1
|
Bershad AK, de Wit H. Social Homeostasis and Psychoactive Drugs: What Can We Learn From Opioid and Amphetamine Drug Challenge Studies in Humans? Biol Psychiatry 2025; 97:982-988. [PMID: 39277124 DOI: 10.1016/j.biopsych.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Social disequilibrium, or disrupted social homeostasis, underlies many behavioral disorders, including problematic drug use. One way to study the relationship between drug use and social homeostasis is to determine whether single doses of psychoactive drugs relieve some of the discomfort of social isolation and promote social connection. In this narrative review, we discuss challenges and opportunities in studying the relationship between psychoactive drugs and social homeostasis. Using the examples of opioids and amphetamines, we discuss the evidence that drugs alleviate dysphoria related to lack of social connection or produce prosocial effects that improve connection. With regard to opioid drugs, we report that mu opioid agonists and kappa opioid antagonists reduce distress from social isolation, and mu opioid agonists enhance social reward. Amphetamine-like stimulant drugs, including MDMA, do not seem to act by reducing the distress of social isolation, but they have notable prosocial effects that increase both motivation for social contact and the pleasure derived from interacting socially. Many questions remain in understanding interactions between drugs and social equilibrium, including whether these effects contribute to problematic drug use. We identify gaps in knowledge, including the effects of drug withdrawal or dependence on social function or the responses of individuals with psychiatric symptomatology. Understanding these actions on social processes will help to develop novel pharmacological treatments for clinical problems related to social disequilibrium.
Collapse
Affiliation(s)
- Anya K Bershad
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; VA VISN22 Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Gasser P, Liechti ME, Holze F. Treatment of neuropathic pain with repeated low-dose MDMA: a case report. Front Psychiatry 2025; 16:1513022. [PMID: 39963333 PMCID: PMC11830801 DOI: 10.3389/fpsyt.2025.1513022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
A 64-year-old male patient who suffered from traumatic life experiences and neuropathic pain after oncological chemotherapy was treated with medium to high doses of lysergic acid diethylamide (LSD) and high doses and microdoses of methylenedioxymethamphetamine (MDMA). At the beginning of treatment, the patient did not experience any acute subjective effects of LSD at a dose of 200 µg. After increasing the LSD dose to 400 µg, he experienced subjective acute effects, and the first lasting therapeutic effects were observed. After changing from LSD to MDMA at both high doses (150-175 mg) and repeated low doses (12.5-25 mg), the patient exhibited marked improvements in neuropathic pain that were sustained even after stopping repeated MDMA treatment. MDMA mini/microdosing has not yet been broadly investigated. This case documents benefits of low doses of MDMA for the treatment of a pain disorder. Further research is needed on effects of MDMA on pain.
Collapse
Affiliation(s)
| | - Matthias E. Liechti
- Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Andrés CMC, Pérez de la Lastra JM, Munguira EB, Juan CA, Pérez-Lebeña E. From Psychoactivity to Antimicrobial Agents: Multifaceted Applications of Synthetic Cathinones and Catha edulis Extracts. Molecules 2024; 29:5918. [PMID: 39770007 PMCID: PMC11679858 DOI: 10.3390/molecules29245918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The emergence of new psychoactive substances (NPS) in the global drug market since the 2000s has posed major challenges for regulators and law enforcement agencies. Among these, synthetic cathinones have gained prominence due to their stimulant effects on the central nervous system, leading to widespread recreational use. These compounds, often marketed as alternatives to illicit stimulants such as amphetamines and cocaine, have been linked to numerous cases of intoxication, addiction and death. The structural diversity and enantiomeric forms of synthetic cathinones further complicate their detection and regulation and pose challenges to forensic toxicology. In addition to their psychoactive and toxicological effects, new research suggests that cathinones may have antimicrobial properties. Compounds derived from Catha edulis (khat), including cathinone, have shown antimicrobial activity against multidrug-resistant bacteria such as Staphylococcus aureus and Escherichia coli, highlighting their potential role in the fight against antibiotic resistance. This article provides an overview of the chemistry, pharmacokinetics, pharmacodynamics, toxicological effects and potential antimicrobial applications of synthetic cathinones. The potential therapeutic use of cathinone-derived compounds to combat antimicrobial resistance represents an exciting new frontier in drug development, although further research is needed to balance these benefits with the psychoactive risks.
Collapse
Affiliation(s)
- Celia María Curieses Andrés
- Hospital Clínico Universitario of Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Elena Bustamante Munguira
- Hospital Clínico Universitario of Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Eduardo Pérez-Lebeña
- Valladolid University Foundation, Valladolid University, Paseo de Belén, 11, 47011 Valladolid, Spain;
| |
Collapse
|
4
|
Drevin G, Pena-Martin M, Bauduin A, Baudriller A, Briet M, Abbara C. Pharmacogenomics of 3,4-Methylenedioxymethamphetamine (MDMA): A Narrative Review of the Literature. Pharmaceutics 2024; 16:1091. [PMID: 39204437 PMCID: PMC11359928 DOI: 10.3390/pharmaceutics16081091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a synthetic amphetamine derivative with notable psychoactive properties and emerging therapeutic potential, particularly for treating post-traumatic stress disorders (PTSD) and substance use disorders. However, its use remains controversial due to inter-individual variability influenced by both environmental and genetic factors. In this context, pharmacogenomics could play a crucial role in guiding MDMA treatment by identifying individuals with genetic predispositions affecting their response to MDMA. Tailoring treatment plans based on individual's genetic makeup may enhance therapeutic outcomes and minimize adverse effects, leading to safer and more effective use of MDMA in clinical settings. Literature analysis reveals that the influence of genetic variants within genes encoded for enzymes involved in MDMA metabolism and/or pharmacodynamics (PD) targets have been relatively under-investigated in humans. Some studies have pointed out associations between MDMA-induced effects and polymorphisms. For example, the catechol-O-methyltransferase (COMT) Val158Met polymorphism has been associated with cognitive and cardiovascular MDMA-induced effects. Similarly, polymorphisms in the serotonin-linked promoter region (5HTTLPR) have been associated with several MDMA-induced adverse effects including mood disorders. However, despite these findings, only a few associations have been highlighted. Furthermore, some genes encoded for MDMA targets have been only poorly investigated, representing a significant research gap. These observations underscore the need for large-scale, controlled pharmacogenomics studies focusing on a broad panel of genes involved into MDMA pharmacokinetics and PD. Such studies could provide critical insights for optimizing MDMA's therapeutic use and minimizing its risks.
Collapse
Affiliation(s)
- Guillaume Drevin
- Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, 49100 Angers, France; (M.P.-M.); (A.B.); (A.B.); (M.B.); (C.A.)
| | - Maria Pena-Martin
- Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, 49100 Angers, France; (M.P.-M.); (A.B.); (A.B.); (M.B.); (C.A.)
| | - Aurélien Bauduin
- Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, 49100 Angers, France; (M.P.-M.); (A.B.); (A.B.); (M.B.); (C.A.)
| | - Antoine Baudriller
- Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, 49100 Angers, France; (M.P.-M.); (A.B.); (A.B.); (M.B.); (C.A.)
| | - Marie Briet
- Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, 49100 Angers, France; (M.P.-M.); (A.B.); (A.B.); (M.B.); (C.A.)
- Faculté de santé, Département médecine, Université d’Angers, 49100 Angers, France
- UMR INSERM 1083, CNRS 6015, Laboratoire MitoVasc, 49100 Angers, France
| | - Chadi Abbara
- Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, 49100 Angers, France; (M.P.-M.); (A.B.); (A.B.); (M.B.); (C.A.)
| |
Collapse
|
5
|
Stocker K, Liechti ME. Methylenedioxymethamphetamine is a connectogen with empathogenic, entactogenic, and still further connective properties: It is time to reconcile "the great entactogen-empathogen debate". J Psychopharmacol 2024; 38:685-689. [PMID: 39068642 PMCID: PMC11311894 DOI: 10.1177/02698811241265352] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Science on methylenedioxymethamphetamine (MDMA) and MDMA-like substances is faced with the unique situation that this class of psychoactive agents is referred to with two basic names for its effects on the mind: empathogens and entactogens. Empathogen usually refers to the prosocial, empathetic, and openness properties of MDMA, while entactogen usually refers to the introspective and self-awareness properties of this substance. We review the origin and usage of the two terms, and also review recent findings that support that MDMA is an empathogen and an entactogen. Mostly no specified reasons can be detected whether research groups employ the term "entactogenic," "empathogenic," both, or neither, in their publications. A case is made that the use of two basic names for the effects on the mind for the same class of psychoactive substances is not warranted because a holistic principle underlies empathogenic and entactogenic properties of MDMA: an intense feeling of connection. Entactogenic characterizes being deeply connected to oneself, and empathogenic being deeply connected to others. We therefore suggest the name connectogen as the new basic name for the mind effects of MDMA and MDMA-like substances, a term having the connotation of producing a joining together/producing a connection. Thus, MDMA is basically a connectogen with at least the two major connective properties: entactogenic (intrapersonal) and empathogenic (interpersonal). Furthermore, first evidence shows that MDMA might also have further connectogenic properties such as a strong sense of connection with the here-and-now, the body, the world, and with spiritual principles. Finally, we compare connectogenic properties of MDMA with connectogenic properties of classic psychedelics, and lay out some future research in this regard.
Collapse
Affiliation(s)
- Kurt Stocker
- Chair of Cognitive Science, Department of Humanities, Social, and Political Sciences, ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Matthias E Liechti
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Basedow LA, Majić T, Hafiz NJ, Algharably EAE, Kreutz R, Riemer TG. Cognitive functioning associated with acute and subacute effects of classic psychedelics and MDMA - a systematic review and meta-analysis. Sci Rep 2024; 14:14782. [PMID: 38926480 PMCID: PMC11208433 DOI: 10.1038/s41598-024-65391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Classic psychedelics and MDMA have a colorful history of recreational use, and both have recently been re-evaluated as tools for the treatment of psychiatric disorders. Several studies have been carried out to assess potential long-term effects of a regular use on cognition, delivering distinct results for psychedelics and MDMA. However, to date knowledge is scarce on cognitive performance during acute effects of those substances. In this systematic review and meta-analysis, we investigate how cognitive functioning is affected by psychedelics and MDMA during the acute drug effects and the sub-acute ("afterglow") window. Our quantitative analyses suggest that acute cognitive performance is differentially affected by psychedelics when compared to MDMA: psychedelics impair attention and executive function, whereas MDMA primarily affects memory, leaving executive functions and attention unaffected. Our qualitative analyses reveal that executive functioning and creativity may be increased during a window of at least 24 h after the acute effects of psychedelics have subsided, whereas no such results have been observed for MDMA. Our findings may contribute to inform recommendations on harm reduction for recreational settings and to help fostering differential approaches for the use of psychedelics and MDMA within a therapeutic framework.
