1
|
Etuze T, Triniac H, Zheng Z, Vivien D, Dubois F. Apolipoproteins in ischemic stroke progression and recovery: Key molecular mechanisms and therapeutic potential. Neurobiol Dis 2025; 209:106896. [PMID: 40180226 DOI: 10.1016/j.nbd.2025.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Ischemic stroke, responsible for 80 % of all strokes, is a leading cause of mortality globally. While altered lipids profiles are recognized as modifiable risk factors, their direct impact on stroke outcomes is less understood due to the brain's distinct lipid metabolism and the selective permeability of the blood-brain barrier for lipoproteins. As key components of lipoproteins, apolipoproteins are essential for lipid transport, redistribution and metabolism in both the central nervous system and peripheral blood circulation. This review provides an updated perspective on the influence of brain-expressed apolipoproteins (such as ApoE, ApoA-I, ApoJ, ApoD, and others) and those that cross the damaged blood-brain barrier following ischemic stroke. We explore hypotheses regarding their involvement in molecular pathways related to lipid metabolism, inflammation, oxidative stress, mitochondrial function and blood-brain barrier integrity. Through this synthesis, we aim to identify potential biomarkers and therapeutic targets, thereby enhancing our understanding of apolipoproteins in ischemic stroke progression and contributing to improved clinical outcomes.
Collapse
Affiliation(s)
- Tamara Etuze
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France
| | | | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de La Côte de Nacre, Caen, France.
| | - Fatemeh Dubois
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; Department of Pathology, CHU de Caen Normandie, 14000 Caen, France.
| |
Collapse
|
2
|
Luna-Luna M, Páez A, Massó F, López-Marure R, Zozaya-García JM, Vargas-Castillo A, Gómez-Pineda D, Tovar AR, Magaña JJ, Fragoso JM, Gutiérrez-Saldaña M, Téllez-Osorio Z, Pérez-Méndez Ó. High-Density Lipoproteins from Coronary Artery Disease and Aortic Valve Stenosis Patients Differentially Regulate Gene Expression in a Model of Cardiac Adipocytes. Cells 2025; 14:205. [PMID: 39936996 PMCID: PMC11817163 DOI: 10.3390/cells14030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Previous reports have described a statistical association between high-density lipoproteins (HDL) subclasses and the expression of genes coding for pro-calcifying proteins in the epicardial adipose tissue of patients with coronary artery disease (CAD) and aortic valvular stenosis (AVS). These results suggest a causal relationship between HDL and the regulation of gene expression in epicardial adipose tissue. However, there is no experimental evidence that supports this causal relationship. Therefore, we explored the effect of HDL isolated from CAD or AVS patients on the expression of OPN, BMP2, and BMP4, genes coding for proteins related to calcification, osteopontin, and bone morphogenetic proteins -2 and -4, respectively, and LEP, UCP, and PER, coding for leptin, uncoupling protein-1, and perilipin-2, respectively, proteins that confer phenotypic characteristics to adipocytes. The experiments were performed using a novel model of cardiac adipocytes differentiated in vitro from stromal cells of rabbit cardiac adipose tissue. AVS or CAD patients' HDL differentially modulated the expression of BMP4 and LEP, whereas HDL from both kinds of patients upregulated the OPN gene expression. A high concentration of triglycerides associated to small HDL and a higher concentration of phospholipids of large HDL from CAD patients than those from AVS individuals were the most remarkable structural differences. Finally, we demonstrated that cholesterol from reconstituted HDL was internalized to the adipocytes. The regulation of genes related to the secretory activity of cardiac adipocytes mediated by HDL has clinical implications as a potential therapeutic target for the prevention and treatment of CAD and AVS. In summary, the HDL isolated from the CAD and AVS patients differentially regulated gene expression in adipocytes by a mechanism that seems to be dependent on HDL lipid internalization to the cells and structural characteristics of the lipoproteins.
Collapse
Affiliation(s)
- María Luna-Luna
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (D.G.-P.); (J.M.F.); (M.G.-S.); (Z.T.-O.)
| | - Araceli Páez
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.P.); (F.M.)
| | - Felipe Massó
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.P.); (F.M.)
| | - Rebeca López-Marure
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Jorge Moisés Zozaya-García
- Department of General and Endoscopic Surgery, Hepatic and Bile Ducts Clinic, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico;
| | - Ariana Vargas-Castillo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Gómez-Pineda
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (D.G.-P.); (J.M.F.); (M.G.-S.); (Z.T.-O.)
| | - Armando R. Tovar
- Nutrition Physiology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute Luis Guillermo Ibarra Ibarra (INRLGII), Mexico City 14389, Mexico;
- Tecnologico de Monterrey, Engineering School, Campus Ciudad de Mexico, Mexico City 14380, Mexico
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (D.G.-P.); (J.M.F.); (M.G.-S.); (Z.T.-O.)
| | - Margarita Gutiérrez-Saldaña
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (D.G.-P.); (J.M.F.); (M.G.-S.); (Z.T.-O.)
| | - Zuriel Téllez-Osorio
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (D.G.-P.); (J.M.F.); (M.G.-S.); (Z.T.-O.)
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (D.G.-P.); (J.M.F.); (M.G.-S.); (Z.T.-O.)
- Tecnologico de Monterrey, Engineering School, Campus Ciudad de Mexico, Mexico City 14380, Mexico
| |
Collapse
|
3
|
Huang Y, Zhang J, Zhao Q, Hu X, Zhao H, Wang S, Wang L, Jiang R, Wu W, Liu J, Yuan P, Gong S. Impact of reduced apolipoprotein A-I levels on pulmonary arterial hypertension. Hellenic J Cardiol 2024; 80:31-46. [PMID: 37940001 DOI: 10.1016/j.hjc.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/27/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE The significance of apolipoprotein A-I (ApoA-I) is the anti-inflammatory functional component of high-density lipoprotein, which needs to be further studied in relation to pulmonary arterial hypertension (PAH). This study aimed to identify the predictive value of ApoA-1 on the risk and prognosis of PAH, as well as the underlying anti-inflammatory mechanism. METHODS Proteomic analysis was conducted on lung tissue from 6 PAH patients and 4 lung donors. Prediction of risk and mortality risk factors associated with PAH in 343 patients used logistic analysis and Cox regression analysis, respectively. The protective function of ApoA-I was assessed in human pulmonary arterial endothelial cells (HPAEC), while its anti-inflammatory function was evaluated in THP-1 macrophages. RESULTS In the lung tissues of patients with PAH, 168 differentially expressed proteins were associated with lipid metabolism according to GO and KEGG enrichment analysis. A protein-protein interaction network identified ApoA-I as a key protein associated with PAH. Lower ApoA-I levels were independent risk factors for PAH and displayed a stronger predictive value for PAH mortality. Plasma interleukin 6 (IL-6) levels were positively correlated with risk stratification and were higher in PAH patients with lower ApoA-I levels. ApoA-I was downregulated in the lung tissues of monocrotaline (MCT) -induced rats. ApoA-I could reduce the IL-6-induced pro-proliferative and pro-migratory abilities of HPAEC and inhibit the secretion of IL-6 from macrophages, which is compromised under hypoxic conditions. CONCLUSION Our study identified the significance of ApoA-I as a biomarker for predicting the survival outcome of PAH patients, which might relate to its altered anti-inflammatory properties.
Collapse
Affiliation(s)
- Yuxia Huang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Ji Zhang
- Department of Lung Transplantation, First Affiliated Hospital, School of Medical, Zhejiang University, Hangzhou 310000, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China; Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200000, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China.
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China.
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China.
| |
Collapse
|
4
|
Fernando L, Echesabal-Chen J, Miller M, Powell RR, Bruce T, Paul A, Poudyal N, Saliutama J, Parman K, Paul KS, Stamatikos A. Cholesterol Efflux Decreases TLR4-Target Gene Expression in Cultured Macrophages Exposed to T. brucei Ghosts. Microorganisms 2024; 12:1730. [PMID: 39203572 PMCID: PMC11357207 DOI: 10.3390/microorganisms12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Trypanosoma brucei causes African trypanosomiasis in humans. Infection with T. brucei elicits a potent pro-inflammatory immune response within infected human hosts, and this response is thought to at least be partially due to Toll-like receptor (TLR) activation. In response to stimulation by lipopolysaccharide and other pathogen antigens, TLR4 translocates to lipid rafts, which induces the expression of pro-inflammatory genes. However, cholesterol efflux is acknowledged as anti-inflammatory due to promoting lipid raft disruption. In this study, we wanted to assess the impact of T. brucei "ghosts", which are non-viable T. brucei essentially devoid of intracellular contents, in stimulating macrophage TLR4 translocation to lipid rafts, and whether promoting cholesterol efflux in macrophages incubated with T. brucei ghosts attenuates TLR4-target gene expression. When cultured macrophages were exposed to T. brucei ghosts, we observed an increase in lipid raft TLR4 protein content, which suggests certain surface molecules of T. brucei serve as ligands for TLR4. However, pretreating macrophages with cholesterol acceptors before T. brucei ghost exposure decreased lipid raft TLR4 protein content and the expression of pro-inflammatory TLR4-target genes. Taken together, these results imply that macrophage cholesterol efflux weakens pro-inflammatory responses which occur from T. brucei infection via increasing macrophage lipid raft disruption.
