1
|
McGovern MM, Cox BC. Hearing restoration through hair cell regeneration: A review of recent advancements and current limitations. Hear Res 2025; 461:109256. [PMID: 40157114 DOI: 10.1016/j.heares.2025.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Hearing loss is extremely common, yet limited treatment options are available to restore hearing, and those that are available provide incomplete recovery of hearing detection. For patients who are born with normal hearing, the most common cause of hearing loss is the loss of the sensory hair cells located in the cochlea of the inner ear. Non-mammals, including birds, fish, and amphibians, naturally regenerate new hair cells after damage and this natural process results in functional recovery. While some limited hair cell regeneration also occurs in the immature cochlea of mice, the mature mammalian cochlea does not naturally produce replacement hair cells, and thus hearing loss is permanent. Since the late 1980s, researchers have been investigating mechanisms to convert supporting cells, the cells that remain once hair cells have been killed, into new replacement hair cells. Here we review the current status of hair cell regeneration in the adult cochlea, highlighting recent achievements, as well as challenges that have yet to be resolved.
Collapse
Affiliation(s)
- Melissa M McGovern
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
2
|
Guo JY, Xu JY, Gong SS, Wang GP. Roles of supporting cells in the maintenance and regeneration of the damaged inner ear: A literature review. J Otol 2024; 19:234-240. [PMID: 39776546 PMCID: PMC11701326 DOI: 10.1016/j.joto.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 01/11/2025] Open
Abstract
The inner ear sensory epithelium consists of two major types of cells: hair cells (HCs) and supporting cells (SCs). Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have long been elucidated. SCs are indispensable components of the sensory epithelia, and they maintain the structural integrity and ionic environment of the inner ear. Once delicate inner ear epithelia sustain injuries (for example, due to ototoxic drugs or noise exposure), SCs respond immediately to serve as repairers of the epithelium and as adapters to become HC progenitors, aiming at morphological and functional recovery of the inner ear. This regenerative process is extensive in non-mammals, but is limited in the mammalian inner ear, especially in the mature cochlea. This review aimed to discuss the important roles of SCs in the repair of the mammalian inner ear.
Collapse
Affiliation(s)
- Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Jun-Yi Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Reagor CC, Velez-Angel N, Hudspeth AJ. Depicting pseudotime-lagged causality across single-cell trajectories for accurate gene-regulatory inference. PNAS NEXUS 2023; 2:pgad113. [PMID: 37113980 PMCID: PMC10129065 DOI: 10.1093/pnasnexus/pgad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
Identifying the causal interactions in gene-regulatory networks requires an accurate understanding of the time-lagged relationships between transcription factors and their target genes. Here we describe DELAY (short for Depicting Lagged Causality), a convolutional neural network for the inference of gene-regulatory relationships across pseudotime-ordered single-cell trajectories. We show that combining supervised deep learning with joint probability matrices of pseudotime-lagged trajectories allows the network to overcome important limitations of ordinary Granger causality-based methods, for example, the inability to infer cyclic relationships such as feedback loops. Our network outperforms several common methods for inferring gene regulation and, when given partial ground-truth labels, predicts novel regulatory networks from single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) data sets. To validate this approach, we used DELAY to identify important genes and modules in the regulatory network of auditory hair cells, as well as likely DNA-binding partners for two hair cell cofactors (Hist1h1c and Ccnd1) and a novel binding sequence for the hair cell-specific transcription factor Fiz1. We provide an easy-to-use implementation of DELAY under an open-source license at https://github.com/calebclayreagor/DELAY.
Collapse
Affiliation(s)
| | - Nicolas Velez-Angel
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
4
|
Lee MP, Waldhaus J. In vitro and in vivo models: What have we learnt about inner ear regeneration and treatment for hearing loss? Mol Cell Neurosci 2022; 120:103736. [PMID: 35577314 PMCID: PMC9551661 DOI: 10.1016/j.mcn.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.
