1
|
Hernández-Pelegrín L, García-Castillo P, Catalá-Oltra M, Dembilio Ó, Ros VID, Herrero S. Exploring the impact of a chemical disinfectant and an antiviral drug for RNA virus management in the Mediterranean fruit fly mass-rearing. INSECT SCIENCE 2024. [PMID: 39614634 DOI: 10.1111/1744-7917.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
The Mediterranean fruit fly is an agricultural pest of a wide variety of fruit crops. An effective method to counteract them in the field is through the application of the sterile insect technique, which requires the mass-production of sterile males. The presence of pathogens, and specifically viruses, threatens the well-being of mass-reared insects generating an interest on the development of strategies for viral elimination or containment. Thirteen RNA viruses have been described in the medfly although so far only one of them, Ceratitis capitata nora virus, has been associated with detrimental effects on medfly development. In this context, medfly larvae were supplied with a chemical compound (formaldehyde) and an antiviral compound (ribavirin) via oral feeding to (1) test the potential of these compounds for viral elimination and (2) analyze their effect on medfly development. Overall, formaldehyde treatment did not reduce the viral titer for any of the tested viruses, while ribavirin effectively reduced the levels of two widespread RNA viruses but not in a dose-response manner. However, the addition of both compounds correlated with detrimental effects on medfly fitness, arguing against their use in mass-rearing facilities.
Collapse
Affiliation(s)
| | | | - Marta Catalá-Oltra
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| | - Óscar Dembilio
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Salvador Herrero
- Department of Genetics, Universitat de València, Valencia, Spain
| |
Collapse
|
2
|
Mirieri CK, Abd-Alla AM, Ros VI, van Oers MM. Evaluating the Effect of Irradiation on the Densities of Two RNA Viruses in Glossina morsitans morsitans. INSECTS 2023; 14:397. [PMID: 37103212 PMCID: PMC10140815 DOI: 10.3390/insects14040397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Tsetse flies are cyclic vectors of Trypanosoma parasites, which cause debilitating diseases in humans and animals. To decrease the disease burden, the number of flies is reduced using the sterile insect technique (SIT), where male flies are sterilized through irradiation and released into the field. This procedure requires the mass rearing of high-quality male flies able to compete with wild male flies for mating with wild females. Recently, two RNA viruses, an iflavirus and a negevirus, were discovered in mass-reared Glossina morsitans morsitans and named GmmIV and GmmNegeV, respectively. The aim of this study was to evaluate whether the densities of these viruses in tsetse flies are affected by the irradiation treatment. Therefore, we exposed tsetse pupae to various doses (0-150 Gy) of ionizing radiation, either in air (normoxia) or without air (hypoxia), for which oxygen was displaced by nitrogen. Pupae and/or emerging flies were collected immediately afterwards, and at three days post irradiation, virus densities were quantified through RT-qPCR. Generally, the results show that irradiation exposure had no significant impact on the densities of GmmIV and GmmNegeV, suggesting that the viruses are relatively radiation-resistant, even at higher doses. However, sampling over a longer period after irradiation would be needed to verify that densities of these insect viruses are not changed by the sterilisation treatment.
