization of genes located within presence-absence variations (PAVs). In this study, we present the draft de novo genome assembly of 'PHJ89', an 'Oh43'-type inbred line of maize ( L.). From three separate reference genome assemblies ('B73', 'PH207', and PHJ89) that represent the predominant germplasm groups of maize, we generated three separate whole-seedling gene expression profiles and single nucleotide polymorphism (SNP) matrices from a panel of 942 diverse inbred lines. We identified 34,447 (B73), 39,672 (PH207), and 37,436 (PHJ89) transcripts that are not present in the respective reference genome assemblies. Genome-wide association studies were conducted in the 942 inbred panel with both the SNP and expression data values to map (SCMV) resistance. Highlighting the impact of alternative reference genomes in gene discovery, the GWAS results for SCMV resistance with expression values as a surrogate measure of PAV resulted in robust detection of the physical location of a known resistance gene when the B73 reference that contains the gene was used, but not the PH207 reference. This study provides the valuable resource of the Oh43-type PHJ89 genome assembly as well as SNP and expression data for 942 individuals generated from three different reference genomes.
Collapse
|
26
|
Zhou P, Hirsch CN, Briggs SP, Springer NM. Dynamic Patterns of Gene Expression Additivity and Regulatory Variation throughout Maize Development. MOLECULAR PLANT 2019; 12:410-425. [PMID: 30593858 DOI: 10.1016/j.molp.2018.12.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 05/26/2023]
Abstract
Gene expression variation is a key component underlying phenotypic variation and heterosis. Transcriptome profiling was performed on 23 different tissues or developmental stages of two maize inbreds, B73 and Mo17, as well as their F1 hybrid. The obtained large-scale datasets provided opportunities to monitor the developmental dynamics of differential expression, additivity for gene expression, and regulatory variation. The transcriptome can be divided into ∼30 000 genes that are expressed in at least one tissue of one inbred and an additional ∼10 000 ″silent" genes that are not expressed in any tissue of any genotype, 90% of which are non-syntenic relative to other grasses. Many (∼74%) of the expressed genes exhibit differential expression in at least one tissue. However, the majority of genes with differential expression do not exhibit consistent differential expression in different tissues. These genes often exhibit tissue-specific differential expression with equivalent expression in other tissues, and in many cases they switch the directionality of differential expression in different tissues. This suggests widespread variation for tissue-specific regulation of gene expression between the two maize inbreds B73 and Mo17. Nearly 5000 genes are expressed in only one parent in at least one tissue (single parent expression) and 97% of these genes are expressed at mid-parent levels or higher in the hybrid, providing extensive opportunities for hybrid complementation in heterosis. In general, additive expression patterns are much more common than non-additive patterns, and this trend is more pronounced for genes with strong differential expression or single parent expression. There is relatively little evidence for non-additive expression patterns that are maintained in multiple tissues. The analysis of allele-specific expression allowed classification of cis- and trans-regulatory variation. Genes with cis-regulatory variation often exhibit additive expression and tend to have more consistent regulatory variation throughout development. In contrast, genes with trans-regulatory variation are enriched for non-additive patterns and often show tissue-specific differential expression. Taken together, this study provides a deeper understanding of regulatory variation and the degree of additive gene expression throughout maize development. The dynamic nature of differential expression, additivity, and regulatory variation imply abundant variability for tissue-specific regulatory mechanisms and suggest that connections between transcriptome and phenome will require expression data from multiple tissues.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Steven P Briggs
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
27
|
Da Silva C, Molin A, Ferrarini A, Boido E, Gaggero C, Delledonne M, Carrau F. The Tannat genome: Unravelling its unique characteristics. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191201016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tannat (Vitis vinifera) is the most cultivated grapevine variety in Uruguay for the production of high quality red wines. Its berries have unusually high levels of polyphenolic compounds (anthocyanins and tannins), producing wines with intense purple colour and high antioxidant properties. Remarkably, more than 40% of its tannins are galloylated, which determines a greater antioxidant power. Technologies of massive sequencing allow the characterization of genomic variants between different clutivars. The Tannat genome was sequenced with a 134X coverage using the Illumina technology, and was annotated using transcriptomes (RNA-Seq) of different berry tissues. When comparing the genomes of Tannat with Pinot Noir PN40024 (reference genome) we found an expansion of the gene families related to the biosynthesis of polyphenols. A search base on the recently reported epicatechin galloyl transferase (ECGT) from tea leaves determined five putative genes encoding the ECGT in Tannat. Genetic analysis of one of the transcription factor that regulates the anthocyanin synthesis during berry ripening, VvMYBA1, shows the presence of Gret1 retrotransposon in one of the VvMYBA1 alleles in the Tannat clones analysed. This work makes original contributions about the molecular bases of the biosynthesis of anthocyanins and tannins during the development of the flagship grape of Uruguay.