Collapse
Affiliation(s)
- Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Walters BJ, Cox BC. Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hear Res 2019; 376:69-85. [PMID: 30679030 PMCID: PMC6456365 DOI: 10.1016/j.heares.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation and histone modifications such as methylation, acetylation, and phosphorylation, are two types of epigenetic modifications that alter gene expression. These additions to DNA regulatory elements or to the tails of histones can be inherited or can also occur de novo. Since epigenetic modifications can have significant effects on various processes at both the cellular and organismal level, there has been a rapid increase in research on this topic throughout all fields of biology in recent years. However, epigenetic research is relativity new for the inner ear field, likely due to the limited number of cells present and their quiescent nature. Here, we provide an overview of methods used to detect DNA methylation and histone modifications with a focus on those that have been validated for use with limited cell numbers and a discussion of the strengths and limitations for each. We also provide examples for how these methods have been used to investigate the epigenetic landscape in the inner ear and related tissues.
Collapse
Affiliation(s)
- Bradley J Walters
- Departments of Neurobiology and Anatomical Sciences, and of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA.
| |
Collapse
|
7
|
Samarajeewa A, Jacques BE, Dabdoub A. Therapeutic Potential of Wnt and Notch Signaling and Epigenetic Regulation in Mammalian Sensory Hair Cell Regeneration. Mol Ther 2019; 27:904-911. [PMID: 30982678 PMCID: PMC6520458 DOI: 10.1016/j.ymthe.2019.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Hearing loss is one of the most prevalent sensory deficits worldwide and can result from the death of mechanosensory hair cells that transduce auditory signals in the cochlea. The mammalian cochlea lacks the capacity to regenerate these hair cells once damaged, and currently there are no biological therapies for hearing loss. Understanding the signaling pathways responsible for hair cell development can inform regenerative strategies and identify targets for treating hearing loss. The canonical Wnt and Notch pathways are critical for cochlear development; they converge on several key molecules, such as Atoh1, to regulate prosensory specification, proliferation, hair cell differentiation, and cellular organization. Much work has focused on Wnt and Notch modulation in the neonatal mouse cochlea, where they can promote hair cell regeneration. However, this regenerative response is limited in the adult cochlea and this might be attributed to age-dependent epigenetic modifications. Indeed, the epigenetic status at key gene loci undergoes dynamic changes during cochlear development, maturation, and aging. Therefore, strategies to improve regenerative success in the adult cochlea might require the modulation of Wnt, Notch, or other pathways, as well as targeted epigenetic modifications to alter the activity of key genes critical for supporting cell proliferation or transdifferentiation.
Collapse
Affiliation(s)
- Anshula Samarajeewa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
8
|
Atkinson PJ, Kim GS, Cheng AG. Direct cellular reprogramming and inner ear regeneration. Expert Opin Biol Ther 2019; 19:129-139. [PMID: 30584811 DOI: 10.1080/14712598.2019.1564035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Sound is integral to communication and connects us to the world through speech and music. Cochlear hair cells are essential for converting sounds into neural impulses. However, these cells are highly susceptible to damage from an array of factors, resulting in degeneration and ultimately irreversible hearing loss in humans. Since the discovery of hair cell regeneration in birds, there have been tremendous efforts to identify therapies that could promote hair cell regeneration in mammals. AREAS COVERED Here, we will review recent studies describing spontaneous hair cell regeneration and direct cellular reprograming as well as other factors that mediate mammalian hair cell regeneration. EXPERT OPINION Numerous combinatorial approaches have successfully reprogrammed non-sensory supporting cells to form hair cells, albeit with limited efficacy and maturation. Studies on epigenetic regulation and transcriptional network of hair cell progenitors may accelerate discovery of more promising reprogramming regimens.
