1
|
Carrillo-Godoy N, Rondón-Barragán IS. Molecular Characterization of High Mobility Group Box 1a ( HMGB1a) Gene in Red-Bellied Pacu, Piaractus brachypomus. Vet Med Int 2023; 2023:2774528. [PMID: 37325273 PMCID: PMC10264711 DOI: 10.1155/2023/2774528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a chromosomal protein in the nucleus and a potent extracellular proinflammatory cytokine, widely described in mammals, nevertheless, with scarce reports in fish. In this study, full open reading frame of HMGB1a gene from Piaractus brachypomus is reported as well as its molecular characterization, including tissue gene expression. At predicted protein level, HMGB1a showed similarities with its orthologs in teleosts and higher vertebrates. The relative gene expression of HMGB1a mRNA was measured in several tissues including the brain, where a differential expression appeared in brain regions, i.e., higher expression in the cerebellum and telencephalon. In addition, in an assay of sublethal exposure to chlorpyrifos, upregulation of HMGB1a was detected in optic chiasm. Furthermore, in a traumatic brain injury model, upregulation of HMGB1a expression was evident 24 hours after lesion and remained higher up to 14 days. These findings suggest a role for HMGB1a in brain damage and its candidature as biomarker of brain injury; however, more studies are required to elucidate the functions of HMGB1a and its regulation in P. brachypomus.
Collapse
Affiliation(s)
- Nicolas Carrillo-Godoy
- Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Ibagué-Tolima 730006299, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Ibagué-Tolima 730006299, Colombia
| |
Collapse
|
2
|
Chen D, Lu L, Wang H, Peng S, Liu J, Zhang X, Li Z, Huang X, Ouyang P, Qu L, Geng Y. Expression profiling and inflammatory activation analysis of high-mobility group box 1 in Schizothorax prenanti. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:174-183. [PMID: 36063081 DOI: 10.1002/aah.10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE High-mobility group box 1 (HMGB1) is a highly conserved nuclear protein and participates in the immune response to pathogens in bony fish. In this study, the structure and function of HMGB1 in the cyprinid fish Schizothorax prenanti (SpHMGB1) were investigated. METHODS The spatial structure of SpHMGB1 was predicted by CPHmodels. Quantitative reverse transcription PCR was used to detect the mRNA of SpHMGB1 in different tissues and Streptococcus agalactiae infection. The macrophage was treated with synthetic SpHMGB1-B box peptide to analyze the inflammatory activity. RESULT Structurally, SpHMGB1 had the conserved A box, B box, and acid tail compared with Zebrafish Danio rerio and mice Mus musculus. SpHMGB1 was universally expressed in various tissues, with the highest expression in the middle kidney. In vivo, SpHMGB1 was significantly induced in response to Streptococcus agalactiae infection in the blood and spleen. Synthetic SpHMGB1-B box peptide activated respiratory burst and up-regulated the messenger RNA expression of interleukin-1β, tumor necrosis factor α, interleukin-10, interferon regulatory factor 1, interferon regulatory factor 7, C-X-C motif chemokine ligand 11-1, C-X-C motif chemokine ligand 11-2, and toll-like receptor 4 in macrophages. CONCLUSION This study suggested that SpHMGB1 participated in the response to bacterial pathogens and that SpHMGB1-B box peptide played an important role in mediating the immune response of S. prenanti.
