1
|
Nájera L, Alonso‐Juarranz M, Garrido M, Ballestín C, Moya L, Martínez‐Díaz M, Carrillo R, Juarranz A, Rojo F, Cuezva J, Rodríguez‐Peralto J. Prognostic implications of markers of the metabolic phenotype in human cutaneous melanoma. Br J Dermatol 2019; 181:114-127. [DOI: 10.1111/bjd.17513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Affiliation(s)
- L. Nájera
- Servicio de Anatomía Patológica Hospital Universitario Puerta de Hierro Majadahonda, MadridSpain
| | | | - M. Garrido
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
| | - C. Ballestín
- IIS‐Fundación Jiménez Diaz C/Reyes Católicos 2 28049 MadridSpain
| | - L. Moya
- Servicio de Anatomía Patológica Hospital Universitario Ramón y Cajal MadridSpain
| | - M. Martínez‐Díaz
- Departamento de Biología Molecular Centro de Biología Molecular Severo Ochoa CSIC‐UAM MadridSpain
| | - R. Carrillo
- Servicio de Anatomía Patológica Hospital Universitario Ramón y Cajal MadridSpain
| | - A. Juarranz
- Departamento de Biología Facultad de Ciencias Universidad Autónoma de Madrid C/Darwin, 2 28049 MadridSpain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) MadridSpain
| | - F. Rojo
- IIS‐Fundación Jiménez Diaz C/Reyes Católicos 2 28049 MadridSpain
| | - J.M. Cuezva
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
- Departamento de Biología Molecular Centro de Biología Molecular Severo Ochoa CSIC‐UAM MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII MadridSpain
| | - J.L. Rodríguez‐Peralto
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) ISCIII Madrid Spain
| |
Collapse
|
2
|
Janssen N, Speigl L, Pawelec G, Niessner H, Shipp C. Inhibiting HSP90 prevents the induction of myeloid-derived suppressor cells by melanoma cells. Cell Immunol 2018; 327:68-76. [PMID: 29478948 DOI: 10.1016/j.cellimm.2018.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/18/2018] [Indexed: 12/19/2022]
Abstract
Metastatic melanoma is the most dangerous form of skin cancer, with an ever-increasing incidence worldwide. Despite encouraging results with immunotherapeutic approaches, long-term survival is still poor. This is likely partly due to tumour-induced immune suppression mediated by myeloid-derived suppressor cells (MDSCs), which were shown to be associated with response to therapy and survival. Thus, identifying pathways responsible for MDSC differentiation may provide new therapeutic targets and improve efficacy of existing immunotherapies. Therefore, we've analysed mechanisms by which tumour cells contribute to the induction of MDSCs. Established melanoma cell lines were pre-treated with inhibitors of different pathways and tested for their capacity to alleviate T cell suppression via MDSC differentiation in vitro. Targeting HSP70/90 in melanoma cells resulted in reduced induction of immune suppressive cells on a phenotypic and functional basis, for which a more potent effect was observed when HSP90 was inhibited under hypoxic conditions. This initial study suggests a novel mechanism in tumour cells responsible for the induction of MDSC in melanoma.
Collapse
Affiliation(s)
- Nicole Janssen
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany.
| | - Lisa Speigl
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany; Health Sciences North Research Institute, Sudbury, ON, Canada; School of Science and Technology, College of Arts and Science, Nottingham Trent University, Nottingham, United Kingdom; Department of Haematological Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Heike Niessner
- Section of Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Christopher Shipp
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Heiss K, Raffaele M, Vanella L, Murabito P, Prezzavento O, Marrazzo A, Aricò G, Castracani CC, Barbagallo I, Zappalà A, Avola R, Li Volti G. (+)-Pentazocine attenuates SH-SY5Y cell death, oxidative stress and microglial migration induced by conditioned medium from activated microglia. Neurosci Lett 2017; 642:86-90. [PMID: 28163081 DOI: 10.1016/j.neulet.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Sigma receptors (σ1R) are expressed both in neurons and microglia and can be considered as a promising target for developing pharmacological strategies for neuroprotection in various experimental models. The aim of the present study was to test the effect of (+)-pentazocine, a putative σ 1R agonist, in an in vitro model of neuron/microglia crosstalk following hypoxia/reoxygenation. METHODS Microglia (BV2 cells) was exposed (3h) to 1% oxygen and reoxygenation was allowed for 24h. Conditioned media obtained from this experimental condition was used to treat neuroblast-like cell line (SH-SY5Y cells) in the presence or absence of (+)-pentazocine (25μM). Cell viability was measured by cytofluorimetric analysis, whereas inflammation and oxidative stress were evaluated by the expression of Hsp70, GAD, SOD and p65. Microglial cell migration was also evaluated by Xcelligence technology. RESULTS Our results showed that (+)-pentazocine was able to increase SH-SY5Y cell viability following exposure to microglial-conditioned medium. Furthermore, (+)-pentazocine was also able to inhibit microglial cell toward neuron treated with hypoxic conditioned medium. Finally, pharmacological treatment reduced the expression of inflammatory and oxidative stress markers (GAD, SOD and p65). Interestingly, hypoxic medium was able to reduce the expression of Hsp70 and such effect was prevented by (+)-pentazocine treatment. CONCLUSIONS (+)-Pentazocine exhibits significant neuroprotective effects in our in vitro model of SH-SY5Y/microglial crosstalk thus suggesting that σ1R may represent a possible strategy for neuroprotection.