Collapse
|
28
|
Massonnet M, Morales-Cruz A, Minio A, Figueroa-Balderas R, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D. Whole-Genome Resequencing and Pan-Transcriptome Reconstruction Highlight the Impact of Genomic Structural Variation on Secondary Metabolite Gene Clusters in the Grapevine Esca Pathogen Phaeoacremonium minimum. Front Microbiol 2018; 9:1784. [PMID: 30150972 PMCID: PMC6099105 DOI: 10.3389/fmicb.2018.01784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
The Ascomycete fungus Phaeoacremonium minimum is one of the primary causal agents of Esca, a widespread and damaging grapevine trunk disease. Variation in virulence among Pm. minimum isolates has been reported, but the underlying genetic basis of the phenotypic variability remains unknown. The goal of this study was to characterize intraspecific genetic diversity and explore its potential impact on virulence functions associated with secondary metabolism, cellular transport, and cell wall decomposition. We generated a chromosome-scale genome assembly, using single molecule real-time sequencing, and resequenced the genomes and transcriptomes of multiple isolates to identify sequence and structural polymorphisms. Numerous insertion and deletion events were found for a total of about 1 Mbp in each isolate. Structural variation in this extremely gene dense genome frequently caused presence/absence polymorphisms of multiple adjacent genes, mostly belonging to biosynthetic clusters associated with secondary metabolism. Because of the observed intraspecific diversity in gene content due to structural variation we concluded that a transcriptome reference developed from a single isolate is insufficient to represent the virulence factor repertoire of the species. We therefore compiled a pan-transcriptome reference of Pm. minimum comprising a non-redundant set of 15,245 protein-coding sequences. Using naturally infected field samples expressing Esca symptoms, we demonstrated that mapping of meta-transcriptomics data on a multi-species reference that included the Pm. minimum pan-transcriptome allows the profiling of an expanded set of virulence factors, including variable genes associated with secondary metabolism and cellular transport.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Philippe E. Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
de Oliveira AA, Pastina MM, de Souza VF, da Costa Parrella RA, Noda RW, Simeone MLF, Schaffert RE, de Magalhães JV, Damasceno CMB, Margarido GRA. Genomic prediction applied to high-biomass sorghum for bioenergy production. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:49. [PMID: 29670457 PMCID: PMC5893689 DOI: 10.1007/s11032-018-0802-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/13/2018] [Indexed: 05/18/2023]
Abstract
The increasing cost of energy and finite oil and gas reserves have created a need to develop alternative fuels from renewable sources. Due to its abiotic stress tolerance and annual cultivation, high-biomass sorghum (Sorghum bicolor L. Moench) shows potential as a bioenergy crop. Genomic selection is a useful tool for accelerating genetic gains and could restructure plant breeding programs by enabling early selection and reducing breeding cycle duration. This work aimed at predicting breeding values via genomic selection models for 200 sorghum genotypes comprising landrace accessions and breeding lines from biomass and saccharine groups. These genotypes were divided into two sub-panels, according to breeding purpose. We evaluated the following phenotypic biomass traits: days to flowering, plant height, fresh and dry matter yield, and fiber, cellulose, hemicellulose, and lignin proportions. Genotyping by sequencing yielded more than 258,000 single-nucleotide polymorphism markers, which revealed population structure between subpanels. We then fitted and compared genomic selection models BayesA, BayesB, BayesCπ, BayesLasso, Bayes Ridge Regression and random regression best linear unbiased predictor. The resulting predictive abilities varied little between the different models, but substantially between traits. Different scenarios of prediction showed the potential of using genomic selection results between sub-panels and years, although the genotype by environment interaction negatively affected accuracies. Functional enrichment analyses performed with the marker-predicted effects suggested several interesting associations, with potential for revealing biological processes relevant to the studied quantitative traits. This work shows that genomic selection can be successfully applied in biomass sorghum breeding programs.
Collapse
Affiliation(s)
- Amanda Avelar de Oliveira
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Richard MMS, Gratias A, Thareau V, Kim KD, Balzergue S, Joets J, Jackson SA, Geffroy V. Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Res 2018; 25:161-172. [PMID: 29149287 PMCID: PMC5909424 DOI: 10.1093/dnares/dsx046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022] Open
Abstract
In plants, a key class of genes comprising most of disease resistance (R) genes encodes Nucleotide-binding leucine-rich repeat (NL) proteins. Access to common bean (Phaseolus vulgaris) genome sequence provides unparalleled insight into the organization and evolution of this large gene family (∼400 NL) in this important crop. As observed in other plant species, most common bean NL are organized in cluster of genes. However, a particularity of common bean is that these clusters are often located in subtelomeric regions close to terminal knobs containing the satellite DNA khipu. Phylogenetically related NL are spread between different chromosome ends, suggesting frequent exchanges between non-homologous chromosomes. NL peculiar location, in proximity to heterochromatic regions, led us to study their DNA methylation status using a whole-genome cytosine methylation map. In common bean, NL genes displayed an unusual body methylation pattern since half of them are methylated in the three contexts, reminiscent of the DNA methylation pattern of repeated sequences. Moreover, 90 NL were also abundantly targeted by 24 nt siRNA, with 90% corresponding to methylated NL genes. This suggests the existence of a transcriptional gene silencing mechanism of NL through the RdDM (RNA-directed DNA methylation) pathway in common bean that has not been described in other plant species.
