1
|
HAN M, YI X, YOU S, WU X, WANG S, HE D. Gehua Jiejiu Dizhi decoction ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study. J TRADIT CHIN MED 2024; 44:277-288. [PMID: 38504534 PMCID: PMC10927405 DOI: 10.19852/j.cnki.jtcm.20231018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.
Collapse
Affiliation(s)
- Min HAN
- 1 Guizhou University of Traditional Chinese Medicine, Graduate School, Guiyang 550025, China
| | - Xu YI
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shaowei YOU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Xueli WU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shuoshi WANG
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Diancheng HE
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
2
|
Nigam SK, Granados JC. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu Rev Pharmacol Toxicol 2023; 63:637-660. [PMID: 36206988 DOI: 10.1146/annurev-pharmtox-030322-084058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), University of California San Diego, La Jolla, California, USA;
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Alaei Faradonbeh F, Lastuvkova H, Cermanova J, Hroch M, Nova Z, Uher M, Hirsova P, Pavek P, Micuda S. Multidrug Resistance-Associated Protein 2 Deficiency Aggravates Estrogen-Induced Impairment of Bile Acid Metabolomics in Rats. Front Physiol 2022; 13:859294. [PMID: 35388287 PMCID: PMC8979289 DOI: 10.3389/fphys.2022.859294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2) mediates biliary secretion of anionic endobiotics and xenobiotics. Genetic alteration of Mrp2 leads to conjugated hyperbilirubinemia and predisposes to the development of intrahepatic cholestasis of pregnancy (ICP), characterized by increased plasma bile acids (BAs) due to mechanisms that are incompletely understood. Therefore, this study aimed to characterize BA metabolomics during experimental Mrp2 deficiency and ICP. ICP was modeled by ethinylestradiol (EE) administration to Mrp2-deficient (TR) rats and their wild-type (WT) controls. Spectra of BAs were analyzed in plasma, bile, and stool using an advanced liquid chromatography–mass spectrometry (LC–MS) method. Changes in BA-related genes and proteins were analyzed in the liver and intestine. Vehicle-administered TR rats demonstrated higher plasma BA concentrations consistent with reduced BA biliary secretion and increased BA efflux from hepatocytes to blood via upregulated multidrug resistance-associated protein 3 (Mrp3) and multidrug resistance-associated protein 4 (Mrp4) transporters. TR rats also showed a decrease in intestinal BA reabsorption due to reduced ileal sodium/bile acid cotransporter (Asbt) expression. Analysis of regulatory mechanisms indicated that activation of the hepatic constitutive androstane receptor (CAR)-Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by accumulating bilirubin may be responsible for changes in BA metabolomics in TR rats. Ethinylestradiol administration to TR rats further increased plasma BA concentrations as a result of reduced BA uptake and increased efflux via reduced Slco1a1 and upregulated Mrp4 transporters. These results demonstrate that Mrp2-deficient organism is more sensitive to estrogen-induced cholestasis. Inherited deficiency in Mrp2 is associated with activation of Mrp3 and Mrp4 proteins, which is further accentuated by increased estrogen. Bile acid monitoring is therefore highly desirable in pregnant women with conjugated hyperbilirubinemia for early detection of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jolana Cermanova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Milos Hroch
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Zuzana Nova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Uher
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
- *Correspondence: Stanislav Micuda,
| |
Collapse
|
4
|
Ma C, Guo Y, Klaassen CD. Effect of Gender and Various Diets on Bile Acid Profile and Related Genes in Mice. Drug Metab Dispos 2021; 49:62-71. [PMID: 33093018 PMCID: PMC7804885 DOI: 10.1124/dmd.120.000166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Diet is an important factor for many diseases. Previous studies have demonstrated that several diets had remarkable effects on bile acid (BA) homeostasis, but no comprehensive information for both genders has been reported. Therefore, the current study characterized the nine most used laboratory animal diets fed to both genders of mice for a comparable evaluation of the topic. The results revealed that marked gender difference of BA homeostasis is ubiquitous in mice fed the various diets, and of the nine diets fed to mice, the atherogenic and calorie-restricted diets had the most marked effects on BA homeostasis, followed by the laboratory chow and essential fatty acid-deficient diets. More specifically, females had higher concentrations of total BAs in serum when fed six of the nine diets compared with male mice, and 26 of the 35 BA-related genes had marked gender difference in mice fed at least one diet. Although mice fed the calorie-restricted and atherogenic diets had increased BA, which was more pronounced in serum than liver, the intestinal farnesoid X nuclear receptor-fibroblast growth factor 15 axis changed in the opposite direction and resulted in different hepatic expression patterns of Cyp7a1 Compared with AIN-93M purified diet, higher hepatic expression of multidrug resistance-associated protein 3 was the only alteration in mice fed the laboratory chow diet. The other diets had little or no effect on BA concentrations in the liver and plasma or in the expression of BA-related genes. This study indicates that gender, the atherogenic diet, and the calorie-restricted diet have the most marked effects on BA homeostasis. SIGNIFICANCE STATEMENT: Previous evidence suggested that various diets have effect on bile acid (BA) homeostasis; however, it is not possible to directly compare these findings, as they are all from different studies. The current study was the first to systematically investigate the influence of the nine most used experimental mouse diets on BA homeostasis and potential mechanism in both genders of mice and indicates that gender, the atherogenic diet, and the calorie-restricted diet have the most marked effects on BA homeostasis, which will aid future investigations.