Collapse
Affiliation(s)
- Lawrence Fernando
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Murphy Miller
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA;
| | - Rhonda Reigers Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Nava Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Joshua Saliutama
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kristina Parman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| |
Collapse
|
5
|
Denimal D. Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes. Antioxidants (Basel) 2023; 13:57. [PMID: 38247481 PMCID: PMC10812436 DOI: 10.3390/antiox13010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
(1) Background: high-density lipoproteins (HDLs) exhibit antioxidant and anti-inflammatory properties that play an important role in preventing the development of atherosclerotic lesions and possibly also diabetes. In turn, both type 1 diabetes (T1D) and type 2 diabetes (T2D) are susceptible to having deleterious effects on these HDL functions. The objectives of the present review are to expound upon the antioxidant and anti-inflammatory functions of HDLs in both diabetes in the setting of atherosclerotic cardiovascular diseases and discuss the contributions of these HDL functions to the onset of diabetes. (2) Methods: this narrative review is based on the literature available from the PubMed database. (3) Results: several antioxidant functions of HDLs, such as paraoxonase-1 activity, are compromised in T2D, thereby facilitating the pro-atherogenic effects of oxidized low-density lipoproteins. In addition, HDLs exhibit diminished ability to inhibit pro-inflammatory pathways in the vessels of individuals with T2D. Although the literature is less extensive, recent evidence suggests defective antiatherogenic properties of HDL particles in T1D. Lastly, substantial evidence indicates that HDLs play a role in the onset of diabetes by modulating glucose metabolism. (4) Conclusions and perspectives: impaired HDL antioxidant and anti-inflammatory functions present intriguing targets for mitigating cardiovascular risk in individuals with diabetes. Further investigations are needed to clarify the influence of glycaemic control and nephropathy on HDL functionality in patients with T1D. Furthermore, exploring the effects on HDL functionality of novel antidiabetic drugs used in the management of T2D may provide intriguing insights for future research.
Collapse
Affiliation(s)
- Damien Denimal
- Unit 1231, Center for Translational and Molecular Medicine, University of Burgundy, 21000 Dijon, France;
- Department of Clinical Biochemistry, Dijon Bourgogne University Hospital, 21079 Dijon, France
| |
Collapse
|
6
|
Al‐kuraishy HM, Hussien NR, Al‐Niemi MS, Fahad EH, Al‐Buhadily AK, Al‐Gareeb AI, Al‐Hamash SM, Tsagkaris C, Papadakis M, Alexiou A, Batiha GE. SARS-CoV-2 induced HDL dysfunction may affect the host's response to and recovery from COVID-19. Immun Inflamm Dis 2023; 11:e861. [PMID: 37249296 PMCID: PMC10187021 DOI: 10.1002/iid3.861] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia, dysregulation of high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Furthermore, SARS-Co-2 infection is associated with noteworthy changes in lipid profile, which is suggested as a possible biomarker to support the diagnosis and management of Covid-19. METHODS This paper adopts the literature review method to obtain information about how Covid-19 affects high-risk group patients and may cause severe and critical effects due to the development of acute lung injury and acute respiratory distress syndrome. A narrative and comprehensive review is presented. RESULTS Reducing HDL in Covid-19 is connected to the disease severity and poor clinical outcomes, suggesting that high HDL serum levels could benefit Covid-19. SARS-CoV-2 binds HDL, and this complex is attached to the co-localized receptors, facilitating viral entry. Therefore, SARS-CoV-2 infection may induce the development of dysfunctional HDL through different mechanisms, including induction of inflammatory and oxidative stress with activation of inflammatory signaling pathways. In turn, the induction of dysfunctional HDL induces the activation of inflammatory signaling pathways and oxidative stress, increasing Covid-19 severity. CONCLUSIONS Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia in general and dysregulation of high-density lipoprotein and low-density lipoprotein. Therefore, the present study aimed to overview the causal relationship between dysfunctional high-density lipoprotein and Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | - Nawar R. Hussien
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | - Marwa S. Al‐Niemi
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | | | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | | | - Christos Tsagkaris
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP Med AustriaWienAustria
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
7
|
Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023; 13:metabo13020253. [PMID: 36837872 PMCID: PMC9967905 DOI: 10.3390/metabo13020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified, which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have yielded heterogeneous results, ranging from a defect to an improvement. Several studies indicate that HDLs are less able to inhibit the nuclear factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome, contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
- Correspondence:
| | - Serge Monier
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Bruno Vergès
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
| |
Collapse
|
8
|
Capozzi A, Manganelli V, Riitano G, Caissutti D, Longo A, Garofalo T, Sorice M, Misasi R. Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. J Clin Med 2023; 12:jcm12030891. [PMID: 36769539 PMCID: PMC9917860 DOI: 10.3390/jcm12030891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new" immunomodulatory drugs.
Collapse
|
9
|
Bauer R, Brüne B, Schmid T. Cholesterol metabolism in the regulation of inflammatory responses. Front Pharmacol 2023; 14:1121819. [PMID: 36744258 PMCID: PMC9895399 DOI: 10.3389/fphar.2023.1121819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
The importance of biologically active lipid mediators, such as prostanoids, leukotrienes, and specialized pro-resolving mediators, in the regulation of inflammation is well established. While the relevance of cholesterol in the context of atherosclerosis is also widely accepted, the role of cholesterol and its biosynthetic precursors on inflammatory processes is less comprehensively described. In the present mini-review, we summarize the current understanding of the inflammation-regulatory properties of cholesterol and relevant biosynthetic intermediates taking into account the implications of different subcellular distributions. Finally, we discuss the inflammation-regulatory effect of cholesterol homeostasis in the context of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Zhang XT, Mao ZY, Jin XY, Wang YG, Dong YQ, Zhang C. Identification of a tsRNA Contributor to Impaired Diabetic Wound Healing via High Glucose-Induced Endothelial Dysfunction. Diabetes Metab Syndr Obes 2023; 16:285-298. [PMID: 36760596 PMCID: PMC9899021 DOI: 10.2147/dmso.s379473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Delayed skin healing in diabetic wounds is a major clinical problem. The tRNA-derived small RNAs (tsRNAs) were reported to be associated with diabetes. However, the role of tsRNAs in diabetic wound healing is unclear. Our study was designed to explore the tsRNA expression profile and mine key potential tsRNAs and their mechanism in diabetic wounds. METHODS Skin tissues of patients with diabetic foot ulcers and healthy controls were subjected to small RNA sequencing. The role of candidate tsRNA was explored by loss- and gain-of-function experiments in HUVECs. RESULTS A total of 55 differentially expressed tsRNAs were identified, including 12 upregulated and 43 downregulated in the diabetes group compared with the control group. These tsRNAs were mainly concentrated in intercellular interactions and neural function regulation in GO terms and enriched in MAPK, insulin, FoxO, calcium, Ras, ErbB, Wnt, T cell receptor, and cGMP-PKG signaling pathways. tRF-Gly-CCC-039 expression was upregulated in vivo and in vitro in the diabetic model. High glucose disturbed endothelial function in HUVECs, and tRF-Gly-CCC-039 mimics further harmed HUVECs function, characterized by the suppression of proliferation, migration, tube formation, and the expression of Coll1a1, Coll4a2, and MMP9. Conversely, the tRF-Gly-CCC-039 inhibitor could attenuate high-glucose-induced endothelial injury to HUVECs. CONCLUSION We investigated the tsRNAs expression profile in diabetic foot ulcers and defined the impairment role of tRF-Gly-CCC-039 in endothelial function in HUVECs. This study may provide novel insights into accelerating diabetic skin wound healing.
Collapse
Affiliation(s)
- Xiao-Tian Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhen-Yang Mao
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang-Yun Jin
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Gang Wang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Qi Dong
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chao Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Chao Zhang; Yu-Qi Dong, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong New Area, Shanghai, People’s Republic of China, Tel +86-13817307997; +86-13331873590, Email ;
| |
Collapse
|
11
|
PPARγ Gene as a Possible Link between Acquired and Congenital Lipodystrophy and its Modulation by Dietary Fatty Acids. Nutrients 2022; 14:nu14224742. [PMID: 36432429 PMCID: PMC9693235 DOI: 10.3390/nu14224742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases that could be of genetic or acquired origin. The main complication of lipodystrophy is the dysfunction of adipose tissue, which leads to an ectopic accumulation of triglycerides in tissues such as the liver, pancreas and skeletal muscle. This abnormal fat distribution is associated with hypertriglyceridemia, insulin resistance, liver steatosis, cardiomyopathies and chronic inflammation. Although the origin of acquired lipodystrophies remains unclear, patients show alterations in genes related to genetic lipodystrophy, suggesting that this disease could be improved or aggravated by orchestrating gene activity, for example by diet. Nowadays, the main reason for adipose tissue dysfunction is an imbalance in metabolism, caused in other pathologies associated with adipose tissue dysfunction by high-fat diets. However, not all dietary fats have the same health implications. Therefore, this article aims to summarize the main genes involved in the pathophysiology of lipodystrophy, identify connections between them and provide a systematic review of studies published between January 2017 and January 2022 of the dietary fats that can modulate the development of lipodystrophy through transcriptional regulation or the regulation of protein expression in adipocytes.