Collapse
Affiliation(s)
- Manon M S Richard
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - Johann Joets
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| |
Collapse
|
31
|
Singh J, Kalberer SR, Belamkar V, Assefa T, Nelson MN, Farmer AD, Blackmon WJ, Cannon SB. A transcriptome-SNP-derived linkage map of Apios americana (potato bean) provides insights about genome re-organization and synteny conservation in the phaseoloid legumes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:333-351. [PMID: 29071392 PMCID: PMC5787225 DOI: 10.1007/s00122-017-3004-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE We report a linkage map for Apios americana and describe synteny with selected warm-season legumes. A translocation event in common bean and soybean is confirmed against Apios and Vigna species. Apios (Apios americana; "apios"), a tuberous perennial legume in the Phaseoleae tribe, was widely used as a food by Native Americans. Work in the last 40 years has led to several improved breeding lines. Aspects of the pollination biology (complex floral structure and tripping mechanism) have made controlled crosses difficult, and the previous reports indicated that the plant is likely primarily an outcrosser. We used a pseudo-testcross strategy to construct a genetic map specific to the maternal parent. The map was built using single-nucleotide polymorphism markers identified by comparing the expressed sequences of individuals in the mapping population against a de novo maternal reference transcriptome assembly. The apios map consists of 11 linkage groups and 1121 recombinationally distinct loci, covering ~ 938.6 cM. By sequencing the transcriptomes of all potential pollen parents, we were able to identify the probable pollen donors and to discover new aspects of the pollination biology in apios. No selfing was observed, but multiple pollen parents were seen within individual pods. Comparisons with genome sequences in other species in the Phaseoleae showed extended synteny for most apios linkage groups. This synteny supports the robustness of the map, and also sheds light on the history of the Phaseoleae, as apios is relatively early diverging in this tribe. We detected a translocation event that separates apios and two Vigna species from Phaseolus vulgaris and Glycine max. This apios mapping work provides a general protocol for sequencing-based construction of high-density linkage maps in outcrossing species with heterogeneous pollen parents.
Collapse
Affiliation(s)
- Jugpreet Singh
- ORISE Fellow, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011 USA
| | - Scott R. Kalberer
- Crop Genome Informatics Laboratory, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011 USA
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Teshale Assefa
- ORISE Fellow, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011 USA
| | - Matthew N. Nelson
- Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN UK
| | | | | | - Steven B. Cannon
- Crop Genome Informatics Laboratory, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011 USA
| |
Collapse
|
32
|
Chen L, Zhang P, Fan Y, Lu Q, Li Q, Yan J, Muehlbauer GJ, Schnable PS, Dai M, Li L. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. THE NEW PHYTOLOGIST 2018; 217:1292-1306. [PMID: 29155438 DOI: 10.1111/nph.14901] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/18/2017] [Indexed: 05/21/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules. Recent studies have shown that circRNAs can arise from the transcripts of transposons. Given the prevalence of transposons in the maize genome and dramatic genomic variation driven by transposons, we hypothesize that transposons in maize may be involved in the formation of circRNAs and further modulate phenotypic variation. We performed circRNA-Seq on B73 seedling leaves and uncovered 2804 high-confidence maize circRNAs, which show distinct genomic features. Comprehensive analyses demonstrated that sequences related to LINE1-like elements (LLEs) and their Reverse Complementary Pairs (LLERCPs) are significantly enriched in the flanking regions of circRNAs. Interestingly, as the number of LLERCPs increase, the accumulation of circRNAs varies, whereas that of linear transcripts decreases. Furthermore, genes with LLERCP-mediated circRNAs are enriched among loci that are associated with phenotypic variation. These results suggest that circRNAs are likely to be involved in the modulation of phenotypic variation by LLERCPs. Further, we showed that the presence/absence variation of LLERCPs was associated with expression variation of circRNA-circ1690 and was related to ear height, potentially through the interplay between circRNAs and functional linear transcripts. Our first study of maize circRNAs uncovers a potential new way for transposons to modulate transcriptomic and phenotypic variations.
Collapse
Affiliation(s)
- Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | | | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
33
|
Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars. Sci Rep 2018; 8:1683. [PMID: 29374206 PMCID: PMC5785991 DOI: 10.1038/s41598-018-19832-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/09/2018] [Indexed: 11/24/2022] Open
Abstract
Sugarcane (Saccharum officinarum L.) is an important crop for sugar production and bioenergy worldwide. In this study, we performed transcriptome sequencing for six contrasting sugarcane genotypes involved in leaf abscission, tolerance to pokkah boeng disease and drought stress. More than 465 million high-quality reads were generated, which were de novo assembled into 93,115 unigenes. Based on a similarity search, 43,526 (46.74%) unigenes were annotated against at least one of the public databases. Functional classification analyses showed that these unigenes are involved in a wide range of metabolic pathways. Comparative transcriptome analysis revealed that many unigenes involved in response to abscisic acid and ethylene were up-regulated in the easy leaf abscission genotype, and unigenes associated with response to jasmonic acid and salicylic acid were up-regulated in response to the pokkah boeng disease in the tolerance genotype. Moreover, unigenes related to peroxidase, antioxidant activity and signal transduction were up-regulated in response to drought stress in the tolerant genotype. Finally, we identified a number of putative markers, including 8,630 simple sequence repeats (SSRs) and 442,152 single-nucleotide polymorphisms (SNPs). Our data will be important resources for future gene discovery, molecular marker development, and genome studies in sugarcane.
