1
|
Pillai VS, Ravindran S, Krishna G, Abhinand CS, Nelson-Sathi S, Veettil MV. REST Is Restless in Neuronal and Non-Neuronal Virus Infections: An In Silico Analysis-Based Perspective. Viruses 2025; 17:234. [PMID: 40006989 PMCID: PMC11860772 DOI: 10.3390/v17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Repressor element-1 silencing transcription factor or neuron-restrictive silencer factor (REST/NRSF) is an extensively studied neuronal gene regulator both in neuronal cells and non-neuronal cells. Even though the role of REST in host cellular gene regulation is well established, its role in the establishment of viral infections and its capability to stabilize and destabilize such viral infections are scarcely studied. Co-repressor and DNA modifiers are involved in REST-mediated repressive action of its target genes. The role of REST and co-repressors together or individually in the regulation of viral as well as host genes has been unraveled in a few viruses such as HIV and influenza as well as two of the herpesvirus family members, namely herpes simplex virus type 1 (HSV-1) and Kaposi's sarcoma-associated herpesvirus (KSHV). Here, we summarize all such virus studies involved with REST to gain a better insight into REST biology in virus infections. We also focus on unraveling the possible RE-1 binding sites in the Epstein-Barr virus (EBV) genome, a well-known human oncogenic herpesvirus that is associated with infectious mononucleosis and neoplasms such as B-cell lymphomas, nasopharyngeal carcinoma, gastric carcinoma, etc. An in silico-based approach was employed towards the prediction of such possible RE-1 binding elements in the EBV genome. This review advances the present knowledge of REST in virus infection which will aid in future efforts towards a better understanding of how REST acts in herpesviruses and other viruses for their infections and pathogenesis.
Collapse
Affiliation(s)
- Vinod Soman Pillai
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
- Virology Laboratory, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Cochin 682022, India
| | - Shilpa Ravindran
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
| | - Gayathri Krishna
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
| | - Chandran S. Abhinand
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
| | - Shijulal Nelson-Sathi
- Rajiv Gandhi Center for Biotechnology (RGCB), Cheruvikkal Village Office Road, Aakkulam, Thiruvananthapuram 695585, India;
| | - Mohanan Valiya Veettil
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
| |
Collapse
|
2
|
Khiabani NA, Doustvandi MA, Story D, Nobari SA, Hajizadeh M, Petersen R, Dunbar G, Rossignol J. Glioblastoma therapy: State of the field and future prospects. Life Sci 2024; 359:123227. [PMID: 39537100 DOI: 10.1016/j.lfs.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GB) is a cancerous brain tumor that originates from glial cells and leads to thousands of deaths each year and a five-year survival of only 6.8 %. Treatments for GB include surgery, chemotherapy, radiation, and immunotherapy. GB is an incurable fatal disease, necessitating the development of innovative strategies to find a developing effective therapy. Genetic therapies may be crucial in treating GB by identifying the mutations and amplifications of multiple genes, which drive its proliferation and spread. Use of small interfering RNAs (siRNAs) provides a novel technology used to suppress the genes associated with disease, which forms a basis for targeted therapy in GB and its stem cell population, which are recognized for their ability to develop resistance to chemotherapy and tumorigenic capabilities. This review examines the use of siRNAs in GB, emphasizing their effectiveness in suppressing key oncogenes and signaling pathways associated with tumor development, invasion, stemness, and resistance to standard treatments. siRNA-based gene silencing is a promising approach for developing targeted therapeutics against GB and associated stem cell populations, potentially enhancing patient outcomes and survival rates in this devastating disease.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Darren Story
- Department of Psychology, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | - Robert Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
3
|
Waters E, Pucci P, Rahman R, Yatsyshyna AP, Porter H, Hirst M, Gromnicova R, Kraev I, Mongiardini V, Grimaldi B, Golding J, Fillmore HL, Győrffy B, Gangadharannambiar P, Velanis CN, Heath CJ, Crea F. REST-dependent glioma progression occurs independently of the repression of the long non-coding RNA HAR1A. PLoS One 2024; 19:e0312237. [PMID: 39602392 PMCID: PMC11602025 DOI: 10.1371/journal.pone.0312237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024] Open
Abstract
The long non-coding RNA (lncRNA), HAR1A is emerging as a putative tumour suppressor. In non-neoplastic brain cells, REST suppresses HAR1A expression. In gliomas REST acts as an oncogene and is a potential therapeutic target. It is therefore conceivable that REST promotes glioma progression by down-regulating HAR1A. To test this hypothesis, glioma clinical databases were analysed to study: (I) HAR1A/REST correlation; (II) HAR1A and REST prognostic role; (III) molecular pathways associated with these genes. HAR1A expression and subcellular localization were studied in glioblastoma and paediatric glioma cells. REST function was also studied in these cells, by observing the effects of gene silencing on: (I) HAR1A expression; (II) cancer cell proliferation, apoptosis, migration; (III) expression of neural differentiation genes. The same phenotypes (and cell morphology) were studied in HAR1A overexpressing cells. Our results show that REST and HAR1A are negatively correlated in gliomas. Higher REST expression predicts worse prognosis in low-grade gliomas (the opposite is true for HAR1A). REST-silencing induces HAR1A upregulation. HAR1A is primarily detected in the nucleus. REST-silencing dramatically reduces cell proliferation and induces apoptosis, but HAR1A overexpression has no major effect on investigated cell phenotypes. We also show that REST regulates the expression of neural differentiation genes and that its oncogenic function is primarily HAR1A-independent.
Collapse
Affiliation(s)
- Ella Waters
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ruman Rahman
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Anna P. Yatsyshyna
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
- Department of Human Genetics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Harry Porter
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mark Hirst
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Radka Gromnicova
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Vera Mongiardini
- Laboratory of Molecular Medicine, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Benedetto Grimaldi
- Laboratory of Molecular Medicine, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jon Golding
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Helen L. Fillmore
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Christos N. Velanis
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Christopher J. Heath
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Francesco Crea
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| |
Collapse
|
4
|
Soeung V, Puchalski RB, Noebels JL. The complex molecular epileptogenesis landscape of glioblastoma. Cell Rep Med 2024; 5:101691. [PMID: 39168100 PMCID: PMC11384957 DOI: 10.1016/j.xcrm.2024.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The cortical microenvironment surrounding malignant glioblastoma is a source of depolarizing crosstalk favoring hyperexcitability, tumor expansion, and immune evasion. Neosynaptogenesis, excess glutamate, and altered intrinsic membrane currents contribute to excitability dyshomeostasis, yet only half of the cases develop seizures, suggesting that tumor and host genomics, along with location, rather than mass effect, play a critical role. We analyzed the spatial contours and expression of 358 clinically validated human epilepsy genes in the human glioblastoma transcriptome compared to non-tumor adult and developing cortex datasets. Nearly half, including dosage-sensitive genes whose expression levels are securely linked to monogenic epilepsy, are strikingly enriched and aberrantly regulated at the leading edge, supporting a complex epistatic basis for peritumoral epileptogenesis. Surround hyperexcitability induced by complex patterns of proepileptic gene expression may explain the limited efficacy of narrowly targeted antiseizure medicines and the persistence of epilepsy following tumor resection and clarify why not all brain tumors provoke seizures.
Collapse
Affiliation(s)
- Victoria Soeung
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Ralph B Puchalski
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Escobar EE, Yang W, Lanzillotti MB, Juetten KJ, Shields S, Siegel D, Zhang YJ, Brodbelt JS. Tracking Inhibition of Human Small C-Terminal Domain Phosphatase 1 Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1330-1341. [PMID: 38662915 PMCID: PMC11384422 DOI: 10.1021/jasms.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Working in tandem with kinases via a dynamic interplay of phosphorylation and dephosphorylation of proteins, phosphatases regulate many cellular processes and thus represent compelling therapeutic targets. Here we leverage ultraviolet photodissociation to shed light on the binding characteristics of two covalent phosphatase inhibitors, T65 and rabeprazole, and their respective interactions with the human small C-terminal domain phosphatase 1 (SCP1) and its single-point mutant C181A, in which a nonreactive alanine replaces one key reactive cysteine. Top-down MS/MS analysis is used to localize the binding of T65 and rabeprazole on the two proteins and estimate the relative reactivities of each cysteine residue.
