1
|
Duan Y, Yao RQ, Ling H, Zheng LY, Fan Q, Li Q, Wang L, Zhou QY, Wu LM, Dai XG, Yao YM. Organellophagy regulates cell death:A potential therapeutic target for inflammatory diseases. J Adv Res 2025; 70:371-391. [PMID: 38740259 PMCID: PMC11976430 DOI: 10.1016/j.jare.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.
Collapse
Affiliation(s)
- Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China; Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Ling
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qiong Li
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Le-Min Wu
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Xin-Gui Dai
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Lin L, Liao Z, Li C. Exploring Ribosomal Genes as Potential Biomarkers of the Immune Microenvironment in Respiratory Syncytial Virus Infection. Biochem Genet 2025; 63:1839-1861. [PMID: 38630357 DOI: 10.1007/s10528-024-10778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/09/2024] [Indexed: 03/23/2025]
Abstract
Respiratory syncytial virus (RSV) is the most common pathogen causing acute lower respiratory tract infection in infants and children. Due to limited knowledge of the pathological and molecular mechanisms of immunodeficiency underlying RSV disease, there is currently a lack of an approved and effective RSV vaccine to combat RSV infections. This study aimed to identify genes associated with immune dysfunction using bioinformatics methods to gain insights into the role of dysregulated immune genes in RSV disease progression, and to predict potential therapeutic drugs by targeting dysregulated immune-related genes. 423 immune-related differential genes (DEIRGs) were filtered from the blood samples of 87 healthy individuals and 170 RSV patients. According to CIBERSORT analysis, the blood of RSV patients showed increased infiltration of various immune cells. Subsequently, ten immune-related hub genes were screened via Protein-Protein Interaction Networks. Six signature immune-related genes (RPS2, RPS5, RPS13, RPS14, RPS18, and RPS4X) as candidate characteristic genes for the diagnostic model were identified by Lasso regression. The AUC value of the ROC curve of the six signature genes was 0.884. This result, intriguingly, suggested that all six immune-related genes with a good internal validation effect were ribosome family genes. Finally, through molecular docking analyses targeting these differential immune genes, ADO and fluperlapine were found to have high stable binding to major proteins of important immune-related genes in nine drug-protein interactions. Overall, the present study screened immune-related genes that are dysregulated in the development of RSV disease to investigate the pathogenesis of RSV infection from the standpoint of immune disorders. Unexpectedly, bioinformatics analysis revealed that ribosome family genes may be involved in the immune dysregulation of RSV disease, and these genes as targets formed the basis for potential drug modification candidates in RSV disease.
Collapse
Affiliation(s)
- Lu Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zenghua Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoqian Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Bai S, Martin-Sanchez F, Brough D, Lopez-Castejon G. Pyroptosis leads to loss of centrosomal integrity in macrophages. Cell Death Discov 2024; 10:354. [PMID: 39117604 PMCID: PMC11310477 DOI: 10.1038/s41420-024-02093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
NLRP3 forms a multiprotein inflammasome complex to initiate the inflammatory response when macrophages sense infection or tissue damage, which leads to caspase-1 activation, maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and Gasdermin-D (GSDMD) mediated pyroptosis. NLRP3 inflammasome activity must be controlled as unregulated and chronic inflammation underlies inflammatory and autoimmune diseases. Several findings uncovered that NLRP3 inflammasome activity is under the regulation of centrosome localized proteins such as NEK7 and HDAC6, however, whether the centrosome composition or structure is altered during the inflammasome activation is not known. Our data show that levels of the centrosomal scaffold protein pericentrin (PCNT) are reduced upon NLRP3 inflammasome activation via different activators in human and murine macrophages. PCNT loss occurs in the presence of membrane stabilizer punicalagin, suggesting this is not a consequence of membrane rupture. We found that PCNT loss is dependent on NLRP3 and active caspases as MCC950 and pan caspase inhibitor ZVAD prevent its degradation. Moreover, caspase-1 and GSDMD are both required for this NLRP3-mediated PCNT loss because absence of caspase-1 or GSDMD triggers an alternative regulation of PCNT via its cleavage by caspase-3 in response to nigericin stimulation. PCNT degradation occurs in response to nigericin, but also other NLRP3 activators including lysomotropic agent L-Leucyl-L-Leucine methyl ester (LLOMe) and hypotonicity but not AIM2 activation. Our work reveals that the NLRP3 inflammasome activation alters centrosome composition highlighting the need to further understand the role of this organelle during inflammatory responses.
Collapse
Affiliation(s)
- Siyi Bai
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Fatima Martin-Sanchez
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Faculty of Medicine, University of Murcia, 30120, Murcia, Spain
| | - David Brough
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Rozario P, Pinilla M, Gorse L, Vind AC, Robinson KS, Toh GA, Firdaus MJ, Martínez JF, Kerk SK, Lin Z, Chambers JC, Bekker-Jensen S, Meunier E, Zhong F. Mechanistic basis for potassium efflux-driven activation of the human NLRP1 inflammasome. Proc Natl Acad Sci U S A 2024; 121:e2309579121. [PMID: 38175865 PMCID: PMC10786283 DOI: 10.1073/pnas.2309579121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Nigericin, an ionophore derived from Streptomyces hygroscopicus, is arguably the most commonly used tool compound to study the NLRP3 inflammasome. Recent findings, however, showed that nigericin also activates the NLRP1 inflammasome in human keratinocytes. In this study, we resolve the mechanistic basis of nigericin-driven NLRP1 inflammasome activation. In multiple nonhematopoietic cell types, nigericin rapidly and specifically inhibits the elongation stage of the ribosome cycle by depleting cytosolic potassium ions. This activates the ribotoxic stress response (RSR) sensor kinase ZAKα, p38, and JNK, as well as the hyperphosphorylation of the NLRP1 linker domain. As a result, nigericin-induced pyroptosis in human keratinocytes is blocked by extracellular potassium supplementation, ZAKα knockout, or pharmacologic inhibitors of ZAKα and p38 kinase activities. By surveying a panel of ionophores, we show that electroneutrality of ion movement is essential to activate ZAKα-driven RSR and a greater extent of K+ depletion is necessary to activate ZAKα-NLRP1 than NLRP3. These findings resolve the mechanism by which nigericin activates NLRP1 in nonhematopoietic cell types and demonstrate an unexpected connection between RSR, perturbations of potassium ion flux, and innate immunity.
Collapse
Affiliation(s)
- Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse31077, France
| | - Leana Gorse
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse31077, France
| | - Anna Constance Vind
- Center for Healthy Aging, University of Copenhagen, Copenhagen2200, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen2200, Denmark
| | - Kim S. Robinson
- Agency for Science, Technology and Research (A*STAR) Skin Research Labs, 138648, Singapore
- Skin Research Institute of Singapore, 308232, Singapore
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | | | - José Francisco Martínez
- Center for Healthy Aging, University of Copenhagen, Copenhagen2200, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen2200, Denmark
| | - Swat Kim Kerk
- Population and Global Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Zhewang Lin
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - John C. Chambers
- Population and Global Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Copenhagen2200, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen2200, Denmark
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse31077, France
| | - Franklin Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- Skin Research Institute of Singapore, 308232, Singapore
| |
Collapse
|
5
|
Liu Y, Zhai H, Alemayehu H, Boulanger J, Hopkins LJ, Borgeaud AC, Heroven C, Howe JD, Leigh KE, Bryant CE, Modis Y. Cryo-electron tomography of NLRP3-activated ASC complexes reveals organelle co-localization. Nat Commun 2023; 14:7246. [PMID: 37945612 PMCID: PMC10636019 DOI: 10.1038/s41467-023-43180-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
NLRP3 induces caspase-1-dependent pyroptotic cell death to drive inflammation. Aberrant activity of NLRP3 occurs in many human diseases. NLRP3 activation induces ASC polymerization into a single, micron-scale perinuclear punctum. Higher resolution imaging of this signaling platform is needed to understand how it induces pyroptosis. Here, we apply correlative cryo-light microscopy and cryo-electron tomography to visualize ASC/caspase-1 in NLRP3-activated cells. The puncta are composed of branched ASC filaments, with a tubular core formed by the pyrin domain. Ribosomes and Golgi-like or endosomal vesicles permeate the filament network, consistent with roles for these organelles in NLRP3 activation. Mitochondria are not associated with ASC but have outer-membrane discontinuities the same size as gasdermin D pores, consistent with our data showing gasdermin D associates with mitochondria and contributes to mitochondrial depolarization.