Collapse
|
34
|
Brohammer AB, Kono TJY, Springer NM, McGaugh SE, Hirsch CN. The limited role of differential fractionation in genome content variation and function in maize (Zea mays L.) inbred lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:131-141. [PMID: 29124819 DOI: 10.1111/tpj.13765] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/27/2017] [Indexed: 05/22/2023]
Abstract
Maize is a diverse paleotetraploid species with considerable presence/absence variation and copy number variation. One mechanism through which presence/absence variation can arise is differential fractionation. Fractionation refers to the loss of duplicate gene pairs from one of the maize subgenomes during diploidization. Differential fractionation refers to non-shared gene loss events between individuals following a whole-genome duplication event. We investigated the prevalence of presence/absence variation resulting from differential fractionation in the syntenic portion of the genome using two whole-genome de novo assemblies of the inbred lines B73 and PH207. Between these two genomes, syntenic genes were highly conserved with less than 1% of syntenic genes being subject to differential fractionation. The few variably fractionated syntenic genes that were identified are unlikely to contribute to functional phenotypic variation, as there is a significant depletion of these genes in annotated gene sets. In further comparisons of 60 diverse inbred lines, non-syntenic genes were six times more likely to be variable than syntenic genes, suggesting that comparisons among additional genome assemblies are not likely to result in the discovery of large-scale presence/absence variation among syntenic genes.
Collapse
Affiliation(s)
- Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Thomas J Y Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Avenue, St Paul, MN, 55108, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| |
Collapse
|
35
|
|
36
|
Yang S, Chen S, Zhang K, Li L, Yin Y, Gill RA, Yan G, Meng J, Cowling WA, Zhou W. A High-Density Genetic Map of an Allohexaploid Brassica Doubled Haploid Population Reveals Quantitative Trait Loci for Pollen Viability and Fertility. FRONTIERS IN PLANT SCIENCE 2018; 9:1161. [PMID: 30210508 PMCID: PMC6123574 DOI: 10.3389/fpls.2018.01161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/23/2018] [Indexed: 05/02/2023]
Abstract
A doubled haploid (DH) mapping population was obtained from microspore culture of an allohexaploid F1 from the cross between two recently-synthesized allohexaploid Brassica lines. We used single nucleotide polymorphism (SNP) genetic variation based on restriction-site associated DNA (RAD) sequencing to construct a high density genetic linkage map of the population. RAD libraries were constructed from the genomic DNA of both parents and 146 DH progenies. A total of 2.87 G reads with an average sequencing depth of 2.59 × were obtained in the parents and of 1.41 × in the progeny. A total of 290,422 SNPs were identified from clustering of RAD reads, from which we developed 7,950 high quality SNP markers that segregated normally (1:1) in the population. The linkage map contained all 27 chromosomes from the parental A, B and C genomes with a total genetic distance of 5725.19 cM and an average of 0.75 cM between adjacent markers. Genetic distance on non-integrated linkage groups was 1534.23 cM, or 21% of total genetic distance. Out of 146 DH progenies, 91 had a complete set of 27 chromosomes as expected of a hexaploid species, and 21 out of 27 chromosomes showed high collinearity between the physical and linkage maps. The loss of chromosome(s) or chromosome segment(s) in the DH population was associated with a reduction in pollen viability. Twenty-five additive QTL were associated with pollen viability and fertility-related traits (seed number, seed yield, pod length, plant height, 1000-seed weight). In addition, 44 intra-genomic and 18 inter-genomic epistatic QTL pairs were detected for 4 phenotypic traits. This provides confidence that the DH population may be selected for improved pollen viability and fertility in a future allohexaploid Brassica species.
Collapse
Affiliation(s)
- Su Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sheng Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
| | - Kangni Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Lan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Yuling Yin
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Rafaqat A. Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Guijun Yan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wallace A. Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou
| |
Collapse
|
37
|
Mao J, Yu Y, Yang J, Li G, Li C, Qi X, Wen T, Hu J. Comparative transcriptome analysis of sweet corn seedlings under low-temperature stress. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Hu S, Sanchez DL, Wang C, Lipka AE, Yin Y, Gardner CAC, Lübberstedt T. Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:132-141. [PMID: 28818369 DOI: 10.1016/j.plantsci.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 05/24/2023]
Abstract
In this study, we established two doubled haploid (DH) libraries with a total of 207 DH lines. We applied BR and GA inhibitors to all DH lines at seedling stage and measured seedling BR and GA inhibitor responses. Moreover, we evaluated field traits for each DH line (untreated). We conducted genome-wide association studies (GWAS) with 62,049 genome wide SNPs to explore the genetic control of seedling traits by BR and GA. In addition, we correlate seedling stage hormone inhibitor response with field traits. Large variation for BR and GA inhibitor response and field traits was observed across these DH lines. Seedling stage BR and GA inhibitor response was significantly correlate with yield and flowering time. Using three different GWAS approaches to balance false positive/negatives, multiple SNPs were discovered to be significantly associated with BR/GA inhibitor responses with some localized within gene models. SNPs from gene model GRMZM2G013391 were associated with GA inhibitor response across all three GWAS models. This gene is expressed in roots and shoots and was shown to regulate GA signaling. These results show that BRs and GAs have a great impact for controlling seedling growth. Gene models from GWAS results could be targets for seeding traits improvement.