Collapse
Affiliation(s)
- Lukas A Basedow
- Department of Psychology, Clinical Psychology and Psychotherapy, Philipps-Universität Marburg, Gutenbergstraße 18, 35037, Marburg, Germany.
| | - Tomislav Majić
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry und Neurosciences, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicklas Jakob Hafiz
- Institute for Educational Quality Improvement (IQB), Humboldt-Universität zu Berlin, Berlin, Germany
| | - Engi A E Algharably
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas G Riemer
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
7
|
Sarmanlu M, Kuypers KPC, Vizeli P, Kvamme TL. MDMA-assisted psychotherapy for PTSD: Growing evidence for memory effects mediating treatment efficacy. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110843. [PMID: 37611653 DOI: 10.1016/j.pnpbp.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The application of MDMA in conjunction with psychotherapy has in recent years seen a resurgence of clinical, scientific, and public interest in the treatment of posttraumatic stress disorder (PTSD). Clinical trials have shown promising safety and efficacy, but the mechanisms underlying this treatment form remain largely unestablished. This article explores recent preclinical and clinical evidence suggesting that the treatment's efficacy may be influenced by the mnemonic effects of MDMA. We review data on the effects of MDMA on fear extinction and fear reconsolidation and the utility of these processes for PTSD treatment. We corroborate our findings by incorporating research from cognitive psychology and psychopharmacology and offer recommendations for future research.
Collapse
Affiliation(s)
- Mesud Sarmanlu
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Patrick Vizeli
- Department of Psychiatry, University of California San Diego, San Diego, United States
| | - Timo L Kvamme
- Centre for Alcohol and Drug Research, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Wexler A, Dubinskaya A, Suyama J, Komisaruk BR, Anger J, Eilber K. Does MDMA have treatment potential in sexual dysfunction? A systematic review of outcomes across the female and male sexual response cycles. Sex Med Rev 2023; 12:26-34. [PMID: 37888490 DOI: 10.1093/sxmrev/qead046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Sexual health, an integral component of overall well-being, is frequently compromised by common yet underdiagnosed sexual dysfunctions. Traditional interventions encompass pharmaceutical and psychological treatments. Unconventional therapies, like MDMA, offer hope for sexual dysfunction. This review delves into MDMA's effects on sexual responsiveness and its potential role in treating sexual dysfunction. OBJECTIVES The purpose of this review is to elucidate effects of MDMA on different domains of the female and male sexual response cycles. METHODS We conducted a systematic review on the effects of MDMA on each domain of the female and male sexual response cycles. PubMed, MEDLINE, and EMBASE were queried, and results were screened using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Search terms utilized were "MDMA" or "ecstasy" in combination with "desire," "arousal," "lubrication," "orgasm," "pleasure," "libido," "erection," and "ejaculation." Inclusion criteria for this review were MDMA use by study subjects and sexual outcomes in at least 1 domain of the female and/or male sexual response cycles were described and measured. Randomized controlled trials, cohort studies (both prospective and retrospective), surveys, and literature reviews published between January 2000 and June 2022 were included. Case reports and studies that did not address conditions of interest were excluded from analysis. Duplicated search results were screened out. The remaining studies were then read in full text to ensure they met inclusion and exclusion criteria for analysis. RESULTS We identified 181 studies, of which 6 met criteria for assessment of the female sexual response cycle and 8 met criteria for assessment of the male sexual response cycle. Four of 6 studies reported increased sexual desire with MDMA use among women. Arousal and lubrication were improved with MDMA use in 3 of 4 studies, but they were not affected in 1 randomized control study. In men, 7 studies evaluated the effects of MDMA on desire and/or arousal, 5 studies measured impact on erection, 3 on orgasm, and 2 on ejaculation. Sixty percent of interview-based studies reported increased sexual desire in men, while 40% reported mixed or no effect. Two studies reported impairment of erection, 2 reported mixed effects, and 1 reported fear of erection impairment. In both men and women, all studies evaluating orgasm reported delay in achieving orgasm but increased intensity and pleasure if achieved. Primary outcome measures were variable and largely qualitative. CONCLUSION Our findings suggest that MDMA generally increases sexual desire and intensifies orgasm when achieved. While producing conflicting evidence on sexual arousal in both sexes, MDMA may impair erectile and ejaculatory function in men.
Collapse
Affiliation(s)
- Ava Wexler
- The Hebrew University- Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Alexandra Dubinskaya
- Los Angeles Institute for Pelvic and Sexual Medicine, Beverly Hills, CA, 90210, United States
| | - Julie Suyama
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, 90213, United States
| | - Barry R Komisaruk
- Psychology Department, Rutgers University, Newark, NJ, 07102, United States
| | - Jennifer Anger
- Division of Gender Affirming Surgery, Urologic Reconstruction, and Female Pelvic Medicine, Department of Urology, University of California San Diego, La Jolla, CA, 92093, United States
| | - Karyn Eilber
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Beverly Hills, 90048, CA, United States
| |
Collapse
|
10
|
Straumann I, Ley L, Holze F, Becker AM, Klaiber A, Wey K, Duthaler U, Varghese N, Eckert A, Liechti ME. Acute effects of MDMA and LSD co-administration in a double-blind placebo-controlled study in healthy participants. Neuropsychopharmacology 2023; 48:1840-1848. [PMID: 37258715 PMCID: PMC10584820 DOI: 10.1038/s41386-023-01609-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
There is renewed interest in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. Although acute subjective effects of LSD are mostly positive, negative subjective effects, including anxiety, may occur. The induction of overall positive acute subjective effects is desired in psychedelic-assisted therapy because positive acute experiences are associated with greater therapeutic long-term benefits. 3,4-Methylenedioxymethamphetamine (MDMA) produces marked positive subjective effects and is used recreationally with LSD, known as "candyflipping." The present study investigated whether the co-administration of MDMA can be used to augment acute subjective effects of LSD. We used a double-blind, randomized, placebo-controlled, crossover design with 24 healthy subjects (12 women, 12 men) to compare the co-administration of MDMA (100 mg) and LSD (100 µg) with MDMA and LSD administration alone and placebo. Outcome measures included subjective, autonomic, and endocrine effects and pharmacokinetics. MDMA co-administration with LSD did not change the quality of acute subjective effects compared with LSD alone. However, acute subjective effects lasted longer after LSD + MDMA co-administration compared with LSD and MDMA alone, consistent with higher plasma concentrations of LSD (Cmax and area under the curve) and a longer plasma elimination half-life of LSD when MDMA was co-administered. The LSD + MDMA combination increased blood pressure, heart rate, and pupil size more than LSD alone. Both MDMA alone and the LSD + MDMA combination increased oxytocin levels more than LSD alone. Overall, the co-administration of MDMA (100 mg) did not improve acute effects or the safety profile of LSD (100 µg). The combined use of MDMA and LSD is unlikely to provide relevant benefits over LSD alone in psychedelic-assisted therapy. Trial registration: ClinicalTrials.gov identifier: NCT04516902.
Collapse
Affiliation(s)
- Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Laura Ley
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Kathrin Wey
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Kaur H, Karabulut S, Gauld JW, Fagot SA, Holloway KN, Shaw HE, Fantegrossi WE. Balancing Therapeutic Efficacy and Safety of MDMA and Novel MDXX Analogues as Novel Treatments for Autism Spectrum Disorder. PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2023; 1:166-185. [PMID: 40046567 PMCID: PMC11661495 DOI: 10.1089/psymed.2023.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental syndromes diagnostically characterized by deficits in social communication and social interaction and repetitive, inflexible patterns of behaviors, interests, and thoughts. ASD affects people worldwide, irrespective of race, ethnicity, or socio-economic status, with debilitating effects on employment and interpersonal relationships. Though the atypical antipsychotics aripiprazole and risperidone are approved to treat irritability associated with ASD, these drugs may elicit treatment-limiting adverse effects, such as suicidal ideation, sedation, diarrhea, loss of appetite, dizziness, and weight gain. However, there are no approved pharmacotherapeutics for global symptoms of ASD, and better treatments are needed. Drugs with pro-social effects, such as 3,4-methylenedioxymethamphetamine (MDMA) and its analogues, may be beneficial here, as social anxiety and social avoidance are major complications of ASD that adversely impact the quality of life for sufferers and caregivers. This review describes the complex pharmacology of methylenedioxy amphetamine analogues (hereafter referred to as MDXX drugs), focusing on MDMA and 3,4-methylenedioxy-N-methyl-α-ethylphenylethylamine (MBDB) and how they may help treat ASD. Specifically, we address the roles of various drug-binding sites, metabolic enzymes, and chemical structure-activity relationships that mediate these substances' pharmacological and toxicological effects. Throughout the review, we emphasize the distinct profiles of individual stereoisomers of the MDXX drugs and how combining these enantiomers as racemic mixtures may explain the complexity of drug effects on behavior and physiology. We propose that the MDXX drugs represent a fruitful chemical space for developing clinically effective and relatively safer molecules and formulations for treating ASD.
Collapse
Affiliation(s)
| | - Sedat Karabulut
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - James W. Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Stephen A. Fagot
- University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas, USA
| | - Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, Graduate School, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hannah E. Shaw
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas, USA
| | - William E. Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas, USA
| |
Collapse
|
12
|
Kisely S, Connor M, Somogyi AA, Siskind D. A systematic literature review and meta-analysis of the effect of psilocybin and methylenedioxymethamphetamine on mental, behavioural or developmental disorders. Aust N Z J Psychiatry 2023; 57:362-378. [PMID: 35285280 DOI: 10.1177/00048674221083868] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES There is an increasing interest in combining psilocybin or methylenedioxymethamphetamine with psychological support in treating psychiatric disorders. Although there have been several recent systematic reviews, study and participant numbers have been limited, and the field is rapidly evolving with the publication of more studies. We therefore conducted a systematic review of PubMed, MEDLINE, PsycINFO, the Cochrane Central Register of Controlled Trials, Embase, and CINAHL for randomised controlled trials of methylenedioxymethamphetamine and psilocybin with either inactive or active controls. METHODS Outcomes were psychiatric symptoms measured by standardised, validated and internationally recognised instruments at least 2 weeks following drug administration, Quality was independently assessed using the Cochrane risk of bias assessment tool and Grading of Recommendations Assessment, Development and Evaluation framework. RESULTS There were eight studies on methylenedioxymethamphetamine and six on psilocybin. Diagnoses included post-traumatic stress disorder, long-standing/treatment-resistant depression, obsessive-compulsive disorder, social anxiety in adults with autism, and anxiety or depression in life-threatening disease. The most information and strongest association was for the change in methylenedioxymethamphetamine scores compared to active controls in post-traumatic stress disorder (k = 4; standardised mean difference = -0.86; 95% confidence interval = [-1.23, -0.50]; p < 0.0001). There were also small benefits for social anxiety in adults with autism. Psilocybin was superior to wait-list but not niacin (active control) in life-threatening disease anxiety or depression. It was equally as effective as escitalopram in long-standing depression for the primary study outcome and superior for most of the secondary outcomes in analyses uncorrected for multiple comparisons. Both agents were well tolerated in supervised trials. Trial quality varied with only small proportions of potential participants included in the randomised phase. Overall certainty of evidence was low or very low using the Grading of Recommendations Assessment, Development and Evaluation framework. CONCLUSION Methylenedioxymethamphetamine and psilocybin may show promise in highly selected populations when administered in closely supervised settings and with intensive support.