Collapse
Affiliation(s)
- Yangci Liu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Helen Alemayehu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lee J Hopkins
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Wren Therapeutics, Clarendon House, Clarendon Road, Cambridge, CB2 8FH, UK
| | - Alicia C Borgeaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Christina Heroven
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Division of Structural Biology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jonathan D Howe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Clare E Bryant
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK.
| |
Collapse
|
6
|
Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci 2023; 48:331-344. [PMID: 36336552 PMCID: PMC10023278 DOI: 10.1016/j.tibs.2022.10.002] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is a cytoplasmic supramolecular complex that is activated in response to cellular perturbations triggered by infection and sterile injury. Assembly of the NLRP3 inflammasome leads to activation of caspase-1, which induces the maturation and release of interleukin-1β (IL-1β) and IL-18, as well as cleavage of gasdermin D (GSDMD), which promotes a lytic form of cell death. Production of IL-1β via NLRP3 can contribute to the pathogenesis of inflammatory disease, whereas aberrant IL-1β secretion through inherited NLRP3 mutations causes autoinflammatory disorders. In this review, we discuss recent developments in the structure of the NLRP3 inflammasome, and the cellular processes and signaling events controlling its assembly and activation.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Robinson KS, Toh GA, Rozario P, Chua R, Bauernfried S, Sun Z, Firdaus MJ, Bayat S, Nadkarni R, Poh ZS, Tham KC, Harapas CR, Lim CK, Chu W, Tay CWS, Tan KY, Zhao T, Bonnard C, Sobota R, Connolly JE, Common J, Masters SL, Chen KW, Ho L, Wu B, Hornung V, Zhong FL. ZAKα-driven ribotoxic stress response activates the human NLRP1 inflammasome. Science 2022; 377:328-335. [PMID: 35857590 PMCID: PMC7614315 DOI: 10.1126/science.abl6324] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human NLRP1 (NACHT, LRR, and PYD domain-containing protein 1) is an innate immune sensor predominantly expressed in the skin and airway epithelium. Here, we report that human NLRP1 senses the ultraviolet B (UVB)- and toxin-induced ribotoxic stress response (RSR). Biochemically, RSR leads to the direct hyperphosphorylation of a human-specific disordered linker region of NLRP1 (NLRP1DR) by MAP3K20/ZAKα kinase and its downstream effector, p38. Mutating a single ZAKα phosphorylation site in NLRP1DR abrogates UVB- and ribotoxin-driven pyroptosis in human keratinocytes. Moreover, fusing NLRP1DR to CARD8, which is insensitive to RSR by itself, creates a minimal inflammasome sensor for UVB and ribotoxins. These results provide insight into UVB sensing by human skin keratinocytes, identify several ribotoxins as NLRP1 agonists, and establish inflammasome-driven pyroptosis as an integral component of the RSR.
Collapse
Affiliation(s)
- Kim S Robinson
- Skin Research Institute of Singapore (SRIS), 308232 Singapore.,Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (ASRL), 138648 Singapore
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Rae Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Stefan Bauernfried
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zijin Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | | | - Shima Bayat
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Rhea Nadkarni
- Cardiovascular Metabolic Disorders Program, Duke-NUS Medical School, 169857 Singapore
| | - Zhi Sheng Poh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Khek Chian Tham
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (ASRL), 138648 Singapore
| | - Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Chrissie K Lim
- Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore.,Present address: MiroBio Limited, Oxford OX4 4GE, UK
| | - Werncui Chu
- Cardiovascular Metabolic Disorders Program, Duke-NUS Medical School, 169857 Singapore
| | - Celest W S Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Kiat Yi Tan
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (ASRL), 138648 Singapore
| | - Tianyun Zhao
- Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - Carine Bonnard
- Skin Research Institute of Singapore (SRIS), 308232 Singapore.,Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (ASRL), 138648 Singapore
| | - Radoslaw Sobota
- Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - John E Connolly
- Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - John Common
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (ASRL), 138648 Singapore
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kaiwen W Chen
- Immunology Translational Research Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545 Singapore
| | - Lena Ho
- Cardiovascular Metabolic Disorders Program, Duke-NUS Medical School, 169857 Singapore.,Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University (NTU), 639798 Singapore
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Franklin L Zhong
- Skin Research Institute of Singapore (SRIS), 308232 Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| |
Collapse
|
9
|
Yamada S, Kitai Y, Tadokoro T, Takahashi R, Shoji H, Maemoto T, Ishiura M, Muromoto R, Kashiwakura JI, Ishii KJ, Maenaka K, Kawai T, Matsuda T. Identification of RPL15 60S Ribosomal Protein as a Novel Topotecan Target Protein That Correlates with DAMP Secretion and Antitumor Immune Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:171-179. [PMID: 35725272 DOI: 10.4049/jimmunol.2100963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/16/2022] [Indexed: 01/02/2023]
Abstract
Damage-associated molecular patterns (DAMPs) contribute to antitumor immunity during cancer chemotherapy. We previously demonstrated that topotecan (TPT), a topoisomerase I inhibitor, induces DAMP secretion from cancer cells, which activates STING-mediated antitumor immune responses. However, how TPT induces DAMP secretion in cancer cells is yet to be elucidated. Here, we identified RPL15, a 60S ribosomal protein, as a novel TPT target and showed that TPT inhibited preribosomal subunit formation via its binding to RPL15, resulting in the induction of DAMP-mediated antitumor immune activation independent of TOP1. TPT inhibits RPL15-RPL4 interactions and decreases RPL4 stability, which is recovered by CDK12 activity. RPL15 knockdown induced DAMP secretion and increased the CTL population but decreased the regulatory T cell population in a B16-F10 murine melanoma model, which sensitized B16-F10 tumors against PD-1 blockade. Our study identified a novel TPT target protein and showed that ribosomal stress is a trigger of DAMP secretion, which contributes to antitumor immunotherapy.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan;
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Runa Takahashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Haruka Shoji
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Taiga Maemoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Marie Ishiura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito, Ibaraki, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-Ku, Sapporo, Japan; and
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan;
| |
Collapse
|
10
|
Analyzing the Systems Biology Effects of COVID-19 mRNA Vaccines to Assess Their Safety and Putative Side Effects. Pathogens 2022; 11:pathogens11070743. [PMID: 35889989 PMCID: PMC9320269 DOI: 10.3390/pathogens11070743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
COVID-19 vaccines have been instrumental tools in reducing the impact of SARS-CoV-2 infections around the world by preventing 80% to 90% of hospitalizations and deaths from reinfection, in addition to preventing 40% to 65% of symptomatic illnesses. However, the simultaneous large-scale vaccination of the global population will indubitably unveil heterogeneity in immune responses as well as in the propensity to developing post-vaccine adverse events, especially in vulnerable individuals. Herein, we applied a systems biology workflow, integrating vaccine transcriptional signatures with chemogenomics, to study the pharmacological effects of mRNA vaccines. First, we derived transcriptional signatures and predicted their biological effects using pathway enrichment and network approaches. Second, we queried the Connectivity Map (CMap) to prioritize adverse events hypotheses. Finally, we accepted higher-confidence hypotheses that have been predicted by independent approaches. Our results reveal that the mRNA-based BNT162b2 vaccine affects immune response pathways related to interferon and cytokine signaling, which should lead to vaccine success, but may also result in some adverse events. Our results emphasize the effects of BNT162b2 on calcium homeostasis, which could be contributing to some frequently encountered adverse events related to mRNA vaccines. Notably, cardiac side effects were signaled in the CMap query results. In summary, our approach has identified mechanisms underlying both the expected protective effects of vaccination as well as possible post-vaccine adverse effects. Our study illustrates the power of systems biology approaches in improving our understanding of the comprehensive biological response to vaccination against COVID-19.