Collapse
Affiliation(s)
- Songlin Hu
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA.
| | - Darlene L Sanchez
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| | - Cuiling Wang
- Department of Agronomy, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471023, China
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Champaign, IL 61801, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| | - Candice A C Gardner
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA; U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), 100 Osborn Drive, Ames, IA 50011, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| |
Collapse
|
39
|
Abstract
Plant metabolic studies have traditionally focused on the role and regulation of the enzymes catalyzing key reactions within specific pathways. Within the past 20 years, reverse genetic approaches have allowed direct determination of the effects of the deficiency, or surplus, of a given protein on the biochemistry of a plant. In parallel, top-down approaches have also been taken, which rely on screening broad, natural genetic diversity for metabolic diversity. Here, we compare and contrast the various strategies that have been adopted to enhance our understanding of the natural diversity of metabolism. We also detail how these approaches have enhanced our understanding of both specific and global aspects of the genetic regulation of metabolism. Finally, we discuss how such approaches are providing important insights into the evolution of plant secondary metabolism.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
40
|
Analysis of the first Taraxacum kok-saghyz transcriptome reveals potential rubber yield related SNPs. Sci Rep 2017; 7:9939. [PMID: 28855528 PMCID: PMC5577190 DOI: 10.1038/s41598-017-09034-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022] Open
Abstract
Taraxacum kok-saghyz (TK) is a potential alternative crop for natural rubber (NR) production, due to its high molecular weight rubber, short breeding cycle, and diverse environmental adaptation. However, improvements in rubber yield and agronomically relevant traits are still required before it can become a commercially-viable crop. An RNA-Seq based transcriptome was developed from a pool of roots from genotypes with high and low rubber yield. A total of 55,532 transcripts with lengths over 200 bp were de novo assembled. As many as 472 transcripts were significantly homologous to 49 out of 50 known plant putative rubber biosynthesis related genes. 158 transcripts were significantly differentially expressed between high rubber and low rubber genotypes. 21,036 SNPs were different in high and low rubber TK genotypes. Among these, 50 SNPs were found within 39 transcripts highly homologous to 49 publically-searched rubber biosynthesis related genes. 117 SNPs were located within 36 of the differentially expressed gene sequences. This comprehensive TK transcriptomic reference, and large set of SNPs including putative exonic markers associated with rubber related gene homologues and differentially expressed genes, provides a solid foundation for further genetic dissection of rubber related traits, comparative genomics and marker-assisted selection for the breeding of TK.
Collapse
|
41
|
Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS. Enhancing genetic gain in the era of molecular breeding. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2641-2666. [PMID: 28830098 DOI: 10.1093/jxb/erx135] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/03/2017] [Indexed: 05/20/2023]
Abstract
As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary approaches, team breeding, will be required to address the challenge of maintaining a plentiful and safe food supply for future generations. New opportunities for enhancing genetic gain, a high efficiency breeding pipeline, and broad-sense genetic gain are also discussed prospectively.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP 56130, México
| | - Ping Li
- Nantong Xinhe Bio-Technology, Nantong 226019, PR China
| | - Cheng Zou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP 56130, México
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF campus, United Nations Avenue, Nairobi, Kenya
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF campus, United Nations Avenue, Nairobi, Kenya
| |
Collapse
|
42
|
Ertiro BT, Beyene Y, Das B, Mugo S, Olsen M, Oikeh S, Juma C, Labuschagne M, Prasanna BM. Combining ability and testcross performance of drought-tolerant maize inbred lines under stress and non-stress environments in Kenya. PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2017; 136:197-205. [PMID: 28781399 PMCID: PMC5518761 DOI: 10.1111/pbr.12464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/04/2017] [Indexed: 05/24/2023]
Abstract
Drought and poor soil fertility are among the major abiotic stresses affecting maize productivity in sub-Saharan Africa. Maize breeding efforts at the International Maize and Wheat Improvement Center (CIMMYT) have focused on incorporating drought stress tolerance and nitrogen-use efficiency (NUE) into tropical maize germplasm. The objectives of this study were to estimate the general combining ability (GCA) and specific combining ability (SCA) of selected maize inbred lines under drought stress (DS), low-nitrogen (LN) and optimum moisture and nitrogen (optimum) conditions, and to assess the yield potential and stability of experimental hybrids under these management conditions. Forty-nine experimental three-way cross hybrids, generated from a 7 × 7 line by tester crosses, and six commercial checks were evaluated across 11 optimum, DS and LN sites in Kenya in 2014 using an alpha lattice design with two replicates per entry at each site. DS reduced both grain yield (GY) and plant height (PH), while anthesis-silking interval (ASI) increased under both DS and LN. Hybrids 'L4/T2' and 'L4/T1' were found to be superior and stable, while inbreds 'L4' and 'L6' were good combiners for GY and other secondary traits across sites. Additive variance played a greater role for most traits under the three management conditions, suggesting that further progress in the improvement of these traits should be possible. GY under optimum conditions was positively correlated with GY under both DS and LN conditions, but GY under DS and LN was not correlated. Our results suggest the feasibility for simultaneous improvement in grain yield performance of genotypes under optimum, DS and LN conditions.