Collapse
Affiliation(s)
- Steve Kisely
- School of Medicine, The University of Queensland, Woolloongabba, QLD, Australia.,Addiction and Mental Health Services, Metro South Health Service, Woolloongabba, QLD, Australia.,Departments of Psychiatry, Community Health & Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark Connor
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew A Somogyi
- Discipline of Pharmacology, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Dan Siskind
- School of Medicine, The University of Queensland, Woolloongabba, QLD, Australia.,Addiction and Mental Health Services, Metro South Health Service, Woolloongabba, QLD, Australia
| |
Collapse
|
13
|
The Altered States Database: Psychometric data from a systematic literature review. Sci Data 2022; 9:720. [PMID: 36418335 PMCID: PMC9684144 DOI: 10.1038/s41597-022-01822-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
In this paper, we present the development of the Altered States Database (ASDB), an open-science project based on a systematic literature review. The ASDB contains psychometric questionnaire data on subjective experiences of altered states of consciousness (ASC) induced by pharmacological and non-pharmacological methods. The systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Scientific journal articles were identified through PubMed and Web of Science. We included studies that examined ASC using the following validated questionnaires: Altered States of Consciousness Rating Scale (APZ, 5D-ASC, 11-ASC), Phenomenology of Consciousness Inventory (PCI), Hallucinogen Rating Scale (HRS), or Mystical Experience Questionnaire (MEQ30). The systematic review resulted in the inclusion of a total of 165 journal articles, whereof questionnaire data was extracted and is now available on the Open Science Framework (OSF) website (https://osf.io/8mbru) and on the ASDB website (http://alteredstatesdb.org), where questionnaire data can be easily retrieved and visualized. This data allows the calculation of comparable psychometric values of ASC experiences and of dose-response relationships of substances inducing ASC. Measurement(s) | Psychometric questionnaire data | Technology Type(s) | Systematic literature review (PRISMA) | Sample Characteristic - Organism | Human |
Collapse
|
14
|
Zimmermann J, Friedli N, Bavato F, Stämpfli P, Coray R, Baumgartner MR, Grandgirard D, Leib SL, Opitz A, Seifritz E, Stock AK, Beste C, Cole DM, Quednow BB. White matter alterations in chronic MDMA use: Evidence from diffusion tensor imaging and neurofilament light chain blood levels. Neuroimage Clin 2022; 36:103191. [PMID: 36126513 PMCID: PMC9486575 DOI: 10.1016/j.nicl.2022.103191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a serotonin- and noradrenaline-releasing substance, currently among the most widely used illicit substances worldwide. In animal studies, repeated exposure to MDMA has been associated with dendritic but also axonal degeneration in the brain. However, translation of the axonal findings, specifically, to humans has been repeatedly questioned and the few existing studies investigating white matter alterations in human chronic MDMA users have yielded conflicting findings. In this study, we combined whole-brain diffusion tensor imaging and neurofilament light chain (NfL) analysis in blood to reveal potential MDMA-induced axonal neuropathology. To this end, we assessed 39 chronic MDMA users and 39 matched MDMA-naïve healthy controls. MDMA users showed increased fractional anisotropy in several white matter tracts, most prominently in the corpus callosum as well as corticospinal tracts, with these findings partly related to MDMA use intensity. However, the NfL levels of MDMA users were not significantly different from those of controls. We conclude that MDMA use is not associated with significant white matter lesions due to the absence of reduced fractional anisotropy and increased NfL levels commonly observed in conditions associated with white matter lesions, including stimulant and ketamine use disorders. Hence, the MDMA-induced axonal degradation demonstrated in animal models was not observed in this human study of chronic MDMA users.
Collapse
Affiliation(s)
- Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nicole Friedli
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Stämpfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich
| | - Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Vizeli P, Straumann I, Duthaler U, Varghese N, Eckert A, Paulus MP, Risbrough V, Liechti ME. Effects of 3,4-Methylenedioxymethamphetamine on Conditioned Fear Extinction and Retention in a Crossover Study in Healthy Subjects. Front Pharmacol 2022; 13:906639. [PMID: 35910354 PMCID: PMC9326355 DOI: 10.3389/fphar.2022.906639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: 3,4-Methylenedioxymethamphetamine (MDMA) has shown initial promise as an adjunct in psychotherapy to treat posttraumatic stress disorder (PTSD). Its efficacy and safety have been demonstrated across phase I-III studies. However, the mechanism underlying the potential utility of MDMA to treat PTSD in humans has not yet been thoroughly investigated. Preliminary evidence suggests that MDMA may facilitate fear extinction recall, which may be through the release of oxytocin. To test this hypothesis, we examined the efficacy of acute MDMA treatment to enhance fear extinction learning and recall. Methods: We used a two-period, double-blind, randomized, placebo-controlled crossover design in 30 healthy male subjects who received a placebo and a single dose of MDMA (125 mg). Fear extinction was tested using two separate Pavlovian fear conditioning paradigms, one using skin conductance response (SCR), and the other fear-potentiated startle (FPS) to conditioned cues. MDMA treatment occurred after fear conditioning and 2 h before extinction learning. Extinction recall was tested 23 h after MDMA intake. Additional outcome measures included subjective effects, emotion recognition tasks, plasma levels of oxytocin, and pharmacokinetics. Results: Fear conditioning and extinction learning were successful in both fear extinction paradigms (generalized eta-squared [ges] for SCR: 0.08; FPS: 0.07). Compared to placebo treatment, MDMA treatment significantly reduced SCRs to the reinforced conditioned stimulus (CS+) during extinction learning (ges = 0.03) and recall (ges = 0.06). Intensity of the subjective effects of MDMA (good effect, trust, and openness) during extinction learning negatively correlated with the discrimination between CS+ and the safety stimulus (CS-) during recall. MDMA did not influence FPS to conditioned cues. Oxytocin concentration was increased fourfold on average by MDMA during acute effects but was not associated with fear extinction outcomes. Conclusions: MDMA treatment facilitated rapid fear extinction and retention of extinction as measured by SCR to fear cues, in line with animal studies of MDMA facilitation of extinction. However, this effect may be limited to certain forms of learned fear responses, as it was not observed in the extinction model using startle reactivity as the outcome. This study provides further evidence for the facilitation of extinction with MDMA treatment and suggests this may be a component of its efficacy when paired with psychotherapy. Clinical Trial registration: clinicaltrials.gov identifier: NCT03527316.
Collapse
Affiliation(s)
- Patrick Vizeli
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | | | - Victoria Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center of Excellence for Stress and Mental Health, San Diego, CA, United States
| | - Matthias E. Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Sarparast A, Thomas K, Malcolm B, Stauffer CS. Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review. Psychopharmacology (Berl) 2022; 239:1945-1976. [PMID: 35253070 PMCID: PMC9177763 DOI: 10.1007/s00213-022-06083-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
RATIONALE & OBJECTIVES ± 3,4-Methylenedioxymethamphetamine (MDMA) and psilocybin are currently moving through the US Food and Drug Administration's phased drug development process for psychiatric treatment indications: posttraumatic stress disorder and depression, respectively. The current standard of care for these disorders involves treatment with psychiatric medications (e.g., selective serotonin reuptake inhibitors), so it will be important to understand drug-drug interactions between MDMA or psilocybin and psychiatric medications. METHODS In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we queried the MEDLINE database via PubMed for publications of human studies in English spanning between the first synthesis of psilocybin (1958) and December 2020. We used 163 search terms containing 22 psychiatric medication classes, 135 specific psychiatric medications, and 6 terms describing MDMA or psilocybin. RESULTS Forty publications were included in our systematic review: 26 reporting outcomes from randomized controlled studies with healthy adults, 3 epidemiologic studies, and 11 case reports. Publications of studies describe interactions between MDMA (N = 24) or psilocybin (N = 5) and medications from several psychiatric drug classes: adrenergic agents, antipsychotics, anxiolytics, mood stabilizers, NMDA antagonists, psychostimulants, and several classes of antidepressants. We focus our results on pharmacodynamic, physiological, and subjective outcomes of drug-drug interactions. CONCLUSIONS As MDMA and psilocybin continue to move through the FDA drug development process, this systematic review offers a compilation of existing research on psychiatric drug-drug interactions with MDMA or psilocybin.
Collapse
Affiliation(s)
- Aryan Sarparast
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kelan Thomas
- College of Pharmacy, Touro University California, Vallejo, CA, 94592, USA
| | | | - Christopher S Stauffer
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Mental Health, VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
17
|
Kolaczynska KE, Ducret P, Trachsel D, Hoener MC, Liechti ME, Luethi D. Pharmacological characterization of 3,4-methylenedioxyamphetamine (MDA) analogs and two amphetamine-based compounds: N,α-DEPEA and DPIA. Eur Neuropsychopharmacol 2022; 59:9-22. [PMID: 35378384 DOI: 10.1016/j.euroneuro.2022.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/16/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
3,4-methylenedioxyamphetamine (MDA) is a psychoactive compound chemically related to the entactogen MDMA. MDA shares some of the entactogenic effects of MDMA but also exerts stimulant effects and psychedelic properties at higher doses. Here, we examined the pharmacological properties of MDA analogs and related amphetamine-based compounds detected in street drug samples or in sport supplements. We examined the key pharmacological mechanisms including monoamine uptake inhibition and release using human embryonic kidney 293 cells stably transfected with the respective human transporters. Additionally, we assessed monoamine transporter and receptor binding and activation properties. MDA, its fluorinated analogs, as well as the α-ethyl containing BDB and the dimeric amphetamine DPIA inhibited NET with the greatest potency and preferentially inhibited 5-HT vs. dopamine uptake. The β‑methoxy MDA analog 3C-BOH and the amphetamine-based N,α-DEPEA inhibited NET and preferentially inhibited dopamine vs. 5-HT uptake. The test drugs mediated efflux of at least one monoamine with the exception of DPIA. Most compounds bound to 5-HT2A and 5-HT2C receptors (Ki ≤ 10 µM) and several substances activated the 5-HT2A and 5-HT2B receptor as partial or full agonists. Furthermore, several compounds interacted with adrenergic receptors and the trace amine-associated receptor 1 (TAAR1) in the micromolar range. The pharmacological profiles of some fluorinated and nonfluorinated MDA analogs resemble the profile of MDMA. In contrast, 3C-BOH and N,α-DEPEA displayed more pronounced dopaminergic activity similar to amphetamine. Pharmacokinetics and pharmacodynamics studies are necessary to better establish the risks and therapeutic potential of the tested drugs.