Collapse
Affiliation(s)
- Chong Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China (C.M., Y.G.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China (C.M., Y.G.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China (C.M., Y.G.); National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (C.M., Y.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
5
|
Lin Q, Tan X, Wang W, Zeng W, Gui L, Su M, Liu C, Jia W, Xu L, Lan K. Species Differences of Bile Acid Redox Metabolism: Tertiary Oxidation of Deoxycholate is Conserved in Preclinical Animals. Drug Metab Dispos 2020; 48:499-507. [PMID: 32193215 PMCID: PMC11022903 DOI: 10.1124/dmd.120.090464] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
It was recently disclosed that CYP3A is responsible for the tertiary stereoselective oxidations of deoxycholic acid (DCA), which becomes a continuum mechanism of the host-gut microbial cometabolism of bile acids (BAs) in humans. This work aims to investigate the species differences of BA redox metabolism and clarify whether the tertiary metabolism of DCA is a conserved pathway in preclinical animals. With quantitative determination of the total unconjugated BAs in urine and fecal samples of humans, dogs, rats, and mice, it was confirmed that the tertiary oxidized metabolites of DCA were found in all tested animals, whereas DCA and its oxidized metabolites disappeared in germ-free mice. The in vitro metabolism data of DCA and the other unconjugated BAs in liver microsomes of humans, monkeys, dogs, rats, and mice showed consistencies with the BA-profiling data, confirming that the tertiary oxidation of DCA is a conserved pathway. In liver microsomes of all tested animals, however, the oxidation activities toward DCA were far below the murine-specific 6β-oxidation activities toward chenodeoxycholic acid (CDCA), ursodeoxycholic acid, and lithocholic acid (LCA), and 7-oxidation activities toward murideoxycholic acid and hyodeoxycholic acid came from the 6-hydroxylation of LCA. These findings provided further explanations for why murine animals have significantly enhanced downstream metabolism of CDCA compared with humans. In conclusion, the species differences of BA redox metabolism disclosed in this work will be useful for the interspecies extrapolation of BA biology and toxicology in translational researches. SIGNIFICANCE STATEMENT: It is important to understand the species differences of bile acid metabolism when deciphering biological and hepatotoxicology findings from preclinical studies. However, the species differences of tertiary bile acids are poorly understood compared with primary and secondary bile acids. This work confirms that the tertiary oxidation of deoxycholic acid is conserved among preclinical animals and provides deeper understanding of how and why the downstream metabolism of chenodeoxycholic acid dominates that of cholic acid in murine animals compared with humans.
Collapse
Affiliation(s)
- Qiuhong Lin
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Xianwen Tan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Wenxia Wang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Wushuang Zeng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Lanlan Gui
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Mingming Su
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Changxiao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Wei Jia
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Liang Xu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| |
Collapse
|
6
|
Somm E, Henry H, Bruce SJ, Bonnet N, Montandon SA, Niederländer NJ, Messina A, Aeby S, Rosikiewicz M, Fajas L, Sempoux C, Ferrari SL, Greub G, Pitteloud N. β-Klotho deficiency shifts the gut-liver bile acid axis and induces hepatic alterations in mice. Am J Physiol Endocrinol Metab 2018; 315:E833-E847. [PMID: 29944388 DOI: 10.1152/ajpendo.00182.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
β-Klotho (encoded by Klb) is an obligate coreceptor, mediating both fibroblast growth factor (FGF)15 and FGF21 signaling. Klb-/- mice are refractory to metabolic FGF15 and FGF21 action and exhibit derepressed (increased) bile acid (BA) synthesis. Here, we deeply phenotyped male Klb-/- mice on a pure C57BL/6J genetic background, fed a chow diet focusing on metabolic aspects. This aims to better understand the physiological consequences of concomitant FGF15 and FGF21 signaling deficiency, in particular on the gut-liver axis. Klb-/- mice present permanent growth restriction independent of adiposity and energy balance. Klb-/- mice also exhibit few changes in carbohydrate metabolism, combining normal gluco-tolerance, insulin sensitivity, and fasting response with increased gluconeogenic capacity and decreased glycogen mobilization. Livers of Klb-/- mice reveal pathologic features, including a proinflammatory status and initiation of fibrosis. These defects are associated to a massive shift in BA composition in the enterohepatic system and blood circulation featured by a large excess of microbiota-derived deoxycholic acid, classically known for its genotoxicity in the gastrointestinal tract. In conclusion, β-Klotho is a gatekeeper of hepatic integrity through direct action (mediating FGF21 anti-inflammatory signaling) and indirect mechanisms (mediating FGF15 signaling that maintains BA level and composition).