Collapse
Affiliation(s)
| | | | | | | | | | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | | | | |
Collapse
|
6
|
Perycz M, Dabrowski MJ, Jardanowska-Kotuniak M, Roura AJ, Gielniewski B, Stepniak K, Dramiński M, Ciechomska IA, Kaminska B, Wojtas B. Comprehensive analysis of the REST transcription factor regulatory networks in IDH mutant and IDH wild-type glioma cell lines and tumors. Acta Neuropathol Commun 2024; 12:72. [PMID: 38711090 PMCID: PMC11071216 DOI: 10.1186/s40478-024-01779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The RE1-silencing transcription factor (REST) acts either as a repressor or activator of transcription depending on the genomic and cellular context. REST is a key player in brain cell differentiation by inducing chromatin modifications, including DNA methylation, in a proximity of its binding sites. Its dysfunction may contribute to oncogenesis. Mutations in IDH1/2 significantly change the epigenome contributing to blockade of cell differentiation and glioma development. We aimed at defining how REST modulates gene activation and repression in the context of the IDH mutation-related phenotype in gliomas. We studied the effects of REST knockdown, genome wide occurrence of REST binding sites, and DNA methylation of REST motifs in IDH wild type and IDH mutant gliomas. We found that REST target genes, REST binding patterns, and TF motif occurrence proximal to REST binding sites differed in IDH wild-type and mutant gliomas. Among differentially expressed REST targets were genes involved in glial cell differentiation and extracellular matrix organization, some of which were differentially methylated at promoters or gene bodies. REST knockdown differently impacted invasion of the parental or IDH1 mutant glioma cells. The canonical REST-repressed gene targets showed significant correlation with the GBM NPC-like cellular state. Interestingly, results of REST or KAISO silencing suggested the interplay between these TFs in regulation of REST-activated and repressed targets. The identified gene regulatory networks and putative REST cooperativity with other TFs, such as KAISO, show distinct REST target regulatory networks in IDH-WT and IDH-MUT gliomas, without concomitant DNA methylation changes. We conclude that REST could be an important therapeutic target in gliomas.
Collapse
Affiliation(s)
- Malgorzata Perycz
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michal J Dabrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Marta Jardanowska-Kotuniak
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
- Doctoral School of Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Panina SB, Schweer JV, Zhang Q, Raina G, Hardtke HA, Kim S, Yang W, Siegel D, Zhang YJ. Targeting of REST with rationally-designed small molecule compounds exhibits synergetic therapeutic potential in human glioblastoma cells. BMC Biol 2024; 22:83. [PMID: 38609948 PMCID: PMC11015551 DOI: 10.1186/s12915-024-01879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive brain cancer associated with poor prognosis, intrinsic heterogeneity, plasticity, and therapy resistance. In some GBMs, cell proliferation is fueled by a transcriptional regulator, repressor element-1 silencing transcription factor (REST). RESULTS Using CRISPR/Cas9, we identified GBM cell lines dependent on REST activity. We developed new small molecule inhibitory compounds targeting small C-terminal domain phosphatase 1 (SCP1) to reduce REST protein level and transcriptional activity in glioblastoma cells. Top leads of the series like GR-28 exhibit potent cytotoxicity, reduce REST protein level, and suppress its transcriptional activity. Upon the loss of REST protein, GBM cells can potentially compensate by rewiring fatty acid metabolism, enabling continued proliferation. Combining REST inhibition with the blockade of this compensatory adaptation using long-chain acyl-CoA synthetase inhibitor Triacsin C demonstrated substantial synergetic potential without inducing hepatotoxicity. CONCLUSIONS Our results highlight the efficacy and selectivity of targeting REST alone or in combination as a therapeutic strategy to combat high-REST GBM.
Collapse
Affiliation(s)
- Svetlana B Panina
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Joshua V Schweer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, 9500 Gilman Drive 0741, La Jolla, CA, USA
| | - Qian Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Gaurav Raina
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, 9500 Gilman Drive 0741, La Jolla, CA, USA
| | - Haley A Hardtke
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Seungjin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Wanjie Yang
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, 9500 Gilman Drive 0741, La Jolla, CA, USA
| | - Y Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA.
| |
Collapse
|
8
|
Jin L, Liu Y, Wu Y, Huang Y, Zhang D. REST Is Not Resting: REST/NRSF in Health and Disease. Biomolecules 2023; 13:1477. [PMID: 37892159 PMCID: PMC10605157 DOI: 10.3390/biom13101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Chromatin modifications play a crucial role in the regulation of gene expression. The repressor element-1 (RE1) silencing transcription factor (REST), also known as neuron-restrictive silencer factor (NRSF) and X2 box repressor (XBR), was found to regulate gene transcription by binding to chromatin and recruiting chromatin-modifying enzymes. Earlier studies revealed that REST plays an important role in the development and disease of the nervous system, mainly by repressing the transcription of neuron-specific genes. Subsequently, REST was found to be critical in other tissues, such as the heart, pancreas, skin, eye, and vascular. Dysregulation of REST was also found in nervous and non-nervous system cancers. In parallel, multiple strategies to target REST have been developed. In this paper, we provide a comprehensive summary of the research progress made over the past 28 years since the discovery of REST, encompassing both physiological and pathological aspects. These insights into the effects and mechanisms of REST contribute to an in-depth understanding of the transcriptional regulatory mechanisms of genes and their roles in the development and progression of disease, with a view to discovering potential therapeutic targets and intervention strategies for various related diseases.
Collapse
Affiliation(s)
- Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yi Huang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
9
|
Lam XJ, Maniam S, Cheah PS, Ling KH. REST in the Road Map of Brain Development. Cell Mol Neurobiol 2023; 43:3417-3433. [PMID: 37517069 PMCID: PMC11410019 DOI: 10.1007/s10571-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Repressor element-1 silencing transcription factor (REST) or also known as neuron-restrictive silencing factor (NRSF), is the key initiator of epigenetic neuronal gene-expression modification. Identification of a massive number of REST-targeted genes in the brain signifies its broad involvement in maintaining the functionality of the nervous system. Additionally, REST plays a crucial role in conferring neuroprotection to the neurons against various stressors or insults during injuries. At the cellular level, nuclear localisation of REST is a key determinant for the functional transcriptional regulation of REST towards its target genes. Emerging studies reveal the implication of REST nuclear mislocalisation or dysregulation in several neurological diseases. The expression of REST varies depending on different types of neurological disorders, which has created challenges in the discovery of REST-targeted interventions. Hence, this review presents a comprehensive summary on the physiological roles of REST throughout brain development and its implications in neurodegenerative and neurodevelopmental disorders, brain tumours and cerebrovascular diseases. This review offers valuable insights to the development of potential therapeutic approaches targeting REST to improve pathologies in the brain. The important roles of REST as a key player in the nervous system development, and its implications in several neurological diseases.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Karapurkar JK, Kim MS, Colaco JC, Suresh B, Sarodaya N, Kim DH, Park CH, Hong SH, Kim KS, Ramakrishna S. CRISPR/Cas9-based genome-wide screening of the deubiquitinase subfamily identifies USP3 as a protein stabilizer of REST blocking neuronal differentiation and promotes neuroblastoma tumorigenesis. J Exp Clin Cancer Res 2023; 42:121. [PMID: 37170124 PMCID: PMC10176696 DOI: 10.1186/s13046-023-02694-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The repressor element-1 silencing transcription factor (REST), a master transcriptional repressor, is essential for maintenance, self-renewal, and differentiation in neuroblastoma. An elevated expression of REST is associated with impaired neuronal differentiation, which results in aggressive neuroblastoma formation. E3 ligases are known to regulate REST protein abundance through the 26 S proteasomal degradation pathway in neuroblastoma. However, deubiquitinating enzymes (DUBs), which counteract the function of E3 ligase-mediated REST protein degradation and their impact on neuroblastoma tumorigenesis have remained unexplored. METHODS We employed a CRISPR/Cas9 system to perform a genome-wide knockout of ubiquitin-specific proteases (USPs) and used western blot analysis to screen for DUBs that regulate REST protein abundance. The interaction between USP3 and REST was confirmed by immunoprecipitation and Duolink in situ proximity assays. The deubiquitinating effect of USP3 on REST protein degradation, half-life, and neuronal differentiation was validated by immunoprecipitation, in vitro deubiquitination, protein-turnover, and immunostaining assays. The correlation between USP3 and REST expression was assessed using patient neuroblastoma datasets. The USP3 gene knockout in neuroblastoma cells was performed using CRISPR/Cas9, and the clinical relevance of USP3 regulating REST-mediated neuroblastoma tumorigenesis was confirmed by in vitro and in vivo oncogenic experiments. RESULTS We identified a deubiquitinase USP3 that interacts with, stabilizes, and increases the half-life of REST protein by counteracting its ubiquitination in neuroblastoma. An in silico analysis showed a correlation between USP3 and REST in multiple neuroblastoma cell lines and identified USP3 as a prognostic marker for overall survival in neuroblastoma patients. Silencing of USP3 led to a decreased self-renewal capacity and promoted retinoic acid-induced differentiation in neuroblastoma. A loss of USP3 led to attenuation of REST-mediated neuroblastoma tumorigenesis in a mouse xenograft model. CONCLUSION The findings of this study indicate that USP3 is a critical factor that blocks neuronal differentiation, which can lead to neuroblastoma. We envision that targeting USP3 in neuroblastoma tumors might provide an effective therapeutic differentiation strategy for improved survival rates of neuroblastoma patients.