Collapse
Affiliation(s)
- Karolina E Kolaczynska
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paula Ducret
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Marius C Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland; Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Abstract
RATIONALE In recent years, psychedelic substances with serotonergic mechanisms have accumulated substantial evidence that they may provide therapeutic benefits for people suffering with psychiatric symptoms. Psychiatric disorders targeted by these psychedelic-assisted therapies are managed with serotonergic drugs like selective serotonin reuptake inhibitors (SSRIs) as the current standard of care, so it is important to evaluate the potential risks of drug-drug interactions and serotonin toxicity (ST) between these agents. OBJECTIVES A critical evaluation of the scientific literature is necessary to delineate the risks of ST when combining psychedelics with available serotonergic pharmacotherapy options. This review article describes signs and symptoms of ST, characterizes mechanisms of ST risk, summarizes what is known about serotonergic psychedelic drug interactions, and outlines potential management strategies. RESULTS True ST typically occurs with a serotonergic drug overdose or in combinations in which a drug that can increase intrasynaptic serotonin is combined with a monoamine oxidase inhibitor (MAOI). Serotonergic psychotropics that do not contain MAOIs are low risk in combination with psychedelics that also do not contain MAOIs. Signs and symptoms warranting immediate medical attention include myoclonus, extreme and fluctuating vital signs, agitation or comatose mental state, muscle rigidity, pronounced hyperthermia (fever), and/or seizure activity. CONCLUSIONS Serotonin-related adverse reactions exist along a spectrum with serotonin syndrome being the most severe manifestations of ST. Due to varying serotonergic mechanisms of psychedelics and psychotropics, with varying propensities to increase intrasynaptic serotonin, some combinations may present a significant risk for serotonin toxicity (ST) while others are likely benign.
Collapse
|
19
|
Capela JP, Carvalho FD. A review on the mitochondrial toxicity of "ecstasy" (3,4-methylenedioxymethamphetamine, MDMA). Curr Res Toxicol 2022; 3:100075. [PMID: 35651589 PMCID: PMC9149009 DOI: 10.1016/j.crtox.2022.100075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a drug of abuse used by millions worldwide. MDMA human abuse and dependence is well described, but addictive properties are not always consistent among studies. This amphetamine is a substrate type releaser, binding to monoamine transporters, leading to a pronounced release of serotonin and noradrenaline and to a minor extent dopamine. The toxicity of MDMA is well studied at the pre-clinical level, with neurotoxicity and hepatotoxicity being particularly described. In this review, we describe the most relevant MDMA effects at the mitochondrial level found in in vitro and in vivo models, these later conducted in mice and rats. Most of these reports focus on the mitochondria of brain or liver. In in vitro models, MDMA causes depletion of ATP levels and inhibition of mitochondrial complex I and III, loss in mitochondrial membrane potential (ΔΨm) and induction of mitochondrial permeability transition. The involvement of mitochondria in the apoptotic cell death evoked by MDMA has also been shown, such as the release of cytochrome c. Additionally, MDMA or its metabolites impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria. In animal studies, MDMA decreased mitochondrial complex I activity and decreased ATP levels. Moreover, MDMA-evoked oxidative stress has been shown to cause deletion on mitochondrial DNA and impairment in mitochondrial protein synthesis. Although the concentrations and doses used in some studies do not always correlate to the human scenario, the mitochondrial abnormalities evoked by MDMA are well described and are in part responsible for its mechanism of toxicity.
Collapse
Key Words
- 3,4-Methylenedioxymethamphetamine
- 5-HT, Serotonin
- Drug of Abuse
- Hepatotoxicity
- MAO, Monoamine oxidase
- MDMA, 3,4-Methylenedioxymethamphetamine
- MPT, Mitochondrial permeability transition
- Mitochondrial membrane potential
- Mitochondrial toxicity
- Mitochondrial trafficking
- NA, Noradrenaline
- Neurotoxicity
- PST, Post-traumatic stress disorder
- ROS, Reactive oxygen species
- SERT, Serotonin transporter
- UCP-3, Uncoupling protein-3
- ΔΨm, Mitochondrial membrane potential
Collapse
Affiliation(s)
- João Paulo Capela
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-I3ID, Faculty of Health Sciences, University Fernando Pessoa, 4020-150 Porto, Portugal
| | - Félix Dias Carvalho
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Holze F, Caluori TV, Vizeli P, Liechti ME. Safety pharmacology of acute LSD administration in healthy subjects. Psychopharmacology (Berl) 2022; 239:1893-1905. [PMID: 34515824 PMCID: PMC9166834 DOI: 10.1007/s00213-021-05978-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/30/2021] [Indexed: 11/04/2022]
Abstract
RATIONALE Lysergic acid diethylamide (LSD) is used in psychiatric and psychological research and investigated as a potential treatment for medical and psychiatric disorders, including depression, anxiety, and cluster headache. OBJECTIVES Safety data on clinical safety are available from small studies but not from larger samples. We report safety pharmacology data from a large pooled study sample on acute effects of LSD in healthy subjects. METHODS We conducted a pooled analysis of four double-blind, randomized, placebo-controlled, crossover studies that included a total of 83 healthy subjects and 131 single-dose administrations of LSD. LSD administrations were matched to dose groups according to measured LSD peak plasma concentrations to adjust for uncertainties in the correct LSD dose in some studies. Single doses were 25, 50, 100, and 200 µg of LSD base. We investigated subjective effects (self-rated any drug effect, good drug effect, bad drug effect, and anxiety), blood pressure, heart rate, body temperature, duration of the acute LSD response, acute (12 h) and subacute (24 h) adverse effects, reports of flashbacks, and liver and kidney function before and after the studies. RESULTS LSD dose-dependently increased subjective, physiologic, and adverse effects. The dose-response curves for the proportions of subjects with a certain amount of a subjective effect were steeper and reached a higher maximum for positive acute subjective effects compared with negative acute subjective effects. Maximal ratings of > 50% good drug effects were reached in 37%, 91%, 96%, and 91% of the LSD administrations at 25, 50, 100, and 200 µg. Maximal ratings of > 50% bad drug effects were reached in 0%, 9%, 27%, 31% at 25, 50, 100, and 200 µg, respectively. Mean ratings of Oceanic Boundlessness were 10%, 25%, 41%, and 44%, and mean ratings of Anxious Ego-Dissolution were 3.4%, 13%, 20%, and 22% at 25, 50, 100, and 200 µg, respectively. The physiologic effects of LSD were moderate. None of the subjects had systolic blood pressure > 180 mmHg at any time. Peak heart rate > 100 beats/min was observed in 0%, 6%, 20%, and 25% of the subjects at 25, 50, 100, and 200 µg, respectively. Maximal heart rates of 129 and 121 beats/min were observed in one subject at the 50 and 200 µg doses, respectively. Peak body temperature > 38° was observed in 0%, 11%, 7%, and 34% at 25, 50, 100, and 200 µg, respectively. Mean acute adverse effect scores on the List of Complaints were 5.6, 9.2, 12, and 13 at 25, 50, 100, and 200 µg, respectively. Kidney and liver function parameters were unaltered. Six subjects reported transient flashback phenomena. CONCLUSIONS The single-dose administration of LSD is safe in regard to acute psychological and physical harm in healthy subjects in a controlled research setting.
Collapse
Affiliation(s)
- Friederike Holze
- grid.410567.1Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Schanzenstrasse 55, CH-4056 Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Toya V. Caluori
- grid.410567.1Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Schanzenstrasse 55, CH-4056 Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Patrick Vizeli
- grid.410567.1Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Schanzenstrasse 55, CH-4056 Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias E. Liechti
- grid.410567.1Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Schanzenstrasse 55, CH-4056 Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Kvam TM, Goksøyr IW, Stewart LH, Repantis D, Røssberg JI, Andreassen OA. Study protocol for "MDMA-assisted therapy as a treatment for major depressive disorder: A proof of principle study". Front Psychiatry 2022; 13:954388. [PMID: 36386973 PMCID: PMC9645093 DOI: 10.3389/fpsyt.2022.954388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a world-leading cause of disability. The available treatments are not effective in all patients, and there is a significant need for more effective treatment options. Here we present the protocol for an investigator-initiated and publicly funded trial of MDMA-assisted therapy (MDMA-AT) for MDD. This single-site, open-label study investigates the proof of principle and safety of MDMA-AT in participants with MDD and provides an initial impression of treatment effectiveness. METHODS A total of 12 participants [>18 years] with DSM-5 diagnosis of MDD will receive a flexible dose of MDMA in a therapeutic setting on two dosing days over a 4 week period preceded by three preparatory sessions. Each MDMA dosing session will be followed by three integration sessions. The primary outcome is change in MDD symptom severity, as measured by the mean change in MADRS scores from Baseline to 8 weeks after the second MDMA session. The secondary outcome is change in functional impairment, as evaluated by the mean change in Sheehan Disability Scale scores from Baseline to 8 weeks after the second MDMA session. Safety measures include vital signs, the incidence of Adverse Events and suicidality as measured by the Colombia-Suicide Severity Rating Scale. DISCUSSION This proof of principle trial will inform the development of fully powered clinical trials, optimize the protocol for the administration of MDMA-AT in participants with MDD and explore uncertainties including barriers to recruitment, retention and acceptability of MDMA-AT as a treatment for MDD. CLINICAL TRIAL IDENTIFICATION EudraCT number 2021-000805-26.
Collapse
Affiliation(s)
- Tor-Morten Kvam
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Nordre Østfold DPS, Østfold Hospital Trust, Grålum, Norway
| | - Ivar W Goksøyr
- Nordre Østfold DPS, Østfold Hospital Trust, Grålum, Norway
| | - Lowan H Stewart
- Nordre Østfold DPS, Østfold Hospital Trust, Grålum, Norway.,Awakn Clinics Oslo, Oslo, Norway
| | - Dimitris Repantis
- Department of Psychiatry and Neurosciences, Charité - Universitátsmedizin Berlin, Berlin, Germany
| | - Jan Ivar Røssberg
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Nichols DE. Entactogens: How the Name for a Novel Class of Psychoactive Agents Originated. Front Psychiatry 2022; 13:863088. [PMID: 35401275 PMCID: PMC8990025 DOI: 10.3389/fpsyt.2022.863088] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
At first glance, it appears there is little difference between the molecular structures of methylenedioxymethamphetamine (MDMA), which has an N-methyl attached to its amino group, and methylenedioxyamphetamine (MDA), a primary amine that is recognized to have hallucinogenic activity. It is known from studies with other hallucinogenic amphetamines that N-methylation of hallucinogenic amphetamines attenuates or abolishes hallucinogenic activity. Nevertheless, MDMA is biologically active and has a potency only slightly less than its MDA parent. Importantly, it is the Ievo-isomer of hallucinogenic phenethylamines that is more biologically active, whereas it is the dextro isomer of MDMA that is more active. This reversal of stereochemistry for the activity of two very closely related molecules is a very powerful clue that their mechanisms of action differ. Finally, extension of the alpha-methyl of hallucinogenic amphetamines to an alpha-ethyl moiety completely abolishes their hallucinogenic activity. Ultimately, we extended the alpha-methyl group of MDMA to an alpha-ethyl to afford a molecule we named (N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB) that retained significant MDMA-like psychoactivity. Hence, there are three structural features that distinguish MDMA from the hallucinogenic amphetamines: (1) the N-methyl on the basic nitrogen, (2) the reversal of stereochemistry and, (3) tolerance of an alpha-ethyl moiety as contrasted with the alpha-methyl of hallucinogenic phenethylamines. Clearly, MDMA is distinct from classical hallucinogenic phenethylamines in its structure, and its psychopharmacology is also unique. Thus, in 1986 I proposed the name "Entactogen" for the pharmacological class of drugs that includes 3,4-methylenedioxymethamphetamine (MDMA) and other substances with a similar psychopharmacological effect. The name is derived from roots that indicate that entactogens produce a "touching within." Rather than having significant psychostimulant, or hallucinogenic effects, MDMA powerfully promotes affiliative social behavior, has acute anxiolytic effects, and can lead to profound states of introspection and personal reflection. Its mechanism of action is now established as involving transport of MDMA by the neuronal serotonin reuptake carrier followed by carrier-mediated release of stored neuronal serotonin.