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetology, and Metabolism, Department of Physiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Hugues Henry
- Clinical Chemistry Laboratory, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Stephen J Bruce
- Clinical Chemistry Laboratory, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine , Geneva , Switzerland
| | - Sophie A Montandon
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospital and Faculty of Medicine , Geneva , Switzerland
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Department of Physiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Department of Physiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Sébastien Aeby
- Institute of Microbiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Marta Rosikiewicz
- Institute of Microbiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Lluis Fajas
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne , Lausanne , Switzerland
| | - Christine Sempoux
- Institute of Pathology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Serge L Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine , Geneva , Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Department of Physiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
7
|
Tanaka Y, Ikeda T, Yamamoto K, Masuda S, Ogawa H, Kamisako T. Gender-divergent expression of lipid and bile acid metabolism related genes in adult mice offspring of dams fed a high-fat diet. J Biosci 2018; 43:329-337. [PMID: 29872021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Maternal high-fat diet (HFD) consumption during pregnancy and lactation affects metabolic outcomes and lipid metabolism of offspring in later life in a gender-specific manner. However, it is not known whether maternal HFD alters bile acid metabolism in adult mice offspring. The purpose of this study was to elucidate the relationship between maternal HFDinduced metabolic diseases and bile acid metabolism in male and female adult mice offspring. Female mice were fed either standard chow (C) or HFD (H) for 10 weeks pre-pregnancy until lactation. After weaning, offspring were fed a chow diet until 11 weeks of age, then challenged with either C or H diet for 4 weeks, and divided into eight groups in accordance with mother's and offspring's diets: male(M) CC, MHC, MCH, MHH, female(F) CC, FHC, FCH, and FHH. MHH showed greater weight gain compared to FHH. Liver weight was higher in MHH than in FHH. Serum total cholesterol levels were higher in MHH than in MHC, and tended to be higher in MHH than in FHH. Serum glucose levels were higher in MHH than in MHC. Hepatic triglyceride levels were higher in MHH than in MHC. Hepatic mRNA expression of bile acid uptake transporters Oatp1a1 and Oatp1b2 was increased in MHH, compared to MCH. Hepatic mRNA expression of HMGCoAR, Cyp7a1, Sult2a1, and Oatp1a4 was increased in FHH, compared to FCH. In conclusion, maternal HFD consumption may promote bile acid synthesis, sulfation and excretion in female offspring fed a HFD, which may confer resistance to HFDinduced metabolic phenotypes.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Clinical Laboratory Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan,
| | | | | | | | | | | |
Collapse
|
8
|
Diabetic cognitive dysfunction is associated with increased bile acids in liver and activation of bile acid signaling in intestine. Toxicol Lett 2018; 287:10-22. [DOI: 10.1016/j.toxlet.2018.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
|
9
|
Gender-divergent expression of lipid and bile acid metabolism-related genes in adult mice offspring of dams fed a high-fat diet. J Biosci 2018. [DOI: 10.1007/s12038-018-9750-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Zhang Y, Lickteig AJ, Csanaky IL, Klaassen CD. Activation of PPARα decreases bile acids in livers of female mice while maintaining bile flow and biliary bile acid excretion. Toxicol Appl Pharmacol 2017; 338:112-123. [PMID: 29175453 DOI: 10.1016/j.taap.2017.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 01/20/2023]
Abstract
Fibrates are hypolipidemic drugs that act as activators of peroxisome proliferator-activated receptor α (PPARα). In both humans and rodents, females were reported to be less responsive to fibrates than males. Previous studies on fibrates and PPARα usually involved male mice, but little has been done in females. The present study aimed to provide the first comprehensive analysis of the effects of clofibrate (CLOF) and PPARα on bile acid (BA) homeostasis in female mice. Study in WT male mice showed that a 4-day CLOF treatment increased liver weight, bile flow, and biliary BA excretion, but decreased total BAs in both serum and liver. In contrast, WT female mice were less susceptible to these CLOF-mediated responses observed in males. In WT female mice, CLOF decreased total BAs in the liver, but had little effect on the mRNAs of hepatic BA-related genes. Next, a comparative analysis between WT and PPARα-null female mice showed that lack of PPARα in female mice decreased total BAs in serum, but had little effect on total BAs in liver or bile. However, lack of PPARα in female mice increased mRNAs of BA synthetic enzymes (Cyp7a1, Cyp8b1, Cyp27a1, and Cyp7b1) and transporters (Ntcp, Oatp1a1, Oatp1b2, and Mrp3). Furthermore, the increase of Cyp7a1 in PPARα-null female mice was associated with an increase in liver Fxr-Shp-Lrh-1 signaling. In conclusion, female mice are resistant to CLOF-mediated effects on BA metabolism observed in males, which could be attributed to PPARα-mediated suppression in females on genes involved in BA synthesis and transport.