Collapse
|
12
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
13
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
14
|
Rashid MB, Marey MA, Fukuda K, Haneda S, Kusama K, Shimada M, Imakawa K, Miyamoto A. Intrauterine infusion of low levels of interferon-tau on day-8 post-estrus stimulates the bovine endometrium to secrete apolipoprotein-A1: A possible implication for early embryo tolerance. Am J Reprod Immunol 2022; 88:e13592. [PMID: 35785505 DOI: 10.1111/aji.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
We previously reported that interferon-tau (IFNT), derived from day-7 blastocyst, generates anti-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. However, the real in vivo impact of early embryo-derived IFNT on the uterine proteomic profile is mostly unknown. This study aimed to investigate proteomic changes of uterine flush (UF) when infused with a low physiological level of IFNT without embryo on day-8 post-estrus and its possible impact on the uterine immunological microenvironment. First, a fresh medium was infused into the uterine lumen on day-6, from which UF was obtained 24 h later, and this procedure was repeated on day-7 (control UF). On day-8, this procedure was done with a medium containing recombinant bovine IFNT (100 pg/ml) (IFNT-supplemented UF). Control and IFNT-supplemented UF were tested for immune responses in peripheral blood mononuclear cells (PBMCs). Real-time PCR results revealed that IFNT-supplemented UF downregulated pro-inflammatory cytokines (TNFA, IL1B) and upregulated anti-inflammatory cytokine (TGFB1) and PTGES in PBMCs. Through 2-D PAGE, followed by TOF/TOF mass spectrometer, apolipoprotein-A1 (Apo-A1) protein was identified in the IFNT-supplemented UF, which was confirmed by ELISA analysis. Proteomic analysis revealed again that the in vitro stimulation of BEECs by IFNT upregulated Apo-A1 expression. Further, stimulation of PBMCs with recombinant bovine Apo-A1 downregulated TNFA and NFKB and upregulated TGFB1 and PTGES in PBMCs. Altogether, our results suggest that minute amounts of IFNT alone, normally secreted from bovine blastocyst, stimulate Apo-A1 secretion from the endometrial epithelium in the absence of embryo that initiates an anti-inflammatory environment, which could pave the way for the acceptance of early embryo in the uterus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohammad B Rashid
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.,Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kenji Fukuda
- Department of Life and Food Sciences, Section of Biomolecular Structure and Function, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shingo Haneda
- Department of Clinical Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
15
|
HDL and Endothelial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:27-47. [DOI: 10.1007/978-981-19-1592-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Tang H, Xiang Z, Li L, Shao X, Zhou Q, You X, Xiong C, Ning J, Chen T, Deng D, Zou H. Potential role of anti-inflammatory HDL subclasses in metabolic unhealth/obesity. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:565-575. [PMID: 34402692 DOI: 10.1080/21691401.2021.1961798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023]
Abstract
High-density lipoprotein (HDL) particles comprising heterogeneous subclasses of different functions exert anti-inflammatory effects by interacting with immune-response cells. However, the relationship of HDL subclasses with immune-response cells in metabolic unhealth/obesity has not been defined clearly. The purpose of this study was to delineate the relational changes of HDL subclasses with immune cells and inflammatory markers in metabolic unhealth/obesity to understand the role of anti-inflammatory HDL subclasses. A total of 316 participants were classified by metabolic health. HDL subclasses were detected by microfluidic chip electrophoresis. White blood cell (WBC) counts and lymphocytes were assessed using automatic haematology analyser. Levels of high-sensitivity C-reactive protein (hs-CRP) and interleukin 6 (IL-6) were measured. In our study, not only the distribution of HDL subclasses, but also HDL-related structural proteins changed with the deterioration of metabolic disease. Moreover, lymphocytes and inflammation factors significantly gradually increased. The level of HDL2b was negatively associated with WBC, lymphocytes and hs-CRP in multivariable linear regression analysis. In multinomial logistic regression analysis, high levels of HDL3 and low levels of HDL2b increased the probability of having an unfavourable metabolic unhealth/obesity status. We supposed that HDL2b particles may play anti-inflammation by negatively regulating lymphocytes activation. HDL2b may be a therapeutic target for future metabolic disease due to the anti-inflammatory effects.
Collapse
Affiliation(s)
- Hongjuan Tang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, Maoming People's Hospital, Maoming, China
| | - Zhicong Xiang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Longyu Li
- Guangdong Ardent Biomed Co. Ltd & Ardent BioMed LLC (California), Guangzhou, CA, USA
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xu You
- Department of Clinical Lab, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ning
- Department of Nephrology, Pinghu Hospital, Health Science Center, South China Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Tong Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - David Deng
- Guangdong Ardent Biomed Co. Ltd & Ardent BioMed LLC (California), Guangzhou, CA, USA
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, Pinghu Hospital, Health Science Center, South China Hospital of Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
17
|
Stasi A, Franzin R, Fiorentino M, Squiccimarro E, Castellano G, Gesualdo L. Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications. Int J Mol Sci 2021; 22:5980. [PMID: 34205975 PMCID: PMC8197836 DOI: 10.3390/ijms22115980] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDLs) are a class of blood particles, principally involved in mediating reverse cholesterol transport from peripheral tissue to liver. Omics approaches have identified crucial mediators in the HDL proteomic and lipidomic profile, which are involved in distinct pleiotropic functions. Besides their role as cholesterol transporter, HDLs display anti-inflammatory, anti-apoptotic, anti-thrombotic, and anti-infection properties. Experimental and clinical studies have unveiled significant changes in both HDL serum amount and composition that lead to dysregulated host immune response and endothelial dysfunction in the course of sepsis. Most SARS-Coronavirus-2-infected patients admitted to the intensive care unit showed common features of sepsis disease, such as the overwhelmed systemic inflammatory response and the alterations in serum lipid profile. Despite relevant advances, episodes of mild to moderate acute kidney injury (AKI), occurring during systemic inflammatory diseases, are associated with long-term complications, and high risk of mortality. The multi-faceted relationship of kidney dysfunction with dyslipidemia and inflammation encourages to deepen the clarification of the mechanisms connecting these elements. This review analyzes the multifaced roles of HDL in inflammatory diseases, the renal involvement in lipid metabolism, and the novel potential HDL-based therapies.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Enrico Squiccimarro
- Department of Emergency and Organ Transplant (DETO), University of Bari, 70124 Bari, Italy;
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy;
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| |
Collapse
|
18
|
Navia-Pelaez JM, Choi SH, Dos Santos Aggum Capettini L, Xia Y, Gonen A, Agatisa-Boyle C, Delay L, Gonçalves Dos Santos G, Catroli GF, Kim J, Lu JW, Saylor B, Winkels H, Durant CP, Ghosheh Y, Beaton G, Ley K, Kufareva I, Corr M, Yaksh TL, Miller YI. Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. J Exp Med 2021; 218:212084. [PMID: 33970188 PMCID: PMC8111462 DOI: 10.1084/jem.20202059] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is a major component in the transition to and perpetuation of neuropathic pain states. Spinal neuroinflammation involves activation of TLR4, localized to enlarged, cholesterol-enriched lipid rafts, designated here as inflammarafts. Conditional deletion of cholesterol transporters ABCA1 and ABCG1 in microglia, leading to inflammaraft formation, induced tactile allodynia in naive mice. The apoA-I binding protein (AIBP) facilitated cholesterol depletion from inflammarafts and reversed neuropathic pain in a model of chemotherapy-induced peripheral neuropathy (CIPN) in wild-type mice, but AIBP failed to reverse allodynia in mice with ABCA1/ABCG1–deficient microglia, suggesting a cholesterol-dependent mechanism. An AIBP mutant lacking the TLR4-binding domain did not bind microglia or reverse CIPN allodynia. The long-lasting therapeutic effect of a single AIBP dose in CIPN was associated with anti-inflammatory and cholesterol metabolism reprogramming and reduced accumulation of lipid droplets in microglia. These results suggest a cholesterol-driven mechanism of regulation of neuropathic pain by controlling the TLR4 inflammarafts and gene expression program in microglia and blocking the perpetuation of neuroinflammation.
Collapse
Affiliation(s)
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Yining Xia
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Lauriane Delay
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA
| | | | | | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jenny W Lu
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Benjamin Saylor
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | | | | | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA
| | - Irina Kufareva
- School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
19
|
TLR4-mediated pyroptosis in human hepatoma-derived HuH-7 cells induced by a branched-chain polyunsaturated fatty acid, geranylgeranoic acid. Biosci Rep 2021; 40:222621. [PMID: 32270855 PMCID: PMC7189495 DOI: 10.1042/bsr20194118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
A branched-chain polyunsaturated fatty acid, geranylgeranoic acid (GGA; C20:4), which is an endogenous metabolite derived from the mevalonate pathway in mammals, has been reported to induce cell death in human hepatoma cells. We have previously shown that the lipid-induced unfolded protein response (UPR) is an upstream cellular process for an incomplete autophagic response that might be involved in GGA-induced cell death. Here, we found that Toll-like receptor 4 (TLR4)-mediated pyroptosis in HuH-7 cells occurred by GGA treatment. The TLR4-specific inhibitor VIPER prevented both GGA-induced cell death and UPR. Knockdown of the TLR4 gene attenuated GGA-induced cell death significantly. Upon GGA-induced UPR, caspase (CASP) 4 (CASP4) was activated immediately and gasdermin D (GSDMD) was translocated concomitantly to the plasma membrane after production of the N-terminal fragment of GSDMD. Then, cellular CASP1 activation occurred following a second gradual up-regulation of the intracellular Ca2+ concentration, suggesting that GGA activated the inflammasome. Indeed, the mRNA levels of NOD-like receptor family pyrin domain containing 3 (NLRP3) and interleukin-1 β (IL1B) genes were up-regulated dramatically with translocation of cytoplasmic nuclear factor-κB (NF-κB) to nuclei after GGA treatment, indicating that GGA induced priming of the NLRP3 inflammasome through NF-κB activation. GGA-induced up-regulation of CASP1 activity was blocked by either oleic acid, VIPER, MCC950 (a selective inhibitor of the NLRP3 inflammasome), or CASP4-specific inhibitor peptide cotreatment. Pyroptotic cell death was also confirmed morphologically by bleb formation in time-series live cell imaging of GGA-treated cells. Taken together, the present results strongly indicate that GGA causes pyroptotic cell death in human hepatoma-derived HuH-7 via TLR4 signalling.
Collapse
|
20
|
Höper T, Siewert K, Dumit VI, von Bergen M, Schubert K, Haase A. The Contact Allergen NiSO 4 Triggers a Distinct Molecular Response in Primary Human Dendritic Cells Compared to Bacterial LPS. Front Immunol 2021; 12:644700. [PMID: 33777040 PMCID: PMC7991087 DOI: 10.3389/fimmu.2021.644700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DC) play a central role in the pathogenesis of allergic contact dermatitis (ACD), the most prevalent form of immunotoxicity in humans. However, knowledge on allergy-induced DC maturation is still limited and proteomic studies, allowing to unravel molecular effects of allergens, remain scarce. Therefore, we conducted a global proteomic analysis of human monocyte-derived dendritic cells (MoDC) treated with NiSO4, the most prominent cause of ACD and compared proteomic alterations induced by NiSO4 to the bacterial trigger lipopolysaccharide (LPS). Both substances possess a similar toll-like receptor (TLR) 4 binding capacity, allowing to identify allergy-specific effects compared to bacterial activation. MoDCs treated for 24 h with 2.5 μg/ml LPS displayed a robust immunological response, characterized by upregulation of DC activation markers, secretion of pro-inflammatory cytokines and stimulation of T cell proliferation. Similar immunological reactions were observed after treatment with 400 μM NiSO4 but less pronounced. Both substances triggered TLR4 and triggering receptor expressed on myeloid cells (TREM) 1 signaling. However, NiSO4 also activated hypoxic and apoptotic pathways, which might have overshadowed initial signaling. Moreover, our proteomic data support the importance of nuclear factor erythroid 2-related factor 2 (Nrf2) as a key player in sensitization since many Nrf2 targets genes were strongly upregulated on protein and gene level selectively after treatment with NiSO4. Strikingly, NiSO4 stimulation induced cellular cholesterol depletion which was counteracted by the induction of genes and proteins relevant for cholesterol biosynthesis. Our proteomic study allowed for the first time to better characterize some of the fundamental differences between NiSO4 and LPS-triggered activation of MoDCs, providing an essential contribution to the molecular understanding of contact allergy.