Collapse
Affiliation(s)
- Berhanu T. Ertiro
- Ethiopian Institute of Agricultural Research (EIAR)Bako National Maize Research CenterP.O.Box 03BakoWest ShoaOromiaEthiopia
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT)P.O. Box 1041‐00621NairobiKenya
| | - Biswanath Das
- International Maize and Wheat Improvement Center (CIMMYT)P.O. Box 1041‐00621NairobiKenya
| | - Stephen Mugo
- International Maize and Wheat Improvement Center (CIMMYT)P.O. Box 1041‐00621NairobiKenya
| | - Michael Olsen
- International Maize and Wheat Improvement Center (CIMMYT)P.O. Box 1041‐00621NairobiKenya
| | - Sylvester Oikeh
- African Agricultural Technology Foundation (AATF)P.O. Box 30709‐00100NairobiKenya
| | - Collins Juma
- International Maize and Wheat Improvement Center (CIMMYT)P.O. Box 1041‐00621NairobiKenya
| | - Maryke Labuschagne
- Department of Plant SciencesUniversity of the Free StateP.O. Box 339Bloemfontein9300Republic of South Africa
| | - Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT)P.O. Box 1041‐00621NairobiKenya
| |
Collapse
|
43
|
Scheben A, Batley J, Edwards D. Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:149-161. [PMID: 27696619 PMCID: PMC5258866 DOI: 10.1111/pbi.12645] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 05/18/2023]
Abstract
In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high-throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping-by-sequencing (GBS) methods include over a dozen reduced-representation sequencing (RRS) approaches and at least four whole-genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best-suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker-assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small- to moderate-sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost-effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost-effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.
Collapse
Affiliation(s)
- Armin Scheben
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| | - Jacqueline Batley
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| | - David Edwards
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
44
|
Marcon C, Paschold A, Malik WA, Lithio A, Baldauf JA, Altrogge L, Opitz N, Lanz C, Schoof H, Nettleton D, Piepho HP, Hochholdinger F. Stability of Single-Parent Gene Expression Complementation in Maize Hybrids upon Water Deficit Stress. PLANT PHYSIOLOGY 2017; 173:1247-1257. [PMID: 27999083 PMCID: PMC5291719 DOI: 10.1104/pp.16.01045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/18/2016] [Indexed: 05/24/2023]
Abstract
Heterosis is the superior performance of F1 hybrids compared with their homozygous, genetically distinct parents. In this study, we monitored the transcriptomic divergence of the maize (Zea mays) inbred lines B73 and Mo17 and their reciprocal F1 hybrid progeny in primary roots under control and water deficit conditions simulated by polyethylene glycol treatment. Single-parent expression (SPE) of genes is an extreme instance of gene expression complementation, in which genes are active in only one of two parents but are expressed in both reciprocal hybrids. In this study, 1,997 genes only expressed in B73 and 2,024 genes only expressed in Mo17 displayed SPE complementation under control and water deficit conditions. As a consequence, the number of active genes in hybrids exceeded the number of active genes in the parental inbred lines significantly independent of treatment. SPE patterns were substantially more stable to expression changes by water deficit treatment than other genotype-specific expression profiles. While, on average, 75% of all SPE patterns were not altered in response to polyethylene glycol treatment, only 17% of the remaining genotype-specific expression patterns were not changed by water deficit. Nonsyntenic genes that lack syntenic orthologs in other grass species, and thus evolved late in the grass lineage, were significantly overrepresented among SPE genes. Hence, the significant overrepresentation of nonsyntenic genes among SPE patterns and their stability under water limitation might suggest a function of these genes during the early developmental manifestation of heterosis under fluctuating environmental conditions in hybrid progeny of the inbred lines B73 and Mo17.
Collapse
Affiliation(s)
- Caroline Marcon
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Anja Paschold
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Waqas Ahmed Malik
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Andrew Lithio
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Jutta A Baldauf
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Lena Altrogge
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Nina Opitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Christa Lanz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Heiko Schoof
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Dan Nettleton
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Hans-Peter Piepho
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.)
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics (C.M., A.P., J.A.B., N.O., F.H.) and Crop Bioinformatics (L.A., H.S.), University of Bonn, 53113 Bonn, Germany;
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany (W.A.M., H.-P.P.);
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.); and
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (C.L.)
| |
Collapse
|
45
|
Song K, Kim HC, Shin S, Kim KH, Moon JC, Kim JY, Lee BM. Transcriptome Analysis of Flowering Time Genes under Drought Stress in Maize Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:267. [PMID: 28298916 PMCID: PMC5331056 DOI: 10.3389/fpls.2017.00267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Flowering time is an important factor determining yield and seed quality in maize. A change in flowering time is a strategy used to survive abiotic stresses. Among abiotic stresses, drought can increase anthesis-silking intervals (ASI), resulting in negative effects on maize yield. We have analyzed the correlation between flowering time and drought stress using RNA-seq and bioinformatics tools. Our results identified a total of 619 genes and 126 transcripts whose expression was altered by drought stress in the maize B73 leaves under short-day condition. Among drought responsive genes, we also identified 20 genes involved in flowering times. Gene Ontology (GO) enrichment analysis was used to predict the functions of the drought-responsive genes and transcripts. GO categories related to flowering time included reproduction, flower development, pollen-pistil interaction, and post-embryonic development. Transcript levels of several genes that have previously been shown to affect flowering time, such as PRR37, transcription factor HY5, and CONSTANS, were significantly altered by drought conditions. Furthermore, we also identified several drought-responsive transcripts containing C2H2 zinc finger, CCCH, and NAC domains, which are frequently involved in transcriptional regulation and may thus have potential to alter gene expression programs to change maize flowering time. Overall, our results provide a genome-wide analysis of differentially expressed genes (DEGs), novel transcripts, and isoform variants expressed during the reproductive stage of maize plants subjected to drought stress and short-day condition. Further characterization of the drought-responsive transcripts identified in this study has the potential to advance our understanding of the mechanisms that regulate flowering time under drought stress.