Collapse
Affiliation(s)
- Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160,USA
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital & Clinics, Kansas City, MO 64108; USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160,USA.
| |
Collapse
|
11
|
Liu Q, Shao W, Zhang C, Xu C, Wang Q, Liu H, Sun H, Jiang Z, Gu A. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:268-276. [PMID: 28392238 DOI: 10.1016/j.envpol.2017.03.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human.
Collapse
Affiliation(s)
- Qian Liu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wentao Shao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunlan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qihan Wang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haidong Sun
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017; 45:86-100. [PMID: 28279860 PMCID: PMC5466893 DOI: 10.1016/j.anaerobe.2017.03.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/18/2022]
Abstract
The changing epidemiology of Clostridium difficile infection over the past decades presents a significant challenge in the management of C. difficile associated diseases. The gastrointestinal tract microbiota provides colonization resistance against C. difficile, and growing evidence suggests that gut microbial derived secondary bile acids (SBAs) play a role. We hypothesized that the C. difficile life cycle; spore germination and outgrowth, growth, and toxin production, of strains that vary by age and ribotype will differ in their sensitivity to SBAs. C. difficile strains R20291 and CD196 (ribotype 027), M68 and CF5 (017), 630 (012), BI9 (001) and M120 (078) were used to define taurocholate (TCA) mediated spore germination and outgrowth, growth, and toxin activity in the absence and presence of gut microbial derived SBAs (deoxycholate, isodeoxycholate, lithocholate, isolithocholate, ursodeoxycholate, ω-muricholate, and hyodeoxycholate) found in the human and mouse large intestine. C. difficile strains varied in their rates of germination, growth kinetics, and toxin activity without the addition of SBAs. C. difficile M120, a highly divergent strain, had robust germination, growth, but significantly lower toxin activity compared to other strains. Many SBAs were able to inhibit TCA mediated spore germination and outgrowth, growth, and toxin activity in a dose dependent manner, but the level of inhibition and resistance varied across all strains and ribotypes. This study illustrates how clinically relevant C. difficile strains can have different responses when exposed to SBAs present in the gastrointestinal tract.
Collapse
Affiliation(s)
- Rajani Thanissery
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Research Building 424, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Jenessa A Winston
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Research Building 424, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Research Building 424, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| |
Collapse
|
13
|
Studer N, Desharnais L, Beutler M, Brugiroux S, Terrazos MA, Menin L, Schürch CM, McCoy KD, Kuehne SA, Minton NP, Stecher B, Bernier-Latmani R, Hapfelmeier S. Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model. Front Cell Infect Microbiol 2016; 6:191. [PMID: 28066726 PMCID: PMC5168579 DOI: 10.3389/fcimb.2016.00191] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
Bile acids, important mediators of lipid absorption, also act as hormone-like regulators and as antimicrobial molecules. In all these functions their potency is modulated by a variety of chemical modifications catalyzed by bacteria of the healthy gut microbiota, generating a complex variety of secondary bile acids. Intestinal commensal organisms are well-adapted to normal concentrations of bile acids in the gut. In contrast, physiological concentrations of the various intestinal bile acid species play an important role in the resistance to intestinal colonization by pathogens such as Clostridium difficile. Antibiotic therapy can perturb the gut microbiota and thereby impair the production of protective secondary bile acids. The most important bile acid transformation is 7α-dehydroxylation, producing deoxycholic acid (DCA) and lithocholic acid (LCA). The enzymatic pathway carrying out 7α-dehydroxylation is restricted to a narrow phylogenetic group of commensal bacteria, the best-characterized of which is Clostridium scindens. Like many other intestinal commensal species, 7-dehydroxylating bacteria are understudied in vivo. Conventional animals contain variable and uncharacterized indigenous 7α-dehydroxylating organisms that cannot be selectively removed, making controlled colonization with a specific strain in the context of an undisturbed microbiota unfeasible. In the present study, we used a recently established, standardized gnotobiotic mouse model that is stably associated with a simplified murine 12-species “oligo-mouse microbiota” (Oligo-MM12). It is representative of the major murine intestinal bacterial phyla, but is deficient for 7α-dehydroxylation. We find that the Oligo-MM12 consortium carries out bile acid deconjugation, a prerequisite for 7α-dehydroxylation, and confers no resistance to C. difficile infection (CDI). Amendment of Oligo-MM12 with C. scindens normalized the large intestinal bile acid composition by reconstituting 7α-dehydroxylation. These changes had only minor effects on the composition of the native Oligo-MM12, but significantly decreased early large intestinal C. difficile colonization and pathogenesis. The delayed pathogenesis of C. difficile in C. scindens-colonized mice was associated with breakdown of cecal microbial bile acid transformation.