Collapse
Affiliation(s)
- Defang Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hong Wang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuang Peng
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxi Liu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lianshi Qu
- Ya'an Fishery Development Center, Ya'an, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Chen Y, Yu C, Jiang S, Sun L. Japanese Flounder HMGB1: A DAMP Molecule That Promotes Antimicrobial Immunity by Interacting with Immune Cells and Bacterial Pathogen. Genes (Basel) 2022; 13:genes13091509. [PMID: 36140677 PMCID: PMC9498587 DOI: 10.3390/genes13091509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
High mobility group box (HMGB) proteins are DNA-associated proteins that bind and modulate chromosome structures. In mammals, HMGB proteins can be released from the cell nucleus and serve as a damage-associated molecular pattern (DAMP) under stress conditions. In fish, the DAMP function of HMGB proteins in association with bacterial infection remains to be investigated. In this study, we examined the immunological functions of two HMGB members, HMGB1 and HMG20A, of Japanese flounder. HMGB1 and HMG20A were expressed in multiple tissues of the flounder. HMGB1 was released from peripheral blood leukocytes (PBLs) upon bacterial challenge in a temporal manner similar to that of lactate dehydrogenase release. Recombinant HMGB1 bound to PBLs and induced ROS production and the expression of inflammatory genes. HMGB1 as well as HMG20A also bound to various bacterial pathogens and caused bacterial agglutination. The bacteria-binding patterns of HMGB1 and HMG20A were similar, and the binding of HMGB1 competed with the binding of HMG20A but not vice versa. During bacterial infection, HMGB1 enhanced the immune response of PBLs and repressed bacterial invasion. Collectively, our results indicate that flounder HMGB1 plays an important role in antimicrobial immunity by acting both as a modulator of immune cells and as a pathogen-interacting DAMP.
Collapse
Affiliation(s)
- Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
4
|
CgHMGB1 functions as a broad-spectrum recognition molecule to induce the expressions of CgIL17-5 and Cgdefh2 via MAPK or NF-κB signaling pathway in Crassostrea gigas. Int J Biol Macromol 2022; 211:289-300. [PMID: 35525493 DOI: 10.1016/j.ijbiomac.2022.04.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved nucleoprotein, functions in immune recognition, inflammation and antibacterial immunization in vertebrates. In the present study, the mediation mechanism of CgHMGB1 in activating MAPK and NF-κB/Rel signaling pathways to induce the expressions of immune effectors was investigated. CgHMGB1 mRNA was detected in all tested developmental stages from fertilized egg to D-larvae, with the higher expressions in 4-cell and 8-cell stages. CgHMGB1 proteins were mainly distributed in haemocyte granulocytes. The expressions of CgHMGB1 mRNA in haemocytes increased significantly after Vibrio splendidus stimulation, and CgHMGB1 protein translocated into the haemocyte cytoplasm and release into cell-free haemolymph. The phosphorylation of CgERK and CgP38 were induced, the nuclear translocation of CgRel were promoted, and the mRNA expressions of CgIL17-5 and Cgdefh2 increased significantly after rCgHMGB1 treatment. Obvious branchial swelling and cilium shedding were observed after rCgHMGB1 treatment. rCgHMGB1 exhibited binding activity to different polysaccharides, bacteria, and fungi. rCgHMGB1 also displayed obvious antibacterial activity to V. splendidus and E. coli. These results indicated that CgHMGB1 functioned as an immune recognition molecule to recognize various PAMPs and bacteria to induce the mRNA expressions of CgIL17-5 and Cgdefh2 via the activation of MAPK and NF-κB signaling pathways in oysters.
Collapse
|
5
|
Zhou ZB, Zhang MJ, He YY, Bao SC, Zhang XY, Li W, Zhang QH. Identification and functional characterization of an immune adapter molecular TRIF in Northeast Chinese lamprey (Lethenteron morii). FISH & SHELLFISH IMMUNOLOGY 2022; 124:454-461. [PMID: 35452833 DOI: 10.1016/j.fsi.2022.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The TIR domain-containing adaptor inducing IFN-β (TRIF) is an adaptor molecule that plays a critical role in the Toll-like receptors (TLRs)-mediated innate immune signaling pathway. Lamprey, as the most primitive jawless vertebrate, rely mainly on innate immunity to defend against various pathogens infection. The function of TRIF in lamprey remains unknown. In this study, a homologous adaptor molecule TRIF, named LmTRIF, was identified in Northeast Chinese lamprey (Lethenteron morii). The LmTRIF coding sequence (cds) is 1242 bp in length and encodes 413 amino acids (aa). Domain analysis showed that LmTRIF is characterized with the classical TIR domain and a lack of TRAF6 binding motif. The results of evolutionary tree indicated that the relationship between LmTRIF and other homologous proteins was consistent with the position of lamprey in the species evolutionary history. The relative expression of LmTRIF was highest in the liver of larvae and in the gill of adults, respectively. Cellular immunofluorescence assays showed that LmTRIF was expressed in the cytoplasma in both mammalian cell line HEK 293T and the fish cell line EPC. The double luciferase reporter gene assay showed that the overexpression of LmTRIF promoted the activity of NF-κB, an immune transcription factor downstream of the classical TLR signaling pathway. In this study, we identified the TLR adaptor molecule TRIF from L. morii, a vertebrate more primitive than fish. Our results suggested an important role of LmTRIF in the innate immune signal transduction process of L. morii and is the basis for the origin and evolution of the TLR signaling pathway in the innate immune system in vertebrates.