Collapse
|
11
|
Hu H, He C. Identification of Diagnostic Gene Markers and Immune Infiltration in Systemic Lupus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3386999. [PMID: 35558576 PMCID: PMC9088963 DOI: 10.1155/2022/3386999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs, with atypical clinical manifestations and indefinite diagnosis and treatment. So far, the etiology of the disease is not completely clear. Current studies have known the interaction of genetic system, endocrine system, infection, environment, and other factors. Due to abnormal immune function, the human body, with the participation of various immune cells such as T cells and B cells, abnormally recognizes autoantigens, so as to produce a variety of autoantibodies and combine them to form immune complexes. These complexes will stay in the skin, kidney, serosa cavity, large joints, and even the central nervous system, resulting in multisystem damage of the body. The disease is heterogeneous, and it can show different symptoms in different populations and different disease stages; patients with systemic lupus erythematosus need individualized diagnosis and treatment. Therefore, we aimed to search for SLE immune-related hub genes and determine appropriate diagnostic genes to provide help for the detection and treatment of the disease. Methods Gene expression data of whole blood samples of SLE patients and healthy controls were downloaded from the GEO database. Firstly, we analyzed and identified the differentially expressed genes between SLE and the normal population. Meanwhile, the single-sample gene set enrichment analysis (ssGSEA) was used to identify the activation degree of immune-related pathways based on gene expression profile of different patients, and weighted gene coexpression network analysis (WGCNA) was used to search for coexpressed gene modules associated with immune cells. Then, key networks and corresponding genes were found in the protein-protein interaction (PPI) network. The above corresponding genes were hub genes. After that, this study used receiver operating characteristic (ROC) curve to evaluate hub gene in order to verify its ability to distinguish SLE from the healthy control group, and miRNA and transcription factor regulatory network analyses were performed for hub genes. Results Through bioinformatics technology, compared with the healthy control group, 2996 common differentially expressed genes (DEGs) were found in SLE patients, of which 1639 genes were upregulated and 1357 genes were downregulated. These differential genes were analyzed by ssGSEA to obtain the enrichment fraction of immune-related pathways. Next, the samples were selected by WGCNA analysis, and a total of 18 functional modules closely related to the pathogenesis of SLE were obtained. Thirdly, the correlation between the above modules and the enrichment fraction of immune-related pathways was analyzed, and the turquoise module with the highest correlation was selected. The 290 differential genes of this module were analyzed by GO and KEGG. The results showed that these genes were mainly enriched in coronavirus disease (COVID-19), ribosome, and human T cell leukemia virus 1 infection pathway. The 290 DEGs with PPI network and 28 genes of key networks were selected. ROC curve showed that 28 hub genes are potential biomarkers of SLE. Conclusion The 28 hub genes such as RPS7, RPL19, RPS17, and RPS19 may play key roles in the advancement of SLE. The results obtained in this study can provide a reference in a certain direction for the diagnosis and treatment of SLE in the future and can also be used as a new biomarker in clinical practice or drug research.
Collapse
Affiliation(s)
- Hongtao Hu
- Department of Rheumatology and Immunology, Southwest Medical University, Sichuan Province 646000, China
| | - Chengsong He
- Department of Rheumatology and Immunology, Southwest Medical University, Sichuan Province 646000, China
| |
Collapse
|
12
|
Harapas CR, Idiiatullina E, Al-Azab M, Hrovat-Schaale K, Reygaerts T, Steiner A, Laohamonthonkul P, Davidson S, Yu CH, Booty L, Masters SL. Organellar homeostasis and innate immune sensing. Nat Rev Immunol 2022; 22:535-549. [PMID: 35197578 DOI: 10.1038/s41577-022-00682-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
A cell is delimited by numerous borders that define specific organelles. The walls of some organelles are particularly robust, such as in mitochondria or endoplasmic reticulum, but some are more fluid such as in phase-separated stress granules. Either way, all organelles can be damaged at times, leading their contents to leak out into the surrounding environment. Therefore, an elegant way to construct an innate immune defence system is to recognize host molecules that do not normally reside within a particular compartment. Here, we provide several examples where organellar homeostasis is lost, leading to the activation of a specific innate immune sensor; these include NLRP3 activation owing to a disrupted trans-Golgi network, Pyrin activation due to cytoskeletal damage, and cGAS-STING activation following the leakage of nuclear or mitochondrial DNA. Frequently, organelle damage is observed downstream of pathogenic infection but it can also occur in sterile settings as associated with auto-inflammatory disease. Therefore, understanding organellar homeostasis is central to efforts that will identify new innate immune pathways, and therapeutics that balance organellar homeostasis, or target the breakdown pathways that trigger innate immune sensors, could be useful treatments for infection and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Elina Idiiatullina
- Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Mahmoud Al-Azab
- Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas Reygaerts
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lee Booty
- Immunology Network, Immunology Research Unit, GSK, Stevenage, UK
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. .,Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Park HR, Vallarino J, O'Sullivan M, Wirth C, Panganiban RA, Webb G, Shumyatcher M, Himes BE, Park JA, Christiani DC, Allen J, Lu Q. Electronic cigarette smoke reduces ribosomal protein gene expression to impair protein synthesis in primary human airway epithelial cells. Sci Rep 2021; 11:17517. [PMID: 34471210 PMCID: PMC8410828 DOI: 10.1038/s41598-021-97013-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
The widespread use of electronic cigarettes (e-cig) is a serious public health concern; however, mechanisms by which e-cig impair the function of airway epithelial cells-the direct target of e-cig smoke-are not fully understood. Here we report transcriptomic changes, including decreased expression of many ribosomal genes, in airway epithelial cells in response to e-cig exposure. Using RNA-seq we identify over 200 differentially expressed genes in air-liquid interface cultured primary normal human bronchial epithelial (NHBE) exposed to e-cig smoke solution from commercial e-cig cartridges. In particular, exposure to e-cig smoke solution inhibits biological pathways involving ribosomes and protein biogenesis in NHBE cells. Consistent with this effect, expression of corresponding ribosomal proteins and subsequent protein biogenesis are reduced in the cells exposed to e-cig. Gas chromatography/mass spectrometry (GC/MS) analysis identified the presence of five flavoring chemicals designated as 'high priority' in regard to respiratory health, and methylglyoxal in e-cig smoke solution. Together, our findings reveal the potential detrimental effect of e-cig smoke on ribosomes and the associated protein biogenesis in airway epithelium. Our study calls for further investigation into how these changes in the airway epithelium contribute to the current epidemic of lung injuries in e-cig users.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Jose Vallarino
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Michael O'Sullivan
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Charlotte Wirth
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Ronald A Panganiban
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Gabrielle Webb
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jin-Ah Park
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - David C Christiani
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Joseph Allen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA.
- Harvard T.H. Chan School of Public Health, Room 404-L401 Park Drive, Boston, MA, 02215, USA.
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
14
|
Yang QB, Li LQ, Zhang QB, He YL, Mi QS, Zhou JG. microRNA-223 Deficiency Exacerbates Acute Inflammatory Response to Monosodium Urate Crystals by Targeting NLRP3. J Inflamm Res 2021; 14:1845-1858. [PMID: 34007200 PMCID: PMC8123978 DOI: 10.2147/jir.s307796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023] Open
Abstract
Objective MicroRNAs were identified as master-switch molecules limiting acute inflammatory response. This study investigated the potential role of microRNA (miR)-223 in the mechanism of gout. Methods Wild-type (WT) and miR-223 knock-out (KO) mice were used to evaluate the phenotypes of gout models. Inflammatory cytokines were measured in air pouch and peritoneal cavity lavage fluid. In addition to miR-223 level in gout patients, miR-223 and pro-inflammatory genes were examined in bone marrow-derived macrophages (BMDMs) from mice as well as peripheral blood mononuclear cells from healthy controls (HC) treated with monosodium urate (MSU) crystals in vitro. Results MiR-223 was up-regulated in the early phase in BMDMs from WT mice after MSU challenge and decreased rapidly, and this was not observed in miR-223 KO mice in vitro. In addition, miR-223 was required for macrophages homeostasis. In comparison with WT mice in vivo, miR-223 deficiency exacerbated swelling index of MSU-induced inflammation in foot pad and ankle joint models. MiR-223 deficiency also markedly aggravated inflammatory cells infiltration and cytokines release including interleukin (IL)-1β, IL-6 and monocyte chemotactic protein-1 (MCP-1) in the air pouch and peritonitis models. In the in vitro experiments, miR-223 deficiency promoted the inflammatory response by targeting NLR family pyrin domain containing protein 3 (NLRP3). Besides, miR-223 level was down-regulated in gout patients and in HC exposed to MSU in vitro. Conclusion MiR-223 was down-regulated in gout patients and miR-223 deficiency exacerbated inflammatory response in diverse murine models, suggesting that up-regulation of miR-223 could be a potential therapeutic strategy for alleviating gouty inflammation.