Collapse
Affiliation(s)
- David E Nichols
- Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Abstract
Classic psychedelics, including psilocybin, lysergic acid diethylamide (LSD), dimethyltryptamine, and mescaline, and entactogens/empathogens, especially 3,4-methylenedioxymethamphetamine, have received renewed attention in psychiatric research and may be developed into medications for such indications as anxiety, depression, cluster headache, and posttraumatic stress disorder, among others. However, identifying proper doses is crucial. Controlled study data on dosing using well-characterized pharmaceutical formulations of the substances are scarce. The dose equivalence of different substances, dose-response effects, and subjective effects of different doses are of great interest and practically important for their clinical use in psychotherapy. Furthermore, the so-called microdosing of psychedelics has recently gained popularity, and the first placebo-controlled studies of LSD have been published. This chapter discusses different aspects of psychedelic dosing, including pharmaceutical aspects, definitions and characteristics of different doses, including microdoses, aspects of personalized dosing, and non-pharmacological factors, that can influence the response to psychedelics.
Collapse
|
24
|
Neurological and cognitive alterations induced by MDMA in humans. Exp Neurol 2021; 347:113888. [PMID: 34624331 DOI: 10.1016/j.expneurol.2021.113888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/27/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022]
Abstract
3,4 Methylenedioxymethamphetamine generally referred to as MDMA or 'ecstasy' is a ring-substituted phenethylamine stimulant which produces powerful empathogenic effects. Use of MDMA remains popular despite prohibition, and potential long-term negative consequences of repeated use. MDMA produces its acute subjective effects primarily by stimulating the release of serotonin via action at the serotonin transporter (SERT). There is evidence that MDMA administration may lead to long lasting neurotoxic effects on serotonin neurons in primates, and reductions in markers of central serotonin axons, and axon terminals in animals. In humans, demonstration of serotonergic neurotoxicity is much more difficult to identify, and much of the research is complicated by confounding issues of polysubstance use, genetic and environmental factors and reliance on self-reports of previous drug use. We do not review the mechanisms for neurotoxicity in detail as they are covered elsewhere in this special issue. There is a large body of literature, however, which has investigated potential cognitive and neurocognitive consequences of repeated MDMA use. Here we review the literature on cognition, and neuroimaging studies that have investigated structural and functional brain changes associated with ecstasy use.
Collapse
|
25
|
Kolaczynska KE, Thomann J, Hoener MC, Liechti ME. The Pharmacological Profile of Second Generation Pyrovalerone Cathinones and Related Cathinone Derivative. Int J Mol Sci 2021; 22:ijms22158277. [PMID: 34361040 PMCID: PMC8348686 DOI: 10.3390/ijms22158277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
Pyrovalerone cathinones are potent psychoactive substances that possess a pyrrolidine moiety. Pyrovalerone-type novel psychoactive substances (NPS) are continuously detected but their pharmacology and toxicology are largely unknown. We assessed several pyrovalerone and related cathinone derivatives at the human norepinephrine (NET), dopamine (DAT), and serotonin (SERT) uptake transporters using HEK293 cells overexpressing each respective transporter. We examined the transporter-mediated monoamine efflux in preloaded cells. The receptor binding and activation potency was also assessed at the 5-HT1A, 5-HT2A, 5-HT2B, and 5-HT2C receptors. All pyrovalerone cathinones were potent DAT (IC50 = 0.02-8.7 μM) and NET inhibitors (IC50 = 0.03-4.6 μM), and exhibited no SERT activity at concentrations < 10 μM. None of the compounds induced monoamine efflux. NEH was a potent DAT/NET inhibitor (IC50 = 0.17-0.18 μM). 4F-PBP and NEH exhibited a high selectivity for the DAT (DAT/SERT ratio = 264-356). Extension of the alkyl chain enhanced NET and DAT inhibition potency, while presence of a 3,4-methylenedioxy moiety increased SERT inhibition potency. Most compounds did not exhibit any relevant activity at other monoamine receptors. In conclusion, 4F-PBP and NEH were selective DAT/NET inhibitors indicating that these substances likely produce strong psychostimulant effects and have a high abuse liability.
Collapse
Affiliation(s)
- Karolina E. Kolaczynska
- Division of Psychopharmacology Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (K.E.K.); (J.T.)
| | - Jan Thomann
- Division of Psychopharmacology Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (K.E.K.); (J.T.)
| | - Marius C. Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Matthias E. Liechti
- Division of Psychopharmacology Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (K.E.K.); (J.T.)
- Correspondence: ; Tel.: + 41-61-328-68-68
| |
Collapse
|
26
|
Holze F, Avedisian I, Varghese N, Eckert A, Liechti ME. Role of the 5-HT 2A Receptor in Acute Effects of LSD on Empathy and Circulating Oxytocin. Front Pharmacol 2021; 12:711255. [PMID: 34326773 PMCID: PMC8313809 DOI: 10.3389/fphar.2021.711255] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
The psychedelic lysergic acid diethylamide (LSD) has experienced a revival in research, including clinical trials that evaluate LSD-assisted psychotherapy. LSD induces perceptual alterations and influences emotion processing in ways that may support psychotherapy. Here, we investigated the effects of LSD on emotional empathy and mediating role of the serotonin 5-hydroxytryptamine-2A (5-HT2A) receptor by administering 25, 50, 100, and 200 µg LSD alone and 200 µg LSD combined with pretreatment with the 5-HT2A receptor antagonist ketanserin (40 mg) using a placebo-controlled, double-blind, random-order, crossover design in 16 healthy subjects. The Multifaceted Empathy Test (MET) was used to assess the effects of LSD on emotional empathy. Plasma oxytocin levels were also measured. LSD dose-dependently increased implicit and explicit emotional empathy, with the highest 200 µg LSD dose having a significant effect compared with placebo. The 200 µg dose of LSD also moderately increased plasma oxytocin levels compared with placebo. Ketanserin reduced the LSD-induced elevations of oxytocin but not the LSD-induced increases in emotional empathy. These findings confirm that LSD enhances empathy, and this effect may be partially independent of its primary action on 5-HT2A receptors to induce subjective psychedelic effects. In contrast, LSD-induced oxytocin release may depend on 5-HT2A receptor stimulation, which is consistent with the psychedelic effect of LSD. Further studies are needed to investigate whether LSD may also enhance empathy and potentially produce therapeutic effects in patients who have deficits in empathy and impairments in social functioning.
Collapse
Affiliation(s)
- Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isidora Avedisian
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Bartossek MT, Kemmerer J, Schmidt TT. Altered states phenomena induced by visual flicker light stimulation. PLoS One 2021; 16:e0253779. [PMID: 34197510 PMCID: PMC8248711 DOI: 10.1371/journal.pone.0253779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Flicker light stimulation can induce short-term alterations in consciousness including hallucinatory color perception and geometric patterns. In the study at hand, the subjective experiences during 3 Hz and 10 Hz stroboscopic light stimulation of the closed eyes were assessed. In a within-subjects design (N = 24), we applied the Positive and Negative Affect Schedule (mood state), time perception ratings, the Altered State of Consciousness Rating Scale, and the Phenomenology of Consciousness Inventory. Furthermore, we tested for effects of personality traits (NEO Five-Factor Inventory-2 and Tellegen Absorption Scale) on subjective experiences. Such systematic quantification improves replicability, facilitates comparisons between pharmacological and non-pharmacological techniques to induce altered states of consciousness, and is the prerequisite to study their underlying neuronal mechanisms. The resulting data showed that flicker light stimulation-induced states were characterized by vivid visual hallucinations of simple types, with effects strongest in the 10 Hz condition. Additionally, participants' personality trait of Absorption scores highly correlated with the experienced alterations in consciousness. Our data demonstrate that flicker light stimulation is capable of inducing visual effects with an intensity rated to be similar in strength to effects induced by psychedelic substances and thereby support the investigation of potentially shared underlying neuronal mechanisms.
Collapse
Affiliation(s)
| | - Johanna Kemmerer
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Vivantes Hospital Am Urban und Vivantes Hospital im Friedrichshain, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Timo Torsten Schmidt
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Latimer D, Stocker MD, Sayers K, Green J, Kaye AM, Abd-Elsayed A, Cornett EM, Kaye AD, Varrassi G, Viswanath O, Urits I. MDMA to Treat PTSD in Adults. PSYCHOPHARMACOLOGY BULLETIN 2021; 51:125-149. [PMID: 34421149 PMCID: PMC8374929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Post-traumatic stress disorder (PTSD) has become one of the most common psychiatric diagnosis in the United States specifically within the veteran population. The current treatment options for this debilitating diagnosis include trauma-focused psychotherapies along with selective serotonin reuptake inhibitors (SSRI) and serotonin-norepinephrine reuptake inhibitors (SNRI).1 MDMA has recently been shown as a novel therapeutic agent with promisingly results in the treatment of PTSD. MDMA is a psychoactive compound traditionally categorized as a psychedelic amphetamine that deemed a Schedule I controlled substance in the 1980s. Prior to its status as a controlled substance, it was used by psychotherapists for an array of psychiatric issues. In more recent times, MDMA has resurfaced as a potential therapy for PTSD and the data produced from randomized, controlled trials back the desire for MDMA to be utilized as an effective pharmacologic therapy in conjunction with psychotherapy.2.
Collapse
Affiliation(s)
- Dustin Latimer
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Michael D Stocker
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Kia Sayers
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Jackson Green
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Adam M Kaye
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Alaa Abd-Elsayed
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Elyse M Cornett
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Alan D Kaye
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Giustino Varrassi
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Omar Viswanath
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Ivan Urits
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| |
Collapse
|
29
|
Fonseca DA, Ribeiro DM, Tapadas M, Cotrim MD. Ecstasy (3,4-methylenedioxymethamphetamine): Cardiovascular effects and mechanisms. Eur J Pharmacol 2021; 903:174156. [PMID: 33971177 DOI: 10.1016/j.ejphar.2021.174156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022]
Abstract
3,4-methylenedioxymethamphetamine or MDMA (known as "ecstasy") is a recreational drug of abuse, popular worldwide for its distinctive psychotropic effects. Currently, the therapeutic potential of MDMA in psychotherapy has attracted a lot of interest from the scientific community, despite the multitude of effects that this drug of abuse elicits on the human body. While neuronal effects have been the most studied, cardiovascular effects have also been described, as increased blood pressure and heart rate are the most recognizable. However, other effects have also been described at the cardiac (impaired cardiac contractile function, arrhythmias, myocardial necrosis and valvular heart disease) and vascular (vasoconstriction, disruption of vascular integrity and altered haemostasis) levels. Several mechanisms have been proposed, from the interaction with monoamine transporters and receptors to the promotion of oxidative stress or the activation of matrix metalloproteinases (MMPs). This review provides an overview of the cardiovascular implications of MDMA intake and underlying mechanisms, relevant when considering its consumption as drug of abuse but also when considering its therapeutic potential in psychiatry. Moreover, the risk/benefit ratio of the therapeutic use of MDMA remains to be fully elucidated from a cardiovascular standpoint, particularly in patients with underlying cardiovascular disease.