Collapse
Affiliation(s)
| | - Min-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Dong-Ho Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
- College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
11
|
Vigna J, Sighel D, Rosatti EF, Defant A, Pancher M, Sidarovich V, Quattrone A, Mancini I. Expanding the Chemical Space of Arsenicin A-C Related Polyarsenicals and Evaluation of Some Analogs as Inhibitors of Glioblastoma Stem Cell Growth. Mar Drugs 2023; 21:md21030186. [PMID: 36976235 PMCID: PMC10051910 DOI: 10.3390/md21030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
The marine polyarsenical metabolite arsenicin A is the landmark of a series of natural and synthetic molecules characterized by an adamantane-like tetraarsenic cage. Arsenicin A and related polyarsenicals have been evaluated for their antitumor effects in vitro and have been proven more potent than the FDA-approved arsenic trioxide. In this context, we have expanded the chemical space of polyarsenicals related to arsenicin A by synthesizing dialkyl and dimethyl thio-analogs, the latter characterized with the support of simulated NMR spectra. In addition, the new natural arsenicin D, the scarcity of which in the Echinochalina bargibanti extract had previously limited its full structural characterization, has been identified by synthesis. The dialkyl analogs, which present the adamantane-like arsenicin A cage substituted with either two methyl, ethyl, or propyl chains, were efficiently and selectively produced and evaluated for their activity on glioblastoma stem cells (GSCs), a promising therapeutic target in glioblastoma treatment. These compounds inhibited the growth of nine GSC lines more potently than arsenic trioxide, with GI50 values in the submicromolar range, both under normoxic and hypoxic conditions, and presented high selectivity toward non-tumor cell lines. The diethyl and dipropyl analogs, which present favorable physical-chemical and ADME parameters, had the most promising results.
Collapse
Affiliation(s)
- Jacopo Vigna
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Emanuele Filiberto Rosatti
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Defant
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Michael Pancher
- High Throughput Screening (HTS) and Validation Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Viktoryia Sidarovich
- High Throughput Screening (HTS) and Validation Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| |
Collapse
|
12
|
The NRSF/REST transcription factor in hallmarks of cancer: From molecular mechanisms to clinical relevance. Biochimie 2023; 206:116-134. [PMID: 36283507 DOI: 10.1016/j.biochi.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
The RE-1 silencing transcription factor (REST), or neuron restrictive silencing factor (NRSF), was first identified as a repressor of neuronal genes in non-neuronal tissue. Interestingly, this transcription factor may act as a tumor suppressor or an oncogenic role in developing neuroendocrine and other tumors in patients. The hallmarks of cancer include six biological processes, including proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, inducing angiogenesis, and activating invasion and metastasis. In addition to two emerging hallmarks, the reprogramming of energy metabolism and evasion of the immune response are all implicated in the development of human tumors. It is essential to know the role of these processes as they will affect the outcome of alternatives for cancer treatment. Various studies in this review demonstrate that NRSF/REST affects the different hallmarks of cancer that could position NRSF/REST as an essential target in the therapy and diagnosis of certain types of cancer.
Collapse
|
13
|
Wang G, Yang X, Qi M, Li M, Dong M, Xu R, Zhang C. Systematic analysis identifies REST as an oncogenic and immunological biomarker in glioma. Sci Rep 2023; 13:3023. [PMID: 36810892 PMCID: PMC9944962 DOI: 10.1038/s41598-023-30248-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
The repressor element 1 silencing transcription factor (REST) has been proposed to function as a transcription factor to silence gene transcription by binding to repressor element 1 (RE1), a highly conserved DNA motif. The functions of REST in various tumors have been studied, but its role and correlation with immune cell infiltration remains uncertain in gliomas. REST expression was analyzed in datasets of The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) and validated by the Gene Expression Omnibus and Human Protein Atlas databases. The clinical prognosis of REST was evaluated by clinical survival data of TCGA cohort and validated by Chinese Glioma Genome Atlas cohort. MicroRNAs (miRNAs) contributing to REST overexpression in glioma were identified by a combination of a series of in silico analyses, including expression analysis, correlation analysis, and survival analysis. The correlations between immune cell infiltration level and REST expression were analyzed by TIMER2 and GEPIA2 tools. Enrichment analysis of REST was performed using STRING and Metascape tools. The expression and function of predicted upstream miRNAs at REST and their association with glioma malignancy and migration were also confirmed in glioma cell lines. REST was highly expressed and associated with poorer overall survival and disease-specific survival in glioma and some other tumors. MiR-105-5p and miR-9-5p were identified as the most potential upstream miRNAs of REST in glioma patient cohort and experiments in vitro. REST expression was positively correlated with infiltration of immune cells and the expression of immune checkpoints such as PD1/PD-L1 and CTLA-4 in glioma. Furthermore, histone deacetylase 1 (HDAC1) was a potential REST-related gene in glioma. Enrichment analysis of REST found chromatin organization and histone modification were the most significant enriched terms, and Hedgehog-Gli pathway might be involved in the effect of REST on the pathogenesis of glioma. Our study suggests REST to be an oncogenic gene and the biomarker of poor prognosis in glioma. High REST expression might affect the tumor microenvironment of glioma. More basic experiments and large clinical trials aimed at the carcinogenetic study of REST in glioma will be needed in the future.