Collapse
Affiliation(s)
- Caroline K. Mirieri
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Vera I.D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
3
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
4
|
Demirbas-Uzel G, Parker AG, Vreysen MJB, Mach RL, Bouyer J, Takac P, Abd-Alla AMM. Impact of Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) on a heterologous tsetse fly host, Glossina fuscipes fuscipes. BMC Microbiol 2018; 18:161. [PMID: 30470172 PMCID: PMC6251146 DOI: 10.1186/s12866-018-1276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases. The Sterile Insect Technique (SIT) is an effective, environment-friendly method for the management of tsetse flies in the context of area-wide integrated pest management programs (AW-IPM). This technique relies on the mass-production of the target insect, its sterilization with ionizing radiation and the release of sterile males in the target area where they will mate with wild females and induce sterility in the native population. It has been shown that Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infection causes a decrease in fecundity and fertility hampering the maintenance of colonies of the tsetse fly G. pallidipes. This virus has also been detected in different species of tsetse files. In this study, we evaluated the impact of GpSGHV on the performance of a colony of the heterologous host G. f. fuscipes, including the flies' productivity, mortality, survival, flight propensity and mating ability and insemination rates. RESULTS Even though GpSGHV infection did not induce SGH symptoms, it significantly reduced all examined parameters, except adult flight propensity and insemination rate. CONCLUSION These results emphasize the important role of GpSGHV management strategy in the maintenance of G. f. fuscipes colonies and the urgent need to implement measures to avoid virus infection, to ensure the optimal mass production of this tsetse species for use in AW-IPM programs with an SIT component.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia.,Scientica, Ltd., Hybešova 33, 831 06, Bratislava, Slovakia
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
5
|
Meki IK, Kariithi HM, Ahmadi M, Parker AG, Vreysen MJB, Vlak JM, van Oers MM, Abd-Alla AM. Hytrosavirus genetic diversity and eco-regional spread in Glossina species. BMC Microbiol 2018; 18:143. [PMID: 30470191 PMCID: PMC6251127 DOI: 10.1186/s12866-018-1297-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The management of the tsetse species Glossina pallidipes (Diptera; Glossinidae) in Africa by the sterile insect technique (SIT) has been hindered by infections of G. pallidipes production colonies with Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; Hytrosaviridae family). This virus can significantly decrease productivity of the G. pallidipes colonies. Here, we used three highly diverged genes and two variable number tandem repeat regions (VNTRs) of the GpSGHV genome to identify the viral haplotypes in seven Glossina species obtained from 29 African locations and determine their phylogenetic relatedness. RESULTS GpSGHV was detected in all analysed Glossina species using PCR. The highest GpSGHV prevalence was found in G. pallidipes colonized at FAO/IAEA Insect Pest Control Laboratory (IPCL) that originated from Uganda (100%) and Tanzania (88%), and a lower prevalence in G. morsitans morsitans from Tanzania (58%) and Zimbabwe (20%). Whereas GpSGHV was detected in 25-40% of G. fuscipes fuscipes in eastern Uganda, the virus was not detected in specimens of neighboring western Kenya. Most of the identified 15 haplotypes were restricted to specific Glossina species in distinct locations. Seven haplotypes were found exclusively in G. pallidipes. The reference haplotype H1 (GpSGHV-Uga; Ugandan strain) was the most widely distributed, but was not found in G. swynnertoni GpSGHV. The 15 haplotypes clustered into three distinct phylogenetic clades, the largest contained seven haplotypes, which were detected in six Glossina species. The G. pallidipes-infecting haplotypes H10, H11 and H12 (from Kenya) clustered with H7 (from Ethiopia), which presumably corresponds to the recently sequenced GpSGHV-Eth (Ethiopian) strain. These four haplotypes diverged the most from the reference H1 (GpSGHV-Uga). Haplotypes H1, H5 and H14 formed three main genealogy hubs, potentially representing the ancestors of the 15 haplotypes. CONCLUSION These data identify G. pallidipes as a significant driver for the generation and diversity of GpSGHV variants. This information may provide control guidance when new tsetse colonies are established and hence, for improved management of the virus in tsetse rearing facilities that maintain multiple Glossina species.