Collapse
Affiliation(s)
- Tessa Höper
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Verónica I. Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
21
|
Yao S, Luo G, Liu H, Zhang J, Zhan Y, Xu N, Zhang X, Zheng L. Apolipoprotein M promotes the anti-inflammatory effect of high-density lipoprotein by binding to scavenger receptor BI. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1676. [PMID: 33490188 PMCID: PMC7812182 DOI: 10.21037/atm-20-7008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Inflammation participates pivotally in the pathogenesis of atherosclerosis. Apolipoprotein M (apoM) is a high-density lipoprotein (HDL)-associated plasma protein that affects HDL metabolism and shows various anti-inflammatory functions in atherosclerosis. In this study, we aim to determine whether apoM is expressed in peripheral blood mononuclear cells (PBMCs) and promoted the anti-inflammatory effect of HDL by combing with scavenger receptor BI (SR-BI). METHODS The expression of apoM in PBMCs is detected by a confocal fluorescence microscope and flow cytometry. The interactions between apoM and SR-BI are detected with co-immunoprecipitation. The multiplexed Luminex xMAP assay detects the inflammatory factors induced by apoM+ HDL and apoM- HDL in inflammatory cell model. RESULTS ApoM is expressed on CD14+ monocytes, CD3+ T cells, and CD19+ B cells, CD16+ and CD56+ NK cells. CD14+ monocytes have the highest ratio of apoM+ cells. ApoM+ HDL, apoM- HDL, and recombinant apoM protein could be co-precipitated with SR-BI on the surface of human THP-1 monocytic leukemia cells. In vitro, apoM+ HDL induces significantly less expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β than apoM- HDL. CONCLUSIONS ApoM was expressed on all PBMCs. ApoM interacted with SR-BI on THP-1. ApoM+ HDL has a more significant anti-inflammatory effect than apoM- HDL.
Collapse
Affiliation(s)
- Shuang Yao
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hong Liu
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Zhang
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuxia Zhan
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, Lunds, Sweden
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
22
|
Kudinov VA, Alekseeva OY, Torkhovskaya TI, Baskaev KK, Artyushev RI, Saburina IN, Markin SS. High-Density Lipoproteins as Homeostatic Nanoparticles of Blood Plasma. Int J Mol Sci 2020; 21:E8737. [PMID: 33228032 PMCID: PMC7699323 DOI: 10.3390/ijms21228737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
It is well known that blood lipoproteins (LPs) are multimolecular complexes of lipids and proteins that play a crucial role in lipid transport. High-density lipoproteins (HDL) are a class of blood plasma LPs that mediate reverse cholesterol transport (RCT)-cholesterol transport from the peripheral tissues to the liver. Due to this ability to promote cholesterol uptake from cell membranes, HDL possess antiatherogenic properties. This function was first observed at the end of the 1970s to the beginning of the 1980s, resulting in high interest in this class of LPs. It was shown that HDL are the prevalent class of LPs in several types of living organisms (from fishes to monkeys) with high resistance to atherosclerosis and cardiovascular disorders. Lately, understanding of the mechanisms of the antiatherogenic properties of HDL has significantly expanded. Besides the contribution to RCT, HDL have been shown to modulate inflammatory processes, blood clotting, and vasomotor responses. These particles also possess antioxidant properties and contribute to immune reactions and intercellular signaling. Herein, we review data on the structure and mechanisms of the pleiotropic biological functions of HDL from the point of view of their evolutionary role and complex dynamic nature.
Collapse
Affiliation(s)
- Vasily A. Kudinov
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Olga Yu. Alekseeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University (RUDN University), 117198 Moscow, Russia
| | - Tatiana I. Torkhovskaya
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Konstantin K. Baskaev
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Rafael I. Artyushev
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Irina N. Saburina
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
| | - Sergey S. Markin
- Clinical Research Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| |
Collapse
|
23
|
Oehler B, Kloka J, Mohammadi M, Ben-Kraiem A, Rittner HL. D-4F, an ApoA-I mimetic peptide ameliorating TRPA1-mediated nocifensive behaviour in a model of neurogenic inflammation. Mol Pain 2020; 16:1744806920903848. [PMID: 31996074 PMCID: PMC6993174 DOI: 10.1177/1744806920903848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background High doses of capsaicin are recommended for the treatment of neuropathic pain. However, low doses evoke mechanical hypersensitivity. Activation of the capsaicin chemosensor transient receptor potential vanilloid 1 (TRPV1) induces neurogenic inflammation. In addition to the release of pro-inflammatory mediators, reactive oxygen species are produced. These highly reactive molecules generate oxidised phospholipids and 4-hydroxynonenal (4-HNE) which then directly activate TRP ankyrin 1 (TRPA1). The apolipoprotein A-I mimetic peptide D-4F neutralises oxidised phospholipids. Here, we asked whether D-4F ameliorates neurogenic hypersensitivity in rodents by targeting reactive oxygen species and 4-HNE in the capsaicin-evoked pain model. Results Co-application of D-4F ameliorated capsaicin-induced mechanical hypersensitivity and allodynia as well as persistent heat hypersensitivity measured by Randell–Selitto, von Frey and Hargreaves test, respectively. In addition, mechanical hypersensitivity was blocked after co-injection of D-4F with the reactive oxygen species analogue H2O2 or 4-HNE. In vitro studies on dorsal root ganglion neurons and stably transfected cell lines revealed a TRPA1-dependent inhibition of the calcium influx when agonists were pre-incubated with D-4F. The capsaicin-induced calcium influx in TRPV1-expressing cell lines and dorsal root ganglion neurons sustained in the presence of D-4F. Conclusions D-4F is a promising compound to ameliorate TRPA1-dependent hypersensitivity during neurogenic inflammation.
Collapse
Affiliation(s)
- Beatrice Oehler
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jan Kloka
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Milad Mohammadi
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Cologne, Cologne, Germany
| | - Adel Ben-Kraiem
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Rapid Lipid Modification of Endothelial Cell Membranes in Cardiac Ischemia/Reperfusion Injury: a Novel Therapeutic Strategy to Reduce Infarct Size. Cardiovasc Drugs Ther 2020; 35:113-123. [PMID: 33079319 DOI: 10.1007/s10557-020-07101-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Plasma membranes constitute a gathering point for lipids and signaling proteins. Lipids are known to regulate the location and activity of signaling proteins under physiological and pathophysiological conditions. Membrane lipid therapies (MLTs) that gradually modify lipid content of plasma membranes have been developed to treat chronic disease; however, no MLTs have been developed to treat acute conditions such as reperfusion injury following myocardial infarction (MI) and percutaneous coronary intervention (PCI). A fusogenic nanoliposome (FNL) that rapidly incorporates exogenous unsaturated lipids into endothelial cell (EC) membranes was developed to attenuate reperfusion-induced protein signaling. We hypothesized that administration of intracoronary (IC) FNL-MLT interferes with EC membrane protein signaling, leading to reduced microvascular dysfunction and infarct size (IS). METHODS Using a myocardial ischemia/reperfusion swine model, the efficacy of FNL-MLT in reducing IS following a 60-min coronary artery occlusion was tested. Animals were randomized to receive IC Ringer's lactate solution with or without 10 mg/mL/min of FNLs for 10 min prior to reperfusion (n = 6 per group). RESULTS The IC FNL-MLT reduced IS (25.45 ± 16.4% vs. 49.7 ± 14.1%, P < 0.02) and enhanced regional myocardial blood flow (RMBF) in the ischemic zone at 15 min of reperfusion (2.13 ± 1.48 mL/min/g vs. 0.70 ± 0.43 mL/min/g, P < 0.001). The total cumulative plasma levels of the cardiac injury biomarker cardiac troponin I (cTnI) were trending downward but were not significant (999.3 ± 38.7 ng/mL vs. 1456.5 ± 64.8 ng/mL, P = 0.1867). However, plasma levels of heart-specific fatty acid binding protein (hFABP), another injury biomarker, were reduced at 2 h of reperfusion (70.3 ± 38.0 ng/mL vs. 137.3 ± 58.2 ng/mL, P = 0.0115). CONCLUSION: The IC FNL-MLT reduced IS compared to vehicle in this swine model. The FNL-MLT maybe a promising adjuvant to PCI in the treatment of acute MI.