Collapse
Affiliation(s)
- Guan Wang
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012 Shandong Province China
| | - Xiaxin Yang
- grid.452402.50000 0004 1808 3430Department of Neurology, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012 Shandong Province China
| | - Mei Qi
- grid.452402.50000 0004 1808 3430Department of Pathology, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012 Shandong Province China
| | - Meng Li
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012 Shandong Province China
| | - Meng Dong
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012 Shandong Province China
| | - Rui Xu
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012 Shandong Province China
| | - Chen Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
14
|
A slow-cycling/quiescent cells subpopulation is involved in glioma invasiveness. Nat Commun 2022; 13:4767. [PMID: 35970913 PMCID: PMC9378633 DOI: 10.1038/s41467-022-32448-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Pediatric and adult high-grade gliomas are the most common primary malignant brain tumors, with poor prognosis due to recurrence and tumor infiltration after therapy. Quiescent cells have been implicated in tumor recurrence and treatment resistance, but their direct visualization and targeting remain challenging, precluding their mechanistic study. Here, we identify a population of malignant cells expressing Prominin-1 in a non-proliferating state in pediatric high-grade glioma patients. Using a genetic tool to visualize and ablate quiescent cells in mouse brain cancer and human cancer organoids, we reveal their localization at both the core and the edge of the tumors, and we demonstrate that quiescent cells are involved in infiltration of brain cancer cells. Finally, we find that Harmine, a DYRK1A/B inhibitor, partially decreases the number of quiescent and infiltrating cancer cells. Our data point to a subpopulation of quiescent cells as partially responsible of tumor invasiveness, one of the major causes of brain cancer morbidity. Quiescent cancer stem cells have been particularly associated to chemoresistance. Here, the authors show that a slowcycling subpopulation in high-grade glioma patients can invade the brain to promote tumourigenesis.
Collapse
|
15
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX, Zhu C. Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System. Front Cell Dev Biol 2022; 10:834620. [PMID: 35300407 PMCID: PMC8921553 DOI: 10.3389/fcell.2022.834620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.
Collapse
Affiliation(s)
- Xin-Jin Su
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Duo Shen
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Xin Song
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Yang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - De-Sheng Wu
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Splicing is an alternate oncogenic pathway activation mechanism in glioma. Nat Commun 2022; 13:588. [PMID: 35102191 PMCID: PMC8803922 DOI: 10.1038/s41467-022-28253-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
High-grade diffuse glioma (HGG) is the leading cause of brain tumour death. While the genetic drivers of HGG have been well described, targeting these has thus far had little impact on survival suggesting other mechanisms are at play. Here we interrogate the alternative splicing landscape of pediatric and adult HGG through multi-omic analyses, uncovering an increased splicing burden compared with normal brain. The rate of recurrent alternative splicing in cancer drivers exceeds their mutation rate, a pattern that is recapitulated in pan-cancer analyses, and is associated with worse prognosis in HGG. We investigate potential oncogenicity by interrogating cancer pathways affected by alternative splicing in HGG; spliced cancer drivers include members of the RAS/MAPK pathway. RAS suppressor neurofibromin 1 is differentially spliced to a less active isoform in >80% of HGG downstream from REST upregulation, activating the RAS/MAPK pathway and reducing glioblastoma patient survival. Overall, our results identify non-mutagenic mechanisms by which cancers activate oncogenic pathways which need to accounted for in personalized medicine approaches. Targeting genetic drivers of high grade diffuse glioma (HGG) has not improved patient survival, suggesting the involvement of other mechanisms. Here, across cancer types, the authors identify increased alternative splicing burden in cancer drivers compared to mutation rate as an alternative mechanism for activation of oncogenic pathways such as RAS/MAPK.
Collapse
|
17
|
Medellin B, Yang W, Konduri S, Dong J, Irani S, Wu H, Matthews WL, Zhang ZY, Siegel D, Zhang Y. Targeted Covalent Inhibition of Small CTD Phosphatase 1 to Promote the Degradation of the REST Transcription Factor in Human Cells. J Med Chem 2022; 65:507-519. [PMID: 34931516 PMCID: PMC8826594 DOI: 10.1021/acs.jmedchem.1c01655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The repressor element-1 silencing transcription factor (REST) represses neuronal gene expression, whose dysregulation is implicated in brain tumors and neurological diseases. A high level of REST protein drives the tumor growth in some glioblastoma cells. While transcription factors like REST are challenging targets for small-molecule inhibitors, the inactivation of a regulatory protein, small CTD phosphatase 1 (SCP1), promotes REST degradation and reduces transcriptional activity. This study rationally designed a series of α,β-unsaturated sulfones to serve as potent and selective covalent inhibitors against SCP1. The compounds inactivate SCP1 via covalent modification of Cys181 located at the active site entrance. Cellular studies showed that the inhibitors inactivate SCP1 in a time- and dose-dependent manner with an EC50 ∼1.5 μM, reducing REST protein levels and activating specific REST-suppressed genes. These compounds represent a promising line of small-molecule inhibitors as a novel lead for glioblastoma whose growth is driven by REST transcription activity.
Collapse
Affiliation(s)
| | | | - Srihari Konduri
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seema Irani
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Haoyi Wu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wendy L. Matthews
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dionico Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Yan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Zhang Y, Wang Q, Wang Z, Zhang C, Xu X, Xu J, Ren H, Shao X, Zhen X, Zhang L, Yu Y. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne) 2021; 8:739624. [PMID: 34859007 PMCID: PMC8631926 DOI: 10.3389/fmed.2021.739624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023] Open
Abstract
We sought to clarify the clinical relationship between REST/NRSF expression and the prognosis of glioma and explore the REST-associated competitive endogenous RNA (ceRNA) network in glioma. We downloaded RNA-seq, miRNA-seq and correlated clinical data of 670 glioma patients from The Cancer Genome Atlas and analyzed the correlation between REST expression, clinical characteristics and prognosis. Differentially expressed genes (DEGs) were identified with DESeq2 and analyzed with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Profiler package. Starbase was used to explore the regulatory interaction between REST and miRNAs or LncRNAs. The lncRNA-miRNA-REST ceRNA network was constructed with Cytoscape. RT-qPCR, WB, CCK8, wound-healing, and luciferase assays were performed to validate the ceRNA network. Results showed that REST expression was significantly higher in glioma patients than normal samples. Higher REST expression was significantly associated with worse overall survival, progression-free interval, and worse disease-specific survival in glioma patients. The DEGs of mRNA, miRNA, and lncRNA were identified, and GO and KEGG enrichment analyses were performed. Finally, REST-associated ceRNA networks, including NR2F2-AS1-miR129-REST and HOTAIRM1-miR137-REST, were experimentally validated. Thus, REST may be a prognostic biomarker and therapeutic target in glioma, and its regulatory network validated in this study may provide insights into glioma's molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China.,Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Qi Wang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Chuanpeng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China.,Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaoli Xu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Jun Xu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Hongxiang Ren
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Xu Shao
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Xueke Zhen
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Li Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China.,Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Neurosurgery, Graduate School of Peking Union Medical College, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China.,Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Neurosurgery, Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
He R, Zhang X, Ding L. DBX2 promotes glioblastoma cell proliferation by regulating REST expression. Curr Pharm Biotechnol 2021; 23:1101-1108. [PMID: 34463226 DOI: 10.2174/1389201022666210830142827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common but lethal brain cancer with poor prognosis. The developing brain homeobox 2 (DBX2) has been reported to play important roles in tumor growth. However, the mechanisms of DBX2 in GBM are still unknown. OBJECTIVE This study aims to investigate the function and mechanisms of DBX2 in GBM. METHODS The expressions of DBX2 and REST in GBM were measured by analyzing data from databases, and the results were checked by qPCR and/or western blot of GBM cell lines. Cell proliferation was determined by CCK8 assay, immunohistochemistry and colony formation assay. ChIP-qPCR was used to determine the binding sites of DBX2 on REST. RESULTS In this study, we found that the expression of DBX2 was upregulated in the GBM cell lines. The cell proliferation was damaged after blocking DBX2 expression in U87 and U251 GBM cell lines. The expression level of DBX2 had a positive relationship with that of REST. Our ChIP-qPCR results showed that DBX2 is directly bound to the promoter region of REST. Additionally, the increased GBM cell proliferation caused by DBX2 overexpression can be rescued by REST loss of function. CONCLUSION DBX2 could promote cell proliferation of GBM by binding to the promoter region of REST gene and increasing REST expression.