Collapse
Affiliation(s)
- Qi-Bin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China.,Henry Ford Immunology Program, Departments of Dermatology and Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Ling-Qin Li
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Quan-Bo Zhang
- Henry Ford Immunology Program, Departments of Dermatology and Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA.,Department of Gerontology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Yong-Long He
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Departments of Dermatology and Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Jing-Guo Zhou
- Department of Rheumatology and Immunology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, People's Republic of China
| |
Collapse
|
15
|
Mucosal ribosomal stress-induced PRDM1 promotes chemoresistance via stemness regulation. Commun Biol 2021; 4:543. [PMID: 33972671 PMCID: PMC8110964 DOI: 10.1038/s42003-021-02078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
The majorities of colorectal cancer (CRC) cases are sporadic in origin and a large proportion of etiologies are associated with environmental stress responses. In response to external and internal stress, the ribosome stands sentinel and stress-driven ribosomal dysfunction triggers the cellular decision pathways via transcriptional reprogramming. In the present study, PR domain zinc finger protein (PRDM) 1, a master transcriptional regulator, was found to be closely associated with ribosomal actions in patients with CRC and the murine models. Stress-driven ribosomal dysfunction enhanced PRDM1 levels in intestinal cancer cells, which contributed to their survival and enhanced cancer cell stemness against cancer treatment. Mechanistically, PRDM1 facilitated clustering modulation of insulin-like growth factor (IGF) receptor-associated genes, which supported cancer cell growth and stemness-linked features. Ribosomal dysfunction-responsive PRDM1 facilitated signaling remodeling for the survival of tumor progenitors, providing compelling evidence for the progression of sporadic CRC.
Collapse
|
16
|
Jing W, Lo Pilato J, Kay C, Man SM. Activation mechanisms of inflammasomes by bacterial toxins. Cell Microbiol 2021; 23:e13309. [PMID: 33426791 DOI: 10.1111/cmi.13309] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic innate immune complexes, which assemble in mammalian cells in response to microbial components and endogenous danger signals. A major family of inflammasome activators is bacterial toxins. Inflammasome sensor proteins, such as the nucleotide-binding oligomerisation domain-like receptor (NLR) family members NLRP1b and NLRP3, and the tripartite motif family member Pyrin+ efflux triggered by pore-forming toxins or by other toxin-induced homeostasis-altering events such as lysosomal rupture. Pyrin senses perturbation of host cell functions induced by certain enzymatic toxins resulting in impairment of RhoA GTPase activity. Assembly of the inflammasome complex activates the cysteine protease caspase-1, leading to the proteolytic cleavage of the proinflammatory cytokines IL-1β and IL-18, and the pore-forming protein gasdermin D causing pyroptosis. In this review, we discuss the latest progress in our understanding on the activation mechanisms of inflammasome complexes by bacterial toxins and effector proteins and explore avenues for future research into the relationships between inflammasomes and bacterial toxins.
Collapse
Affiliation(s)
- Weidong Jing
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jordan Lo Pilato
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Callum Kay
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Galactosaminogalactan activates the inflammasome to provide host protection. Nature 2020; 588:688-692. [PMID: 33268895 PMCID: PMC8086055 DOI: 10.1038/s41586-020-2996-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Inflammasomes are important sentinels of innate immune defense activated in response to diverse stimuli, including pathogen-associated molecular patterns (PAMPs)1. Activation of the inflammasome provides host defense against aspergillosis2,3, a major health concern for immunocompromised patients; however, the Aspergillus fumigatus PAMPs responsible for inflammasome activation are not known. Here we discovered that A. fumigatus galactosaminogalactan (GAG) is a novel PAMP that activates the NLRP3 inflammasome. Binding of GAG to ribosomal proteins inhibited cellular translation machinery, thereby activating the NLRP3 inflammasome. The galactosamine moiety bound to ribosomal proteins and blocked cellular translation, triggering NLRP3 inflammasome activation. In mice, a GAG-deficient Aspergillus mutant Δgt4c failed to elicit protective inflammasome activation and exhibited enhanced virulence. Moreover, administration of GAG protected mice from DSS-induced colitis in an inflammasome-dependent manner. Thus, ribosomes connect sensing of this fungal PAMP to activation of an innate immune response.
Collapse
|
18
|
Duan Y, Zhang L, Angosto-Bazarra D, Pelegrín P, Núñez G, He Y. RACK1 Mediates NLRP3 Inflammasome Activation by Promoting NLRP3 Active Conformation and Inflammasome Assembly. Cell Rep 2020; 33:108405. [PMID: 33207200 DOI: 10.1016/j.celrep.2020.108405] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022] Open
Abstract
The NLRP3 inflammasome, a critical component of the innate immune system, induces caspase-1 activation and interleukin (IL)-1β maturation in response to microbial infection and cellular damage. However, aberrant activation of the NLRP3 inflammasome contributes to the pathogenesis of several inflammatory disorders, including cryopyrin-associated periodic syndromes, Alzheimer's disease, type 2 diabetes, and atherosclerosis. Here, we identify the receptor for activated protein C kinase 1 (RACK1) as a component of the NLRP3 complexes in macrophages. RACK1 interacts with NLRP3 and NEK7 but not ASC. Suppression of RACK1 expression abrogates caspase-1 activation and IL-1β release in response to NLRP3- but not NLRC4- or AIM2-activating stimuli. This RACK1 function is independent of its ribosomal binding activity. Mechanistically, RACK1 promotes the active conformation of NLRP3 induced by activating stimuli and subsequent inflammasome assembly. These results demonstrate that RACK1 is a critical mediator for NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yanhui Duan
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lingzhi Zhang
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Diego Angosto-Bazarra
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Yuan He
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
19
|
Dangi A, Natesh NR, Husain I, Ji Z, Barisoni L, Kwun J, Shen X, Thorp EB, Luo X. Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight 2020; 5:141321. [PMID: 32970632 PMCID: PMC7605544 DOI: 10.1172/jci.insight.141321] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cells are increasingly recognized as major players in transplant rejection. Here, we used a murine kidney transplantation model and single cell transcriptomics to dissect the contribution of myeloid cell subsets and their potential signaling pathways to kidney transplant rejection. Using a variety of bioinformatic techniques, including machine learning, we demonstrate that kidney allograft–infiltrating myeloid cells followed a trajectory of differentiation from monocytes to proinflammatory macrophages, and they exhibited distinct interactions with kidney allograft parenchymal cells. While this process correlated with a unique pattern of myeloid cell transcripts, a top gene identified was Axl, a member of the receptor tyrosine kinase family Tyro3/Axl/Mertk (TAM). Using kidney transplant recipients with Axl gene deficiency, we further demonstrate that Axl augmented intragraft differentiation of proinflammatory macrophages, likely via its effect on the transcription factor Cebpb. This, in turn, promoted intragraft recruitment, differentiation, and proliferation of donor-specific T cells, and it enhanced early allograft inflammation evidenced by histology. We conclude that myeloid cell Axl expression identified by single cell transcriptomics of kidney allografts in our study plays a major role in promoting intragraft myeloid cell and T cell differentiation, and it presents a potentially novel therapeutic target for controlling kidney allograft rejection and improving kidney allograft survival. In a murine model of allogeneic kidney transplantation, single-cell transcriptomics identifies that myeloid cell Axl expression promotes allograft rejection by inducing inflammatory macrophage differentiation.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Naveen R Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zhicheng Ji
- Department of Biostatistics & Bioinformatics
| | | | - Jean Kwun
- Department of Surgery, and.,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
20
|
Menon MP, Hua KF. The Long Non-coding RNAs: Paramount Regulators of the NLRP3 Inflammasome. Front Immunol 2020; 11:569524. [PMID: 33101288 PMCID: PMC7546312 DOI: 10.3389/fimmu.2020.569524] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The NOD LRR pyrin domain containing protein 3 (NLRP3) inflammasome is a cytosolic multi-proteins conglomerate with intrinsic ATPase activity. Their predominant presence in the immune cells emphasizes its significant role in immune response. The downstream effector proteins IL-1β and IL-18 are responsible for the biological functions of the NLRP3 inflammasome upon encountering the alarmins and microbial ligands. Although the NLRP3 inflammasome is essential for host defense during infections, uncontrolled activation and overproduction of IL-1β and IL-18 increase the risk of developing autoimmune and metabolic disorders. Emerging evidences suggest the action of lncRNAs in regulating the activity of NLRP3 inflammasome in various disease conditions. The long non-coding RNA (lncRNA) is an emerging field of study and evidence on their regulatory role in various diseases is grabbing attention. Recent studies emphasize the functions of lncRNAs in the fine control of the NLRP3 inflammasome at nuclear and cytoplasmic levels by interfering in chromatin architecture, gene transcription and translation. Recently, lncRNAs are also found to control the activity of various regulators of NLRP3 inflammasome. Understanding the precise role of lncRNA in controlling the activity of NLRP3 inflammasome helps us to design targeted therapies for multiple inflammatory diseases. The present review is a novel attempt to consolidate the substantial role of lncRNAs in the regulation of the NLRP3 inflammasome. A deeper insight on the NLRP3 inflammasome regulation by lncRNAs will help in developing targeted and beneficial therapeutics in the future.