Collapse
Affiliation(s)
- Diogo A Fonseca
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal.
| | - Daniel M Ribeiro
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal
| | - Margarida Tapadas
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal
| | - Maria Dulce Cotrim
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal
| |
Collapse
|
30
|
Novel Phenethylamines and Their Potential Interactions With Prescription Drugs: A Systematic Critical Review. Ther Drug Monit 2021; 42:271-281. [PMID: 32022784 DOI: 10.1097/ftd.0000000000000725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The novel phenethylamines 4-fluoroamphetamine (4-FA) and 2,5-dimethoxy-4-bromophenethylamine (2C-B) fall in the top 10 most used new psychoactive substances (NPSs) among high-risk substance users. Various phenethylamines and NPS are also highly used in populations with mental disorders, depression, or attention deficit hyperactivity disorder (ADHD). Moreover, NPS use is highly prevalent among men and women with risky sexual behavior. Considering these specific populations and their frequent concurrent use of drugs, such as antidepressants, ADHD medication, and antiretrovirals, reports on potential interactions between these drugs, and phenethylamines 4-FA and 2C-B, were reviewed. METHODS The authors performed a systematic literature review on 4-FA and 2C-B interactions with antidepressants (citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, duloxetine, bupropion, venlafaxine, phenelzine, moclobemide, and tranylcypromine), ADHD medications (atomoxetine, dexamphetamine, methylphenidate, and modafinil), and antiretrovirals. RESULTS Limited literature exists on the pharmacokinetics and drug-drug interactions of 2C-B and 4-FA. Only one case report indicated a possible interaction between 4-FA and ADHD medication. Although pharmacokinetic interactions between 4-FA and prescription drugs remain speculative, their pharmacodynamic points toward interactions between 4-FA and ADHD medication and antidepressants. The pharmacokinetic and pharmacodynamic profile of 2C-B also points toward such interactions, between 2C-B and prescription drugs such as antidepressants and ADHD medication. CONCLUSIONS A drug-drug (phenethylamine-prescription drug) interaction potential is anticipated, mainly involving monoamine oxidases for 2C-B and 4-FA, with monoamine transporters being more specific to 4-FA.
Collapse
|
31
|
Studerus E, Vizeli P, Harder S, Ley L, Liechti ME. Prediction of MDMA response in healthy humans: a pooled analysis of placebo-controlled studies. J Psychopharmacol 2021; 35:556-565. [PMID: 33781103 PMCID: PMC8155734 DOI: 10.1177/0269881121998322] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is used both recreationally and therapeutically. Little is known about the factors influencing inter- and intra-individual differences in the acute response to MDMA. Effects of other psychoactive substances have been shown to be critically influenced by personality traits and mood state before intake. METHODS We pooled data from 10 randomized, double-blind, placebo-controlled, cross-over studies performed in the same laboratory in 194 healthy subjects receiving doses of 75 or 125mg of MDMA. We investigated the influence of drug dose, body weight, sex, age, drug pre-experience, genetics, personality and mental state before drug intake on the acute physiological and psychological response to MDMA. RESULTS In univariable analyses, the MDMA plasma concentration was the strongest predictor for most outcome variables. When adjusting for dose per body weight, we found that (a) a higher activity of the enzyme CYP2D6 predicted lower MDMA plasma concentration, (b) a higher score in the personality trait "openness to experience" predicted more perceived "closeness", a stronger decrease in "general inactivation", and higher scores in the 5D-ASC (5 Dimensions of Altered States of Consciousness Questionnaire) scales "oceanic boundlessness" and "visionary restructuralization", and (c) subjects with high "neuroticism" or trait anxiety were more likely to have unpleasant and/or anxious reactions. CONCLUSIONS Although MDMA plasma concentration was the strongest predictor, several personality traits and mood state variables additionally explained variance in the response to MDMA. The results confirm that both pharmacological and non-pharmacological variables influence the response to MDMA. These findings may be relevant for the therapeutic use of MDMA.
Collapse
Affiliation(s)
- Erich Studerus
- Division of Personality and
Developmental Psychology, University of Basel, Basel, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Samuel Harder
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
32
|
Schmid Y, Gasser P, Oehen P, Liechti ME. Acute subjective effects in LSD- and MDMA-assisted psychotherapy. J Psychopharmacol 2021; 35:362-374. [PMID: 33853422 DOI: 10.1177/0269881120959604] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lysergic acid diethylamide (LSD) and 3,4-methylenedioxymethamphetamine (MDMA) were used in psychotherapy in the 1960s-1980s, and are currently being re-investigated as treatments for several psychiatric disorders. In Switzerland, limited medical use of these substances is possible in patients not responding to other treatments (compassionate use). METHODS This study aimed to describe patient characteristics, treatment indications and acute alterations of mind in patients receiving LSD (100-200 µg) and/or MDMA (100-175 mg) within the Swiss compassionate use programme from 2014-2018. Acute effects were assessed using the 5 Dimensions of Altered States of Consciousness scale and the Mystical Experience Questionnaire, and compared with those in healthy volunteers administered with LSD or MDMA and patients treated alone with LSD in clinical trials. RESULTS Eighteen patients (including 12 women and six men, aged 29-77 years) were treated in group settings. Indications mostly included posttraumatic stress disorder and major depression. Generally, a drug-assisted session was conducted every 3.5 months after 3-10 psychotherapy sessions. LSD induced pronounced alterations of consciousness on the 5 Dimensions of Altered States of Consciousness scale, and mystical-type experiences with increases in all scales on the Mystical Experience Questionnaire. Effects were largely comparable between patients in the compassionate use programme and patients or healthy subjects treated alone in a research setting. CONCLUSION LSD and MDMA are currently used medically in Switzerland mainly in patients with posttraumatic stress disorder and depression in group settings, producing similar acute responses as in research subjects. The data may serve as a basis for further controlled studies of substance-assisted psychotherapy.
Collapse
Affiliation(s)
- Yasmin Schmid
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Peter Gasser
- Practice for Psychiatry and Psychotherapy, Solothurn, Switzerland
| | - Peter Oehen
- Practice for Psychiatry and Psychotherapy, Biberist, Switzerland
| | - Matthias E Liechti
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
33
|
Müller F, Holze F, Dolder P, Ley L, Vizeli P, Soltermann A, Liechti ME, Borgwardt S. MDMA-induced changes in within-network connectivity contradict the specificity of these alterations for the effects of serotonergic hallucinogens. Neuropsychopharmacology 2021; 46:545-553. [PMID: 33219313 PMCID: PMC8027447 DOI: 10.1038/s41386-020-00906-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
It has been reported that serotonergic hallucinogens like lysergic acid diethylamide (LSD) induce decreases in functional connectivity within various resting-state networks. These alterations were seen as reflecting specific neuronal effects of hallucinogens and it was speculated that these shifts in connectivity underlie the characteristic subjective drug effects. In this study, we test the hypothesis that these alterations are not specific for hallucinogens but that they can be induced by monoaminergic stimulation using the non-hallucinogenic serotonin-norepinephrine-dopamine releasing agent 3,4-methylenedioxymethamphetamine (MDMA). In a randomized, placebo-controlled, double-blind, crossover design, 45 healthy participants underwent functional magnetic resonance imaging (fMRI) following oral administration of 125 mg MDMA. The networks under question were identified using independent component analysis (ICA) and were tested with regard to within-network connectivity. Results revealed decreased connectivity within two visual networks, the default mode network (DMN), and the sensorimotor network. These findings were almost identical to the results previously reported for hallucinogenic drugs. Therefore, our results suggest that monoaminergic substances can induce widespread changes in within-network connectivity in the absence of marked subjective drug effects. This contradicts the notion that these alterations can be regarded as specific for serotonergic hallucinogens. However, changes within the DMN might explain antidepressants effects of some of these substances.
Collapse
Affiliation(s)
- Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland.
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Dolder
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Alain Soltermann
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| |
Collapse
|
34
|
Chaliha D, Mamo JC, Albrecht M, Lam V, Takechi R, Vaccarezza M. A Systematic Review of the MDMA Model to Address Social Impairment in Autism. Curr Neuropharmacol 2021; 19:1101-1154. [PMID: 33388021 PMCID: PMC8686313 DOI: 10.2174/1570159x19666210101130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by repetitive behaviours, cognitive rigidity/inflexibility, and social-affective impairment. Unfortunately, no gold-standard treatments exist to alleviate the core socio-behavioural impairments of ASD. Meanwhile, the prosocial empathogen/entactogen 3,4-methylene-dioxy-methamphetamine (MDMA) is known to enhance sociability and empathy in both humans and animal models of psychological disorders. OBJECTIVE We review the evidence obtained from behavioural tests across the current literature, showing how MDMA can induce prosocial effects in animals and humans, where controlled experiments were able to be performed. METHODS Six electronic databases were consulted. The search strategy was tailored to each database. Only English-language papers were reviewed. Behaviours not screened in this review may have affected the core ASD behaviours studied. Molecular analogues of MDMA have not been investigated. RESULTS We find that the social impairments may potentially be alleviated by postnatal administration of MDMA producing prosocial behaviours in mostly the animal model. CONCLUSION MDMA and/or MDMA-like molecules appear to be an effective pharmacological treatment for the social impairments of autism, at least in animal models. Notably, clinical trials based on MDMA use are now in progress. Nevertheless, larger and more extended clinical studies are warranted to prove the assumption that MDMA and MDMA-like molecules have a role in the management of the social impairments of autism.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Vaccarezza
- Address correspondence to this author at the Curtin Medical School, Curtin Health Innovation Research Institute, P.O. Box 6845, WA 6102 Perth, Australia; Tel: 08 9266 7671; E-mail:
| |
Collapse
|
35
|
Comparative Untargeted Metabolomics Analysis of the Psychostimulants 3,4-Methylenedioxy-Methamphetamine (MDMA), Amphetamine, and the Novel Psychoactive Substance Mephedrone after Controlled Drug Administration to Humans. Metabolites 2020; 10:metabo10080306. [PMID: 32726975 PMCID: PMC7465486 DOI: 10.3390/metabo10080306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022] Open
Abstract
Psychoactive stimulants are a popular drug class which are used recreationally. Over the last decade, large numbers of new psychoactive substances (NPS) have entered the drug market and these pose a worldwide problem to human health. Metabolomics approaches are useful tools for simultaneous detection of endogenous metabolites affected by drug use. They allow identification of pathways or characteristic metabolites, which might support the understanding of pharmacological actions or act as indirect biomarkers of consumption behavior or analytical detectability. Herein, we performed a comparative metabolic profiling of three psychoactive stimulant drugs 3,4-methylenedioxymethamphetamine (MDMA), amphetamine and the NPS mephedrone by liquid chromatography-high resolution mass spectrometry (LC-HRMS) in order to identify common pathways or compounds. Plasma samples were obtained from controlled administration studies to humans. Various metabolites were identified as increased or decreased based on drug intake, mainly belonging to energy metabolism, steroid biosynthesis and amino acids. Linoleic acid and pregnenolone-sulfate changed similarly in response to intake of all drugs. Overall, mephedrone produced a profile more similar to that of amphetamine than MDMA in terms of affected energy metabolism. These data can provide the basis for further in-depth targeted metabolome studies on pharmacological actions and search for biomarkers of drug use.