Collapse
Affiliation(s)
- Kitae Song
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Hyo Chul Kim
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Seungho Shin
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Kyung-Hee Kim
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Jun-Cheol Moon
- Agriculture and Life Sciences Research Institute, Kangwon National UniversityChuncheon, South Korea
| | - Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National UniversityYesan, South Korea
| | - Byung-Moo Lee
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
- *Correspondence: Byung-Moo Lee
| |
Collapse
|
46
|
Contreras-Moreira B, Cantalapiedra CP, García-Pereira MJ, Gordon SP, Vogel JP, Igartua E, Casas AM, Vinuesa P. Analysis of Plant Pan-Genomes and Transcriptomes with GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. FRONTIERS IN PLANT SCIENCE 2017; 8:184. [PMID: 28261241 PMCID: PMC5306281 DOI: 10.3389/fpls.2017.00184] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/30/2017] [Indexed: 05/22/2023]
Abstract
The pan-genome of a species is defined as the union of all the genes and non-coding sequences found in all its individuals. However, constructing a pan-genome for plants with large genomes is daunting both in sequencing cost and the scale of the required computational analysis. A more affordable alternative is to focus on the genic repertoire by using transcriptomic data. Here, the software GET_HOMOLOGUES-EST was benchmarked with genomic and RNA-seq data of 19 Arabidopsis thaliana ecotypes and then applied to the analysis of transcripts from 16 Hordeum vulgare genotypes. The goal was to sample their pan-genomes and classify sequences as core, if detected in all accessions, or accessory, when absent in some of them. The resulting sequence clusters were used to simulate pan-genome growth, and to compile Average Nucleotide Identity matrices that summarize intra-species variation. Although transcripts were found to under-estimate pan-genome size by at least 10%, we concluded that clusters of expressed sequences can recapitulate phylogeny and reproduce two properties observed in A. thaliana gene models: accessory loci show lower expression and higher non-synonymous substitution rates than core genes. Finally, accessory sequences were observed to preferentially encode transposon components in both species, plus disease resistance genes in cultivated barleys, and a variety of protein domains from other families that appear frequently associated with presence/absence variation in the literature. These results demonstrate that pan-genome analyses are useful to explore germplasm diversity.
Collapse
Affiliation(s)
- Bruno Contreras-Moreira
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones CientíficasZaragoza, Spain; Fundación ARAIDZaragoza, Spain
| | - Carlos P Cantalapiedra
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas Zaragoza, Spain
| | - María J García-Pereira
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas Zaragoza, Spain
| | | | - John P Vogel
- DOE Joint Genome Institute, Walnut Creek CA, USA
| | - Ernesto Igartua
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas Zaragoza, Spain
| | - Ana M Casas
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas Zaragoza, Spain
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
47
|
He F, Maslov S. Pan- and core- network analysis of co-expression genes in a model plant. Sci Rep 2016; 6:38956. [PMID: 27982071 PMCID: PMC5159811 DOI: 10.1038/srep38956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/14/2016] [Indexed: 01/18/2023] Open
Abstract
Genome-wide gene expression experiments have been performed using the model plant Arabidopsis during the last decade. Some studies involved construction of coexpression networks, a popular technique used to identify groups of co-regulated genes, to infer unknown gene functions. One approach is to construct a single coexpression network by combining multiple expression datasets generated in different labs. We advocate a complementary approach in which we construct a large collection of 134 coexpression networks based on expression datasets reported in individual publications. To this end we reanalyzed public expression data. To describe this collection of networks we introduced concepts of 'pan-network' and 'core-network' representing union and intersection between a sizeable fractions of individual networks, respectively. We showed that these two types of networks are different both in terms of their topology and biological function of interacting genes. For example, the modules of the pan-network are enriched in regulatory and signaling functions, while the modules of the core-network tend to include components of large macromolecular complexes such as ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community to better explore the information contained within the existing vast collection of gene expression data in Arabidopsis.
Collapse
Affiliation(s)
- Fei He
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sergei Maslov
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Bioengineering, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Serba DD, Uppalapati SR, Krom N, Mukherjee S, Tang Y, Mysore KS, Saha MC. Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. BMC Genomics 2016; 17:1040. [PMID: 27986076 PMCID: PMC5162099 DOI: 10.1186/s12864-016-3377-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Switchgrass, a warm-season perennial grass studied as a potential dedicated biofuel feedstock, is classified into two main taxa - lowland and upland ecotypes - that differ in morphology and habitat of adaptation. But there is limited information on their inherent molecular variations. RESULTS Transcriptome analysis by RNA-sequencing (RNA-Seq) was conducted for lowland and upland ecotypes to document their gene expression variations. Mapping of transcriptome to the reference genome (Panicum virgatum v1.1) revealed that the lowland and upland ecotypes differ substantially in sets of genes transcribed as well as levels of expression. Differential gene expression analysis exhibited that transcripts related to photosynthesis efficiency and development and photosystem reaction center subunits were upregulated in lowlands compared to upland genotype. On the other hand, catalase isozymes, helix-loop-helix, late embryogenesis abundant group I, photosulfokinases, and S-adenosyl methionine synthase gene transcripts were upregulated in the upland compared to the lowlands. At ≥100x coverage and ≥5% minor allele frequency, a total of 25,894 and 16,979 single nucleotide polymorphism (SNP) markers were discovered for VS16 (upland ecotype) and K5 (lowland ecotype) against the reference genome. The allele combination of the SNPs revealed that the transition mutations are more prevalent than the transversion mutations. CONCLUSIONS The gene ontology (GO) analysis of the transcriptome indicated lowland ecotype had significantly higher representation for cellular components associated with photosynthesis machinery controlling carbon fixation. In addition, using the transcriptome data, SNP markers were detected, which were distributed throughout the genome. The differentially expressed genes and SNP markers detected in this study would be useful resources for traits mapping and gene transfer across ecotypes in switchgrass breeding for increased biomass yield for biofuel conversion.