Collapse
Affiliation(s)
- Mridula P. Menon
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Hsu WH, Hua KF, Tuan LH, Tsai YL, Chu LJ, Lee YC, Wong WT, Lee SL, Lai JH, Chu CL, Ho LJ, Chiu HW, Hsu YJ, Chen CH, Ka SM, Chen A. Compound K inhibits priming and mitochondria-associated activating signals of NLRP3 inflammasome in renal tubulointerstitial lesions. Nephrol Dial Transplant 2020; 35:74-85. [PMID: 31065699 DOI: 10.1093/ndt/gfz073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal tubulointerstitial lesions (TILs), a key pathological hallmark for chronic kidney disease to progress to end-stage renal disease, feature renal tubular atrophy, interstitial mononuclear leukocyte infiltration and fibrosis in the kidney. Our study tested the renoprotective and therapeutic effects of compound K (CK), as described in our US patent (US7932057B2), on renal TILs using a mouse unilateral ureteral obstruction (UUO) model. METHODS Renal pathology was performed and renal draining lymph nodes were subjected to flow cytometry analysis. Mechanism-based experiments included the analysis of mitochondrial dysfunction, a model of tubular epithelial cells (TECs) under mechanically induced constant pressure (MICP) and tandem mass tags (TMT)-based proteomics analysis. RESULTS Administration of CK ameliorated renal TILs by reducing urine levels of proinflammatory cytokines, and preventing mononuclear leukocyte infiltration and fibrosis in the kidney. The beneficial effects clearly correlated with its inhibition of: (i) NF-κB-associated priming and the mitochondria-associated activating signals of the NLRP3 inflammasome; (ii) STAT3 signalling, which in part prevents NLRP3 inflammasome activation; and (iii) the TGF-β-dependent Smad2/Smad3 fibrotic pathway, in renal tissues, renal TECs under MICP and/or activated macrophages, the latter as a major inflammatory player contributing to renal TILs. Meanwhile, TMT-based proteomics analysis revealed downregulated renal NLRP3 inflammasome activation-associated signalling pathways in CK-treated UUO mice. CONCLUSIONS The present study, for the first time, presents the potent renoprotective and therapeutic effects of CK on renal TILs by targeting the NLRP3 inflammasome and STAT3 signalling.
Collapse
Affiliation(s)
- Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Li-Heng Tuan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - Jenn-Haung Lai
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
22
|
Kim KH, Lee SJ, Kim J, Moon Y. Dynamic Malignant Wave of Ribosome-Insulted Gut Niche via the Wnt-CTGF/CCN2 Circuit. iScience 2020; 23:101076. [PMID: 32361596 PMCID: PMC7200318 DOI: 10.1016/j.isci.2020.101076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Stress-driven ribosome dysfunction triggers an eIF2α-mediated integrated stress response to maintain cellular homeostasis. Among four key eIF2α kinases, protein kinase R (PKR) expression positively associates with poor prognoses for colorectal cancer (CRC) patients. We identified PKR-linked Wnt signaling networks that facilitate early inflammatory niche and epithelial-mesenchymal transitions of tumor tissues in response to ribosomal insults. However, the downstream Wnt signaling target fibrogenic connective tissue growth factor (CTGF/CCN2) regulates the nuclear translocation of β-catenin in a negative feedback manner. Moreover, dwindling expression of the Wnt/β-catenin pathway-regulator CTGF triggers noncanonical Wnt pathway-mediated exacerbation of intestinal cancer progression such as an increase in cancer stemness and acquisition of chemoresistance in the presence of ribosomal insults. The Wnt-CTGF-circuit-associated landscape of oncogenic signaling events was verified with clinical genomic profiling. This ribosome-associated wave of crosstalk between stress and oncogenes provides valuable insight into potential molecular interventions against intestinal malignancies. PKR expression positively associates with poor prognoses for CRC patients CTGF/CCN2 mediates tumor niche remodeling under PKR-activating ribosomal stress CTGF/CCN2 antagonism of Wnt regulates cancer stemness and chemoresistance
Collapse
Affiliation(s)
- Ki Hyung Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea; Department of Obstetrics and Gynecology, Pusan National University College of Medicine, Busan 49241, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Korea
| | - Seung Joon Lee
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Korea.
| |
Collapse
|
23
|
Franke H, Scholl R, Aigner A. Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and "Papyrus Ebers" to modern perspectives and "poisonous plant of the year 2018". NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:1181-1208. [PMID: 31359089 DOI: 10.1007/s00210-019-01691-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
While probably originating from Africa, the plant Ricinus communis is found nowadays around the world, grown for industrial use as a source of castor oil production, wildly sprouting in many regions, or used as ornamental plant. As regards its pharmacological utility, a variety of medical purposes of selected parts of the plant, e.g., as a laxative, an anti-infective, or an anti-inflammatory drug, have been described already in the sixteenth century BC in the famous Papyrus Ebers (treasured in the Library of the University of Leipzig). Quite in contrast, on the toxicological side, the native plant has become the "poisonous plant 2018" in Germany. As of today, a number of isolated components of the plant/seeds have been characterized, including, e.g., castor oil, ricin, Ricinus communis agglutinin, ricinin, nudiflorin, and several allergenic compounds. This review mainly focuses on the most toxic protein, ricin D, classified as a type 2 ribosome-inactivating protein (RIP2). Ricin is one of the most potent and lethal substances known. It has been considered as an important bioweapon (categorized as a Category B agent (second-highest priority)) and an attractive agent for bioterroristic activities. On the other hand, ricin presents great potential, e.g., as an anti-cancer agent or in cell-based research, and is even explored in the context of nanoparticle formulations in tumor therapy. This review provides a comprehensive overview of the pharmacology and toxicology-related body of knowledge on ricin. Toxicokinetic/toxicodynamic aspects of ricin poisoning and possibilities for analytical detection and therapeutic use are summarized as well.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | - Reinhold Scholl
- Department of History, University of Leipzig, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Clinical Pharmacology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Sun Y, Zhong S, Yu J, Zhu J, Ji D, Hu G, Wu C, Li Y. The aqueous extract of Phellinus igniarius (SH) ameliorates dextran sodium sulfate-induced colitis in C57BL/6 mice. PLoS One 2018; 13:e0205007. [PMID: 30289941 PMCID: PMC6173430 DOI: 10.1371/journal.pone.0205007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022] Open
Abstract
Phellinus igniarius, which is called Sanghuang in Chinese, is a fungal herb widely used in Traditional Chinese Medicine to treat stomachache, inflammation and tumors. Recent studies have demonstrated the antitumor, anti-diabetic, anti-inflammatory and immunity-modulating activities of P. igniarius. In the present study, we investigated that ameliorating effect of the aqueous extract of P. igniarius fruiting body (SH) on dextran sodium sulfate (DSS)-induced colitis in C57BL/6 mice. Treatment with SH (250 and 400 mg/kg) for 8 weeks effectively alleviated the pathological indicators of colitis such as bodyweight reduction, disease activity index score, shortening of colon length and abnormal colon histology. The plasma levels of lipopolysaccharide (LPS) and inflammatory factors such as interleukin-6 (IL-6), IL-1β and tumor necrosis factor (TNF)-α were all significantly reduced. Supplementation of SH (10 mg/L) also inhibited LPS-elicited IL-1β production by RAW264.7 macrophages. Real-time PCR and western blot showed that treatment with SH significantly inhibited the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and decreased the expression of IL-6/IL-1β-maturation genes such as apoptosis-associated speck-like protein (ASC3) and caspase-1 in the colon of DSS-induced colitis mice. These results suggest that SH is adequate for the treatment of colitis. Inhibiting the expression and release of inflammatory factors may participate in the colitis-ameliorating effect of SH.