Collapse
Affiliation(s)
- Patrick J Atkinson
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Grace S Kim
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Alan G Cheng
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
9
|
Iki T, Tanaka M, Kitajiri SI, Kita T, Kawasaki Y, Mizukoshi A, Fujibuchi W, Nakagawa T, Nakahata T, Ito J, Omori K, Saito MK. Microarray analyses of otospheres derived from the cochlea in the inner ear identify putative transcription factors that regulate the characteristics of otospheres. PLoS One 2017; 12:e0179901. [PMID: 28662075 PMCID: PMC5491065 DOI: 10.1371/journal.pone.0179901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Various tissues possess tissue-specific stem/progenitor cells, including the inner ears. Stem/progenitor cells of the inner ear can be isolated as so-called otospheres from differentiated cells using a sphere forming assay. Although recent studies have demonstrated the characteristics of otospheres to some extent, most of the features of these cells are unknown. In this report, we describe the findings of transcriptome analyses with a cDNA microarray of otospheres derived from the cochleae of the inner ears of neonatal mice in order to clarify the gene expression profile of otic stem/progenitor cells. There were common transcription factors between otospheres and embryonic stem cells, which were supposed to be due to the stemness of otospheres. In comparison with the cochlear sensory epithelium, the otospheres shared characteristics with the cochlea, although several transcription factors specific for otospheres were identified. These transcription factors are expected to be essential for maintaining the characteristics of otospheres, and appear to be candidate genes that promote the direct conversion of cells into otic stem/progenitor cells.
Collapse
Affiliation(s)
- Takehiro Iki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michihiro Tanaka
- Information and Security Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shin-ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Kyoto, Japan
| | - Tomoko Kita
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akifumi Mizukoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wataru Fujibuchi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Juichi Ito
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Hearing Communication Medical Center, Shiga Medical Center Research Institute, Shiga, Japan
| | - Koichi Omori
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Bassiouni M, Dos Santos A, Avci HX, Löwenheim H, Müller M. Bmi1 Loss in the Organ of Corti Results in p16ink4a Upregulation and Reduced Cell Proliferation of Otic Progenitors In Vitro. PLoS One 2016; 11:e0164579. [PMID: 27755610 PMCID: PMC5068820 DOI: 10.1371/journal.pone.0164579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
The mature mammalian organ of Corti does not regenerate spontaneously after injury, mainly due to the absence of cell proliferation and the depletion of otic progenitors with age. The polycomb gene B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) promotes proliferation and cell cycle progression in several stem cell populations. The cell cycle inhibitor p16ink4a has been previously identified as a downstream target of Bmi1. In this study, we show that Bmi1 is expressed in the developing inner ear. In the organ of Corti, Bmi1 expression is temporally regulated during embryonic and postnatal development. In contrast, p16ink4a expression is not detectable during the same period. Bmi1-deficient mice were used to investigate the role of Bmi1 in cochlear development and otosphere generation. In the absence of Bmi1, the postnatal organ of Corti displayed normal morphology at least until the end of the first postnatal week, suggesting that Bmi1 is not required for the embryonic or early postnatal development of the organ of Corti. However, Bmi1 loss resulted in the reduced sphere-forming capacity of the organ of Corti, accompanied by the decreased cell proliferation of otic progenitors in otosphere cultures. This reduced proliferative capacity was associated with the upregulation of p16ink4ain vitro. Viral vector-mediated overexpression of p16ink4a in wildtype otosphere cultures significantly reduced the number of generated otospheres in vitro. The findings strongly suggest a role for Bmi1 as a promoter of cell proliferation in otic progenitor cells, potentially through the repression of p16ink4a.
Collapse
Affiliation(s)
- Mohamed Bassiouni
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aurélie Dos Santos
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hasan X. Avci
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marcus Müller
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
11
|
Campbell DP, Chrysostomou E, Doetzlhofer A. Canonical Notch signaling plays an instructive role in auditory supporting cell development. Sci Rep 2016; 6:19484. [PMID: 26786414 PMCID: PMC4726253 DOI: 10.1038/srep19484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
The auditory sensory epithelium, composed of mechano-sensory hair cells (HCs) and highly specialized glial-like supporting cells (SCs), is critical for our ability to detect sound. SCs provide structural and functional support to HCs and play an essential role in cochlear development, homeostasis and repair. Despite their importance, however, surprisingly little is known about the molecular mechanisms guiding SC differentiation. Here, we provide evidence that in addition to its well-characterized inhibitory function, canonical Notch signaling plays a positive, instructive role in the differentiation of SCs. Using γ-secretase inhibitor DAPT to acutely block canonical Notch signaling, we identified a cohort of Notch-regulated SC-specific genes, with diverse functions in cell signaling, cell differentiation, neuronal innervation and synaptogenesis. We validated the newly identified Notch-regulated genes in vivo using genetic gain (Emx2Cre/+; Rosa26N1ICD/+) and loss-of-function approaches (Emx2Cre/+; Rosa26DnMAML1/+). Furthermore, we demonstrate that Notch over-activation in the differentiating murine cochlea (Emx2Cre/+; Rosa26N1ICD/+) actively promotes a SC-specific gene expression program. Finally, we show that outer SCs –so called Deiters’ cells are selectively lost by prolonged reduction (Emx2Cre/+; Rosa26DnMAML1/+/+) or abolishment of canonical Notch signaling (Fgfr3-iCreER; Rbpj−/Δ), indicating a critical role for Notch signaling in Deiters’ cell development.