Collapse
Affiliation(s)
- Nicolas Studer
- Institute for Infectious Diseases, University of BernBern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of BernBern, Switzerland
| | - Lyne Desharnais
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | - Markus Beutler
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich (LMU) Munich, Germany
| | - Sandrine Brugiroux
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich (LMU) Munich, Germany
| | - Miguel A Terrazos
- Institute for Infectious Diseases, University of Bern Bern, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | | | - Kathy D McCoy
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern Bern, Switzerland
| | - Sarah A Kuehne
- Clostridia Research Group, Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC) Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Nigel P Minton
- Clostridia Research Group, Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC) Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich (LMU)Munich, Germany; German Center for Infection Research, Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Ludwig-Maximilians-University of Munich (LMU)Munich, Germany
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | | |
Collapse
|
14
|
Guo Y, Zhang Y, Huang W, Selwyn FP, Klaassen CD. Dose-response effect of berberine on bile acid profile and gut microbiota in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:394. [PMID: 27756364 PMCID: PMC5070223 DOI: 10.1186/s12906-016-1367-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/29/2016] [Indexed: 02/04/2023]
Abstract
Background Berberine (BBR) is a traditional antimicrobial herbal medicine. Recently, BBR has gained popularity as a supplement to lower blood lipids, cholesterol and glucose. Bile acids (BAs) are known to regulate blood levels of triglycerides, cholesterol, glucose and energy homeostasis, and gut flora play an important role in BA metabolism. However, whether BBR alters BAs metabolism or dose-response effect of BBR on gut flora is unknown. Methods In this study, the effects of various doses of BBR on the concentrations of BAs in liver and serum of male C57BL/6 mice were determined by UPLC-MS/MS, and the expression of BA-related genes, as well as the amount of 32 of the most abundant gut bacterial species in the terminal ileum and large intestine of male C57BL/6 mice were quantified by RT-PCR and Quantigene 2.0 Reagent System, respectively. Results Unconjugated BAs and total BAs were significantly altered by BBR in serum but not in liver. Increased primary BAs (βMCA, TβMCA and TUDCA) and decreased secondary BAs (DCA, LCA and the T-conjugates) were observed in livers and serum of mice fed BBR. The expression of BA-synthetic enzymes (Cyp7a1 and 8b1) and uptake transporter (Ntcp) increased 39-400 % in liver of mice fed the higher doses of BBR, whereas nuclear receptors and efflux transporters were not markedly altered. In addition, Bacteroides were enriched in the terminal ileum and large bowel of mice treated with BBR. Conclusion The present study indicated that various doses of BBR have effects on BA metabolism and related genes as well as intestinal flora, which provides insight into many pathways of BBR effects. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1367-7) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
de Waart DR, Naik J, Utsunomiya KS, Duijst S, Ho-Mok K, Bolier AR, Hiralall J, Bull LN, Bosma PJ, Oude Elferink RP, Paulusma CC. ATP11C targets basolateral bile salt transporter proteins in mouse central hepatocytes. Hepatology 2016; 64:161-74. [PMID: 26926206 PMCID: PMC5266587 DOI: 10.1002/hep.28522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/25/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED ATP11C is a homolog of ATP8B1, both of which catalyze the transport of phospholipids in biological membranes. Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type1 in humans, which is characterized by a canalicular cholestasis. Mice deficient in ATP11C are characterized by a conjugated hyperbilirubinemia and an unconjugated hypercholanemia. Here, we have studied the hypothesis that ATP11C deficiency interferes with basolateral uptake of unconjugated bile salts, a process mediated by organic anion-transporting polypeptide (OATP) 1B2. ATP11C localized to the basolateral membrane of central hepatocytes in the liver lobule of control mice. In ATP11C-deficient mice, plasma total bilirubin levels were 6-fold increased, compared to control, of which ∼65% was conjugated and ∼35% unconjugated. Plasma total bile salts were 10-fold increased and were mostly present as unconjugated species. Functional studies in ATP11C-deficient mice indicated that hepatic uptake of unconjugated bile salts was strongly impaired whereas uptake of conjugated bile salts was unaffected. Western blotting and immunofluorescence analysis demonstrated near absence of basolateral bile salt uptake transporters OATP1B2, OATP1A1, OATP1A4, and Na(+) -taurocholate-cotransporting polypeptide only in central hepatocytes of ATP11C-deficient liver. In vivo application of the proteasome inhibitor, bortezomib, partially restored expression of these proteins, but not their localization. Furthermore, we observed post-translational down-regulation of ATP11C protein in livers from cholestatic mice, which coincided with reduced OATP1B2 levels. CONCLUSIONS ATP11C is essential for basolateral membrane localization of multiple bile salt transport proteins in central hepatocytes and may act as a gatekeeper to prevent hepatic bile salt overload. Conjugated hyperbilirubinemia and unconjugated hypercholanemia and loss of OATP expression in ATP11C-deficient liver strongly resemble the characteristics of Rotor syndrome, suggesting that mutations in ATP11C can predispose to Rotor syndrome. (Hepatology 2016;64:161-174).