Collapse
Affiliation(s)
- Ze-Bin Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Meng-Jie Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuan-Yuan He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Shi-Cheng Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang-Yang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Qing-Hua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Ma A, Gou M, Song T, Li J, Zhu Y, Pang Y, Li Q. Genomic analysis and functional characterization of immune genes from the RIG-I- and MAVS-mediated antiviral signaling pathway in lamprey. Genomics 2021; 113:2400-2412. [PMID: 33887365 DOI: 10.1016/j.ygeno.2021.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/03/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are well-known viral RNA sensors in the cytoplasm. RIG-I-mediated antiviral signals are activated by interacting with the adapter protein mitochondrial antiviral signaling (MAVS), which triggers interferon (IFN) responses via a signaling cascade. Although the complete RIG-I receptor signaling pathway has been traced back to teleosts, definitive evidence of its presence in lampreys is lacking. Here, we identified 13 pivotal molecules in the RIG-I signaling pathway in lamprey, and demonstrated that the original RIG-I/MAVS signaling pathway was activated and mediated the expression of unique immunity factors such as RRP4, to inhibit viral proliferation after viral infection in vivo and in vitro. This study confirmed the conservation of the RIG-I pathway, and the uniqueness of the RRP4 effector molecule in lamprey, and further clarified the evolutionary process of the RIG-I antiviral signaling pathway, providing evidence on the origins of innate antiviral immunity in vertebrates.
Collapse
Affiliation(s)
- Anqi Ma
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Tao Song
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yigao Zhu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
7
|
Wang Y, Xiao X, Wang F, Yang Z, Yue J, Shi J, Ke F, Xie Z, Fan Y. An identified PfHMGB1 promotes microcystin-LR-induced liver injury of yellow catfish (Pelteobagrus fulvidraco). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111266. [PMID: 32919194 DOI: 10.1016/j.ecoenv.2020.111266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin that can cause liver inflammation and injury. However, the mode of action of related inflammatory factors is not fully understood. PfHMGB1 is an inflammatory factor induced at the mRNA level in the liver of juvenile yellow catfish (Pelteobagrus fulvidraco) that were intraperitoneally injected with 50 μg/kg MC-LR. The PfHMGB1 mRNA level was highest in the liver and muscle among 11 tissues examined. The full-length cDNA sequence of PfHMGB1 was cloned and overexpressed in E. coli, and the purified protein rPfHMGB1 demonstrated DNA binding affinity. Endotoxin-free rPfHMGB1 (6-150 μg/mL) also showed dose-dependent hepatotoxicity and induced inflammatory gene expression of primary hepatocytes. PfHMGB1 antibody (anti-PfHMGB1) in vitro reduced MC-LR (30 and 50 μmol/L)-induced hepatotoxicity, suggesting PfHMGB1 is important in the toxic effects of MC-LR. In vivo study showed that MC-LR upregulated PfHMGB1 protein in the liver. The anti-PfHMGB1 blocked its counterpart and reduced ALT/AST activities after MC-LR exposure. Anti-PfHMGB1 partly neutralized MC-LR-induced hepatocyte disorganization, nucleus shrinkage, mitochondria, and rough endoplasmic reticula destruction. These findings suggest that PfHMGB1 promotes MC-LR-induced liver damage in the yellow catfish. HMGB1 may help protect catfish against widespread microcystin pollution.