Collapse
Affiliation(s)
- Dean P Campbell
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| | - Elena Chrysostomou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Miya F, Mutai H, Fujii M, Boroevich KA, Matsunaga T, Tsunoda T. Gene expression profiling of DBA/2J mice cochleae treated with l-methionine and valproic acid. GENOMICS DATA 2015; 5:323-5. [PMID: 26484279 PMCID: PMC4583681 DOI: 10.1016/j.gdata.2015.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 10/31/2022]
Abstract
DBA/2J mice, which have homozygous mutations in Cdh23 and Fscn2, are characterized by early onset hearing loss at as early as three-weeks of age (Noben-Trauth et al., 2003 [1]) and are an animal model for progressive hearing loss research. Recently, it has been reported that epigenetic regulatory pathways likely play an important role in hearing loss (Provenzano and Domann, 2007 [2]; Mutai et al., 2009 [3]; Waldhaus et al., 2012 [4]). We previously reported that DBA/2J mice injected subcutaneously with a combination of epigenetic modifying reagents, l-methionine (MET) as methyl donor and valproic acid (VPA) as a pan-histone deacetylases (Hdac) inhibitor, showed a significant attenuation of progressive hearing loss by measuring their auditory brainstem response (ABR) thresholds (Mutai et al., 2015 [5]). Here we present genome wide expression profiling of the DBA/2J mice cochleae, with and without treatment of MET and VPA, to identify the genes involved in the reduction of progressive hearing loss. The raw and normalized data were deposited in NCBI's Gene Expression Omnibus (GEO ID: GSE62173) for ease of reproducibility and reanalysis.
Collapse
Affiliation(s)
- Fuyuki Miya
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hideki Mutai
- Laboratory of Auditory Disorders, Division of Balance and Hearing Research, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | - Masato Fujii
- Division of Balance and Hearing Research, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuo Matsunaga
- Laboratory of Auditory Disorders, Division of Balance and Hearing Research, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
13
|
Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: similarities and differences. Development 2015; 142:1561-71. [PMID: 25922522 DOI: 10.1242/dev.114926] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4. PLoS One 2015; 10:e0124301. [PMID: 25875282 PMCID: PMC4397065 DOI: 10.1371/journal.pone.0124301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/21/2023] Open
Abstract
Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: <smallcaps>L</smallcaps>-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of <smallcaps>L</smallcaps>-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (–)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.
Collapse
|
15
|
DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells. Aging (Albany NY) 2015; 6:496-510. [PMID: 25063730 PMCID: PMC4100811 DOI: 10.18632/aging.100668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supporting cells (SCs) of the cochlear (auditory) and vestibular (balance) organs hold promise as a platform for therapeutic regeneration of the sensory hair cells. Prior data have shown proliferative restrictions of adult SCs forced to re-enter the cell cycle. By comparing juvenile and adult SCs in explant cultures, we have here studied how proliferative restrictions are linked with DNA damage signaling. Cyclin D1 overexpression, used to stimulate cell cycle re-entry, triggered higher proliferative activity of juvenile SCs. Phosphorylated form of histone H2AX (γH2AX) and p53 binding protein 1 (53BP1) were induced in a foci-like pattern in SCs of both ages as an indication of DNA double-strand break formation and activated DNA damage response. Compared to juvenile SCs, γH2AX and the repair protein Rad51 were resolved with slower kinetics in adult SCs, accompanied by increased apoptosis. Consistent with the in vitro data, in a Rb mutant mouse model in vivo, cell cycle re-entry of SCs was associated with γH2AX foci induction. In contrast to cell cycle reactivation, pharmacological stimulation of SC-to-hair-cell transdifferentiation in vitro did not trigger γH2AX. Thus, DNA damage and its prolonged resolution are critical barriers in the efforts to stimulate proliferation of the adult inner ear SCs.