Collapse
Affiliation(s)
- Ruixing He
- Neurosurgery Department, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu. China
| | - Xiaotian Zhang
- Neurosurgery Department, Hongze Huai'an District People's Hospital, Jiangsu. China
| | - Lianshu Ding
- Neurosurgery Department, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu. China
| |
Collapse
|
20
|
Puzanov GA, Senchenko VN. SCP Phosphatases and Oncogenesis. Mol Biol 2021. [DOI: 10.1134/s0026893321030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
22
|
Guerriero C, Matera C, Del Bufalo D, De Amici M, Conti L, Dallanoce C, Tata AM. The Combined Treatment with Chemotherapeutic Agents and the Dualsteric Muscarinic Agonist Iper-8-Naphthalimide Affects Drug Resistance in Glioblastoma Stem Cells. Cells 2021; 10:cells10081877. [PMID: 34440646 PMCID: PMC8391681 DOI: 10.3390/cells10081877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by heterogeneous cell populations. Among these, the Glioblastoma Stem Cells (GSCs) fraction shares some similarities with Neural Stem Cells. GSCs exhibit enhanced resistance to conventional chemotherapy drugs. Our previous studies demonstrated that the activation of M2 muscarinic acetylcholine receptors (mAChRs) negatively modulates GSCs proliferation and survival. The aim of the present study was to analyze the ability of the M2 dualsteric agonist Iper-8-naphthalimide (N-8-Iper) to counteract GSCs drug resistance. METHODS Chemosensitivity to M2 dualsteric agonist N-8-Iper and chemotherapy drugs such as temozolomide, doxorubicin, or cisplatin was evaluated in vitro by MTT assay in two different GSC lines. Drug efflux pumps expression was evaluated by RT-PCR and qRT-PCR. RESULTS By using sub-toxic concentrations of N-8-Iper combined with the individual chemotherapeutic agents, we found that only low doses of the M2 agonist combined with doxorubicin or cisplatin or temozolomide were significantly able to counteract cell growth in both GSC lines. Moreover, we evaluated as the exposure to high and low doses of N-8-Iper downregulated the ATP-binding cassette (ABC) drug efflux pumps expression levels. CONCLUSIONS Our results revealed the ability of the investigated M2 agonist to counteract drug resistance in two GSC lines, at least partially by downregulating the ABC drug efflux pumps expression. The combined effects of low doses of conventional chemotherapy and M2 agonists may thus represent a novel promising pharmacological approach to impair the GSC-drug resistance in the GBM therapy.
Collapse
Affiliation(s)
- Claudia Guerriero
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
| | - Carlo Matera
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, 20133 Milan, Italy; (C.M.); (M.D.A.); (C.D.)
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00187 Rome, Italy;
| | - Marco De Amici
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, 20133 Milan, Italy; (C.M.); (M.D.A.); (C.D.)
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, 20133 Milan, Italy; (C.M.); (M.D.A.); (C.D.)
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
- Research Centre of Neurobiology Daniel Bovet, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
23
|
Kamgar-Dayhoff P, Brelidze TI. Multifaceted effect of chlorpromazine in cancer: implications for cancer treatment. Oncotarget 2021; 12:1406-1426. [PMID: 34262651 PMCID: PMC8274723 DOI: 10.18632/oncotarget.28010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in 1951, chlorpromazine (CPZ) has been one of the most widely used antipsychotic medications for treating schizophrenia and other psychiatric disorders. In addition to its antipsychotic effect, many studies in the last several decades have found that CPZ has a potent antitumorigenic effect. These studies have shown that CPZ affects a number of molecular oncogenic targets through multiple pathways, including the regulation of cell cycle, cancer growth and metastasis, chemo-resistance and stemness of cancer cells. Here we review studies on molecular mechanisms of CPZ’s action on key proteins involved in cancer, including p53, YAP, Ras protein, ion channels, and MAPKs. We discuss common and overlapping signaling pathways of CPZ’s action, its cancer-type specificity, antitumorigenic effects of CPZ reported in animal models and population studies on the rate of cancer in psychiatric patients. We also discuss the potential benefits and limitations of repurposing CPZ for cancer treatment.
Collapse
Affiliation(s)
- Pareesa Kamgar-Dayhoff
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
24
|
Lambrou GI, Zaravinos A, Braoudaki M. Co-Deregulated miRNA Signatures in Childhood Central Nervous System Tumors: In Search for Common Tumor miRNA-Related Mechanics. Cancers (Basel) 2021; 13:3028. [PMID: 34204289 PMCID: PMC8235499 DOI: 10.3390/cancers13123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. AIM The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. MATERIALS A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. RESULTS We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. CONCLUSIONS Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, Hertfordshire, UK
| |
Collapse
|
25
|
Ghosh S, Kumar V, Mukherjee H, Lahiri D, Roy P. Nutraceutical regulation of miRNAs involved in neurodegenerative diseases and brain cancers. Heliyon 2021; 7:e07262. [PMID: 34195404 PMCID: PMC8225984 DOI: 10.1016/j.heliyon.2021.e07262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/24/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
The human brain is a well-connected, intricate network of neurons and supporting glial cells. Neurodegenerative diseases arise as a consequence of extensive loss of neuronal cells leading to disruption of their natural structure and function. On the contrary, rapid proliferation and growth of glial as well as neuronal cells account for the occurrence of malignancy in brain. In both cases, the molecular microenvironment holds pivotal importance in the progression of the disease. MicroRNAs (miRNA) are one of the major components of the molecular microenvironment. miRNAs are small, noncoding RNAs that control gene expression post-transcriptionally. As compared to other tissues, the brain expresses a substantially high number of miRNAs. In the early stage of neurodegeneration, miRNA expression upregulates, while in oncogenesis, miRNA expression is gradually lost. Neurodegeneration and brain cancer is presumed to be under the influence of identical pathways of cell proliferation, differentiation and cell death which are tightly regulated by miRNAs. It has been confirmed experimentally that miRNA expression can be regulated by nutraceuticals - macronutrients, micronutrients or natural products derived from food; thereby making dietary supplements immensely significant for targeting miRNAs having altered expression patterns during neurodegeneration or oncogenesis. In this review, we will discuss in detail, about the common miRNAs involved in brain cancers and neurodegenerative diseases along with the comprehensive list of miRNAs involved separately in both pathological conditions. We will also discuss the role of nutraceuticals in the regulation of those miRNAs which are involved in both of these pathological conditions.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
26
|
Paolillo M, Comincini S, Schinelli S. In Vitro Glioblastoma Models: A Journey into the Third Dimension. Cancers (Basel) 2021; 13:cancers13102449. [PMID: 34070023 PMCID: PMC8157833 DOI: 10.3390/cancers13102449] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, the thorny issue of glioblastoma models is addressed, with a focus on 3D in vitro models. In the first part of the manuscript, glioblastoma features and classification are recapitulated, in order to highlight the major critical aspects that should be taken into account when choosing a glioblastoma 3D model. In the second part of the review, the 3D models described in the literature are critically discussed, considering the advantages, disadvantages, and feasibility for each experimental model, in the light of the potential issues that researchers want to address. Abstract Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, with an average survival time of about one year from initial diagnosis. In the attempt to overcome the complexity and drawbacks associated with in vivo GBM models, together with the need of developing systems dedicated to screen new potential drugs, considerable efforts have been devoted to the implementation of reliable and affordable in vitro GBM models. Recent findings on GBM molecular features, revealing a high heterogeneity between GBM cells and also between other non-tumor cells belonging to the tumoral niche, have stressed the limitations of the classical 2D cell culture systems. Recently, several novel and innovative 3D cell cultures models for GBM have been proposed and implemented. In this review, we first describe the different populations and their functional role of GBM and niche non-tumor cells that could be used in 3D models. An overview of the current available 3D in vitro systems for modeling GBM, together with their major weaknesses and strengths, is presented. Lastly, we discuss the impact of groundbreaking technologies, such as bioprinting and multi-omics single cell analysis, on the future implementation of 3D in vitro GBM models.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Sergio Comincini
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Schinelli
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
27
|
Difference of binding modes among three ligands to a receptor mSin3B corresponding to their inhibitory activities. Sci Rep 2021; 11:6178. [PMID: 33731831 PMCID: PMC7971087 DOI: 10.1038/s41598-021-85612-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/19/2021] [Indexed: 11/08/2022] Open
Abstract
A preceding experiment suggested that a compound, which inhibits binding of the REST/NRSF segment to the cleft of a receptor protein mSin3B, can be a potential drug candidate to ameliorate many neuropathies. We have recently developed an enhanced conformational sampling method, genetic-algorithm-guided multi-dimensional virtual-system-coupled canonical molecular dynamics, and in the present study, applied it to three systems consisting of mSin3B and one of three compounds, sertraline, YN3, and acitretin. Other preceding experiments showed that only sertraline inhibits the binding of REST/NRSF to mSin3B. The current simulation study produced the spatial distribution of the compounds around mSin3B, and showed that sertraline and YN3 bound to the cleft of mSin3B with a high propensity, although acitretin did not. Further analyses of the simulation data indicated that only the sertraline-mSin3B complex produced a hydrophobic core similar to that observed in the molecular interface of the REST/NRSF-mSin3B complex: An aromatic ring of sertraline sunk deeply in the mSin3B's cleft forming a hydrophobic core contacting to hydrophobic amino-acid residues located at the bottom of the cleft. The present study proposes a step to design a compound that inhibits competitively the binding of a ligand to its receptor.