Collapse
|
25
|
Sviridov D, Mukhamedova N, Miller YI. Lipid rafts as a therapeutic target. J Lipid Res 2020; 61:687-695. [PMID: 32205411 PMCID: PMC7193956 DOI: 10.1194/jlr.tr120000658] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid rafts regulate the initiation of cellular metabolic and signaling pathways by organizing the pathway components in ordered microdomains on the cell surface. Cellular responses regulated by lipid rafts range from physiological to pathological, and the success of a therapeutic approach targeting "pathological" lipid rafts depends on the ability of a remedial agent to recognize them and disrupt pathological lipid rafts without affecting normal raft-dependent cellular functions. In this article, concluding the Thematic Review Series on Biology of Lipid Rafts, we review current experimental therapies targeting pathological lipid rafts, including examples of inflammarafts and clusters of apoptotic signaling molecule-enriched rafts. The corrective approaches include regulation of cholesterol and sphingolipid metabolism and membrane trafficking by using HDL and its mimetics, LXR agonists, ABCA1 overexpression, and cyclodextrins, as well as a more targeted intervention with apoA-I binding protein. Among others, we highlight the design of antagonists that target inflammatory receptors only in their activated form of homo- or heterodimers, when receptor dimerization occurs in pathological lipid rafts. Other therapies aim to promote raft-dependent physiological functions, such as augmenting caveolae-dependent tissue repair. The overview of this highly dynamic field will provide readers with a view on the emerging concept of targeting lipid rafts as a therapeutic strategy.jlr;61/5/687/F1F1f1.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Yury I. Miller
- Department of Medicine,University of California, San Diego, La Jolla, CA
| |
Collapse
|
26
|
Miller YI, Navia-Pelaez JM, Corr M, Yaksh TL. Lipid rafts in glial cells: role in neuroinflammation and pain processing. J Lipid Res 2020; 61:655-666. [PMID: 31862695 PMCID: PMC7193960 DOI: 10.1194/jlr.tr119000468] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yury I Miller
- Departments of MedicineUniversity of California San Diego, La Jolla, CA. mailto:
| | | | - Maripat Corr
- Departments of MedicineUniversity of California San Diego, La Jolla, CA
| | - Tony L Yaksh
- Anesthesiology,University of California San Diego, La Jolla, CA
| |
Collapse
|
27
|
Petersen EN, Pavel MA, Wang H, Hansen SB. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183091. [PMID: 31672538 PMCID: PMC6907892 DOI: 10.1016/j.bbamem.2019.183091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
TWIK related K+ channel (TREK-1) is a mechano- and anesthetic sensitive channel that when activated attenuates pain and causes anesthesia. Recently the enzyme phospholipase D2 (PLD2) was shown to bind to the channel and generate a local high concentration of phosphatidic acid (PA), an anionic signaling lipid that gates TREK-1. In a biological membrane, the cell harnesses lipid heterogeneity (lipid compartments) to control gating of TREK-1 using palmitate-mediated localization of PLD2. Here we discuss the ability of mechanical force and anesthetics to disrupt palmitate-mediated localization of PLD2 giving rise to TREK-1's mechano- and anesthetic-sensitive properties. The likely consequences of this indirect lipid-based mechanism of activation are discussed in terms of a putative model for excitatory and inhibitory mechano-effectors and anesthetic sensitive ion channels in a biological context. Lastly, we discuss the ability of locally generated PA to reach mM concentrations near TREK-1 and the biophysics of localized signaling. Palmitate-mediated localization of PLD2 emerges as a central control mechanism of TREK-1 responding to mechanical force and anesthetic action. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
28
|
Stamatikos A, Dronadula N, Ng P, Palmer D, Knight E, Wacker BK, Tang C, Kim F, Dichek DA. ABCA1 Overexpression in Endothelial Cells In Vitro Enhances ApoAI-Mediated Cholesterol Efflux and Decreases Inflammation. Hum Gene Ther 2019; 30:236-248. [PMID: 30079772 PMCID: PMC6383573 DOI: 10.1089/hum.2018.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, a disease of blood vessels, is driven by cholesterol accumulation and inflammation. Gene therapy that removes cholesterol from blood vessels and decreases inflammation is a promising approach for prevention and treatment of atherosclerosis. In previous work, we reported that helper-dependent adenoviral (HDAd) overexpression of apolipoprotein A-I (apoAI) in endothelial cells (ECs) increases cholesterol efflux in vitro and reduces atherosclerosis in vivo. However, the effect of HDAdApoAI on atherosclerosis is partial. To improve this therapy, we considered concurrent overexpression of ATP-binding cassette subfamily A, member 1 (ABCA1), a protein that is required for apoAI-mediated cholesterol efflux. Before attempting combined apoAI/ABCA1 gene therapy, we tested whether an HDAd that expresses ABCA1 (HDAdABCA1) increases EC cholesterol efflux, whether increased cholesterol efflux alters normal EC physiology, and whether ABCA1 overexpression in ECs has anti-inflammatory effects. HDAdABCA1 increased EC ABCA1 protein (∼3-fold; p < 0.001) and apoAI-mediated cholesterol efflux (2.3-fold; p = 0.007). Under basal culture conditions, ABCA1 overexpression did not alter EC proliferation, metabolism, migration, apoptosis, nitric oxide production, or inflammatory gene expression. However, in serum-starved, apoAI-treated EC, ABCA1 overexpression had anti-inflammatory effects: decreased inflammatory gene expression (∼50%; p ≤ 0.02 for interleukin [IL]-6, tumor necrosis factor [TNF]-α, and vascular cell adhesion protein-1); reduced lipid-raft Toll-like receptor 4 (80%; p = 0.001); and a trend towards increased nitric oxide production (∼55%; p = 0.1). In ECs stimulated with lipopolysaccharide, ABCA1 overexpression markedly decreased inflammatory gene expression (∼90% for IL-6 and TNF-α; p < 0.001). Therefore, EC ABCA1 overexpression has no toxic effects and counteracts the two key drivers of atherosclerosis: cholesterol accumulation and inflammation. In vivo testing of HDAdABCA1 is warranted.
Collapse
Affiliation(s)
- Alexis Stamatikos
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Nagadhara Dronadula
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ethan Knight
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K. Wacker
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Francis Kim
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Bernardi S, Marcuzzi A, Piscianz E, Tommasini A, Fabris B. The Complex Interplay between Lipids, Immune System and Interleukins in Cardio-Metabolic Diseases. Int J Mol Sci 2018; 19:4058. [PMID: 30558209 PMCID: PMC6321433 DOI: 10.3390/ijms19124058] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lipids and inflammation regulate each other. Early studies on this topic focused on the systemic effects that the acute inflammatory response-and interleukins-had on lipid metabolism. Today, in the era of the obesity epidemic, whose primary complications are cardio-metabolic diseases, attention has moved to the effects that the nutritional environment and lipid derangements have on peripheral tissues, where lipotoxicity leads to organ damage through an imbalance of chronic inflammatory responses. After an overview of the effects that acute inflammation has on the systemic lipid metabolism, this review will describe the lipid-induced immune responses that take place in peripheral tissues and lead to chronic cardio-metabolic diseases. Moreover, the anti-inflammatory effects of lipid lowering drugs, as well as the possibility of using anti-inflammatory agents against cardio-metabolic diseases, will be discussed.
Collapse
Affiliation(s)
- Stella Bernardi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, 34149 Trieste, Italy.
| | - Annalisa Marcuzzi
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| | - Elisa Piscianz
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Bruno Fabris
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, 34149 Trieste, Italy.
| |
Collapse
|
30
|
Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nat Commun 2018; 9:3083. [PMID: 30082772 PMCID: PMC6079066 DOI: 10.1038/s41467-018-05322-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/24/2018] [Indexed: 01/06/2023] Open
Abstract
Cholesterol homeostasis has a pivotal function in regulating immune cells. Here we show that apolipoprotein E (apoE) deficiency leads to the accumulation of cholesterol in the cell membrane of dendritic cells (DC), resulting in enhanced MHC-II-dependent antigen presentation and CD4+ T-cell activation. Results from WT and apoE KO bone marrow chimera suggest that apoE from cells of hematopoietic origin has immunomodulatory functions, regardless of the onset of hypercholesterolemia. Humans expressing apoE4 isoform (ε4/3–ε4/4) have increased circulating levels of activated T cells compared to those expressing WT apoE3 (ε3/3) or apoE2 isoform (ε2/3–ε2/2). This increase is caused by enhanced antigen-presentation by apoE4-expressing DCs, and is reversed when these DCs are incubated with serum containing WT apoE3. In summary, our study identifies myeloid-produced apoE as a key physiological modulator of DC antigen presentation function, paving the way for further explorations of apoE as a tool to improve the management of immune diseases. Cholesterol homeostasis can modulate immunity via multiple pathways. Here the authors show that apolipoprotein E, an important regulator of cholesterol, produced by myeloid cells can regulate T cell activation by controlling the antigen presentation activity of dendritic cells in both humans and mice.
Collapse
|
31
|
Zhang X, Wang Y, Ge HY, Gu YJ, Cao FF, Yang CX, Uzan G, Peng B, Zhang DH. Celastrol reverses palmitic acid (PA)-caused TLR4-MD2 activation-dependent insulin resistance via disrupting MD2-related cellular binding to PA. J Cell Physiol 2018; 233:6814-6824. [PMID: 29667734 DOI: 10.1002/jcp.26547] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/16/2018] [Indexed: 01/07/2023]
Abstract
Elevated plasma statured fatty acids (FFAs) cause TLR4/MD2 activation-dependent inflammation and insulin tolerance, which account for the occurrence and development of obesity. It has been confirmed that statured palmitic acid (PA) (the most abundant FFA) could bind MD2 to cause cellular inflammation. The natural compound celastrol could improve obesity, which is suggested via inhibiting inflammation, yet the detailed mechanism for celastrol is still unclear. As celastrol is reported to directly target MD2, we thought disrupting the binding between FFAs and MD2 might be one of the ways for celastrol to inhibit FFAs-caused inflammation and insulin resistance. In this study, we found evidence to support our hypothesis: celastrol could reverse PA-caused TLR4/MD2 activation-dependent insulin resistance, as determined by glucose-lowering ability, cellular glucose uptake, insulin action-related proteins and TLR4/MD2/NF-κB activation. Bioinformatics and cellular experiments showed that both celastrol and PA could bind MD2, and that celastrol could expel PA from cells. Finally, celastrol could reverse high fat diet caused hyperglycemia and obesity, and liver NF-kB activations. Taking together, we proved that celastrol could reverses PA-caused TLR4-MD2 activation-dependent insulin resistance via disrupting PA binding to MD2.