Collapse
Affiliation(s)
- Irene K. Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Loresho, Nairobi, Kenya
| | - Mehrdad Ahmadi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Insect Genetics Unit, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| |
Collapse
|
6
|
Demirbas-Uzel G, Kariithi HM, Parker AG, Vreysen MJB, Mach RL, Abd-Alla AMM. Susceptibility of Tsetse Species to Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV). Front Microbiol 2018; 9:701. [PMID: 29686664 PMCID: PMC5901070 DOI: 10.3389/fmicb.2018.00701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 01/18/2023] Open
Abstract
Salivary gland hytrosaviruses (SGHVs, family Hytrosaviridae) are non-occluded dsDNA viruses that are pathogenic to some dipterans. SGHVs primarily replicate in salivary glands (SG), thereby inducing overt salivary gland hypertrophy (SGH) symptoms in their adult hosts. SGHV infection of non-SG tissues results in distinct pathobiologies, including reproductive dysfunctions in tsetse fly, Glossina pallidipes (Diptera: Glossinidae) and house fly. Infection with the G. pallidipes virus (GpSGHV) resulted in the collapse of several laboratory colonies, which hindered the implementation of area wide integrated pest management (AW-IPM) programs that had a sterile insect technique (SIT) component. Although the impact of GpSGHV infection has been studied in some detail in G. pallidipes, the impact of the virus infection on other tsetse species remains largely unknown. In the current study, we assessed the susceptibility of six Glossina species (G. pallidipes, G. brevipalpis, G. m. morsitans, G. m. centralis, G. f. fuscipes, and G. p. gambiensis) to GpSGHV infections, and the impact of the viral infection on the fly pupation rate, adult emergence, and virus replication and transmission from the larval to adult stages. We also evaluated the ability of the virus to infect conspecific Glossina species through serial passages. The results indicate that the susceptibility of Glossina to GpSGHV varied widely amongst the tested species, with G. pallidipes and G. brevipalpis being the most susceptible and most refractory to the virus, respectively. Further, virus injection into the hemocoel of teneral flies led to increased viral copy number over time, while virus injection into the third instar larvae delayed adult eclosion. Except in G. pallidipes, virus injection either into the larvae or teneral adults did not induce any detectable SGH symptoms, although virus infections were PCR-detectable in the fly carcasses. Taken together, our results indicate that although GpSGHV may only cause minor damage in the mass-rearing of tsetse species other than G. pallidipes, preventive control measures are required to avoid viral contamination and transmission in the fly colonies, particularly in the facilities where multiple tsetse species are reared.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Vienna, Austria
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, Nairobi, Kenya
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Vienna, Austria
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
7
|
Okeyo WA, Saarman NP, Mengual M, Dion K, Bateta R, Mireji PO, Okoth S, Ouma JO, Ouma C, Ochieng J, Murilla G, Aksoy S, Caccone A. Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya. Parasit Vectors 2017; 10:471. [PMID: 29017572 PMCID: PMC5635580 DOI: 10.1186/s13071-017-2415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/01/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glossina pallidipes is a major vector of both Human and Animal African Trypanosomiasis (HAT and AAT) in Kenya. The disease imposes economic burden on endemic regions in Kenya, including south-western Kenya, which has undergone intense but unsuccessful tsetse fly control measures. We genotyped 387 G. pallidipes flies at 13 microsatellite markers to evaluate levels of temporal genetic variation in two regions that have been subjected to intensive eradication campaigns from the 1960s to the 1980s. One of the regions, Nguruman Escarpment, has been subject to habitat alteration due to human activities, while the other, Ruma National Park, has not. In addition, Nguruman Escarpment is impacted by the movement of grazing animals into the area from neighboring regions during the drought season. We collected our samples from three geographically close sampling sites for each of the two regions. Samples were collected between the years 2003 and 2015, spanning ~96 tsetse fly generations. RESULTS We established that allelic richness averaged 3.49 and 3.63, and temporal Ne estimates averaged 594 in Nguruman Escarpment and 1120 in Ruma National Park. This suggests that genetic diversity is similar to what was found in previous studies of G. pallidipes in Uganda and Kenya, implying that we could not detect a reduction in genetic diversity following the extensive control efforts during the 1960s to the 1980s. However, we did find differences in temporal patterns of genetic variation between the two regions, indicated by clustering analysis, pairwise FST, and Fisher's exact tests for changes in allele and genotype frequencies. In Nguruman Escarpment, findings indicated differentiation among samples collected in different years, and evidence of local genetic bottlenecks in two locations previous to 2003, and between 2009 and 2015. In contrast, there was no consistent evidence of differentiation among samples collected in different years, and no evidence of local genetic bottlenecks in Ruma National Park. CONCLUSION Our findings suggest that, despite extensive control measures especially between the 1960s and the 1980s, tsetse flies in these regions persist with levels of genetic diversity similar to that found in populations that did not experience extensive control measures. Our findings also indicate temporal genetic differentiation in Nguruman Escarpment detected at a scale of > 80 generations, and no similar temporal differentiation in Ruma National Park. The different level of temporal differentiation between the two regions indicates that genetic drift is stronger in Nugruman Escarpment, for as-yet unknown reasons, which may include differences in land management. This suggests land management may have an impact on G. pallidipes population genetics, and reinforces the importance of long term monitoring of vector populations in estimates of parameters needed to model and plan effective species-specific control measures.