Collapse
Affiliation(s)
- Kathrin Heiss
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95100 Catania, Italy
| | - Marco Raffaele
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Paolo Murabito
- Azienda Ospedaliera Universitaria Policlinico "G. Rodolico", University of Catania, Via S. Sofia 78, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Giuseppina Aricò
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Carlo Castruccio Castracani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95100 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95100 Catania, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95100 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95100 Catania, Italy; Euro-Mediterranean Institute of Science and Technology, Via Emerico Amari 131, 90100 Palermo, Italy.
| |
Collapse
|
4
|
Schilling D, Tetzlaff F, Konrad S, Li W, Multhoff G. A hypoxia-induced decrease of either MICA/B or Hsp70 on the membrane of tumor cells mediates immune escape from NK cells. Cell Stress Chaperones 2015; 20:139-47. [PMID: 25103413 PMCID: PMC4255247 DOI: 10.1007/s12192-014-0532-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 12/16/2022] Open
Abstract
Recent findings suggest that hypoxia of the tumor microenvironment contributes to immune escape from natural killer (NK) cell-mediated cytotoxicity. Heat shock protein 70 (Hsp70) and the stress-regulated major histocompatibility class I chain-related protein A and B (MICA/B) both serve as ligands for activated NK cells when expressed on the cell surface of tumor cells. Herein, we studied the effects of hypoxia and hypoxia-inducible factor-1α (HIF-1α) on the membrane expression of these NK cell ligands in H1339 with high and MDA-MB-231 tumor cells with low basal HIF-1α levels and its consequences on NK cell-mediated cytotoxicity. We could show that a hypoxia-induced decrease in the membrane expression of MICA/B and Hsp70 on H1339 and MDA-MB-231 cells, respectively, is associated with a reduced sensitivity to NK cell-mediated lysis. A knockdown of HIF-1α revealed that the decreased surface expression of MICA/B under hypoxia is dependent on HIF-1α in H1339 cells with high basal HIF-1α levels. Hypoxia and HIF-1α did not affect the MICA/B expression in MDA-MB-231 cells but reduced the Hsp70 membrane expression which in turn also impaired NK cell recognition. Furthermore, we could show that the hypoxia-induced decrease in membrane Hsp70 is independent of HIF-1α in MDA-MB-231. Our data indicate that hypoxia-induced downregulation of both NK cell ligands MICA/B and Hsp70 impairs NK cell-mediated cytotoxicity, whereby only MICA/B appears to be regulated by HIF-1α.