Collapse
|
36
|
Papaseit E, Pérez-Mañá C, Torrens M, Farré A, Poyatos L, Hladun O, Sanvisens A, Muga R, Farré M. MDMA interactions with pharmaceuticals and drugs of abuse. Expert Opin Drug Metab Toxicol 2020; 16:357-369. [DOI: 10.1080/17425255.2020.1749262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Esther Papaseit
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Clara Pérez-Mañá
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Marta Torrens
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
- Drug Addiction Program, Institut De Neuropsiquiatria I Addiccions-INAD, Hospital Del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Adriana Farré
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
- Drug Addiction Program, Institut De Neuropsiquiatria I Addiccions-INAD, Hospital Del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Lourdes Poyatos
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Olga Hladun
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Arantza Sanvisens
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
| | - Roberto Muga
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Magi Farré
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| |
Collapse
|
37
|
Gorman I, Belser AB, Jerome L, Hennigan C, Shechet B, Hamilton S, Yazar‐Klosinski B, Emerson A, Feduccia AA. Posttraumatic Growth After MDMA-Assisted Psychotherapy for Posttraumatic Stress Disorder. J Trauma Stress 2020; 33:161-170. [PMID: 32073177 PMCID: PMC7216948 DOI: 10.1002/jts.22479] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for posttraumatic stress disorder (PTSD) has been shown to significantly reduce clinical symptomatology, but posttraumatic growth (PTG), which consists of positive changes in self-perception, interpersonal relationships, or philosophy of life, has not been studied with this treatment. Participant data (n = 60) were pooled from three Phase 2 clinical studies employing triple-blind crossover designs. Participants were required to meet DSM-IV-R criteria for PTSD with a score higher than 50 on the Clinician-Administered PTSD Scale (CAPS-IV) as well as previous inadequate response to pharmacological and/or psychotherapeutic treatment. Data were aggregated into two groups: an active MDMA dose group (75-125 mg of MDMA; n = 45) or placebo/active control (0-40 mg of MDMA; n = 15). Measures included the Posttraumatic Growth Inventory (PTGI) and the CAPS-IV, which were administered at baseline, primary endpoint, treatment exit, and 12-month follow-up. At primary endpoint, the MDMA group demonstrated more PTG, Hedges' g = 1.14, 95% CI [0.49, 1.78], p < .001; and a larger reduction in PTSD symptom severity, Hedges' g = 0.88, 95% CI [-0.28, 1.50], p < .001, relative to the control group. Relative to baseline, at the 12-month follow-up, within-subject PTG was higher, p < .001; PTSD symptom severity scores were lower, p < .001; and two-thirds of participants (67.2%) no longer met criteria for PTSD. MDMA-assisted psychotherapy for PTSD resulted in PTG and clinical symptom reductions of large-magnitude effect sizes. Results suggest that PTG may provide a new mechanism of action warranting further study.
Collapse
Affiliation(s)
- Ingmar Gorman
- Rory Meyers College of NursingNew York UniversityNew YorkNew YorkUSA
| | | | - Lisa Jerome
- MAPS Public Benefit CorporationSanta CruzCaliforniaUSA
| | | | - Ben Shechet
- Scottsdale Research InstitutePhoenixArizonaUSA
| | - Scott Hamilton
- Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| | | | - Amy Emerson
- MAPS Public Benefit CorporationSanta CruzCaliforniaUSA
| | | |
Collapse
|
38
|
Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects. Neuropsychopharmacology 2020; 45:462-471. [PMID: 31733631 PMCID: PMC6969135 DOI: 10.1038/s41386-019-0569-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Lysergic acid diethylamide (LSD) is a classic psychedelic, 3,4-methylenedioxymethamphetamine (MDMA) is an empathogen, and D-amphetamine is a classic stimulant. All three substances are used recreationally. LSD and MDMA are being investigated as medications to assist psychotherapy, and D-amphetamine is used for the treatment of attention-deficit/hyperactivity disorder. All three substances induce distinct acute subjective effects. However, differences in acute responses to these prototypical psychoactive substances have not been characterized in a controlled study. We investigated the acute autonomic, subjective, and endocrine effects of single doses of LSD (0.1 mg), MDMA (125 mg), D-amphetamine (40 mg), and placebo in a randomized, double-blind, cross-over study in 28 healthy subjects. All of the substances produced comparable increases in hemodynamic effects, body temperature, and pupil size, indicating equivalent autonomic responses at the doses used. LSD and MDMA increased heart rate more than D-amphetamine, and D-amphetamine increased blood pressure more than LSD and MDMA. LSD induced significantly higher ratings on the 5 Dimensions of Altered States of Consciousness scale and Mystical Experience Questionnaire than MDMA and D-amphetamine. LSD also produced greater subjective drug effects, ego dissolution, introversion, emotional excitation, anxiety, and inactivity than MDMA and D-amphetamine. LSD also induced greater impairments in subjective ratings of concentration, sense of time, and speed of thinking compared with MDMA and D-amphetamine. MDMA produced greater ratings of good drug effects, liking, high, and ego dissolution compared with D-amphetamine. D-Amphetamine increased ratings of activity and concentration compared with LSD. MDMA but not LSD or D-amphetamine increased plasma concentrations of oxytocin. None of the substances altered plasma concentrations of brain-derived neurotrophic factor. These results indicate clearly distinct acute effects of LSD, MDMA, and D-amphetamine and may assist the dose-finding in substance-assisted psychotherapy research.
Collapse
|
39
|
Aguilar MA, García-Pardo MP, Parrott AC. Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine ('Ecstasy'). Brain Res 2020; 1727:146556. [PMID: 31734398 DOI: 10.1016/j.brainres.2019.146556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022]
Abstract
MDMA (3,4-methylendioxymethamphetamine), also known as Ecstasy, is a stimulant drug recreationally used by young adults usually in dance clubs and raves. Acute MDMA administration increases serotonin, dopamine and noradrenaline by reversing the action of the monoamine transporters. In this work, we review the studies carried out over the last 30 years on the neuropsychobiological effects of MDMA in humans and mice and summarise the current knowledge. The two species differ with respect to the neurochemical consequences of chronic MDMA, since it preferentially induces serotonergic dysfunction in humans and dopaminergic neurotoxicity in mice. However, MDMA alters brain structure and function and induces hormonal, psychomotor, neurocognitive, psychosocial and psychiatric outcomes in both species, as well as physically damaging and teratogen effects. Pharmacological and genetic studies in mice have increased our knowledge of the neurochemical substrate of the multiple effects of MDMA. Future work in this area may contribute to developing pharmacological treatments for MDMA-related disorders.
Collapse
Affiliation(s)
- Maria A Aguilar
- Department of Psychobiology, Faculty of Psychology, Valencia University, Valencia, Spain.
| | | | - Andrew C Parrott
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia
| |
Collapse
|
40
|
Bahji A, Forsyth A, Groll D, Hawken ER. Efficacy of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for posttraumatic stress disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109735. [PMID: 31437480 DOI: 10.1016/j.pnpbp.2019.109735] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/27/2019] [Accepted: 08/10/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a common psychiatric condition that can develop following a traumatic experience. PTSD is associated with significant disability, a large economic burden, and despite the range of therapies to treat PTSD, response to antidepressants is limited. A growing body of clinical research suggests the efficacy of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy in individuals with treatment-refractory PTSD. AIM To assess the effectiveness and safety of MDMA-assisted psychotherapy for reducing symptoms of PTSD, a systematic review and meta-analysis was undertaken. METHODS Six online databases were searched from inception to December 2018. Reference lists of relevant articles were manually searched as well as electronic sources of ongoing trials and conference proceedings. Researchers active in the subject were also contacted. Eligible studies included randomized and quasi-randomized clinical trials using MDMA-assisted psychotherapy for PTSD in comparison with other medications, placebo or no medication (supportive care). We used standard methodological procedures expected by the Cochrane Collaboration. Two authors assessed studies for inclusion and extracted data. Using random-effects meta-analysis with Cochrane's Review Manager 5.3, we obtained standardized mean differences [SMD] and rate ratios [RR] for reduction in PTSD symptomatology. RESULTS A total of 5 trials met inclusion criteria, totaling 106 participants (average age: 35-40 years, 70% female). Studies were rated as moderate in quality. MDMA-assisted psychotherapy demonstrated a high rate of clinical response (RR = 3.47, 95% CI: 1.70, 7.06), remission (RR = 2.63, 95% CI: 1.37, 5.02), with a large effect size at reducing the symptoms of PTSD (SMD = 1.30, 95% CI: 0.66, 1.94). Available evidence indicates that MDMA was well-tolerated, with few serious adverse events reported across studies. CONCLUSIONS MDMA-assisted psychotherapy appears to be a potentially safe, effective, and durable treatment for individuals with chronic, treatment-refractory PTSD. However, future studies involving larger samples and longer durations of treatment and follow-up are warranted-and underway.
Collapse
Affiliation(s)
- Anees Bahji
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada; Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Ashleigh Forsyth
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada; Providence Care Hospital, Kingston, Ontario, Canada
| | - Dianne Groll
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Emily R Hawken
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada; Providence Care Hospital, Kingston, Ontario, Canada
| |
Collapse
|
41
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
42
|
Effects of MDMA on attention to positive social cues and pleasantness of affective touch. Neuropsychopharmacology 2019; 44:1698-1705. [PMID: 31042696 PMCID: PMC6785008 DOI: 10.1038/s41386-019-0402-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
Abstract
The psychostimulant drug ±3,4-methylenedioxymethamphetamine (MDMA) reportedly produces distinctive feelings of empathy and closeness with others. MDMA increases social behavior in animal models and has shown promise in psychiatric disorders, such as autism spectrum disorder (ASD) and post-traumatic stress disorder (PTSD). How it produces these prosocial effects is not known. This behavioral and psychophysiological study examined the effects of MDMA, compared with the prototypical stimulant methamphetamine (MA), on two measures of social behavior in healthy young adults: (i) responses to socially relevant, "affective" touch, and (ii) visual attention to emotional faces. Men and women (N = 36) attended four sessions in which they received MDMA (0.75 or 1.5 mg/kg), MA (20 mg), or a placebo in randomized order under double-blind conditions. Responses to experienced and observed affective touch (i.e., being touched or watching others being touched) were assessed using facial electromyography (EMG), a proxy of affective state. Responses to emotional faces were assessed using electrooculography (EOG) in a measure of attentional bias. Subjective ratings were also included. We hypothesized that MDMA, but not MA, would enhance the ratings of pleasantness and psychophysiological responses to affective touch and increase attentional bias toward positive facial expressions. Consistent with this, we found that MDMA, but not MA, selectively enhanced ratings of pleasantness of experienced affective touch. Neither drug altered the ratings of pleasantness of observed touch. On the EOG measure of attentional bias, MDMA, but not MA, increased attention toward happy faces. These results provide new evidence that MDMA can enhance the experience of positive social interactions; in this case, pleasantness of physical touch and attentional bias toward positive facial expressions. The findings are consistent with evidence that the prosocial effects are unique to MDMA relative to another stimulant. Understanding the behavioral and neurobiological processes underlying the distinctive social effects of MDMA is a key step to developing the drug for psychiatric disorders.