Collapse
Affiliation(s)
- Xue Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Ying Wang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Hui-Ya Ge
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China.,Graduate School, Ningxia Medical University, Ningxia, China
| | - Yi-Jun Gu
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Fan-Fan Cao
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Chun-Xin Yang
- Pharmaceutical Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Georges Uzan
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China.,U972, Inserm, Paul Brousse Hospital, Villejuif Cedex, France
| | - Bin Peng
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Deng-Hai Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China.,U972, Inserm, Paul Brousse Hospital, Villejuif Cedex, France
| |
Collapse
|
32
|
Vaisar T, Couzens E, Hwang A, Russell M, Barlow CE, DeFina LF, Hoofnagle AN, Kim F. Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS One 2018; 13:e0192616. [PMID: 29543843 PMCID: PMC5854245 DOI: 10.1371/journal.pone.0192616] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/27/2018] [Indexed: 11/18/2022] Open
Abstract
Aims/Hypothesis One of the hallmarks of diabetes is impaired endothelial function. Previous studies showed that HDL can exert protective effects on endothelium stimulating NO production and protecting from inflammation and suggested that HDL in obese people with diabetes and dyslipidemia may have lower endothelial protective function. We aimed to investigate whether type 2 diabetes impairs HDL endothelium protective functions in people with otherwise normal lipid profile. Methods In a case-control study (n = 41 per group) nested in the Cooper Center Longitudinal Study we tested the ability of HDL to protect endothelium by stimulating endothelial nitric oxide synthase activity and suppressing NFκB-mediated inflammatory response in endothelial cells. In parallel we measured HDL protein composition, sphinogosine-1-phosphate and P-selectin. Results Despite similar levels of plasma HDL-C the HDL in individuals with type 2 diabetes lost almost 40% of its ability to stimulate eNOS activity (P<0.001) and 20% of its ability to suppress TNFα-dependent NFκB-mediated inflammatory response in endothelial cells (P<0.001) compared to non-T2D controls despite similar BMI and lipid profile (HDL-C, LDL-C, TC, TG). Significantly, the ability of HDL to stimulate eNOS activity was negatively associated with plasma levels of P-selectin, an established marker of endothelial dysfunction (r = −0.32, P<0.001). Furthermore, sphingosine-1-phosphate (S1P) levels were decreased in diabetic plasma (P = 0.017) and correlated with HDL-mediated eNOS activation. Conclusions/Interpretations Collectively, our data suggest that HDL in individuals with type 2 diabetes loses its ability to maintain proper endothelial function independent of HDL-C, perhaps due to loss of S1P, and may contribute to development of diabetic complications.
Collapse
Affiliation(s)
- Tomáš Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Erica Couzens
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Arnold Hwang
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michael Russell
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Laura F DeFina
- The Cooper Institute, Dallas, Texas, United States of America
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Francis Kim
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Wacker BK, Dronadula N, Bi L, Stamatikos A, Dichek DA. Apo A-I (Apolipoprotein A-I) Vascular Gene Therapy Provides Durable Protection Against Atherosclerosis in Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 2018; 38:206-217. [PMID: 29122817 PMCID: PMC5746433 DOI: 10.1161/atvbaha.117.309565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gene therapy that expresses apo A-I (apolipoprotein A-I) from vascular wall cells has promise for preventing and reversing atherosclerosis. Previously, we reported that transduction of carotid artery endothelial cells with a helper-dependent adenoviral (HDAd) vector expressing apo A-I reduced early (4 weeks) fatty streak development in fat-fed rabbits. Here, we tested whether the same HDAd could provide long-term protection against development of more complex lesions. APPROACH AND RESULTS Fat-fed rabbits (n=25) underwent bilateral carotid artery gene transfer, with their left and right common carotids randomized to receive either a control vector (HDAdNull) or an apo A-I-expressing vector (HDAdApoAI). Twenty-four additional weeks of high-fat diet yielded complex intimal lesions containing lipid-rich macrophages as well as smooth muscle cells, often in a lesion cap. Twenty-four weeks after gene transfer, high levels of apo A-I mRNA (median ≥250-fold above background) were present in all HDAdApoAI-treated arteries. Compared with paired control HDAdNull-treated arteries in the same rabbit, HDAdApoAI-treated arteries had 30% less median intimal lesion volume (P=0.03), with concomitant reductions (23%-32%) in intimal lipid, macrophage, and smooth muscle cell content (P≤0.05 for all). HDAdApoAI-treated arteries also had decreased intimal inflammatory markers. VCAM-1 (vascular cell adhesion molecule-1)-stained area was reduced by 36% (P=0.03), with trends toward lower expression of ICAM-1 (intercellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein 1), and TNF-α (tumor necrosis factor-α; 13%-39% less; P=0.06-0.1). CONCLUSIONS In rabbits with severe hyperlipidemia, transduction of vascular endothelial cells with an apo A-I-expressing HDAd yields at least 24 weeks of local apo A-I expression that durably reduces atherosclerotic lesion growth and intimal inflammation.
Collapse
Affiliation(s)
- Bradley K Wacker
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Nagadhara Dronadula
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Lianxiang Bi
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Alexis Stamatikos
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - David A Dichek
- From the Department of Medicine, University of Washington School of Medicine, Seattle.
| |
Collapse
|
34
|
Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li Y, Li J. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol 2017; 37:1359-1369. [PMID: 28383141 DOI: 10.1002/jat.3470] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 12/30/2022]
Abstract
With the rapid development of nanotechnologies, nanoparticles (NPs) are increasingly produced and used in many commercial products, which could lead to the contact of human blood vessels with NPs. Thus, it is necessary to understand the adverse effects of NPs to relevant cells lining human blood vessels, especially endothelial cells (ECs) that cover the lumen of blood vessels. Human umbilical vein endothelial cells (HUVECs) are among one of the most popular models used for ECs in vitro. In the present review, we discussed studies that have used HUVECs as a model to investigate the EC-NP interactions, the toxic effects of NPs on ECs and the mechanisms. The results of these studies indicated that NPs could be internalized into HUVECs by the endocytosis pathway as well as transported across HUVECs by exocytosis and paracellular pathways. Exposure of HUVECs to NPs could induce cytotoxicity, genotoxicity, eNOS uncoupling and endothelial activation, which could be explained by NP-induced oxidative stress, inflammatory response and dysfunction of organelles. In addition, some studies have also evaluated the influences of microenvironment (e.g. the presence of proteins and excessive nutrients), the physiological and/or pathological stimuli related to the diversity of ECs (e.g. shear stress, cyclic stretch and inflammatory stimuli), and the physicochemical properties of NPs on the responses of ECs to NP exposure. In conclusion, it has been suggested that HUVECs could be considered as a relatively reliable and simple in vitro model for ECs to predict and evaluate the toxicity of NPs to endothelium. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yiwei Zhou
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
35
|
Milasan A, Jean G, Dallaire F, Tardif JC, Merhi Y, Sorci-Thomas M, Martel C. Apolipoprotein A-I Modulates Atherosclerosis Through Lymphatic Vessel-Dependent Mechanisms in Mice. J Am Heart Assoc 2017; 6:JAHA.117.006892. [PMID: 28939717 PMCID: PMC5634311 DOI: 10.1161/jaha.117.006892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Subcutaneously injected lipid‐free apoA‐I (apolipoprotein A‐I) reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without increasing high‐density lipoprotein–cholesterol concentrations. Lymphatic vessels are now recognized as prerequisite players in the modulation of cholesterol removal from the artery wall in experimental conditions of plaque regression, and particular attention has been brought to the role of the collecting lymphatic vessels in early atherosclerosis‐related lymphatic dysfunction. In the present study, we address whether and how preservation of collecting lymphatic function contributes to the protective effect of apoA‐I. Methods and Results Atherosclerotic Ldlr−/− mice treated with low‐dose lipid‐free apoA‐I showed enhanced lymphatic transport and abrogated collecting lymphatic vessel permeability in atherosclerotic Ldlr−/− mice when compared with albumin‐control mice. Treatment of human lymphatic endothelial cells with apoA‐I increased the adhesion of human platelets on lymphatic endothelial cells, in a bridge‐like manner, a mechanism that could strengthen endothelial cell–cell junctions and limit atherosclerosis‐associated collecting lymphatic vessel dysfunction. Experiments performed with blood platelets isolated from apoA‐I‐treated Ldlr−/− mice revealed that apoA‐I decreased ex vivo platelet aggregation. This suggests that in vivo apoA‐I treatment limits platelet thrombotic potential in blood while maintaining the platelet activity needed to sustain adequate lymphatic function. Conclusions Altogether, we bring forward a new pleiotropic role for apoA‐I in lymphatic function and unveil new potential therapeutic targets for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Gabriel Jean
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Jean-Claude Tardif
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Yahye Merhi
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada .,Montreal Heart Institute, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Rodríguez-Carrio J, Alperi-López M, López P, López-Mejías R, Alonso-Castro S, Abal F, Ballina-García FJ, González-Gay MÁ, Suárez A. High triglycerides and low high-density lipoprotein cholesterol lipid profile in rheumatoid arthritis: A potential link among inflammation, oxidative status, and dysfunctional high-density lipoprotein. J Clin Lipidol 2017; 11:1043-1054.e2. [DOI: 10.1016/j.jacl.2017.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 11/30/2022]
|
37
|
Yamada H, Umemoto T, Kawano M, Kawakami M, Kakei M, Momomura SI, Ishikawa SE, Hara K. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2017; 484:403-408. [DOI: 10.1016/j.bbrc.2017.01.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 01/20/2023]
|
38
|
Liu F, Huang H, Gong Y, Li J, Zhang X, Cao Y. Evaluation of in vitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chem Biol Interact 2017; 263:46-54. [PMID: 28025169 DOI: 10.1016/j.cbi.2016.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022]
Abstract
Polymeric micelles have been extensively studied in the area of antitumor therapy, and more recently explored as nanocarriers for atherosclerosis. These applications of polymeric micelles in biomedicine will increase their contact with human blood vessels. However, few studies have considered the interactions between polymeric micelles and endothelial cells, especially in a complex system. This study used human umbilical vein endothelial cells (HUVECs) as an in vitro model for endothelial cells to investigate the toxic effects of methoxy-poly(ethylene glycol)-poly(d,l-lactide) (MPEG-PLA) based micelles. In addition, an endoplasmic reticulum stress inducer thapsigargin (TG), and a pro-atherogenic stimulus palmitate (PA), were used to co-expose HUVECs to further mimic the responses of diseased endothelial cells to micelle exposure. Overall, up to 200 μg/mL micelles did not significantly induce cytotoxicity, reactive oxygen species (ROS), release of inflammatory mediators in terms of interleukin 6 (IL-6), IL-8 and soluble vascular cell adhesion molecule 1 (sVCAM-1), or adhesion of THP-1 monocytes to HUVECs. TG and PA significantly induced cytotoxicity and THP-1 adhesion as well as modestly promoted the release of IL-6, but did not affect ROS or release of sVCAM-1 and IL-8. Co-exposure of micelles did not significantly enhance the effects of TG and PA to HUVECs, and ANOVA analysis indicated no interaction between concentrations of micelles and the presence of TG/PA. Taken together, these data indicated that micelles are not toxic to HUVECs under different conditions in vitro.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Haikang Huang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xuefei Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
39
|
Lu JC, Chiang YT, Lin YC, Chang YT, Lu CY, Chen TY, Yeh CS. Disruption of Lipid Raft Function Increases Expression and Secretion of Monocyte Chemoattractant Protein-1 in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0169005. [PMID: 28030645 PMCID: PMC5193455 DOI: 10.1371/journal.pone.0169005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
The adipocyte is unique in its capacity to store lipids. In addition to triglycerides, the adipocyte stores a significant amount of cholesterol. Moreover, obese adipocytes are characterized by a redistribution of cholesterol with depleted cholesterol in the plasma membrane, suggesting that cholesterol perturbation may play a role in adipocyte dysfunction. We used methyl-β-cyclodextrin (MβCD), a molecule with high affinity for cholesterol, to rapidly deplete cholesterol level in differentiated 3T3-L1 adipocytes. We tested whether this perturbation altered adipocyte secretion of monocyte chemoattractant protein-1 (MCP-1), a chemokine that is elevated in obesity and is linked to obesity-associated chronic diseases. Depletion of cholesterol by MβCD increased MCP-1 secretion as well as the mRNA and protein levels, suggesting perturbation at biosynthesis and secretion. Pharmacological inhibition revealed that NF-κB, but not MEK, p38 and JNK, was involved in MβCD-stimulated MCP-1 biosynthesis and secretion in adipocytes. Finally, another cholesterol-binding drug, filipin, also induced MCP-1 secretion without altering membrane cholesterol level. Interestingly, both MβCD and filipin disturbed the integrity of lipid rafts, the membrane microdomains enriched in cholesterol. Thus, the depletion of membrane cholesterol in obese adipocytes may result in dysfunction of lipid rafts, leading to the elevation of proinflammatory signaling and MCP-1 secretion in adipocytes.