Collapse
Affiliation(s)
- Yun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Hubei Province, Wuhan, 430056, China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Xiaoxue Xiao
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Feijie Wang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zupeng Yang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jingkai Yue
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jiale Shi
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhaohui Xie
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yanru Fan
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
8
|
Wang D, Gou M, Hou J, Pang Y, Li Q. The role of serpin protein on the natural immune defense against pathogen infection in Lampetra japonica. FISH & SHELLFISH IMMUNOLOGY 2019; 92:196-208. [PMID: 31176010 DOI: 10.1016/j.fsi.2019.05.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Serine protease inhibitors (serpins) are a large protein family that is involved in various physiological processes and is known to regulate innate immunity pathways. However, research for the functional study of serpins in lamprey is limited. In the present study, a serpin gene was cloned and characterized from Lampetra japonica at molecular, protein and cellular levels, named L-serpin which belongs to family F serine protease inhibitors (serpin family). The L-serpin includes a serpin domain in the N-terminus. The mRNA transcript of L-serpin was extensively expressed in kidney, supraneural body, intestine, liver, heart, gill and the highest expression in leukocytes. The mRNA expression level of L-serpin increased significantly after Vibrio anguillarum, Staphylocccus aureus and Poly I:C stimulation and dramatically peak at 8 h. It is demonstrated that the L-serpin protected cells from lethal Gram-negative endotoxemia through associating with inhibition of lipopolysaccharide (LPS)-triggered cell death and inflammatory factors expression. Surface plasmon resonance (SPR) and the microbe binding assay were used to determine that L-serpin interacts directly with LPS (KD = 6.14 × 10-7 M). Furthermore, we confirmed L-serpin is a major inhibitor of complement activation by inactivating lamprey-C1q protein (KD = 2.06 × 10-6 M). Taken together, these findings suggest that L-serpin is a endogenous anti-inflammatory factor to defend against Gram-negative bacterial challenge and involved in lamprey innate immunity.
Collapse
Affiliation(s)
- Dayu Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Jianqiang Hou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
9
|
Li C, Wang D, Guan X, Liu S, Su P, Li Q, Pang Y. HMGB1 from Lampetra japonica promotes inflammatory activation in supraneural body cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:50-59. [PMID: 30423344 DOI: 10.1016/j.dci.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
High mobility group box protein 1 (HMGB1) acts as a potent proinflammatory cytokine that involves in the pathogenesis of diverse inflammatory and infectious disorders. In previous study, we identified a homolog of HMGB1 in the Lampetra japonica(L-HMGB1), and further revealed that L-HMGB1 was able to induce the production of tumor necrosis factor-α (TNF-α) in activated human acute monocytic leukemia cells. However, the role of L-HMGB1 played in lamprey was unknown. Here, we found that L-HMGB1 was located in the cytoplasm of lamprey leukocytes and supraneural body (SB) cells. Importantly, we demonstrated that L-HMGB1 participated in activation of various key molecules in inflammation signaling pathway. LPS also promoted the release of L-HMGB1 from SB cells similar to Hu-HMGB1, and then extracellular L-HMGB1 in turn induced the release of cytokines. This study revealed that the synergistic action of LPS and L-HMGB1 played a crucial role in inflammation in lamprey. Our results suggested that lampreys used L-HMGB1 to activate their innate immunity for the purpose of pathogen defense.