Collapse
Affiliation(s)
- Winnie A. Okeyo
- Yale School of Public Health, Yale University, New Haven, CT USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Maseno Kenya
| | - Norah P. Saarman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Michael Mengual
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Kirstin Dion
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Paul O. Mireji
- Yale School of Public Health, Yale University, New Haven, CT USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Johnson O. Ouma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Africa Technical Research Center, Vector Health International, Arusha, Tanzania
| | - Collins Ouma
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Maseno Kenya
| | - Joel Ochieng
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Serap Aksoy
- Yale School of Public Health, Yale University, New Haven, CT USA
| | - Adalgisa Caccone
- Yale School of Public Health, Yale University, New Haven, CT USA
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| |
Collapse
|
8
|
Büyükgüzel E, Büyükgüzel K. Effects of Antiviral Agent, Acyclovir, on the Biological Fitness of Galleria mellonella (Lepidoptera: Pyralidae) Adults. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2090-2095. [PMID: 27515595 DOI: 10.1093/jee/tow174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The effects of a synthetic purine nucleoside analog, antiviral agent, acyclovir (ACV), on adult longevity, fecundity, and hatchability of a serious honeycomb pest, greater wax moth Galleria mellonella L. were investigated by adding 0.01, 0.1, 1.0, and 3.0% ACV into artificial and natural diets. Control larvae were reared on diet without ACV. The artificial diet containing the lowest level of ACV, 0.01%, raised egg production from a number of 12.9 ± 0.6 to 163.2 ± 1.3. The hatching rate of these eggs was increased from 49.2 ± 2.4% to 68.2 ± 3.2%. Higher concentrations of ACV in natural food significantly increased both egg production and egg hatching rate. Female reared on old dark combs as natural diet exposed to 1.0% of ACV produced 167.5 ± 5.8 eggs with 93.2 ± 6.8% hatched. This study emphasizes the importance of determining the dietary impact of an antimicrobial agent as a food additive to a particular species of insect before its using for dietary antimicrobial purpose.
Collapse
Affiliation(s)
- Ender Büyükgüzel
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Bülent Ecevit University, Zonguldak, 67100, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Faculty of Science and Arts, Bülent Ecevit University, Zonguldak, 67100, Turkey
| |
Collapse
|
9
|
Abd-Alla AMM, Marin C, Parker AG, Vreysen MJB. Antiviral drug valacyclovir treatment combined with a clean feeding system enhances the suppression of salivary gland hypertrophy in laboratory colonies of Glossina pallidipes. Parasit Vectors 2014; 7:214. [PMID: 24886248 PMCID: PMC4026819 DOI: 10.1186/1756-3305-7-214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hytrosaviridae cause salivary gland hypertrophy (SGH) syndrome in some infected tsetse flies (Diptera: Glossinidae). Infected male and female G. pallidipes with SGH have a reduced fecundity and fertility. Due to the deleterious impact of the virus on G. pallidipes colonies, adding the antiviral drug valacyclovir to the blood diet and changing the feeding regime to a clean feeding system (each fly receives for each feeding a fresh clean blood meal) have been investigated to develop virus management strategies. Although both approaches used alone successfully reduced the virus load and the SGH prevalence in small experimental groups, considerable time was needed to obtain the desired SGH reduction and both systems were only demonstrated with colonies that had a low initial virus prevalence (SGH ≤ 10%). As problems with SGH are often only recognized once the incidence is already high, it was necessary to demonstrate that this combination would also work for high prevalence colonies. FINDINGS Combining both methods at colony level successfully suppressed the SGH in G. pallidipes colonies that had a high initial virus prevalence (average SGH of 24%). Six months after starting the combined treatment SGH symptoms were eliminated from the treated colony, in contrast to 28 months required to obtain the same results using clean feeding alone and 21 months using antiviral drug alone. CONCLUSIONS Combining valacyclovir treatment with the clean feeding system provides faster control of SGH in tsetse than either method alone and is effective even when the initial SGH prevalence is high.