Collapse
Affiliation(s)
- Dirk R. de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Jyoti Naik
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Kam Ho-Mok
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - A. Ruth Bolier
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan Hiralall
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Laura N. Bull
- Liver Center Laboratory, Department of Medicine, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA
| | - Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio 2016; 7:e02210-15. [PMID: 27048804 PMCID: PMC4817264 DOI: 10.1128/mbio.02210-15] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine-N-oxide (TMAO)-induced AS in ApoE−/− mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA) production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the genera Lactobacillus and Bifidobacterium, which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA) deconjugation and fecal excretion in C57BL/6J and ApoE−/− mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) axis, and increased cholesterol 7a-hydroxylase (CYP7A1) expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis. Recently, trimethylamine-N-oxide (TMAO) has been identified as a novel and independent risk factor for promoting atherosclerosis (AS) partially through inhibiting hepatic bile acid (BA) synthesis. The gut microbiota plays a key role in the pathophysiology of TMAO-induced AS. Resveratrol (RSV) is a natural phytoalexin with prebiotic benefits. A growing body of evidence supports the hypothesis that phenolic phytochemicals with poor bioavailability are possibly acting primarily through remodeling of the gut microbiota. The current study showed that RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling. And RSV-induced hepatic BA neosynthesis was partially mediated through downregulating the enterohepatic farnesoid X receptor-fibroblast growth factor 15 axis. These results offer new insights into the mechanisms responsible for RSV’s anti-AS effects and indicate that the gut microbiota may become an interesting target for pharmacological or dietary interventions to decrease the risk of developing cardiovascular diseases.
Collapse
|
17
|
Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. Drug Metab Dispos 2016; 44:262-74. [PMID: 26586378 PMCID: PMC4746487 DOI: 10.1124/dmd.115.067504] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 01/26/2023] Open
Abstract
Little is known regarding the effect of intestinal microbiota modifiers, such as probiotics and conventionalization with exogenous bacteria, on host hepatic drug metabolism. Therefore, the goal of this study was to determine the effect of these modifiers on the expression of various drug-metabolizing enzymes of the host liver. VSL3 is a probiotic that contains eight live strains of bacteria. Five groups of mice were used: 1) conventional mice (CV), 2) conventional mice treated with VSL3 in drinking water, 3) germ-free (GF) mice, 4) GF mice treated with VSL3, and 5) GF mice exposed to the conventional environment for 2 months. All mice were 3 months old at tissue collection. GF conditions markedly downregulated the cytochrome P450 (P450) 3a gene cluster, but upregulated the Cyp4a cluster, whereas conventionalization normalized their expression to conventional levels [reverse-transcription quantitative polymerase chain reaction (qPCR) and western blot]. Changes in the Cyp3a and 4a gene expression correlated with alterations in the pregnane X receptor and peroxisome proliferator-activated receptor α-DNA binding, respectively (chromatin immunoprecipitation-qPCR). VSL3 increased each bacterial component in the large intestinal content of the CV mice, and increased these bacteria even more in GF mice, likely due to less competition for growth in the GF environment. VSL3 given to conventional mice increased the mRNAs of Cyp4v3, alcohol dehydrogenase 1, and carboxyesterase 2a, but decreased the mRNAs of multiple phase II glutathione-S-transferases. VSL3 given to germ-free mice decreased the mRNAs of UDP-glucuronosyltransferases 1a9 and 2a3. In conclusion, conventionalization and VSL3 alter the expression of many drug-metabolizing enzyme s in the liver, suggesting the importance of considering "bacteria-drug" interactions for various adverse drug reactions in patients.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Fang ZZ, Zhang D, Cao YF, Xie C, Lu D, Sun DX, Tanaka N, Jiang C, Chen Q, Chen Y, Wang H, Gonzalez FJ. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression. Toxicol Appl Pharmacol 2016; 291:21-27. [PMID: 26706406 PMCID: PMC4718832 DOI: 10.1016/j.taap.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4(+) naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Dunfang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Cao
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dan Lu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Dong-Xue Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Selwyn FP, Csanaky IL, Zhang Y, Klaassen CD. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice. Drug Metab Dispos 2015; 43:1544-56. [PMID: 26199423 PMCID: PMC4576674 DOI: 10.1124/dmd.115.065276] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022] Open
Abstract
It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein-coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non-12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid-binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non-12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Iván L Csanaky
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Youcai Zhang
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis D Klaassen
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
20
|
Shin N, Oh JH, Lee YJ. Role of drug transporters: an overview based on knockout animal model studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Song P, Rockwell CE, Cui JY, Klaassen CD. Individual bile acids have differential effects on bile acid signaling in mice. Toxicol Appl Pharmacol 2015; 283:57-64. [PMID: 25582706 DOI: 10.1016/j.taap.2014.12.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/22/2023]
Abstract
Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and pharmacological concentrations of BAs.