Collapse
Affiliation(s)
- Yuqing Sun
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shi Zhong
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxun Zhu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Guiyan Hu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
25
|
Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis. Mediators Inflamm 2018; 2018:5823823. [PMID: 29706799 PMCID: PMC5863298 DOI: 10.1155/2018/5823823] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022] Open
Abstract
Sepsis is recognized as a life-threatening organ dysfunctional disease that is caused by dysregulated host responses to infection. Up to now, sepsis still remains a dominant cause of multiple organ dysfunction syndrome (MODS) and death among severe condition patients. Pyroptosis, originally named after the Greek words “pyro” and “ptosis” in 2001, has been defined as a specific programmed cell death characterized by release of inflammatory cytokines. During sepsis, pyroptosis is required for defense against bacterial infection because appropriate pyroptosis can minimize tissue damage. Even so, pyroptosis when overactivated can result in septic shock, MODS, or increased risk of secondary infection. Proteolytic cleavage of gasdermin D (GSDMD) by caspase-1, caspase-4, caspase-5, and caspase-11 is an essential step for the execution of pyroptosis in activated innate immune cells and endothelial cells stimulated by cytosolic lipopolysaccharide (LPS). Cleaved GSDMD also triggers NACHT, LRR, and PYD domain-containing protein (NLRP) 3-mediated activation of caspase-1 via an intrinsic pathway, while the precise mechanism underlying GSDMD-induced NLRP 3 activation remains unclear. Hence, this study provides an overview of the recent advances in the molecular mechanisms underlying pyroptosis in sepsis.
Collapse
|
26
|
Shibata K. Historical aspects of studies on roles of the inflammasome in the pathogenesis of periodontal diseases. Mol Oral Microbiol 2018; 33:203-211. [DOI: 10.1111/omi.12217] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- K. Shibata
- Department of Oral Molecular Microbiology; Faculty of Dental Medicine and Graduate School of Dental Medicine; Hokkaido University; Hokkaido Japan
| |
Collapse
|
27
|
Distinct CD40L receptors mediate inflammasome activation and secretion of IL-1β and MCP-1 in cultured human retinal pigment epithelial cells. Exp Eye Res 2018; 170:29-39. [PMID: 29454857 DOI: 10.1016/j.exer.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/22/2022]
Abstract
CD40L signaling occurs in several diseases with inflammatory components, including ocular and retinal diseases. However, it has never been evaluated as a pathogenic mechanism in age-related macular degeneration (AMD) or as an inducer of inflammasome formation in any cell type. mRNA and protein levels of CD40, IL-1β, NALP1, NALP3, caspase-1, and caspase-5 were determined by RT-PCR, qPCR, and Western blot. CD40L receptor (CD40, α5β1, and CD11b) expression was determined by Western and immunofluorescent staining. IL-1β, IL-18, and MCP-1 secretions were determined by ELISA. NALP1 and NALP3 inflammasome formation were determined by Co-IP. Experiments were conducted on primary human retinal pigment epithelial (hRPE) cells from four different donors. Human umbilical vein endothelial (HUVEC) and monocytic leukemia (THP-1) cells demonstrated the general applicability of our findings. In hRPE cells, CD40L-induced NALP1 and NALP3 inflammasome activation, cleavage of caspase-1 and caspase-5, and IL-1β and IL-18 secretion. Interestingly, neutralizing CD11b and α5β1 antibodies, but not CD40, reduced CD40L-induced IL-1β secretion in hRPE cells. Similarly, CD40L treatment also induced HUVEC and THP-1 cells to secret IL-1β through CD11b and α5β1. Additionally, the CD40L-induced IL-1β secretion acted in an autocrine/paracrine manner to feed back and induce hRPE cells to secrete MCP-1. This study is the first to show that CD40L induces inflammasome activation in any cell type, including hRPE cells, and that this induction is through CD11b and α5β1 cell-surface receptors. These mechanisms likely play an important role in many retinal and non-retinal diseases and provide compelling drug targets that may help reduce pro-inflammatory processes.
Collapse
|
28
|
Garay-Lugo N, Domínguez-Lopez A, Miliar García A, Aguilar Barrera E, Gómez López M, Gómez Alcalá A, Martínez Godinez MDLA, Lara-Padilla E. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol 2017; 38:353-63. [PMID: 27367537 DOI: 10.1080/08923973.2016.1208221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT There is evidence that n-3 polyunsaturated fatty acids (n-3-PUFAs) can inhibit mTORC1, which should potentiate autophagy and eliminate NLRP3 inflammasome activity. OBJECTIVE Evaluate the effect of a high-fat or high-fat/fructose diet with and without n-3-PUFAs on hepatic gene expression. MATERIALS AND METHODS We examined the mRNA expression by RT-PCR of Mtor, Nlrp3, and other 22 genes associated with inflammation in rats livers after a 9-week diet. The dietary regimens were low-fat (control, CD), high-fat (HF), high-fat/fructose (HF-Fr), and also each of these supplemented with n-3-PUFAs (CD-n-3-PUFAs, HF-n-3-PUFAs, and HF-Fr-n-3-PUFAs). These data were processed by GeneMania and STRING databases. RESULTS Compared to the control, the HF group showed a significant increase (between p < 0.05 and p < 0.0001) in 20 of these genes (Il1b, Il18, Rxra, Nlrp3, Casp1, Il33, Tnf, Acaca, Mtor, Eif2s1, Eif2ak4, Nfkb1, Srebf1, Hif1a, Ppara, Ppard, Pparg, Mlxipl, Fasn y Scd1), and a decrease in Sirt1 (p < 0.05). With the HF-Fr diet, a significant increase (between p < 0.05 and p < 0.005) was also found in the expression of 16 evaluated genes (Srebf1, Mlxipl, Rxra, Abca1, Il33, Nfkb1, Hif1a, Pparg, Casp1, Il1b, Il-18, Tnf, Ppard, Acaca, Fasn, Scd1), along with a decrease in the transcription of Mtor and Elovl6 (p < 0.05). Contrarily, many of the genes whose expression increased with the HF and HF-Fr diets did not significantly increase with the HF-n-3-PUFAs or HF-Fr-n-3-PUFAs diet. DISCUSSION AND CONCLUSION We found the interrelation of the genes for the mTORC1 complex, the NLRP3 inflammasome, and other metabolically important proteins, and that these genes respond to n-3-PUFAs.
Collapse
Affiliation(s)
- Natalia Garay-Lugo
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Aarón Domínguez-Lopez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Angel Miliar García
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eliud Aguilar Barrera
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Modesto Gómez López
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Alejandro Gómez Alcalá
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Maria de Los Angeles Martínez Godinez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eleazar Lara-Padilla
- b Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Díaz Mirón , México , D.F , México
| |
Collapse
|
29
|
Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis 2016; 11:1391-401. [PMID: 27382275 PMCID: PMC4922809 DOI: 10.2147/copd.s106009] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials) and those of heavy metals (from paint) are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles) or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7) may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections.
Collapse
Affiliation(s)
- John Wong
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| | - Bruce E Magun
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| | - Lisa J Wood
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| |
Collapse
|
30
|
Tardif MR, Chapeton-Montes JA, Posvandzic A, Pagé N, Gilbert C, Tessier PA. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux. J Immunol Res 2015; 2015:296149. [PMID: 27057553 PMCID: PMC4736198 DOI: 10.1155/2015/296149] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/06/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
S100A8/A9 (calprotectin) and S100A12 proinflammatory mediators are found at inflammatory sites and in the serum of patients with inflammatory or autoimmune diseases. These cytoplasmic proteins are secreted by neutrophils at sites of inflammation via alternative secretion pathways of which little is known. This study examined the nature of the stimuli leading to S100A8/A9 and S100A12 secretion as well as the mechanism involved in this alternative secretion pathway. Chemotactic agents, cytokines, and particulate molecules were used to stimulate human neutrophils. MSU crystals, PMA, and H2O2 induced the release of S100A8, S100A9, and S100A12 homodimers, as well as S100A8/A9 heterodimer. High concentrations of S100A8/A9 and S100A12 were secreted in response to nanoparticles like MSU, silica, TiO2, fullerene, and single-wall carbon nanotubes as well as in response to microbe-derived molecules, such as zymosan or HKCA. However, neutrophils exposed to the chemotactic factors fMLP failed to secrete S100A8/A9 or S100A12. Secretion of S100A8/A9 was dependent on the production of reactive oxygen species and required K(+) exchanges through the ATP-sensitive K(+) channel. Altogether, these findings suggest that S100A12 and S100A8/A9 are secreted independently either via distinct mechanisms of secretion or following the activation of different signal transduction pathways.
Collapse
Affiliation(s)
- Mélanie R. Tardif
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Julie Andrea Chapeton-Montes
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Alma Posvandzic
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Nathalie Pagé
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Caroline Gilbert
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Philippe A. Tessier
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
31
|
Shiga Toxins Activate the NLRP3 Inflammasome Pathway To Promote Both Production of the Proinflammatory Cytokine Interleukin-1β and Apoptotic Cell Death. Infect Immun 2015; 84:172-86. [PMID: 26502906 DOI: 10.1128/iai.01095-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death.