Collapse
Affiliation(s)
- Desalegn D. Serba
- Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- Present Address: Agricultural Research Center-Hays, Kansas State University, 1232 240th Avenue, Hays, KS 67601 USA
| | - Srinivasa Rao Uppalapati
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
- Present Address: DuPont Crop Protection, Stine-Haskell Research Center, Newark, DE 19711 USA
| | - Nick Krom
- Computing Services, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Shreyartha Mukherjee
- Computing Services, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
- Present Address: Syngenta, Stanton, MN 55018 USA
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Malay C. Saha
- Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
| |
Collapse
|
49
|
Zhao J, Han J, Zhang J, Li Z, Yu J, Yu S, Guo Y, Fu Y, Zhang X. NtPHYB1 K326, a homologous gene of Arabidopsis PHYB, positively regulates the content of phenolic compounds in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:45-53. [PMID: 27636822 DOI: 10.1016/j.plaphy.2016.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Polyphenols are important secondary metabolites and bioactive compounds in plants. Light is a vital abiotic factor that greatly impacts the content of polyphenols in plants. In spite of their importance the mechanism of polyphenol regulation still remains unknown in tobacco. A phytochrome B homolog, NtPHYB1K326, was isolated from Nicotiana tabacum cv. K326 to investigate the role of light receptors in the regulation of polyphenol metabolism in tobacco leaves. Furthermore, role of NtPHYB1K326 in polyphenol metabolism was analyzed by over-expression and RNAi-silencing approaches. Consistent and complemented results indicated involvement of NtPHYB1K326 in the regulation of polyphenol metabolism in tobacco leaves. Moreover, high levels of NtPHYB1K326 transcripts favor the accumulation of chlorogenic acid and its isomers, the key polyphenol component in tobacco leaves. Transcriptome analysis was also carried out for exploring the regulation mechanism of NtPHYB1K326 in the polyphenol metabolism. Compared with WT, 1665 and 1421 differentially-expressed genes were found in NtPHYB1K326-GFP and NtPHYB1K326-RNAi transgenic lines, respectively. Among these, about 30 genes were related to phenylpropanoid pathway, which is predominantly involved in synthesis of polyphenols. Further evidences from quantitative RT-PCR confirmed that NtPHYB1K326 may control phenylpropanoid pathway through regulating the transcription of PAL4 (phenylalanine ammonialyase 4), 4CL1 (4-coumarate:coenzyme A ligase 1) and COMT (caffeic acid 3-O-methyltransferase) genes.
Collapse
Affiliation(s)
- Jiehong Zhao
- CNTC Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guanshanhu District, Guiyang, 550081, China.
| | - Jie Han
- School of Basic Medical Science, Guiyang College of Traditional Chinese Medicine, Huaxi District, 550025, Guiyang, China.
| | - Jie Zhang
- CNTC Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guanshanhu District, Guiyang, 550081, China.
| | - Zhenhua Li
- CNTC Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guanshanhu District, Guiyang, 550081, China.
| | - Jing Yu
- CNTC Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guanshanhu District, Guiyang, 550081, China.
| | - Shizhou Yu
- CNTC Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guanshanhu District, Guiyang, 550081, China.
| | - Yushuang Guo
- CNTC Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guanshanhu District, Guiyang, 550081, China.
| | - Yongfu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China.
| | - Xiaomei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China.
| |
Collapse
|
50
|
Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I, Barad O, Shem-Tov D, Baruch K, Lu F, Hernandez AG, Fields CJ, Wright CL, Koehler K, Springer NM, Buckler E, Buell CR, de Leon N, Kaeppler SM, Childs KL, Mikel MA. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize. THE PLANT CELL 2016; 28:2700-2714. [PMID: 27803309 PMCID: PMC5155341 DOI: 10.1105/tpc.16.00353] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Abstract
Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.
Collapse
Affiliation(s)
- Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Megan J Bowman
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Ilya Soifer
- Calico Labs, San Francisco, California 94080
| | | | | | | | - Fei Lu
- Instiute for Genome Diversity, Cornell University, Ithaca, New York 14850
| | - Alvaro G Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois 61801
| | - Christopher J Fields
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois 61801
| | - Chris L Wright
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois 61801
| | | | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Edward Buckler
- Instiute for Genome Diversity, Cornell University, Ithaca, New York 14850
- U.S. Department of Agriculture/Agricultural Research Services, Ithaca, New York 14850
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- DOE Great Lakes Bioenergy Research Center, East Lansing, Michigan 48824
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706
- DOE Great Lakes Bioenergy Research Center, Madison, Wisconsin 53706
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706
- DOE Great Lakes Bioenergy Research Center, Madison, Wisconsin 53706
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Center for Genomics-Enabled Plant Sciences, Michigan State University, East Lansing, Michigan 48824
| | - Mark A Mikel
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois 61801
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|