Collapse
Affiliation(s)
- Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Dong Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xin Guan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Shuang Liu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
10
|
Li J, Han Y, Zhu T, Pang Y, Li Q. Immune-related gene expression in the early development of lamprey larva. Acta Biochim Biophys Sin (Shanghai) 2018; 50:938-940. [PMID: 30032280 DOI: 10.1093/abbs/gmy083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Infectious Diseases Control and Prevention, Liaoning Institute of Freshwater Fisheries Sciences, Liaoyang, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Ting Zhu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
11
|
Cai X, Gao C, Su B, Tan F, Yang N, Wang G. Expression profiling and microbial ligand binding analysis of high-mobility group box-1 (HMGB1) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2018; 78:100-108. [PMID: 29679761 DOI: 10.1016/j.fsi.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, was involved in nucleosome formation and transcriptional regulation, and could also act as an extracellular cytokine to trigger inflammation and immune responses. In this study, we identified a HMGB1 gene in turbot (Scophthalmus maximus L.). The full-length SaHMGB1 cDNA includes an open reading frame of 615 bp which encoded a 204 amino acid polypeptide with an estimated molecular mass of 23.19 kDa. SaHMGB1 was closely related to several fish HMGB1 and shared 74.4% overall identity with human. In addition, phylogenetic analyses revealed SaHMGB1 showed the closest relationship to Larimichthys crocea. Furthermore, QPCR analysis showed that SaHMGB1 was expressed in all examined tissues with abundant expression levels in brain, gill, intestine, and head kidney, and showed different expression patterns following different bacterial challenge. The significant quick regulation of SaHMGB1 in mucosal surfaces against infection suggest that HMGB1 might play critical roles in mucosal immunity against bacterial challenge. Finally, the in vitro binding assay showed that SaHMGB1 had strong binding ability to LPS, LTA, and PGN. Functional studies should further characterize HMGB1 function to understand the importance of the integrity of the mucosal barriers against infection, and to facilitate selection of the disease resistant family/strain in turbot.
Collapse
Affiliation(s)
- Xin Cai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Guodong Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
12
|
Li Y, Zhang W, Zuo Y, Zhu T, Pang Y, Li T, Li Q. Label-Free Quantitative Proteomic Reveals Differentially Expressed Proteins in Aeromonas-Immunostimulated Leukocytes of Lampetra japonica. Curr Microbiol 2018. [DOI: 10.1007/s00284-018-1468-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Wang Z, Lu J, Li C, Li Q, Pang Y. Characterization of the LECT2 gene and its protective effects against microbial infection via large lymphocytes in Lampetra japonica. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:75-85. [PMID: 29056545 DOI: 10.1016/j.dci.2017.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional protein of the innate immune system that defends against bacterial infections and chemotactic activity. However, its precise function in lamprey remains unclear. In this study, a novel LECT2 gene was first cloned from Lampetra japonica. The full-length cDNA sequence of L-LECT2 consists of a 606-bp ORF encoding a protein of 201 amino acid residues. L-LECT2 has greater than 50% sequence identity with its homologs in jawed vertebrates. FACS and immunohistochemistry assays were used to determine that the L-LECT2 protein was primarily distributed in the intestines and supraneural body tissues of lamprey, also marginally detectable in leukocytes. However, the expression of L-LECT2 was differentially upregulated in the intestines and heart after treatment with LPS. The recombinant L-LECT2 resulted in significant promoting migration of the leukocytes in vitro. Our data demonstrate that L-LECT2 treatment could enhance phagocytosis in lamprey large lymphocytes. Thus, our results suggest that LECT2 can modulate the host defense in lamprey and mediate antibacterial protection against E.coli through large lymphocytes.