Collapse
Affiliation(s)
- Juu-Chin Lu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
- * E-mail:
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chang
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yun Lu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Shan Yeh
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
40
|
High-density Lipoprotein and Inflammation and Its Significance to Atherosclerosis. Am J Med Sci 2016; 352:408-415. [DOI: 10.1016/j.amjms.2016.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023]
|
41
|
Tvarijonaviciute A, Ceron JJ, de Torre C, Ljubić BB, Holden SL, Queau Y, Morris PJ, Pastor J, German AJ. Obese dogs with and without obesity-related metabolic dysfunction - a proteomic approach. BMC Vet Res 2016; 12:211. [PMID: 27646300 PMCID: PMC5028949 DOI: 10.1186/s12917-016-0839-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/10/2016] [Indexed: 12/12/2022] Open
Abstract
Background Approximately 20 % of obese dogs have metabolic disturbances similar to those observed in human metabolic syndrome, a condition known as obesity-related metabolic dysfunction. This condition is associated with insulin resistance and decreased circulating adiponectin concentrations, but clinical consequences have not been reported. In order to define better the metabolic changes associated with obesity-related metabolic dysfunction (ORMD), we compared the plasma proteomes of obese dogs with and without ORMD. A proteomic analysis was conducted on plasma samples from 8 obese male dogs, 4 with ORMD and 4 without ORMD. The samples were first treated for the depletion of high-abundance proteins and subsequently analysed by using 2-DE DIGE methodology. Results Using mass spectrometry, 12 proteins were identified: albumin, apoliprotein A-I, C2, C3, C5, C4BPA, A2M, Uncharacterised protein (Fragment) OS = Canis familiaris, fibrinogen, IGJ, ITIH2, and glutathione peroxidase. In obese dogs with ORMD, the relative amounts of ten proteins (albumin, apoliprotein A-I, C2, C3, C5, C4BPA, A2M, Uncharacterised protein (Fragment) OS = Canis familiaris, fibrinogen, and ITIH2) were increased and two proteins (IGJ and glutathione peroxidase) were decreased, compared with obese dogs without ORMD. Specific assays were then used to confirm differences in serum albumin, apoliprotein A-I and glutathione peroxidase in a separate group of 20 overweight dogs, 8 with ORMD and 12 without ORMD. Conclusions The current study provides evidence that, in obese dogs with ORMD, there are changes in expression of proteins involved in lipid metabolism, immune response, and antioxidant status. The clinical significance of these changes remains to be defined.
Collapse
Affiliation(s)
- Asta Tvarijonaviciute
- Departament de Medicina i Cirugia Animals, Universitat Autónoma de Barcelona, 08193, Barcelona, Spain. .,Interdisciplinary Laboratory of Clinical Pathology, Iterlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain.
| | - Jose J Ceron
- Interdisciplinary Laboratory of Clinical Pathology, Iterlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Carlos de Torre
- Unidad de Proteómica, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), IMIB-Arrixaca, 30120, Murcia, Spain
| | - Blanka B Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Shelley L Holden
- Department of Obesity and Endocrinology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - Yann Queau
- Royal Canin Research Center, B.P.4-650 Avenue de la Petite Camargue, 30470, Aimargues, France
| | - Penelope J Morris
- The WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, LE14 4RT, UK
| | - Josep Pastor
- Departament de Medicina i Cirugia Animals, Universitat Autónoma de Barcelona, 08193, Barcelona, Spain
| | - Alexander J German
- Department of Obesity and Endocrinology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| |
Collapse
|
42
|
HDL inhibits saturated fatty acid mediated augmentation of innate immune responses in endothelial cells by a novel pathway. Atherosclerosis 2016; 259:83-96. [PMID: 28340361 DOI: 10.1016/j.atherosclerosis.2016.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Peripheral insulin resistance is associated with several metabolic abnormalities, including elevated serum fatty acids that contribute to vascular injury and atherogenesis. Our goals were to examine whether saturated fatty acids can modify innate immune responses to subclinical concentrations of lipopolysaccharide (LPS) in endothelial cells, and to explore the underlying pathway and determine whether it is modified by high density lipoprotein (HDL) and other factors commonly altered in insulin resistance. METHODS Physiologic concentrations of palmitic acid were added to human aortic endothelial cells with and without a variety of inhibitors or HDL and measures of cell inflammation and function assessed. RESULTS Palmitic acid significantly amplified human aortic endothelial cell inflammatory responses to LPS. Similar results were obtained from lipolysis products of triglyceride rich lipoproteins. Metabolism of palmitic acid to ceramide and subsequent activation of PKC-ζ, MAPK and ATF3 appeared critical in amplifying LPS induced inflammation. The amplified response to palmitic acid/LPS was decreased by HDL, dose dependently, and this inhibition was dependent on activation of PI3K/AKT and reduction in ATF3. CONCLUSIONS These results indicate that endothelial cell innate immune responses are modified by metabolic abnormalities commonly present in insulin resistance and provide evidence for a novel mechanism by which HDL may reduce vascular inflammation.
Collapse
|
43
|
Kim C, Lee JM, Park SW, Kim KS, Lee MW, Paik S, Jang AS, Kim DJ, Uh S, Kim Y, Park CS. Attenuation of Cigarette Smoke-Induced Emphysema in Mice by Apolipoprotein A-1 Overexpression. Am J Respir Cell Mol Biol 2016; 54:91-102. [PMID: 26086425 DOI: 10.1165/rcmb.2014-0305oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic inflammation, oxidative stress, and proteolysis participate primarily in the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. COPD is a highly prevalent smoking-related disease for which no effective therapy exists to improve the disease course. Although apolipoprotein A-1 (ApoA1) has antiinflammatory and antioxidant properties as well as cholesterol efflux potential, its role in cigarette smoke (CS)-induced emphysema has not been determined. Therefore, we investigated whether human ApoA1 transgenic (TG) mice, with conditionally induced alveolar epithelium to overexpress ApoA1, are protected against the CS-induced lung inflammatory response and development of emphysema. In this study, ApoA1 levels were significantly decreased in the lungs of patients with COPD and in the lungs of mice exposed to CS. ApoA1 TG mice did not develop emphysema when chronically exposed to CS. Compared with the control TG mice, ApoA1 overexpression attenuated lung inflammation, oxidative stress, metalloprotease activation, and apoptosis in CS-exposed mouse lungs. To explore a plausible mechanism of antiapoptotic activity of ApoA1, alveolar epithelial cells (A549) were treated with CS extract (CSE). ApoA1 prevented CSE-induced translocation of Fas and downstream death-inducing signaling complex into lipid rafts, thereby inhibiting Fas-mediated apoptosis. Taken together, the data showed that ApoA1 overexpression attenuated CS-induced lung inflammation and emphysema in mice. Augmentation of ApoA1 in the lung may have therapeutic potential in preventing smoking-related COPD/emphysema.
Collapse
Affiliation(s)
- Chorong Kim
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Ji-Min Lee
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Sung-Woo Park
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Ki-Sun Kim
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Myoung Won Lee
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Sanghyun Paik
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - An Soo Jang
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Do Jin Kim
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Sootaek Uh
- 2 Division of Allergy and Respiratory Medicine, Soonchunhyang University Seoul Hospital, Hannam-dong, Yongsan-gu, Seoul; and
| | - Yonghoon Kim
- 3 Division of Allergy and Respiratory Medicine, Soonchunhyang University Cheonan Hospital, Bongmyeong-dong, Cheonan, Chungcheongnam-do, South Korea
| | - Choon-Sik Park
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| |
Collapse
|
44
|
Qin L, Zhu N, Ao BX, Liu C, Shi YN, Du K, Chen JX, Zheng XL, Liao DF. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis. Int J Mol Sci 2016; 17:429. [PMID: 27011179 PMCID: PMC4813279 DOI: 10.3390/ijms17030429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/18/2023] Open
Abstract
Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1.