Collapse
|
16
|
Cai T, Groves AK. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 2014; 52:1315-1329. [PMID: 25339580 DOI: 10.1007/s12035-014-8925-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.
Collapse
Affiliation(s)
- Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Diensthuber M, Zecha V, Wagenblast J, Arnhold S, Edge ASB, Stöver T. Spiral ganglion stem cells can be propagated and differentiated into neurons and glia. Biores Open Access 2014; 3:88-97. [PMID: 24940560 PMCID: PMC4048968 DOI: 10.1089/biores.2014.0016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons.
Collapse
Affiliation(s)
- Marc Diensthuber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Frankfurt am Main , Goethe University, Frankfurt am Main, Germany . ; Department of Otology and Laryngology, Harvard Medical School , Boston, Massachusetts. ; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary , Boston, Massachusetts
| | - Veronika Zecha
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Frankfurt am Main , Goethe University, Frankfurt am Main, Germany
| | - Jens Wagenblast
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Frankfurt am Main , Goethe University, Frankfurt am Main, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology, and Embryology, Justus-Liebig University Giessen , Giessen, Germany
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School , Boston, Massachusetts. ; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary , Boston, Massachusetts. ; Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard and MIT , Cambridge, Massachusetts
| | - Timo Stöver
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Frankfurt am Main , Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Toward Translating Molecular Ear Development to Generate Hair Cells from Stem Cells. ADULT STEM CELLS 2014. [DOI: 10.1007/978-1-4614-9569-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Lou XX, Nakagawa T, Nishimura K, Ohnishi H, Yamamoto N, Sakamoto T, Ito J. Reprogramming of mouse cochlear cells by transcription factors to generate induced pluripotent stem cells. Cell Reprogram 2013; 15:514-9. [PMID: 24219577 DOI: 10.1089/cell.2013.0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As an initial step for using technology derived from induced pluripotent stem cells (iPSCs) in the field of inner ear therapeutics, we examined the potential of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, which are employed in the generation of iPSCs, for dedifferentiating cochlear epithelial cells. Otospheres, which are sphere-forming cells derived from dissociated cochlear epithelial cells of neonatal mice, were used as a cell source. The four transcription factors were introduced into otospheres using retroviral vectors. Virally transduced otospheres formed embryonic stem cell-like colonies that expressed markers for pluripotent stem cells and were capable of differentiating into the three germ layers in vivo and in vitro. These findings illustrate that viral transduction of four transcription factors can lead to reprogramming of cochlear epithelial cells, which may contribute to future studies of dedifferentiation of cochlear epithelial cells in tissue and identification of key molecules for otic induction.
Collapse
Affiliation(s)
- Xiang-Xin Lou
- 1 Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University , Kyoto, Japan , 6068507
| | | | | | | | | | | | | |
Collapse
|
20
|
Locher H, Frijns JHM, van Iperen L, de Groot JCMJ, Huisman MA, Chuva de Sousa Lopes SM. Neurosensory development and cell fate determination in the human cochlea. Neural Dev 2013; 8:20. [PMID: 24131517 PMCID: PMC3854452 DOI: 10.1186/1749-8104-8-20] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hearing depends on correct functioning of the cochlear hair cells, and their innervation by spiral ganglion neurons. Most of the insight into the embryological and molecular development of this sensory system has been derived from animal studies. In contrast, little is known about the molecular expression patterns and dynamics of signaling molecules during normal fetal development of the human cochlea. In this study, we investigated the onset of hair cell differentiation and innervation in the human fetal cochlea at various stages of development. RESULTS At 10 weeks of gestation, we observed a prosensory domain expressing SOX2 and SOX9/SOX10 within the cochlear duct epithelium. In this domain, hair cell differentiation was consistently present from 12 weeks, coinciding with downregulation of SOX9/SOX10, to be followed several weeks later by downregulation of SOX2. Outgrowing neurites from spiral ganglion neurons were found penetrating into the cochlear duct epithelium prior to hair cell differentiation, and directly targeted the hair cells as they developed. Ubiquitous Peripherin expression by spiral ganglion neurons gradually diminished and became restricted to the type II spiral ganglion neurons by 18 weeks. At 20 weeks, when the onset of human hearing is thought to take place, the expression profiles in hair cells and spiral ganglion neurons matched the expression patterns of the adult mammalian cochleae. CONCLUSIONS Our study provides new insights into the fetal development of the human cochlea, contributing to our understanding of deafness and to the development of new therapeutic strategies to restore hearing.