Collapse
Affiliation(s)
- Daniela Schilling
- />Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- />Institute of Biological and Medical Imaging, IBMI; CCG - Innate Immunity in Tumor Biology, Helmholtz Center Munich – German Research Center for Environmental Health, Munich, Germany
| | - Fabian Tetzlaff
- />Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sarah Konrad
- />Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Wei Li
- />Department of Dermatology, University of Southern California Keck School of Medicine, Los Angeles, CA USA
| | - Gabriele Multhoff
- />Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- />Institute of Biological and Medical Imaging, IBMI; CCG - Innate Immunity in Tumor Biology, Helmholtz Center Munich – German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
5
|
Huang T, Chen S, Han H, Li H, Huang Z, Zhang J, Yin Q, Wang X, Ma X, Dai P, Duan D, Zou F, Chen X. Expression of Hsp90α and cyclin B1 were related to prognosis of esophageal squamous cell carcinoma and keratin pearl formation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1544-1552. [PMID: 24817950 PMCID: PMC4014234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Hsp90α (heat shock protein 90α), one of the important molecular chaperones in cancer cell signal transduction, has been a new candidate target for cancer therapy. Cyclin B1, the client protein of Hsp90α, plays a key role as a mitotic cyclin in the G2-M phase transition during the cell cycle progression. However, the relationship between the level of HSP90α and cyclin B1, the location of Hsp90α and cyclin B1 in prognosis of esophageal squamous cell carcinoma (ESCC) has not been examined. Here, we demonstrate that the diagnostic significance of Hsp90α and cyclin B1 by immunohistochemistry and the association of Hsp90α and cyclin B1 expression in ESCC. In the specimens from 105 ESCC patients (81 stained with Hsp90α antibody by Immunohistochemistry, 65 with cyclin B1 antibody, and among them, 41 paired specimens were stained with Hsp90α and cyclin B1 respectively, and then checked for the correlation of the level and location of Hsp90α and cylcin B1. The positivity rate of Hsp90α and cyclin B1 expression were 96.3% (78 of 81) and 84.6% (55 of 65) respectively. Both of them, the expression levels are associated with the clinical pathological stage (Hsp90α, p=0.027; cyclin B1, p=0.007). No association was found between Hsp90α or cyclin B1 and gender, age, tumor location. As to TMN stage, there is no association with the level of Hsp90α, However, cyclin B1 expression is significantly related to tumor status (p=0.002). Interestingly, Hsp90α expression was negatively correlated to cyclin B1 expression (Gamma=-0.692, p=0.007) in the keratin pearls though there is a positive correlation in the other areas of tumor (Gamma=0.503, p=0.015), which suggest Hsp90α might play diverse roles in the cyclin B1 expression and cyclin B1 related cell cycle regulation in the different area of tumor. These findings demonstrated that the expression of Hsp90α, cyclin B1 protein is associated with tumor malignancy and prognosis for patients with human esophageal squamous cell carcinoma, and Hsp90α might be involved in cyclin B1 expression regulation and cell cycle regulation in keratin peal formation of ESCC.
Collapse
Affiliation(s)
- Tingyuan Huang
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Size Chen
- Department of Oncology, The First Affiliated Hosipital of Guangdong Pharmaceutical UniversityGuangzhou, Guangdong, China
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Huadan Li
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Zhizhou Huang
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Jianming Zhang
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Qiangbin Yin
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Xiaojie Wang
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Xiaojiao Ma
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Peijuan Dai
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Danping Duan
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Xuemei Chen
- Department of Occupational Medicine and Health, Southern Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
6
|
Macpherson T, Armstrong JA, Criddle DN, Wright KL. Physiological intestinal oxygen modulates the Caco-2 cell model and increases sensitivity to the phytocannabinoid cannabidiol. In Vitro Cell Dev Biol Anim 2014; 50:417-26. [PMID: 24464350 DOI: 10.1007/s11626-013-9719-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The Caco-2 cell model is widely used as a model of colon cancer and small intestinal epithelium but, like most cell models, is cultured in atmospheric oxygen conditions (∼21%). This does not reflect the physiological oxygen range found in the colon. In this study, we investigated the effect of adapting the Caco-2 cell line to routine culturing in a physiological oxygen (5%) environment. Under these conditions, cells maintain a number of key characteristics of the Caco-2 model, such as increased formation of tight junctions and alkaline phosphatase expression over the differentiation period and maintenance of barrier function. However, these cells exhibit differential oxidative metabolism, proliferate less and become larger during differentiation. In addition, these cells were more sensitive to cannabidiol-induced antiproliferative actions through changes in cellular energetics: from a drop of oxygen consumption rate and loss of mitochondrial membrane integrity in cells treated under atmospheric conditions to an increase in reactive oxygen species in intact mitochondria in cells treated under low-oxygen conditions. Inclusion of an additional physiological parameter, sodium butyrate, into the medium revealed a cannabidiol-induced proliferative response at low doses. These effects could impact on its development as an anticancer therapeutic, but overall, the data supports the principle that culturing cells in microenvironments that more closely mimic the in vivo conditions is important for drug screening and mechanism of action studies.