Collapse
Affiliation(s)
- Peizhen Song
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Cheryl E Rockwell
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Julia Yue Cui
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
22
|
Cheng X, Zhang Y, Klaassen CD. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum. J Pharmacol Exp Ther 2014; 351:105-13. [PMID: 25034404 PMCID: PMC4165027 DOI: 10.1124/jpet.114.216796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/15/2014] [Indexed: 12/19/2022] Open
Abstract
NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (Y.Z., C.D.K.)
| | - Youcai Zhang
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (Y.Z., C.D.K.)
| | - Curtis D Klaassen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (Y.Z., C.D.K.)
| |
Collapse
|
23
|
Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2014; 56:1085-99. [PMID: 25210150 DOI: 10.1194/jlr.r054114] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322
| | - Saul J Karpen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322
| |
Collapse
|
24
|
Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2014; 4:2384. [PMID: 24064762 DOI: 10.1038/ncomms3384] [Citation(s) in RCA: 550] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/01/2013] [Indexed: 12/16/2022] Open
Abstract
The antioxidant tempol reduces obesity in mice. Here we show that tempol alters the gut microbiome by preferentially reducing the genus Lactobacillus and its bile salt hydrolase (BSH) activity leading to the accumulation of intestinal tauro-β-muricholic acid (T-β-MCA). T-β-MCA is an farnesoid X receptor (FXR) nuclear receptor antagonist, which is involved in the regulation of bile acid, lipid and glucose metabolism. Its increased levels during tempol treatment inhibit FXR signalling in the intestine. High-fat diet-fed intestine-specific Fxr-null (Fxr(ΔIE)) mice show lower diet-induced obesity, similar to tempol-treated wild-type mice. Further, tempol treatment does not decrease weight gain in Fxr(ΔIE) mice, suggesting that the intestinal FXR mediates the anti-obesity effects of tempol. These studies demonstrate a biochemical link between the microbiome, nuclear receptor signalling and metabolic disorders, and suggest that inhibition of FXR in the intestine could be a target for anti-obesity drugs.
Collapse
Affiliation(s)
- Fei Li
- 1] Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kazgan N, Metukuri MR, Purushotham A, Lu J, Rao A, Lee S, Pratt-Hyatt M, Lickteig A, Csanaky IL, Zhao Y, Dawson PA, Li X. Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1α-FXR signaling and alters systemic bile acid homeostasis. Gastroenterology 2014; 146:1006-16. [PMID: 24389307 PMCID: PMC4142427 DOI: 10.1053/j.gastro.2013.12.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/26/2013] [Accepted: 12/20/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Sirtuin 1 (SIRT1), the most conserved mammalian oxidized nicotinamide adenine dinucleotide-dependent protein deacetylase, is an important metabolic sensor in many tissues. However, little is known about its role in the small intestine, which absorbs and senses nutrients. We investigated the functions of intestinal SIRT1 in systemic bile acid and cholesterol metabolism in mice. METHODS SIRT1 was specifically deleted from the intestines of mice using the flox-Villin-Cre system (SIRT1 iKO mice). Intestinal and hepatic tissues were collected, and bile acid absorption was analyzed using the everted gut sac experiment. Systemic bile acid metabolism was studied in SIRT1 iKO and flox control mice placed on standard diets, diets containing 0.5% cholic acid or 1.25% cholesterol, or lithogenic diets. RESULTS SIRT1 iKO mice had reduced intestinal farnesoid X receptor (FXR) signaling via hepatocyte nuclear factor 1α (HNF-1α) compared with controls, which reduced expression of the bile acid transporter genes Asbt and Mcf2l (encodes Ost) and absorption of ileal bile acids. SIRT1 regulated HNF-1α/FXR signaling partially through dimerization cofactor of HNF-1a (Dcoh2) Dcoh2, which increases dimerization of HNF-1α. SIRT1 was found to deacetylate Dcoh2, promoting its interaction with HNF-1α and inducing DNA binding by HNF-1α. Intestine-specific deletion of SIRT1 increased hepatic bile acid biosynthesis, reduced hepatic accumulation of bile acids, and protected animals from liver damage from a diet high in levels of bile acids. CONCLUSIONS Intestinal SIRT1, a key nutrient sensor, is required for ileal bile acid absorption and systemic bile acid homeostasis in mice. We delineated the mechanism of metabolic regulation of HNF-1α/FXR signaling. Reagents designed to inhibit intestinal SIRT1 might be developed to treat bile acid-related diseases such as cholestasis.