Collapse
Affiliation(s)
- Zhiliang Wang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
14
|
Li Y, Xie W, Li Q. Understanding the lipopolysaccharide induced liver proteome changes and identification of immune genes in Lampetra morii. AQUACULTURE AND FISHERIES 2016. [DOI: 10.1016/j.aaf.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Xin-Peng Z, Yong-Hua H, Yong L, Jing-Jing W, Guang-Hua W, Ren-Jie W, Min Z. A high-mobility group box 1 that binds to DNA, enhances pro-inflammatory activity, and acts as an anti-infection molecule in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2016; 56:402-409. [PMID: 27492120 DOI: 10.1016/j.fsi.2016.07.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/19/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
High-mobility group box (HMGB) 1 is a chromosomal protein that plays critical roles in DNA transcription, replication and repair. In addition, HMGB1 functions as a pro-inflammatory molecule in many vertebrates and invertebrates. In teleosts, very limited studies of HMGB1 have been reported. In this study, we identified a HMGB1 homologue (SsHMGB1) from black rockfish (Sebastes schlegelii) and analyzed its structure, expression and biological function. The open reading frame of SsHMGB1 is 621 bp, with a 5'-untranslated region (UTR) of 62 bp and a 3'-UTR of 645 bp. SsHMGB1 contains two typical HMG boxes and an acidic C-terminal tail. The deduced amino acid sequence of SsHMGB1 shares the highest overall identity (89.4%) with the HMGB1 of Anoplopoma fimbria. The expression of SsHMGB1 occurred in multiple tissues and was highest in the brain. Moreover, the mRNA level of SsHMGB1 in head kidney (HK) macrophages could be induced by Listonella anguillarum in a time-dependent manner. Recombinant SsHMGB1 purified from Escherichia coli (i) bound DNA fragments in a dose-dependent manner; and (ii) induced the expression of cytokines in HK macrophages, including a significant increase in TNF-α activity and enhanced mRNA level of TNF13B and IL-1 β, which are known to be involved in antibacterial defense; moreover, (iii) significantly improved the macrophage bactericidal activity together with reduced pathogen dissemination and replication of bacteria in fish kidney. These results indicated that SsHMGB1 is a novel HMGB1 that possesses apparent immunoregulatory properties and is likely to be involved in fighting bacterial infection.
Collapse
Affiliation(s)
- Zhao Xin-Peng
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Yong-Hua
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Liu Yong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Jing-Jing
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Guang-Hua
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Ren-Jie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhang Min
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
Characterisation of the bacterial community structures in the intestine of Lampetra morii. Antonie van Leeuwenhoek 2016; 109:979-86. [DOI: 10.1007/s10482-016-0699-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/17/2016] [Indexed: 10/21/2022]
|
17
|
Pei G, Liu G, Pan X, Pang Y, Li Q. L-C1qDC-1, a novel C1q domain-containing protein from Lethenteron camtschaticum that is involved in the immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:66-74. [PMID: 26342581 DOI: 10.1016/j.dci.2015.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
The C1q domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain at their C-terminus. These proteins are involved in various processes in vertebrates and are assumed to serve as important pattern recognition receptors in innate immunity in invertebrates. Here, a novel C1qDC protein from Lethenteron camtschaticum was identified and characterized (designated as L-C1qDC-1). After a partial cDNA sequence of L-C1qDC-1 was identified in a L. camtschaticum liver cDNA library, the full-length cDNA was obtained using 3'- and 5'-rapid amplification of cDNA ends (RACE). L-C1qDC-1 encodes 236 amino acids and contains a signal peptide, a collagen-like sequence with Gly-Xaa-Yaa repeats, and a C-terminal gC1q domain. The L-C1qDC-1 protein was primarily distributed in the gut, liver and supraneural body of L. camtschaticum and was also marginally detectable in leukocytes via real-time PCR and immunofluorescence assays. Furthermore, both immunoprecipitation and immunofluorescence results showed that in L. camtschaticum serum, L-C1qDC-1 could interact with variable lymphocyte receptor (VLR) B and displayed strong colocalization with cancer cell immune responses. These results indicated that the L-C1qDC-1 gene encodes a novel C1qDC protein that may play an important role in the immune responses of L. camtschaticum, providing clues for understanding the universal functions of C1qDC proteins in other species and suggesting that these proteins could serve as pattern recognition molecules in immunotherapy.