Collapse
Affiliation(s)
- Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bao-Xue Ao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Chan Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Jian-Xiong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| | - Xi-Long Zheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- Department of Biochemistry & Molecular Biology, the Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
45
|
Tang C, Houston BA, Storey C, LeBoeuf RC. Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages. J Lipid Res 2016; 57:848-57. [PMID: 26989082 DOI: 10.1194/jlr.m065797] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
ABCA1 exports excess cholesterol from cells to apoA-I and is essential for HDL synthesis. Genetic studies have shown that ABCA1 protects against cardiovascular disease. We have previously shown that the interaction of apoA-I with ABCA1 activates signaling molecule Janus kinase 2 (JAK2), which optimizes the cholesterol efflux activity of ABCA1. ABCA1-mediated activation of JAK2 also activates signal transducer and activator of transcription 3 (STAT3), which significantly attenuates proinflammatory cytokine expression in macrophages. To determine the mechanisms of the anti-inflammatory effects of apoA-I/ABCA1 interaction, we identified two special ABCA1 mutants, one with normal STAT3-activating capacity but lacking cholesterol efflux ability and the other with normal cholesterol efflux ability but lacking STAT3-activating capacity. We showed that activation of STAT3 by the interaction of apoA-I/ABCA1 without cholesterol efflux could significantly decrease proinflammatory cytokine expression in macrophages. Mechanistic studies showed that the anti-inflammatory effect of the apoA-I/ABCA1/STAT3 pathway is suppressor of cytokine signaling 3 dependent. Moreover, we showed that apoA-I/ABCA1-mediated cholesterol efflux without STAT3 activation can also reduce proinflammatory cytokine expression in macrophages. These findings suggest that the interaction of apoA-I/ABCA1 activates cholesterol efflux and STAT3 branch pathways to synergistically suppress inflammation in macrophages.
Collapse
Affiliation(s)
- Chongren Tang
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Barbara A Houston
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Carl Storey
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Renee C LeBoeuf
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| |
Collapse
|
46
|
Sultana A, Cochran BJ, Tabet F, Patel M, Torres LC, Barter PJ, Rye KA. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I. FASEB J 2016; 30:2324-35. [PMID: 26965683 DOI: 10.1096/fj.201500026r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 01/04/2023]
Abstract
Activation of inflammatory signaling pathways links obesity with metabolic disorders. TLR4-mediated activation of MAPKs and NF-κB are 2 such pathways implicated in obesity-induced inflammation. Apolipoprotein A-I (apoA-I) exerts anti-inflammatory effects on adipocytes by effluxing cholesterol from the cells via the ATP binding cassette transporter A1 (ABCA1). It is not known if these effects involve inhibition of inflammatory signaling pathways by apoA-I. This study asks if apoA-I inhibits activation of MAPKs and NF-κB in mouse 3T3-L1 adipocytes and whether this inhibition is ABCA1 dependent. Incubation of differentiated 3T3-L1 adipocytes with apoA-I decreased cell surface expression of TLR4 by 16 ± 2% and synthesis of the TLR4 adaptor protein, myeloid differentiation primary response 88, by 24 ± 4% in an ABCA1-dependent manner. ApoA-I also inhibited downstream activation of MAPKs, such as ERK, p38MAPK, and JNK, as well as expression of proinflammatory adipokines in bacterial LPS-stimulated 3T3-L1 adipocytes in an ABCA1-dependent manner. ApoA-I, by contrast, suppressed nuclear localization of the p65 subunit of NF-κB by 30 ± 3% in LPS-stimulated 3T3-L1 adipocytes in an ABCA1-independent manner. In conclusion, apoA-I inhibits TLR4-mediated inflammatory signaling pathways in adipocytes by preventing MAPK and NF-κB activation.-Sultana, A., Cochran, B. J., Tabet, F., Patel, M., Cuesta Torres, L., Barter, P. J., Rye, K.-A. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.
Collapse
Affiliation(s)
- Afroza Sultana
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia; and
| | - Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia; and
| | - Fatiha Tabet
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia; and
| | - Mili Patel
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia; and
| | - Luisa Cuesta Torres
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia; and
| | - Philip J Barter
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia; and Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia; and Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Ontsouka EC, Albrecht C, Bruckmaier RM. Invited review: Growth-promoting effects of colostrum in calves based on interaction with intestinal cell surface receptors and receptor-like transporters. J Dairy Sci 2016; 99:4111-4123. [PMID: 26874414 DOI: 10.3168/jds.2015-9741] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
The postnatal development and maturation of the gastrointestinal (GI) tract of neonatal calves is crucial for their survival. Major morphological and functional changes in the calf's GI tract initiated by colostrum bioactive substances promote the establishment of intestinal digestion and absorption of food. It is generally accepted that colostrum intake provokes the maturation of organs and systems in young calves, illustrating the significance of the cow-to-calf connection at birth. These postnatal adaptive changes of the GI tissues in neonatal calves are especially induced by the action of bioactive substances such as insulin-like growth factors, hormones, or cholesterol carriers abundantly present in colostrum. These substances interact with specific cell-surface receptors or receptor-like transporters expressed in the GI wall of neonatal calves to elicit their biological effects. Therefore, the abundance and activity of cell surface receptors and receptor-like transporters binding colostral bioactive substances are a key aspect determining the effects of the cow-to-calf connection at birth. The present review compiles the information describing the effects of colostrum feeding on selected serum metabolic and endocrine traits in neonatal calves. In this context, the current paper discusses specifically the consequences of colostrum feeding on the GI expression and activity of cell-receptors and receptor-like transporters binding growth hormone, insulin-like growth factors, insulin, or cholesterol acceptors in neonatal calves.
Collapse
Affiliation(s)
- Edgar C Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
48
|
Abstract
The metabolic syndrome (MetS) is comprised of a cluster of closely related risk factors, including visceral adiposity, insulin resistance, hypertension, high triglyceride, and low high-density lipoprotein cholesterol; all of which increase the risk for the development of type 2 diabetes and cardiovascular disease. A chronic state of inflammation appears to be a central mechanism underlying the pathophysiology of insulin resistance and MetS. In this review, we summarize recent research which has provided insight into the mechanisms by which inflammation underlies the pathophysiology of the individual components of MetS including visceral adiposity, hyperglycemia and insulin resistance, dyslipidemia, and hypertension. On the basis of these mechanisms, we summarize therapeutic modalities to target inflammation in the MetS and its individual components. Current therapeutic modalities can modulate the individual components of MetS and have a direct anti-inflammatory effect. Lifestyle modifications including exercise, weight loss, and diets high in fruits, vegetables, fiber, whole grains, and low-fat dairy and low in saturated fat and glucose are recommended as a first line therapy. The Mediterranean and dietary approaches to stop hypertension diets are especially beneficial and have been shown to prevent development of MetS. Moreover, the Mediterranean diet has been associated with reductions in total and cardiovascular mortality. Omega-3 fatty acids and peroxisome proliferator-activated receptor α agonists lower high levels of triglyceride; their role in targeting inflammation is reviewed. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone blockers comprise pharmacologic therapies for hypertension but also target other aspects of MetS including inflammation. Statin drugs target many of the underlying inflammatory pathways involved in MetS.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.
| | - Abdulhamied Alfaddagh
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Tarec K Elajami
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| |
Collapse
|
49
|
Henderson CM, Vaisar T, Hoofnagle AN. Isolating and Quantifying Plasma HDL Proteins by Sequential Density Gradient Ultracentrifugation and Targeted Proteomics. Methods Mol Biol 2016; 1410:105-20. [PMID: 26867741 PMCID: PMC5501989 DOI: 10.1007/978-1-4939-3524-6_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sensitivity and specificity of tandem mass spectrometers have made targeted proteomics the method of choice for the precise simultaneous measurement of many proteins in complex mixtures. Its application to the relative quantification of proteins in high-density lipoproteins (HDL) that have been purified from human plasma has revealed potential mechanisms to explain the atheroprotective effects of HDL. We describe a moderate throughput method for isolating HDL from human plasma that uses sequential density gradient ultracentrifugation, the traditional method of HDL purification, and subsequent trypsin digestion and nanoflow liquid chromatography-tandem mass spectrometry to quantify 38 proteins in the HDL fraction of human plasma. To control for the variability associated with digestion, matrix effects, and instrument performance, we normalize the signal from endogenous HDL protein-associated peptides liberated during trypsin digestion to the signal from peptides liberated from stable isotope-labeled apolipoprotein A-I spiked in as an internal standard prior to digestion. The method has good reproducibility and other desirable characteristics for preclinical research.
Collapse
Affiliation(s)
- Clark M Henderson
- Department of Laboratory Medicine, University of Washington School of Medicine, Box 357110, Seattle, WA, 98195-7110, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Box 358055, Seattle, WA, 98195-8055, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington School of Medicine, Box 357110, Seattle, WA, 98195-7110, USA.
- Department of Medicine, University of Washington School of Medicine, Box 358055, Seattle, WA, 98195-8055, USA.
| |
Collapse
|
50
|
Nguyen SD, Maaninka K, Lappalainen J, Nurmi K, Metso J, Öörni K, Navab M, Fogelman AM, Jauhiainen M, Lee-Rueckert M, Kovanen PT. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol 2015; 36:274-84. [PMID: 26681753 PMCID: PMC4725095 DOI: 10.1161/atvbaha.115.306827] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/18/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. APPROACH AND RESULTS Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α-activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. CONCLUSIONS The findings identify C-terminal cleavage of apoA-I by human mast cell chymase as a novel mechanism leading to loss of its anti-inflammatory functions. When targeting inflamed protease-rich atherosclerotic lesions with apoA-I, infusions of protease-resistant apoA-I might be the appropriate approach.
Collapse
Affiliation(s)
- Su Duy Nguyen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Maaninka
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Jani Lappalainen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Nurmi
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Jari Metso
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Öörni
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Mohamad Navab
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Alan M Fogelman
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Miriam Lee-Rueckert
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Petri T Kovanen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.).
| |
Collapse
|