Collapse
Affiliation(s)
- Nevzat Kazgan
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mallikarjuna R Metukuri
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Aparna Purushotham
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jing Lu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Anuradha Rao
- Section on Gastroenterology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sangkyu Lee
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Matthew Pratt-Hyatt
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Iván L Csanaky
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Yingming Zhao
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Paul A Dawson
- Section on Gastroenterology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.
| |
Collapse
|
26
|
Zhang Y, Limaye PB, Renaud HJ, Klaassen CD. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol Appl Pharmacol 2014; 277:138-45. [PMID: 24657338 DOI: 10.1016/j.taap.2014.03.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/24/2022]
Abstract
Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin+imipenem and cephalothin+neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin+imipenem but stimulated by cephalothin+neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism.
Collapse
Affiliation(s)
- Youcai Zhang
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Pallavi B Limaye
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Helen J Renaud
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
27
|
Adachi T, Kaminaga T, Yasuda H, Kamiya T, Hara H. The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury. J Clin Biochem Nutr 2013; 54:129-35. [PMID: 24688223 PMCID: PMC3947968 DOI: 10.3164/jcbn.13-46] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Secondary bile acids produced by enteric bacteria accumulate to high levels in the enterohepatic circulation and may contribute to the pathogenesis of hepatocellular injury. Relative hydrophobicity has been suggested to be an important determinant of the biological properties of these compounds, although the mechanism by which bile acids induce pathogenesis is not fully understood. On the other hand, endoplasmic reticulum stress has been shown to be involved in the induction and development of various pathogenic conditions. In this report, we demonstrated that the intensities of cytotoxicity and endoplasmic reticulum stress in HepG2 cells triggered by the bile acids tested were largely dependent on their hydrophobicity. The activation of caspase-3 and DNA fragmentation by treatment with chenodeoxycholic acid showed the contribution of apoptosis to cytotoxicity. Increases in intracellular calcium levels and the generation of reactive oxygen species stimulated by treatment with chenodeoxycholic acid contributed to endoplasmic reticulum stress. Bile acids also induced transforming growth factor-β, a potent profibrogenic factor, which is known to induce hepatocyte apoptosis and ultimately liver fibrosis. In conclusion, our study demonstrated that bile acids induced endoplasmic reticulum stress, which in turn stimulated apoptosis in HepG2 cells, in a hydrophobicity-dependent manner.
Collapse
Affiliation(s)
- Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tomoyuki Kaminaga
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroyuki Yasuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
28
|
Fu ZD, Klaassen CD. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicol Appl Pharmacol 2013; 273:680-90. [PMID: 24183703 DOI: 10.1016/j.taap.2013.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/16/2013] [Accepted: 10/20/2013] [Indexed: 12/15/2022]
Abstract
Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a "dose-response" model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR "dose-dependently" increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | |
Collapse
|
29
|
Zhang Y, Csanaky IL, Selwyn FP, Lehman-McKeeman LD, Klaassen CD. Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism. Biochem Pharmacol 2013; 86:437-45. [PMID: 23747753 DOI: 10.1016/j.bcp.2013.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 01/16/2023]
Abstract
Organic anion transporting polypeptides (human: OATPs; rodent: Oatps) were thought to have important functions in bile acid (BA) transport. Oatp1a1, 1a4, and 1b2 are the three major Oatp1 family members in rodent liver. Our previous studies have characterized the BA homeostasis in Oatp1a1-null and Oatp1b2-null mice. The present study investigated the physiological role of Oatp1a4 in BA homeostasis by using Oatp1a4-null mice. Oatp1a4 expression is female-predominant in livers of mice, and thereby it was expected that female Oatp1a4-null mice will have more prominent changes than males. Interestingly, the present study demonstrated that female Oatp1a4-null mice had no significant alterations in BA concentrations in serum or liver, though they had increased mRNA of hepatic BA efflux transporters (Mrp4 and Ostα/β) and ileal BA transporters (Asbt and Ostα/β). In contrast, male Oatp1a4-null mice showed significantly altered BA homeostasis, including increased concentrations of deoxycholic acid (DCA) in serum, liver and intestinal contents. After feeding a DCA-supplemented diet, male but not female Oatp1a4-null mice had higher concentrations of DCA in serum and livers than their WT controls. This suggested that Oatp1a4 is important for intestinal absorption of secondary BAs in male mice. Furthermore, loss of Oatp1a4 function did not decrease BA accumulation in serum or livers of bile-duct-ligated mice, suggesting that Oatp1a4 is not likely a BA uptake transporter. In summary, the present study for the first time demonstrates that Oatp1a4 does not appear to mediate the hepatic uptake of BAs, but plays an important male-predominant role in secondary BA metabolism in mice.
Collapse
Affiliation(s)
- Youcai Zhang
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| | | | | | | | | |
Collapse
|
30
|
Zhang Y, Csanaky IL, Cheng X, Lehman-McKeeman LD, Klaassen CD. Organic anion transporting polypeptide 1a1 null mice are sensitive to cholestatic liver injury. Toxicol Sci 2012; 127:451-62. [PMID: 22461449 DOI: 10.1093/toxsci/kfs123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na(+)-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance-associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis.
Collapse
Affiliation(s)
- Youcai Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|