Collapse
Affiliation(s)
- Tara Macpherson
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YG, UK
| | | | | | | |
Collapse
|
7
|
Lima CBC, Santos SAD, Andrade Júnior DRD. Hypoxic stress, hepatocytes and CACO-2 viability and susceptibility to Shigella flexneri invasion. Rev Inst Med Trop Sao Paulo 2014; 55:341-6. [PMID: 24037289 PMCID: PMC4105072 DOI: 10.1590/s0036-46652013000500008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/06/2013] [Indexed: 12/18/2022] Open
Abstract
SUMMARY Inflammation due to Shigella flexneri can cause damage to the colonic mucosa and cell death by necrosis and apoptosis. This bacteria can reach the bloodstream in this way, and the liver through portal veins. Hypoxia is a condition present in many human diseases, and it may induce bacterial translocation from intestinal lumen. We studied the ability of S. flexneri to invade rat hepatocytes and Caco-2 cells both in normoxic and hypoxic microenvironments, as well as morphological and physiological alterations in these cells after infection under hypoxia. We used the primary culture of rat hepatocytes as a model of study. We analyzed the following parameters in normoxic and hypoxic conditions: morphology, cell viability, bacterial recovery and lactate dehydrogenase (LDH) released. The results showed that there were fewer bacteria within the Caco-2 cells than in hepatocytes in normoxic and hypoxic conditions. We observed that the higher the multiplicity of infection (MOI) the greater the bacterial recovery in hepatocytes. The hypoxic condition decreased the bacterial recovery in hepatocytes. The cytotoxicity evaluated by LDH released by cells was significantly higher in cells submitted to hypoxia than normoxia. Caco-2 cells in normoxia released 63% more LDH than hepatocytes. LDH increased 164% when hepatocytes were submitted to hypoxia and just 21% when Caco-2 cells were in the same condition. The apoptosis evaluated by Tunel was significantly higher in cells submitted to hypoxia than normoxia. When comparing hypoxic cells, we obtained more apoptotic hepatocytes than apoptotic Caco-2 cells. Concluding our results contribute to a better knowledge of interactions between studied cells and Shigella flexneri. These data may be useful in the future to define strategies to combat this virulent pathogen.
Collapse
Affiliation(s)
- Camila Bárbara Cantalupo Lima
- Laboratory of Bacteriology (LIM 54), Department of Infectious Diseases, Faculty of Medicine, University of Sao Paulo, Sao PauloSP, Brazil, , ,
| | | | | |
Collapse
|
8
|
Mu B, Zhang H, Cai X, Yang J, Shen Y, Chen B, Liang S. Screening of multiple myeloma by polyclonal rabbit anti-human plasmacytoma cell immunoglobulin. PLoS One 2013; 8:e59117. [PMID: 23560043 PMCID: PMC3613404 DOI: 10.1371/journal.pone.0059117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Antibody-based immunotherapy has been effectively used for tumor treatment. However, to date, only a few tumor-associated antigens (TAAs) or therapeutic targets have been identified. Identification of more immunogenic antigens is essential for improvements in multiple myeloma (MM) diagnosis and therapy. In this study, we synthesized a polyclonal antibody (PAb) by immunizing rabbits with whole human plasmacytoma ARH-77 cells and identified MM-associated antigens, including enlonase, adipophilin, and HSP90s, among others, via proteomic technologies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that 200 µg/mL PAb inhibits the proliferation of ARH-77 cells by over 50% within 48 h. Flow cytometric assay indicated that PAb treatment significantly increases the number of apoptotic cells compared with other treatments (52.1% vs. NS, 7.3% or control rabbit IgG, 9.9%). In vivo, PAb delayed tumor growth and prolonged the lifespan of mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that PAb also induces statistically significant changes in apoptosis compared with other treatments (P<0.05). We therefore conclude that PAb could be used for the effective screening and identification of TAA. PAb may have certain anti-tumor functions in vitro and in vivo. As such, its combination with proteomic technologies could be a promising approach for sieving TAA for the diagnosis and therapy of MM.
Collapse
Affiliation(s)
- Bo Mu
- The Medical Biology Staff Room of North Sichuan Medical College, Sichuan Nanchong, PR China.
| | | | | | | | | | | | | |
Collapse
|