Collapse
Affiliation(s)
- Adly MM Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramer Straße 5, A-1400 Vienna, Austria
| | - Carmen Marin
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramer Straße 5, A-1400 Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramer Straße 5, A-1400 Vienna, Austria
| | - Marc JB Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramer Straße 5, A-1400 Vienna, Austria
| |
Collapse
|
10
|
Hoppenheit A, Murugaiyan J, Bauer B, Steuber S, Clausen PH, Roesler U. Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. PLoS Negl Trop Dis 2013; 7:e2305. [PMID: 23875040 PMCID: PMC3708848 DOI: 10.1371/journal.pntd.0002305] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 05/24/2013] [Indexed: 01/23/2023] Open
Abstract
Glossina (G.) spp. (Diptera: Glossinidae), known as tsetse flies, are vectors of African trypanosomes that cause sleeping sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS) technique, already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and female whole insects and their body parts (head, thorax, abdomen, wings and legs) was used to obtain the flies' proteins. The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain: Lei) did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid tsetse species identification in the future. Tsetse flies are confined to tropical Africa and are carriers for trypanosomes, single-celled blood parasites. Through the bite of an infective tsetse, people and animals may contract trypanosomiasis, a degenerative disease leading to death if left untreated. Tsetse control proved effective for disease containment, but data on the flies as tsetse identification are a prerequisite for planning any control intervention. There are 32 generally accepted tsetse species and subspecies. Classical species identification relies on minor morphological differences, often challenging for field workers. In the last decade, Matrix-Assisted Laser Desorption/Ionisation (MALDI) has revolutionised microbial species identification. After a simple protein extraction, a laser-induced ionisation takes place. Then, the ions are accelerated in a vacuum tube, and their Time of Flight (ToF) to reach the detector is recorded. The protein composition of each organism is unique, and so is their MALDI signature. Comparison of the obtained signature with a database of known organisms enables rapid identification as reliable as genome-based methods. To possibly speed up tsetse diagnostics, we established a MALDI database for the identification of five defined laboratory tsetse breeds. Inclusion of wild-caught tsetse could reinforce the reference database for the identification of tsetse at the species and subspecies level.