Collapse
|
28
|
Alshawli AS, Wurdak H, Wood IC, Ladbury JE. Histone deacetylase inhibitors induce medulloblastoma cell death independent of HDACs recruited in REST repression complexes. Mol Genet Genomic Med 2020; 8:e1429. [PMID: 32720471 PMCID: PMC7549561 DOI: 10.1002/mgg3.1429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Repressor element 1-silencing transcription factor (REST) acts as a transcriptional repressor by recruiting several chromatin modifiers, including histone deacetylase (HDAC). Elevated REST expression in medulloblastoma has been associated with tumor progression nevertheless, the tumor shows high sensitivity to HDAC inhibitors (HDACi). However, the functional implications of REST and its requirement for HDACi-induced anti-cancer effects are not well understood. METHODS In this study, the expression of REST was evaluated across the medulloblastoma subgroups and subtypes using published gene expression data. Further, the expression of REST was modulated using the CRISPR/Cas9 knockout and shRNA knockdown in the Daoy medulloblastoma cell line. RESULTS The results of this study showed that the expression of REST is elevated in most medulloblastoma subgroups compared to the non-cancerous cerebellum. Blocking of REST expression resulted in increasing the expression of REST-regulated genes, a moderate decrease in the fraction of the cells in the S-phase, and reducing the cells' migration ability. However, REST deficiency did not lead to a marked decrease in the Daoy cell viability and sensitivity to HDACi. CONCLUSION The findings of this study indicate that REST is not essential for sustaining the proliferation/viability of the Daoy cells. It also revealed that the anti-proliferative effect of HDACi is independent of REST expression.
Collapse
Affiliation(s)
- Abdulelah S. Alshawli
- School of Biomedical SciencesFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Heiko Wurdak
- Leeds Institute of Cancer and PathologyUniversity of LeedsSt James's University HospitalLeedsUK
| | - Ian C. Wood
- School of Biomedical SciencesFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - John E. Ladbury
- School of Molecular and Cellular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
29
|
Sabelström H, Petri R, Shchors K, Jandial R, Schmidt C, Sacheva R, Masic S, Yuan E, Fenster T, Martinez M, Saxena S, Nicolaides TP, Ilkhanizadeh S, Berger MS, Snyder EY, Weiss WA, Jakobsson J, Persson AI. Driving Neuronal Differentiation through Reversal of an ERK1/2-miR-124-SOX9 Axis Abrogates Glioblastoma Aggressiveness. Cell Rep 2020; 28:2064-2079.e11. [PMID: 31433983 DOI: 10.1016/j.celrep.2019.07.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Identifying cellular programs that drive cancers to be stem-like and treatment resistant is critical to improving outcomes in patients. Here, we demonstrate that constitutive extracellular signal-regulated kinase 1/2 (ERK1/2) activation sustains a stem-like state in glioblastoma (GBM), the most common primary malignant brain tumor. Pharmacological inhibition of ERK1/2 activation restores neurogenesis during murine astrocytoma formation, inducing neuronal differentiation in tumorspheres. Constitutive ERK1/2 activation globally regulates miRNA expression in murine and human GBMs, while neuronal differentiation of GBM tumorspheres following the inhibition of ERK1/2 activation requires the functional expression of miR-124 and the depletion of its target gene SOX9. Overexpression of miR124 depletes SOX9 in vivo and promotes a stem-like-to-neuronal transition, with reduced tumorigenicity and increased radiation sensitivity. Providing a rationale for reports demonstrating miR-124-induced abrogation of GBM aggressiveness, we conclude that reversal of an ERK1/2-miR-124-SOX9 axis induces a neuronal phenotype and that enforcing neuronal differentiation represents a therapeutic strategy to improve outcomes in GBM.
Collapse
Affiliation(s)
- Hanna Sabelström
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rebecca Petri
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Ksenya Shchors
- ORD-Rinat, Pfizer, Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Rahul Jandial
- Division of Neurosurgery, City of Hope, Duarte, CA 91010, USA
| | - Christin Schmidt
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rohit Sacheva
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Selma Masic
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Edith Yuan
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trenten Fenster
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Martinez
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Supna Saxena
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Theodore P Nicolaides
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mitchel S Berger
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evan Y Snyder
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, and Department of Pediatrics, University of California, San Diego, San Diego, CA 92037, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johan Jakobsson
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Criscuolo S, Gatti Iou M, Merolla A, Maragliano L, Cesca F, Benfenati F. Engineering REST-Specific Synthetic PUF Proteins to Control Neuronal Gene Expression: A Combined Experimental and Computational Study. ACS Synth Biol 2020; 9:2039-2054. [PMID: 32678979 DOI: 10.1021/acssynbio.0c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulation of gene transcription is an essential mechanism for differentiation and adaptation of organisms. A key actor in this regulation process is the repressor element 1 (RE1)-silencing transcription factor (REST), a transcriptional repressor that controls more than 2000 putative target genes, most of which are neuron-specific. With the purpose of modulating REST expression, we exploited synthetic, ad hoc designed, RNA binding proteins (RBPs) able to specifically target and dock to REST mRNA. Among the various families of RBPs, we focused on the Pumilio and FBF (PUF) proteins, present in all eukaryotic organisms and controlling a variety of cellular functions. Here, a combined experimental and computational approach was used to design and test 8- and 16-repeat PUF proteins specific for REST mRNA. We explored the conformational properties and atomic features of the PUF-RNA recognition code by Molecular Dynamics simulations. Biochemical assays revealed that the 8- and 16-repeat PUF-based variants specifically bind the endogenous REST mRNA without affecting its translational regulation. The data also indicate a key role of stacking residues in determining the binding specificity. The newly characterized REST-specific PUF-based constructs act as excellent RNA-binding modules and represent a versatile and functional platform to specifically target REST mRNA and modulate its endogenous expression.