Collapse
Affiliation(s)
- Guangying Pei
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Ge Liu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Xiong Pan
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
18
|
Zhao C, Wang D, Feng B, Gou M, Liu X, Li Q. Identification and characterization of aldehyde dehydrogenase 9 from Lampetra japonica and its protective role against cytotoxicity. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:102-9. [DOI: 10.1016/j.cbpb.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/16/2014] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
|
19
|
Pang Y, Liu S, Zheng Z, Liu X, Li Q. Identification and characterization of the lamprey IRF gene. Immunol Lett 2015; 164:55-64. [DOI: 10.1016/j.imlet.2015.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/14/2015] [Accepted: 02/15/2015] [Indexed: 01/23/2023]
|
20
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
21
|
Cai J, Xia H, Huang Y, Lu Y, Wu Z, Jian J. Molecular cloning and characterization of high mobility group box1 (Ls-HMGB1) from humphead snapper, Lutjanus sanguineus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:539-544. [PMID: 25120217 DOI: 10.1016/j.fsi.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/20/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
High mobility group box1 (HMGB1) is a kind of chromatin-associated nonhistone protein important for nucleosome formation, transcriptional regulation and inflammation. However, the reports about HMGB1 of marine fish were still limited. Here, we cloned and characterized a HMGB1 gene from humphead snapper, Lutjanus sanguineus (Ls-HMGB1). The Ls-HMGB1 cDNA composed of 1199 bp with a 70 bp of 5'-UTR, 630 bp open reading frame (ORF) and 499 bp 3'-UTR, encoded a polypeptide of 210 amino acids (GenBank Accession No: KJ783442). Sequence alignment of Ls-HMGB1 showed the highest similarity of 91% with Sciaenops ocellatus HMGB1 protein. Quantitative real-time PCR (qRT-PCR) analysis revealed that Ls-HMGB1 had relatively high expression level in skin, kidney and heart. After Vibrio harveyi and poly I:C stimulation, transcripts of Ls-HMGB1 were significantly increased and reached to peak at 18 h p.i. The L. sanguineus interleukin-6 (Ls-IL6) transcription in HK leukocytes was significantly induced by recombinant LsHMGB1 (rLsHMGB1). These results indicated that Ls-HMGB1 may play an important role in immune response of L. sanguineus during pathogen challenge.
Collapse
Affiliation(s)
- Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Hongli Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China.
| |
Collapse
|
22
|
Han Y, Pang Y, Yu T, Xiao R, Shi B, Su P, Liu X, Li Q. Lamprey serum can kill HeLa and NB4 tumor cells. Acta Biochim Biophys Sin (Shanghai) 2014; 46:623-6. [PMID: 24850304 DOI: 10.1093/abbs/gmu039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Tao Yu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Rong Xiao
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Biyue Shi
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Xin Liu
- Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
23
|
Han Y, Liu X, Yu T, Shi B, Xiao R, Pang Y, Li Q. A novel member of B-cell linker protein identified in lamprey, Lampetra japonica. Acta Biochim Biophys Sin (Shanghai) 2014; 46:526-30. [PMID: 24785332 DOI: 10.1093/abbs/gmu027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Tao Yu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Biyue Shi
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Rong Xiao
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
24
|
Yue P, Rong X, Zhuang X, Sha HJ, Li JM, Xin L, Li QW. Cloning and expression analysis of a novel high-mobility group box 2 homologue from Lampetra japonica. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:625-634. [PMID: 24158500 PMCID: PMC3948571 DOI: 10.1007/s10695-013-9871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
High-mobility group box 2 (HMGB2) is a nonhistone architectural protein that plays important roles in many biological processes. In this study, we cloned a homologue of the HMGB2 from the lymphocyte-like cells of Lampetra japonica (L. japonica). Sequence analysis reveals that L. japonica HMGB2 contains two highly conserved motifs and shares more than 70 % identity with the homologues from other vertebrate species. Subsequently, Lj-HMGB2 was subcloned into the pET-28a(+) and pIRES2 AcGFP1-Nuc vector and expressed in Rosetta blue (DE3) and Hela cell lines, respectively. The recombinant L. japonica HMGB2 (rLj-HMGB2) with apparent molecular mass of 22 kDa was further purified by His-Bind affinity chromatography. Real-time quantitative PCR indicates that the expression level of Lj-HMGB2 was particularly up-regulated in intestines after challenged with lipopolysaccharide, while up-regulated in lymphocyte-like cells and heart after challenged with concanavalin A in vivo. In addition, rLj-HMGB2 could induce the generation of proinflammatory mediators in the activated human acute monocytic leukemia cell line (THP1), which suggested that Lj-HMGB2 may participate in the immune response of the lampreys.