Collapse
|
43
|
Luethi D, Widmer R, Trachsel D, Hoener MC, Liechti ME. Monoamine receptor interaction profiles of 4-aryl-substituted 2,5-dimethoxyphenethylamines (2C-BI derivatives). Eur J Pharmacol 2019; 855:103-111. [DOI: 10.1016/j.ejphar.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
|
44
|
Rickli A, Hoener MC, Liechti ME. Pharmacological profiles of compounds in preworkout supplements ("boosters"). Eur J Pharmacol 2019; 859:172515. [PMID: 31265842 DOI: 10.1016/j.ejphar.2019.172515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Preworkout supplements ("boosters") are used to enhance physical and mental performance during workouts. These products may contain various chemical substances with undefined pharmacological activity. We investigated whether substances that are contained in commercially available athletic multiple-ingredient preworkout supplements exert amphetamine-type activity at norepinephrine, dopamine, and serotonin transporters (NET, DAT, and SERT, respectively). We assessed the in vitro monoamine transporter inhibition potencies of the substances using human embryonic kidney 293 cells that expressed the human NET, DAT, and SERT. The phenethylamines β-phenethylamine, N-methylphenethylamine, β-methylphenethylamine, N-benzylphenethylamine, N-methyl-β-methylphenethylamine, and methylsynephrine inhibited the NET and less potently the DAT similarly to D-amphetamine. β-phenethylamine was the most potent, with IC50 values of 0.05 and 1.8 μM at the NET and DAT, respectively. These IC50 values were comparable to D-amphetamine (IC50 = 0.09 and 1.3 μM, respectively). The alkylamines 1,3-dimethylbutylamine and 1,3-dimethylamylamine blocked the NET but not the DAT. Most of the phenethylamines interacted with trace amine-associated receptor 1, serotonin 5-hydroxytryptamine-1A receptor, and adrenergic α1A and α2A receptors at submicromolar concentrations. None of the compounds blocked the SERT. In conclusion, products that are used by athletes may contain substances with mainly noradrenergic amphetamine-type properties.
Collapse
Affiliation(s)
- Anna Rickli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marius C Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
45
|
Rickli A, Kolaczynska K, Hoener MC, Liechti ME. Pharmacological characterization of the aminorex analogs 4-MAR, 4,4′-DMAR, and 3,4-DMAR. Neurotoxicology 2019; 72:95-100. [DOI: 10.1016/j.neuro.2019.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
|
46
|
Ramezany Yasuj S, Nourhashemi M, Keshavarzi S, Motaghinejad M, Motevalian M. Possible Role of Cyclic AMP Response Element Binding/Brain-Derived Neurotrophic Factor Signaling Pathway in Mediating the Pharmacological Effects of Duloxetine against Methamphetamine Use-Induced Cognitive Impairment and Withdrawal-Induced Anxiety and Depression in Rats. Adv Biomed Res 2019; 8:11. [PMID: 30993081 PMCID: PMC6425746 DOI: 10.4103/abr.abr_34_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Duloxetine is used for treating depression and anxiety. The current study evaluated the effects of duloxetine against methamphetamine withdrawal-induced anxiety, depression, and motor disturbances and methamphetamine use-induced cognitive impairments. MATERIALS AND METHODS Ninety-six adult male rats were used for two independent experiments. Each experiment consisted of Groups 1 and 2 which received normal saline (0.2 ml/rat) and methamphetamine (10 mg/kg) respectively, Groups 3, 4, and 5 received both methamphetamine and duloxetine at doses of 5, 10, and 15 mg/kg, respectively. Groups 6, 7, and 8 received 5, 10, and 15 mg/kg of duloxetine, respectively. All administrations were performed for 21 days. In experiment 1, elevated plus maze (EPM), open-field test (OFT), forced swim test (FST), and tail suspension test (TST) were used to examine anxiety and depression in animals during withdrawal period. In experiment 2, Morris water maze (MWM) test was used to assess the effect of methamphetamine use followed by duloxetine treatment, on learning and memory. In the experiments, the expression of cyclic AMP response element binding (CREB) and brain-derived neurotrophic factor (BDNF) proteins were evaluated using enzyme-linked immunosorbent assay. RESULTS In the first experiment, duloxetine at all doses attenuated methamphetamine withdrawal induced-depression, anxiety, and motor disturbances in FST, OFT, EPM, and TST. In the second experiment, duloxetine at all doses attenuated methamphetamine use-induced cognitive impairment in MWM. In both experiments, duloxetine activated cAMP, CREB, and BDNF proteins' expression in methamphetamine-treated rats. CONCLUSIONS Duloxetine can protect the brain against methamphetamine withdrawal-induced mood and motor disturbances and can also inhibit methamphetamine-induced cognitive impairment, possibly via cAMP/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Sanaz Ramezany Yasuj
- From the Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Nourhashemi
- From the Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saghar Keshavarzi
- From the Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- From the Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Strajhar P, Vizeli P, Patt M, Dolder PC, Kratschmar DV, Liechti ME, Odermatt A. Effects of lisdexamfetamine on plasma steroid concentrations compared with d-amphetamine in healthy subjects: A randomized, double-blind, placebo-controlled study. J Steroid Biochem Mol Biol 2019; 186:212-225. [PMID: 30381248 DOI: 10.1016/j.jsbmb.2018.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023]
Abstract
The novel d-amphetamine prodrug lisdexamfetamine is applied to treat attention-deficit/hyperactivity disorder (ADHD). d-Amphetamine releases dopamine and norepinephrine and stimulates the hypothalamic-pituitary-adrenal (HPA) axis, which may contribute to its reinforcing effects and risk of abuse. However, no data is currently available on the effects of lisdexamfetamine on circulating steroids. This randomized, double-blind, placebo-controlled, cross-over study evaluated the effects of equimolar doses of d-amphetamine (40 mg) and lisdexamfetamine (100 mg) and placebo on circulating steroids in 24 healthy subjects. Plasma steroid and d-amphetamine levels were determined up to 24 h. Delayed increase and peak levels of plasma d-amphetamine concentrations were observed following lisdexamfetamine treatment compared with d-amphetamine administration, however the maximal concentrations and total exposure (area under the curve [AUC]) were similar. Lisdexamfetamine and d-amphetamine significantly enhanced plasma levels of adrenocorticotropic hormone, glucocorticoids (cortisol, cortisone, corticosterone, 11-dehydrocorticosterone, and 11-deoxycortisol), androgens (dehydroepiandrosterone, dehydroepiandrosterone sulfate, and Δ4-androstene-3,17-dione [androstenedione]), and progesterone (only in men) compared with placebo. Steroid concentration-time curves were shifted to later time points due to a non-significantly later onset following lisdexamfetamine administration than after d-amphetamine, however maximal plasma steroid concentrations and AUCs did not differ between the active treatments. None of the active treatments altered plasma levels of the mineralocorticoids aldosterone and 11-deoxycorticosterone or the androgen testosterone compared with placebo. The effects of the amphetamines on glucocorticoid production were similar to those that were previously reported for methylphenidate (60 mg) but weaker than those for the serotonin releaser 3,4-methylenedioxymethamphetamine (MDMA; 125 mg) or direct serotonin receptor agonist lysergic acid diethylamide (LSD; 0.2 mg). Lisdexamfetamine produced comparable HPA axis activation and had similar pharmacokinetics than d-amphetamine, except for a delayed time of onset. Thus, serotonin (MDMA, LSD) may more effectively stimulate the HPA axis than dopamine and norepinephrine (D-amphetamine).
Collapse
Affiliation(s)
- Petra Strajhar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Melanie Patt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Patrick C Dolder
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
48
|
Müller F, Brändle R, Liechti ME, Borgwardt S. Neuroimaging of chronic MDMA (“ecstasy”) effects: A meta-analysis. Neurosci Biobehav Rev 2019; 96:10-20. [DOI: 10.1016/j.neubiorev.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
|
49
|
Vizeli P, Liechti ME. No Influence of Dopamine System Gene Variations on Acute Effects of MDMA. Front Psychiatry 2019; 10:755. [PMID: 31708815 PMCID: PMC6821788 DOI: 10.3389/fpsyt.2019.00755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a recreational substance also investigated as medication for posttraumatic stress disorder. Dopamine (DA) system stimulation likely contributes to the acute mood effects of amphetamines, including MDMA. Genetic variants, such as single-nucleotide polymorphisms (SNPs), and polymorphic regions of the DA system genes may in part explain interindividual differences in the acute responses to MDMA in humans. We characterized the effects of common genetic variants within genes coding for key players in the DA system including the dopamine D2 receptor (DRD2/ANKK1 rs1800497, DRD2 rs6277, and rs107959), the dopamine transporter (DAT1 rs28363170, rs3836790, rs6347, rs11133767, rs11564774, rs460000, and rs463379), and dopamine D4 receptor [DRD4, variable-number tandem repeat (VNTR)] on the subjective and autonomic response to MDMA (125 mg) in pooled data from randomized, placebo-controlled, crossover studies in a total of 149 healthy subjects. Plasma concentrations of MDMA were used as covariate in the analysis to control for individual pharmacokinetic (metabolic and weight) differences. None of the tested genetic polymorphisms within the DA system altered effects of MDMA when adjusting for multiple comparisons. Genetic variations in genes coding for players of the DA system are unlikely to explain interindividual variations in the acute effects of MDMA in humans.
Collapse
Affiliation(s)
- Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
50
|
Dunlap LE, Andrews AM, Olson DE. Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chem Neurosci 2018; 9:2408-2427. [PMID: 30001118 PMCID: PMC6197894 DOI: 10.1021/acschemneuro.8b00155] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Better known as "ecstasy", 3,4-methylenedioxymethamphetamine (MDMA) is a small molecule that has played a prominent role in defining the ethos of today's teenagers and young adults, much like lysergic acid diethylamide (LSD) did in the 1960s. Though MDMA possesses structural similarities to compounds like amphetamine and mescaline, it produces subjective effects that are unlike any of the classical psychostimulants or hallucinogens and is one of the few compounds capable of reliably producing prosocial behavioral states. As a result, MDMA has captured the attention of recreational users, the media, artists, psychiatrists, and neuropharmacologists alike. Here, we detail the synthesis of MDMA as well as its pharmacology, metabolism, adverse effects, and potential use in medicine. Finally, we discuss its history and why it is perhaps the most important compound for the future of psychedelic science-having the potential to either facilitate new psychedelic research initiatives, or to usher in a second Dark Age for the field.
Collapse
Affiliation(s)
- Lee E Dunlap
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Anne M Andrews
- Departments of Psychiatry and Chemistry & Biochemistry, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology , University of California , Los Angeles , California 90095 , United States
| | - David E Olson
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
- Department of Biochemistry & Molecular Medicine, School of Medicine , University of California, Davis , 2700 Stockton Blvd, Suite 2102 , Sacramento , California 95817 , United States
- Center for Neuroscience , University of California, Davis , 1544 Newton Ct , Davis , California 95616 , United States
| |
Collapse
|