Collapse
|
32
|
Gan SJ, Ye B, Qian SX, Zhang C, Mao JQ, Li K, Tang JD. Immune- and Ribosome-Related Genes were Associated with Systemic Vasculitis. Scand J Immunol 2015; 81:96-101. [PMID: 25410188 DOI: 10.1111/sji.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/29/2014] [Indexed: 02/03/2023]
Affiliation(s)
- S. J. Gan
- Department of Vascular Surgery; Shanghai First People's Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - B. Ye
- Department of Vasular Surgery; Ganzhou People’ Hospital; Ganzhou Jiangxi Province China
| | - S. X. Qian
- Department of Vascular Surgery; Shanghai First People's Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - C. Zhang
- Department of Vascular Surgery; Shanghai First People's Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - J. Q. Mao
- Department of Vascular Surgery; Shanghai First People's Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - K. Li
- Department of Vascular Surgery; Shanghai First People's Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - J. D. Tang
- Department of Vascular Surgery; Shanghai First People's Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| |
Collapse
|
33
|
Huber RG, Eibl C, Fuchs JE. Intrinsic flexibility of NLRP pyrin domains is a key factor in their conformational dynamics, fold stability, and dimerization. Protein Sci 2014; 24:174-81. [PMID: 25403012 DOI: 10.1002/pro.2601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/09/2014] [Indexed: 01/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs) are key proteins in the innate immune system. The 14 members of the NLRP family of NLRs contain an N-terminal pyrin domain which is central for complex formation and signal transduction. Recently, X-ray structures of NLRP14 revealed an unexpected rearrangement of the α5/6 stem-helix of the pyrin domain allowing a novel symmetric dimerization mode. We characterize the conformational transitions underlying NLRP oligomerization using molecular dynamics simulations. We describe conformational stability of native NLRP14 and mutants in their monomeric and dimeric states and compare them to NLRP4, a representative of a native pyrin domain fold. Thereby, we characterize the interplay of conformational dynamics, fold stability, and dimerization in NLRP pyrin domains. We show that intrinsic flexibility of NLRP pyrin domains is a key factor influencing their behavior in physiological conditions. Additionally, we provide further evidence for the crucial importance of a charge relay system within NLRPs that critically influences their conformational ensemble in solution.
Collapse
Affiliation(s)
- Roland G Huber
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain, 80/82, Innsbruck, Austria; Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01 Matrix, Singapore, 138671
| | | | | |
Collapse
|
34
|
Lo JH, Lin CM, Chen MJ, Chen TT. Altered gene expression patterns of innate and adaptive immunity pathways in transgenic rainbow trout harboring Cecropin P1 transgene. BMC Genomics 2014; 15:887. [PMID: 25306446 PMCID: PMC4201688 DOI: 10.1186/1471-2164-15-887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
Background We have recently developed several homozygous families of transgenic rainbow trout harbouring cecropin P1 transgene. These fish exhibit resistance characteristic to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). In our earlier studies we have reported that treatment of a rainbow trout macrophage cell line (RTS11) with a linear cationic α-helical antimicrobial peptide (e.g., cecropin B) resulted in elevated levels of expression of two pro-inflammatory relevant genes (e.g., IL-1β and COX-2). Therefore, we hypothesized that in addition to the direct antimicrobial activity of cecropin P1 in the disease resistant transgenic rainbow trout, this antimicrobial peptide may also affect the expression of immune relevant genes in the host. To confirm this hypothesis, we launched a study to determine the global gene expression profiles in three immune competent organs of cecropin P1 transgenic rainbow trout by using a 44k salmonid microarray. Results From the microarray data, a total of 2480 genes in the spleen, 3022 in the kidney, and 2102 in the liver were determined as differentially expressed genes (DEGs) in the cecropin P1 transgenic rainbow trout when compared to the non-transgenics. There were 478 DEGs in common among three tissues. Enrichment analyses conducted by two different bioinformatics tools revealed a tissue specific profile of functional pathway perturbation. Many of them were directly related to innate immune system such as phagocytosis, lysosomal processing, complement activation, antigen processing/presentation, and leukocyte migration. Perturbation of other biological functions that might contribute indirectly to host immunity was also observed. Conclusions The gene product of cecropin P1 transgene produced in the disease resistant transgenic rainbow trout not only can kill the pathogens directly but also exert multifaceted immunomodulatory properties to boost host immunity. The identified genes involved in different pathways related to immune function are valuable indicators associated with enhanced host immunity. These genes may serve as markers for selective breeding of rainbow trout or other aquaculture important fish species bearing traits of disease resistance. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-887) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Thomas T Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
35
|
Wong J, Tran LT, Magun EA, Magun BE, Wood LJ. Production of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: synergistic effects of doxorubicin and vincristine. Cancer Biol Ther 2014; 15:1395-403. [PMID: 25046000 PMCID: PMC4130732 DOI: 10.4161/cbt.29922] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytotoxic chemotherapeutic drugs, especially when used in combination, are widely employed to treat a variety of cancers in patients but often lead to serious symptoms that negatively affect physical functioning and quality of life. There is compelling evidence that implicates cytotoxic chemotherapy-induced inflammation in the etiology of these symptoms. Because IL-1β plays a central role as an initiator cytokine in immune responses, we compared doxorubicin, a drug known to induce IL-1β production, with ten other commonly prescribed chemotherapeutic drugs in their ability to lead to processing and secretion of IL-1β by primary mouse macrophages. Seven of them (melphalan, cisplatin, vincristine, etoposide, paclitaxel, methotrexate, and cytarabine) caused the production of IL-1β in cells pretreated with lipopolysaccharide. When delivered in combination with doxorubicin, one of the drugs, vincristine, was also capable of synergistically activating the NLRP3-dependent inflammasome and increasing expression of IL-1β, IL-6, and CXCL1. The absence of TNF-α and IL-1 signaling caused a partial reduction in the production of mature IL-1β. Three small-molecule inhibitors known to suppress activity of kinases situated upstream of mitogen-activated kinases (MAPKs) inhibited the expression of IL-1β, IL-6, and CXCL1 when doxorubicin and vincristine were used singly or together, so specific kinase inhibitors may be useful in reducing inflammation in patients receiving chemotherapy.
Collapse
Affiliation(s)
- John Wong
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Lisa T Tran
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Eli A Magun
- Department of Dermatology; Oregon Health & Science University; Portland, OR USA
| | - Bruce E Magun
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Lisa J Wood
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| |
Collapse
|
36
|
Robbins GR, Wen H, Ting JPY. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell 2014; 54:297-308. [PMID: 24766894 DOI: 10.1016/j.molcel.2014.03.029] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Modern medical and hygienic practices have greatly improved human health and longevity; however, increased human life span occurs concomitantly with the emergence of metabolic and age-related diseases. Studies over the past decade have strongly linked host inflammatory responses to the etiology of several metabolic diseases including atherosclerosis, type 2 diabetes (T2D), obesity, and gout. A common immunological factor to these diseases is the activation of the inflammasome and release of proinflammatory cytokines that promote disease progression. Here we review the molecular mechanism(s) of inflammasome activation in response to metabolic damage-associated molecular patterns (DAMPs) and discuss potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Gregory R Robbins
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haitao Wen
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Fernandez MV, Miller EA, Bhardwaj N. Activation and measurement of NLRP3 inflammasome activity using IL-1β in human monocyte-derived dendritic cells. J Vis Exp 2014. [PMID: 24894187 DOI: 10.3791/51284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes resulting from the secretion of Interleukin (IL)-1 family cytokines by immune cells lead to local or systemic inflammation, tissue remodeling and repair, and virologic control(1) (,) (2) . Interleukin-1β is an essential element of the innate immune response and contributes to eliminate invading pathogens while preventing the establishment of persistent infection(1-5). Inflammasomes are the key signaling platform for the activation of interleukin 1 converting enzyme (ICE or Caspase-1). The NLRP3 inflammasome requires at least two signals in DCs to cause IL-1β secretion(6). Pro-IL-1β protein expression is limited in resting cells; therefore a priming signal is required for IL-1β transcription and protein expression. A second signal sensed by NLRP3 results in the formation of the multi-protein NLRP3 inflammasome. The ability of dendritic cells to respond to the signals required for IL-1β secretion can be tested using a synthetic purine, R848, which is sensed by TLR8 in human monocyte derived dendritic cells (moDCs) to prime cells, followed by activation of the NLRP3 inflammasome with the bacterial toxin and potassium ionophore, nigericin. Monocyte derived DCs are easily produced in culture and provide significantly more cells than purified human myeloid DCs. The method presented here differs from other inflammasome assays in that it uses in vitro human, instead of mouse derived, DCs thus allowing for the study of the inflammasome in human disease and infection.