Collapse
Affiliation(s)
- Stefania Criscuolo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Mahad Gatti Iou
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Assunta Merolla
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
- University of Genova, Genova 16132, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| |
Collapse
|
31
|
Wang K, Xu K, Leng X, Han Y, Fang Q. miRNA-9 Inhibits Proliferation and Migration of Lung Squamous Cell Carcinoma Cells by Regulating NRSF/EGFR. Technol Cancer Res Treat 2020; 19:1533033820945807. [PMID: 32772818 PMCID: PMC7418476 DOI: 10.1177/1533033820945807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: To investigate the mechanism of microRNA9 in inhibiting proliferation and migration of lung squamous cell carcinoma cells via neuron-restricted silencing factor/epidermal growth factor receptor. Material and Methods: Detection of microRNA9, neuron-restricted silencing factor, and epidermal growth factor receptor expression levels in lung cancer patients’ tissues and lung cancer cells by Western blotting and quantitative polymerase chain reaction. Detection of cell proliferation by colony formation assay and cell counting kit-8 assay. Detection of cell migration by wound-healing assay and Transwell assay. And detection of the regulatory effect between neuron-restricted silencing factor and epidermal growth factor receptor by Luciferase reporter gene system. Subcutaneous implantation mouse models of NCI-H520 cells were constructed to detect cell proliferation in vivo, and Kaplan–Meier method calculated patient survival. Results: The expression of microRNA9 and epidermal growth factor receptor was higher in lung cancer tissues than in normal lung tissues, while the expression of neuron-restricted silencing factor was lower in lung cancer tissues than in normal lung tissues. MicroRNA9 higher expression was strongly related to tumor size, and TNM stage and predicted showed reduced overall survival in patients with lung cancer. Further loss of function and enhancement experiments revealed that inhibition of microRNA9 could significantly inhibit lung squamous carcinoma cell proliferation and migration. Luciferase reporter assay demonstrated that microRNA9 could bind to NRSF messenger RNA and inhibit its expression, neuron-restricted silencing factor overexpression also exerted inhibitory effects on cell proliferation and migration. Moreover, Luciferase reporter assay showed that neuron-restricted silencing factor downregulate epidermal growth factor receptor expression levels by binding to epidermal growth factor receptor promoter regions, and Pearson’s correlation analysis indicated that the levels of microRNA9 in lung cancer tissues were correlated with neuron-restricted silencing factor and epidermal growth factor receptor. Combined microRNA9 with neuron-restricted silencing factor or epidermal growth factor receptor to predict the prognosis of patients with lung cancer may be more accurate. Conclusion: MicroRNA9 inhibits proliferation and migration of lung squamous cell carcinoma cells by inhibiting neuron-restricted silencing factor/epidermal growth factor receptor axis. MicroRNA9 can be a new prognostic marker and therapeutic target for lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Kangning Wang
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Xu
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefeng Leng
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Fang
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
32
|
Significant decrease of a master regulator of genes (REST/NRSF) in high-grade squamous intraepithelial lesion and cervical cancer. Biomed J 2020; 44:S171-S178. [PMID: 35491677 PMCID: PMC9068566 DOI: 10.1016/j.bj.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
33
|
A New Pathway Promotes Adaptation of Human Glioblastoma Cells to Glucose Starvation. Cells 2020; 9:cells9051249. [PMID: 32443613 PMCID: PMC7290719 DOI: 10.3390/cells9051249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptation of glioblastoma to caloric restriction induces compensatory changes in tumor metabolism that are incompletely known. Here we show that in human glioblastoma cells maintained in exhausted medium, SHC adaptor protein 3 (SHC3) increases due to down-regulation of SHC3 protein degradation. This effect is reversed by glucose addition and is not present in normal astrocytes. Increased SHC3 levels are associated to increased glucose uptake mediated by changes in membrane trafficking of glucose transporters of the solute carrier 2A superfamily (GLUT/SLC2A). We found that the effects on vesicle trafficking are mediated by SHC3 interactions with adaptor protein complex 1 and 2 (AP), BMP-2-inducible protein kinase and a fraction of poly ADP-ribose polymerase 1 (PARP1) associated to vesicles containing GLUT/SLC2As. In glioblastoma cells, PARP1 inhibitor veliparib mimics glucose starvation in enhancing glucose uptake. Furthermore, cytosol extracted from glioblastoma cells inhibits PARP1 enzymatic activity in vitro while immunodepletion of SHC3 from the cytosol significantly relieves this inhibition. The identification of a new pathway controlling glucose uptake in high grade gliomas represents an opportunity for repositioning existing drugs and designing new ones.
Collapse
|
34
|
Cristofaro I, Alessandrini F, Spinello Z, Guerriero C, Fiore M, Caffarelli E, Laneve P, Dini L, Conti L, Tata AM. Cross Interaction between M2 Muscarinic Receptor and Notch1/EGFR Pathway in Human Glioblastoma Cancer Stem Cells: Effects on Cell Cycle Progression and Survival. Cells 2020; 9:cells9030657. [PMID: 32182759 PMCID: PMC7140674 DOI: 10.3390/cells9030657] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/22/2023] Open
Abstract
Glioblastomas (GBM) are the most aggressive form of primary brain tumors in humans. A key feature of malignant gliomas is their cellular heterogeneity. In particular, the presence of an undifferentiated cell population of defined Glioblastoma Stem cells (GSCs) was reported. Increased expression of anti-apoptotic and chemo-resistance genes in GCSs subpopulation favors their high resistance to a broad spectrum of drugs. Our previous studies showed the ability of M2 muscarinic receptors to negatively modulate the cell growth in GBM cell lines and in the GSCs. The aim of this study was to better characterize the inhibitory effects of M2 receptors on cell proliferation and survival in GSCs and investigate the molecular mechanisms underlying the M2-mediated cell proliferation arrest and decreased survival. Moreover, we also evaluated the ability of M2 receptors to interfere with Notch1 and EGFR pathways, whose activation promotes GSCs proliferation. Our data demonstrate that M2 receptors activation impairs cell cycle progression and survival in the primary GSC lines analyzed (GB7 and GB8). Moreover, we also demonstrated the ability of M2 receptor to inhibit Notch1 and EGFR expression, highlighting a molecular interaction between M2 receptor and the Notch-1/EGFR pathways also in GSCs.
Collapse
Affiliation(s)
- Ilaria Cristofaro
- Department of Biology and Biotechnologies Charles Darwin, Sapienza, University of Rome, 00185 Rome, Italy; (I.C.); (F.A.); (Z.S.); (C.G.); (L.D.)
| | - Francesco Alessandrini
- Department of Biology and Biotechnologies Charles Darwin, Sapienza, University of Rome, 00185 Rome, Italy; (I.C.); (F.A.); (Z.S.); (C.G.); (L.D.)
| | - Zaira Spinello
- Department of Biology and Biotechnologies Charles Darwin, Sapienza, University of Rome, 00185 Rome, Italy; (I.C.); (F.A.); (Z.S.); (C.G.); (L.D.)
| | - Claudia Guerriero
- Department of Biology and Biotechnologies Charles Darwin, Sapienza, University of Rome, 00185 Rome, Italy; (I.C.); (F.A.); (Z.S.); (C.G.); (L.D.)
| | - Mario Fiore
- IBPM, Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (M.F.); (E.C.); (P.L.)
| | - Elisa Caffarelli
- IBPM, Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (M.F.); (E.C.); (P.L.)
| | - Pietro Laneve
- IBPM, Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (M.F.); (E.C.); (P.L.)
| | - Luciana Dini
- Department of Biology and Biotechnologies Charles Darwin, Sapienza, University of Rome, 00185 Rome, Italy; (I.C.); (F.A.); (Z.S.); (C.G.); (L.D.)
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy;
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza, University of Rome, 00185 Rome, Italy; (I.C.); (F.A.); (Z.S.); (C.G.); (L.D.)
- Research center of Neurobiology, Sapienza, University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-2822
| |
Collapse
|
35
|
M2 Receptor Activation Counteracts the Glioblastoma Cancer Stem Cell Response to Hypoxia Condition. Int J Mol Sci 2020; 21:ijms21051700. [PMID: 32131421 PMCID: PMC7084794 DOI: 10.3390/ijms21051700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor. Hypoxic condition is a predominant feature of the GBM contributing to tumor growth and resistance to conventional therapies. Hence, the identification of drugs able to impair GBM malignancy and aggressiveness is considered of great clinical relevance. Previously, we demonstrated that the activation of M2 muscarinic receptors, through the agonist arecaidine propargyl ester (Ape), arrests cell proliferation in GBM cancer stem cells (GSCs). In the present work, we have characterized the response of GSCs to hypoxic condition showing an upregulation of hypoxia-inducible factors and factors involved in the regulation of GSCs survival and proliferation. Ape treatment in hypoxic conditions is however able to inhibit cell cycle progression, causing a significant increase of aberrant mitosis with consequent decreased cell survival. Additionally, qRT-PCR analysis suggest that Ape downregulates the expression of stemness markers and miR-210 levels, one of the main regulators of the responses to hypoxic condition in different tumor types. Our data demonstrate that Ape impairs the GSCs proliferation and survival also in hypoxic condition, negatively modulating the adaptive response of GSCs to hypoxia.