Collapse
Affiliation(s)
- Antje Hoppenheit
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
- * E-mail: (AH); (JM)
| | - Jayaseelan Murugaiyan
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute of Animal Health and Environmental Hygiene, Berlin, Germany
- * E-mail: (AH); (JM)
| | - Burkhard Bauer
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
| | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Peter-Henning Clausen
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
| | - Uwe Roesler
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute of Animal Health and Environmental Hygiene, Berlin, Germany
| |
Collapse
|
11
|
Kariithi HM, van Oers MM, Vlak JM, Vreysen MJB, Parker AG, Abd-Alla AMM. Virology, Epidemiology and Pathology of Glossina Hytrosavirus, and Its Control Prospects in Laboratory Colonies of the Tsetse Fly, Glossina pallidipes (Diptera; Glossinidae). INSECTS 2013; 4:287-319. [PMID: 26462422 PMCID: PMC4553466 DOI: 10.3390/insects4030287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023]
Abstract
The Glossina hytrosavirus (family Hytrosaviridae) is a double-stranded DNA virus with rod-shaped, enveloped virions. Its 190 kbp genome encodes 160 putative open reading frames. The virus replicates in the nucleus, and acquires a fragile envelope in the cell cytoplasm. Glossina hytrosavirus was first isolated from hypertrophied salivary glands of the tsetse fly, Glossina pallidipes Austen (Diptera; Glossinidae) collected in Kenya in 1986. A certain proportion of laboratory G. pallidipes flies infected by Glossina hytrosavirus develop hypertrophied salivary glands and midgut epithelial cells, gonadal anomalies and distorted sex-ratios associated with reduced insemination rates, fecundity and lifespan. These symptoms are rare in wild tsetse populations. In East Africa, G. pallidipes is one of the most important vectors of African trypanosomosis, a debilitating zoonotic disease that afflicts 37 sub-Saharan African countries. There is a large arsenal of control tactics available to manage tsetse flies and the disease they transmit. The sterile insect technique (SIT) is a robust control tactic that has shown to be effective in eradicating tsetse populations when integrated with other control tactics in an area-wide integrated approach. The SIT requires production of sterile male flies in large production facilities. To supply sufficient numbers of sterile males for the SIT component against G. pallidipes, strategies have to be developed that enable the management of the Glossina hytrosavirus in the colonies. This review provides a historic chronology of the emergence and biogeography of Glossina hytrosavirus, and includes researches on the infectomics (defined here as the functional and structural genomics and proteomics) and pathobiology of the virus. Standard operation procedures for viral management in tsetse mass-rearing facilities are proposed and a future outlook is sketched.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
- Biotechnology Centre, Kenya Agricultural Research Institute, Waiyaki Way, P.O. Box 14733-00100, Nairobi, Kenya.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Marc J B Vreysen
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| | - Andrew G Parker
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| |
Collapse
|
12
|
Abd-Alla AMM, Kariithi HM, Mohamed AH, Lapiz E, Parker AG, Vreysen MJB. Managing hytrosavirus infections in Glossina pallidipes colonies: feeding regime affects the prevalence of salivary gland hypertrophy syndrome. PLoS One 2013; 8:e61875. [PMID: 23667448 PMCID: PMC3646844 DOI: 10.1371/journal.pone.0061875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/17/2013] [Indexed: 12/03/2022] Open
Abstract
Many species of tsetse flies are infected by a virus that causes salivary gland hypertrophy (SGH) syndrome and the virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies with SGH have a reduced fecundity and fertility. Due to the deleterious impact of SGHV on G. pallidipes colonies, several approaches were investigated to develop a virus management strategy. Horizontal virus transmission is the major cause of the high prevalence of the GpSGHV in tsetse colonies. Implementation of a “clean feeding” regime (fresh blood offered to each set of flies so that there is only one feed per membrane), instead of the regular feeding regime (several successive feeds per membrane), was among the proposed approaches to reduce GpSGHV infections. However, due to the absence of disposable feeding equipment (feeding trays and silicone membranes), the implementation of a clean feeding approach remains economically difficult. We developed a new clean feeding approach applicable to large-scale tsetse production facilities using existing resources. The results indicate that implementing this approach is feasible and leads to a significant reduction in virus load from 109 virus copies in regular colonies to an average of 102.5 and eliminates the SGH syndrome from clean feeding colonies by28 months post implementation of this approach. The clean feeding approach also reduced the virus load from an average of 108 virus copy numbers to an average of 103 virus copies and SGH prevalence of 10% to 4% in flies fed after the clean fed colony. Taken together, these data indicate that the clean feeding approach is applicable in large-scale G. pallidipes production facilities and eliminates the deleterious effects of the virus and the SGH syndrome in these colonies.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
13
|
Abd-Alla AMM, Bergoin M, Parker AG, Maniania NK, Vlak JM, Bourtzis K, Boucias DG, Aksoy S. Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens. J Invertebr Pathol 2013; 112 Suppl:S2-10. [PMID: 22841636 PMCID: PMC4242710 DOI: 10.1016/j.jip.2012.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 11/23/2022]
Abstract
Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a six year Coordinated Research Project (CRP) entitled "Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens". The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|