Collapse
Affiliation(s)
- Pang Yue
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Xiao Rong
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Xue Zhuang
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Huang Jin Sha
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Jin Min Li
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Liu Xin
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Qing Wei Li
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| |
Collapse
|
25
|
Wang M, Wang L, Guo Y, Zhou Z, Yi Q, Zhang D, Zhang H, Liu R, Song L. A high mobility group box 1 (HMGB1) gene from Chlamys farreri and the DNA-binding ability and pro-inflammatory activity of its recombinant protein. FISH & SHELLFISH IMMUNOLOGY 2014; 36:393-400. [PMID: 24378681 DOI: 10.1016/j.fsi.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
High-mobility group box 1 (HMGB1) protein, a highly conserved DNA binding protein, plays an important role in maintaining nucleosome structures, transcription, and inflammation. In the present research, a cDNA of 1268 bp for the Zhikong scallop Chlamys farreri HMGB1 (designed as CfHMGB1) was cloned via rapid amplification of cDNA ends (RACE) technique and expression sequence tag (EST) analysis. The complete cDNA sequence of CfHMGB1 contained an open reading frame (ORF) of 648 bp, which encoded a protein of 215 amino acids. The amino acid sequence of CfHMGB1 shared 53-57% similarity with other identified HMGB1s. There were two HMG domains, two low complexity regions and a conserved acidic tail in the amino acid sequence of CfHMGB1. The mRNA transcripts of CfHMGB1 were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas, kidney and gonad, with the highest expression level in hepatopancreas. The mRNA expression profiles of CfHMGB1 in haemocytes after the stimulation with different pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (Glu), were similar with an up-regulation in the early stage and then recovered to the original level. The recombinant CfHMGB1 protein could bind double-stranded DNA and induce the release of TNF-α activity in mixed primary culture of scallop haemocytes. These results collectively indicated that CfHMGB1, with DNA-binding ability and pro-inflammatory activity, could play an important role in the immune response of scallops.
Collapse
Affiliation(s)
- Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Ying Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Qilin Yi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoxiang Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China.
| |
Collapse
|
26
|
Li J, Zhang Y, Xiang Z, Xiao S, Yu F, Yu Z. High mobility group box 1 can enhance NF-κB activation and act as a pro-inflammatory molecule in the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2013; 35:63-70. [PMID: 23583349 DOI: 10.1016/j.fsi.2013.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/11/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, is involved in nucleosome formation and transcriptional regulation, and can also act as an extracellular cytokine to trigger inflammation and immune responses. In this study, we identified a HMGB1 gene (hereafter designated as CgHMGB1) in the Pacific oyster Crassostrea gigas. The full-length CgHMGB1 cDNA is 833 bp including 5' and 3'-untranslated regions (UTRs) of 145 and 79 bp, respectively, and an open reading frame (ORF) of 609 bp. The gene encodes a 202 amino acid polypeptide with an estimated molecular mass of 23.3 kDa. Sequence alignment shows that CgHMGB1 contains two basic HMG boxes and a highly acidic C-terminal domain. Recombinant CgHMGB1 proteins can enhance the mRNA level of various inflammatory cytokines in vivo. Typically, CgHMGB1 is localized in the nucleus, though lipopolysaccharide can induce its release to cytoplasm. Moreover, luciferase reporter assays reveal that CgHMGB1 cannot stimulate Nuclear Factor-κB reporter activity alone, but it can enhance Rel-dependent NF-κB activation in a dose-dependent manner. CgHMGB1 is highly expressed in hemocytes and its transcripts are significantly more abundant following bacterial challenge. Our results suggest that CgHMGB1 plays an essential role in innate defense by enhancing Rel-activated NF-κB activity and inducing the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | | | | | | | |
Collapse
|
27
|
Pang Y, Xiao R, Liu X, Li Q. High-mobility-group family genes from Lampetra japonica reveal their early origin and molecular evolution in the vertebrate lineage. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0234-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|