Collapse
Affiliation(s)
| | - Elizabeth A Miller
- Division of Infectious Diseases, Department of Medicine, Mount Sinai Medical Center
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Mount Sinai Medical Center;
| |
Collapse
|
38
|
Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal Biochem 2014; 450:57-62. [DOI: 10.1016/j.ab.2013.10.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/07/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
|
39
|
Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators Inflamm 2014; 2014:708193. [PMID: 24523573 PMCID: PMC3910075 DOI: 10.1155/2014/708193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 12/30/2022] Open
Abstract
Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study, ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions.
Collapse
|
40
|
Novel paradigms of innate immune sensing of viral infections. Cytokine 2013; 63:219-24. [DOI: 10.1016/j.cyto.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 12/15/2022]
|
41
|
Abstract
Inflammasomes are key signalling platforms that detect pathogenic microorganisms and sterile stressors, and that activate the highly pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. In this Review, we discuss the complex regulatory mechanisms that facilitate a balanced but effective inflammasome-mediated immune response, and we highlight the similarities to another molecular signalling platform - the apoptosome - that monitors cellular health. Extracellular regulatory mechanisms are discussed, as well as the intracellular control of inflammasome assembly, for example, via ion fluxes, free radicals and autophagy.
Collapse
Affiliation(s)
- Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn 53127, Germany.
| | | | | |
Collapse
|
42
|
Niebler M, Qian X, Höfler D, Kogosov V, Kaewprag J, Kaufmann AM, Ly R, Böhmer G, Zawatzky R, Rösl F, Rincon-Orozco B. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53. PLoS Pathog 2013; 9:e1003536. [PMID: 23935506 PMCID: PMC3731255 DOI: 10.1371/journal.ppat.1003536] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
Infections with high-risk human papillomaviruses (HPVs) are causally involved in the development of anogenital cancer. HPVs apparently evade the innate immune response of their host cells by dysregulating immunomodulatory factors such as cytokines and chemokines, thereby creating a microenvironment that favors malignancy. One central key player in the immune surveillance interactome is interleukin-1 beta (IL-1β) which not only mediates inflammation, but also links innate and adaptive immunity. Because of its pleiotropic physiological effects, IL-1β production is tightly controlled on transcriptional, post-translational and secretory levels. Here, we describe a novel mechanism how the high-risk HPV16 E6 oncoprotein abrogates IL-1β processing and secretion in a NALP3 inflammasome-independent manner. We analyzed IL-1β regulation in immortalized keratinocytes that harbor the HPV16 E6 and/or E7 oncogenes as well as HPV-positive cervical tumor cells. While in primary and in E7-immortalized human keratinocytes the secretion of IL-1β was highly inducible upon inflammasome activation, E6-positive cells did not respond. Western blot analyses revealed a strong reduction of basal intracellular levels of pro-IL-1β that was independent of dysregulation of the NALP3 inflammasome, autophagy or lysosomal activity. Instead, we demonstrate that pro-IL-1β is degraded in a proteasome-dependent manner in E6-positive cells which is mediated via the ubiquitin ligase E6-AP and p53. Conversely, in E6- and E6/E7-immortalized cells pro-IL-1β levels were restored by siRNA knock-down of E6-AP and simultaneous recovery of functional p53. In the context of HPV-induced carcinogenesis, these data suggest a novel post-translational mechanism of pro-IL-1β regulation which ultimately inhibits the secretion of IL-1β in virus-infected keratinocytes. The clinical relevance of our results was further confirmed in HPV-positive tissue samples, where a gradual decrease of IL-1β towards cervical cancer could be discerned. Hence, attenuation of IL-1β by the HPV16 E6 oncoprotein in immortalized cells is apparently a crucial step in viral immune evasion and initiation of malignancy. Persistently high-risk HPV-infected individuals have an increased risk to develop anogenital cancer. HPV encodes the viral proteins E6 and E7 that interact with and induce the degradation of the cell cycle regulators p53 and pRb, respectively, priming immortalized keratinocytes towards malignant transformation. In early antiviral immune response, IL-1β is an important factor for the initiation of inflammation and activation of immune cells such as macrophages and T cells. Our study describes a post-translationally controlled pathway where E6 mediates proteasomal degradation of IL-1β in HPV16-immortalized human keratinocytes. This process depends on the cellular ubiquitin ligase E6-AP and p53 highlighting a novel molecular mechanism of a virus-host interaction that is critical for evading innate immune defense. IL-1β dysregulation is also found in tissue sections which represent different stages of virus-induced carcinogenesis, underlining the clinical relevance of our findings.
Collapse
Affiliation(s)
- Martina Niebler
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xu Qian
- Gynecological Tumor-Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Daniela Höfler
- Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vlada Kogosov
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jittranan Kaewprag
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andreas M. Kaufmann
- Gynecological Tumor-Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Regina Ly
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerd Böhmer
- Deutsche Klinik Bad Münder, Hannover, Germany
| | - Rainer Zawatzky
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (FR); (BRO)
| | - Bladimiro Rincon-Orozco
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (FR); (BRO)
| |
Collapse
|
43
|
Lopez-Castejon G, Luheshi NM, Compan V, High S, Whitehead RC, Flitsch S, Kirov A, Prudovsky I, Swanton E, Brough D. Deubiquitinases regulate the activity of caspase-1 and interleukin-1β secretion via assembly of the inflammasome. J Biol Chem 2013; 288:2721-33. [PMID: 23209292 PMCID: PMC3554938 DOI: 10.1074/jbc.m112.422238] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/09/2012] [Indexed: 01/01/2023] Open
Abstract
IL-1β is a potent pro-inflammatory cytokine produced in response to infection or injury. It is synthesized as an inactive precursor that is activated by the protease caspase-1 within a cytosolic molecular complex called the inflammasome. Assembly of this complex is triggered by a range of structurally diverse damage or pathogen associated stimuli, and the signaling pathways through which these act are poorly understood. Ubiquitination is a post-translational modification essential for maintaining cellular homeostasis. It can be reversed by deubiquitinase enzymes (DUBs) that remove ubiquitin moieties from the protein thus modifying its fate. DUBs present specificity toward different ubiquitin chain topologies and are crucial for recycling ubiquitin molecules before protein degradation as well as regulating key cellular processes such as protein trafficking, gene transcription, and signaling. We report here that small molecule inhibitors of DUB activity inhibit inflammasome activation. Inhibition of DUBs blocked the processing and release of IL-1β in both mouse and human macrophages. DUB activity was necessary for inflammasome association as DUB inhibition also impaired ASC oligomerization and caspase-1 activation without directly blocking caspase-1 activity. These data reveal the requirement for DUB activity in a key reaction of the innate immune response and highlight the therapeutic potential of DUB inhibitors for chronic auto-inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Stephen High
- Michael Smith Building, Faculty of Life Sciences, and
| | - Roger C. Whitehead
- School of Chemistry, University of Manchester Manchester, M13 9PT, United Kingdom and
| | - Sabine Flitsch
- School of Chemistry, University of Manchester Manchester, M13 9PT, United Kingdom and
| | - Aleksandr Kirov
- Center for Molecular Medicine, Maine Medical Centre Research Institute, Scarborough, Maine 04074
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Centre Research Institute, Scarborough, Maine 04074
| | | | - David Brough
- From the AV Hill Building, Faculty of Life Sciences
| |
Collapse
|
44
|
Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E. Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol 2013; 16:23-31. [PMID: 23318142 DOI: 10.1016/j.mib.2012.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/14/2012] [Accepted: 11/26/2012] [Indexed: 02/08/2023]
Abstract
The inflammasome has emerged as an important molecular protein complex which initiates proteolytic processing of pro-IL-1β and pro-IL-18 into mature inflammatory cytokines. In addition, inflammasomes initiate pyroptotic cell death that may be independent of those cytokines. Inflammasomes are central to elicit innate immune responses against many pathogens, and are key components in the induction of host defenses following bacterial infection. Here, we review recent discoveries related to NLRP1, NLRP3, NLRC4, NLRP6, NLRP7, NLRP12 and AIM2-mediated recognition of bacteria. Mechanisms for inflammasome activation and regulation are now suggested to involve kinases such as PKR and PKCδ, ligand binding proteins such as the NAIPs, and caspase-11 and caspase-8 in addition to caspase-1. Future research will determine how specific inflammasome components pair up in optimal responses to specific bacteria.
Collapse
Affiliation(s)
- Gregory I Vladimer
- Division of Infectious Diseases and Immunology, Department of Medicine, UMass Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|