Collapse
Affiliation(s)
| | | | | | | | | | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, T-01-032, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
21
|
Epigenetic alterations by NuRD and PRC2 in the neonatal mouse cochlea. Hear Res 2013; 304:167-78. [PMID: 23911933 DOI: 10.1016/j.heares.2013.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/15/2013] [Accepted: 07/25/2013] [Indexed: 12/23/2022]
Abstract
Mammalian cochlear supporting cells remain quiescent at postnatal ages and age-dependent changes in supporting cell proliferative capacity are evident. Ectopic Atoh1 expression in neonatal supporting cells converts only a small percentage of these cells into hair cell-like cells. Despite tremendous potential for therapeutics, cellular reprogramming in the mammalian inner ear remains a slow inefficient process that requires weeks, with most cells failing to reprogram. Cellular reprogramming studies in other tissues have shown that epigenetic inhibitors can significantly improve reprogramming efficiency. Very little is known about epigenetic regulation in the mammalian inner ear, and almost nothing is known about the histone modifications. Histone modifications are vital for proper transcriptional regulation, and aberrant histone modifications can cause defects in the regulation of genes required for normal tissue development and maintenance. Our data indicate that cofactors of repressive complexes such as NuRD and PRC2 are present in the neonatal organ of Corti. These NuRD cofactors are present throughout most of the organ of Corti from E18.5 until P4. By P6, these NuRD cofactors are mostly undetectable by immunofluorescence and completely lost by P7, but are detectable again at P8 and continue to be present through P21. The PRC2 enzymatic subunit, EZH2 is also highly present from E18.5 to P0 in the organ of Corti, but lost between P2 and P4. However, EZH2 staining is evident again throughout the organ of Corti by P6 and persists through P21. Our data provide evidence that HDACs, DNA methyltransferases, histone methyltransferases, and histone demethylases are expressed postnatally within the organ of Corti, and may be targets for drug inhibition to increase the capacity, speed, and efficiency of reprogramming a supporting cell into a hair cell.
Collapse
|
22
|
Jackson R, Braubach OR, Bilkey J, Zhang J, Akimenko M, Fine A, Croll RP, Jonz MG. Expression of
sall4
in taste buds of zebrafish. Dev Neurobiol 2013; 73:543-58. [DOI: 10.1002/dneu.22079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Robyn Jackson
- Department of BiologyUniversity of OttawaOttawa ON CanadaK1N 6N5
| | - Oliver R. Braubach
- Department of Physiology and BiophysicsDalhousie UniversityHalifax NS CanadaB3H 1X5
- Center for Functional ConnectomicsKorea Institute of Science and TechnologySeoul Korea
| | - Jessica Bilkey
- Department of BiologyUniversity of OttawaOttawa ON CanadaK1N 6N5
| | - Jing Zhang
- Department of BiologyUniversity of OttawaOttawa ON CanadaK1N 6N5
| | | | - Alan Fine
- Department of Physiology and BiophysicsDalhousie UniversityHalifax NS CanadaB3H 1X5
| | - Roger P. Croll
- Department of Physiology and BiophysicsDalhousie UniversityHalifax NS CanadaB3H 1X5
| | - Michael G. Jonz
- Department of BiologyUniversity of OttawaOttawa ON CanadaK1N 6N5
| |
Collapse
|
23
|
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti from scratch, including the two types of HCs, inner and outer hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral and medial olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the organ of Corti. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision-making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs.
Collapse
|
24
|
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 2012; 297:68-83. [PMID: 23164734 DOI: 10.1016/j.heares.2012.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/22/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.
Collapse
|