Collapse
|
36
|
Li H, Liu Z, Wu Y, Chen Y, Wang J, Wang Z, Huang D, Wang M, Yu M, Fei J, Huang F. The deficiency of NRSF/REST enhances the pro-inflammatory function of astrocytes in a model of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165590. [DOI: 10.1016/j.bbadis.2019.165590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
37
|
Poiana G, Gioia R, Sineri S, Cardarelli S, Lupo G, Cacci E. Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone. Neural Regen Res 2020; 15:1773-1783. [PMID: 32246617 PMCID: PMC7513981 DOI: 10.4103/1673-5374.280301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.
Collapse
Affiliation(s)
- Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Serena Sineri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
38
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
39
|
Marisetty AL, Lu L, Veo BL, Liu B, Coarfa C, Kamal MM, Kassem DH, Irshad K, Lu Y, Gumin J, Henry V, Paulucci-Holthauzen A, Rao G, Baladandayuthapani V, Lang FF, Fuller GN, Majumder S. REST-DRD2 mechanism impacts glioblastoma stem cell-mediated tumorigenesis. Neuro Oncol 2019; 21:775-785. [PMID: 30953587 PMCID: PMC6556851 DOI: 10.1093/neuonc/noz030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a lethal, heterogeneous human brain tumor, with regulatory mechanisms that have yet to be fully characterized. Previous studies have indicated that the transcriptional repressor REST (repressor element-1 silencing transcription factor) regulates the oncogenic potential of GBM stem cells (GSCs) based on level of expression. However, how REST performs its regulatory role is not well understood. METHODS We examined 2 independent high REST (HR) GSC lines using genome-wide assays, biochemical validations, gene knockdown analysis, and mouse tumor models. We analyzed in-house patient tumors and patient data present in The Cancer Genome Atlas (TCGA). RESULTS Genome-wide transcriptome and DNA-binding analyses suggested the dopamine receptor D2 (DRD2) gene, a dominant regulator of neurotransmitter signaling, as a direct target of REST. Biochemical analyses and mouse intracranial tumor models using knockdown of REST and double knockdown of REST and DRD2 validated this target and suggested that DRD2 is a downstream target of REST regulating tumorigenesis, at least in part, through controlling invasion and apoptosis. Further, TCGA GBM data support the presence of the REST-DRD2 axis and reveal that high REST/low DRD2 (HRLD) and low REST/high DRD2 (LRHD) tumors are specific subtypes, are molecularly different from the known GBM subtypes, and represent functional groups with distinctive patterns of enrichment of gene sets and biological pathways. The inverse HRLD/LRHD expression pattern is also seen in in-house GBM tumors. CONCLUSIONS These findings suggest that REST regulates neurotransmitter signaling pathways through DRD2 in HR-GSCs to impact tumorigenesis. They further suggest that the REST-DRD2 mechanism forms distinct subtypes of GBM.
Collapse
Affiliation(s)
- Anantha L Marisetty
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bethany L Veo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mohamed Mostafa Kamal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dina Hamada Kassem
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khushboo Irshad
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yungang Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Verlene Henry
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sadhan Majumder
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
40
|
MicroRNA in Brain pathology: Neurodegeneration the Other Side of the Brain Cancer. Noncoding RNA 2019; 5:ncrna5010020. [PMID: 30813461 PMCID: PMC6468660 DOI: 10.3390/ncrna5010020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
The mammalian brain is made up of billions of neurons and supporting cells (glial cells), intricately connected. Molecular perturbations often lead to neurodegeneration by progressive loss of structure and malfunction of neurons, including their death. On the other side, a combination of genetic and cellular factors in glial cells, and less frequently in neurons, drive oncogenic transformation. In both situations, microenvironmental niches influence the progression of diseases and therapeutic responses. Dynamic changes that occur in cellular transcriptomes during the progression of developmental lineages and pathogenesis are controlled through a variety of regulatory networks. These include epigenetic modifications, signaling pathways, and transcriptional and post-transcriptional mechanisms. One prominent component of the latter is small non-coding RNAs, including microRNAs, that control the vast majority of these networks including genes regulating neural stemness, differentiation, apoptosis, projection fates, migration and many others. These cellular processes are also profoundly dependent on the microenvironment, stemness niche, hypoxic microenvironment, and interactions with associated cells including endothelial and immune cells. Significantly, the brain of all other mammalian organs expresses the highest number of microRNAs, with an additional gain in expression in the early stage of neurodegeneration and loss in expression in oncogenesis. However, a mechanistic explanation of the concept of an apparent inverse correlation between the odds of cancer and neurodegenerative diseases is only weakly developed. In this review, we thus will discuss widespread de-regulation of microRNAome observed in these two major groups of brain pathologies. The deciphering of these intricacies is of importance, as therapeutic restoration of pre-pathological microRNA landscape in neurodegeneration must not lead to oncogenesis and vice versa. We thus focus on microRNAs engaged in cellular processes that are inversely regulated in these diseases. We also aim to define the difference in microRNA networks between pro-survival and pro-apoptotic signaling in the brain.
Collapse
|
41
|
Liu Z, Che P, Mercado JJ, Hackney JR, Friedman GK, Zhang C, You Z, Zhao X, Ding Q, Kim K, Li H, Liu X, Markert JM, Nabors B, Gillespie GY, Zhao R, Han X. Characterization of iPSCs derived from low grade gliomas revealed early regional chromosomal amplifications during gliomagenesis. J Neurooncol 2019; 141:289-301. [PMID: 30460631 PMCID: PMC6344247 DOI: 10.1007/s11060-018-03047-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION IDH1 mutation has been identified as an early genetic event driving low grade gliomas (LGGs) and it has been proven to exerts a powerful epigenetic effect. Cells containing IDH1 mutation are refractory to epigenetical reprogramming to iPSC induced by expression of Yamanaka transcription factors, a feature that we employed to study early genetic amplifications or deletions in gliomagenesis. METHODS We made iPSC clones from freshly surgically resected IDH1 mutant LGGs by forced expression of Yamanaka transcription factors. We sequenced the IDH locus and analyzed the genetic composition of multiple iPSC clones by array-based comparative genomic hybridization (aCGH). RESULTS We hypothesize that the primary cell pool isolated from LGG tumor contains a heterogeneous population consisting tumor cells at various stages of tumor progression including cells with early genetic lesions if any prior to acquisition of IDH1 mutation. Because cells containing IDH1 mutation are refractory to reprogramming, we predict that iPSC clones should originate only from LGG cells without IDH1 mutation, i.e. cells prior to acquisition of IDH1 mutation. As expected, we found that none of the iPSC clones contains IDH1 mutation. Further analysis by aCGH of the iPSC clones reveals that they contain regional chromosomal amplifications which are also present in the primary LGG cells. CONCLUSIONS These results indicate that there exists a subpopulation of cells harboring gene amplification but without IDH1 mutation in the LGG primary cell pool. Further analysis of TCGA LGG database demonstrates that these regional chromosomal amplifications are also present in some cases of low grade gliomas indicating they are reoccurring lesions in glioma albeit at a low frequency. Taken together, these data suggest that regional chromosomal alterations may exist prior to the acquisition of IDH mutations in at least some cases of LGGs.
Collapse
Affiliation(s)
- Zhong Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Pulin Che
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Juan J Mercado
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James R Hackney
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55904, USA
| | - Zhiying You
- Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Qiang Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kitai Kim
- Cancer Biology and Genetics Program, The Center for Cell Engineering, The Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55904, USA
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James M Markert
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- University of Alabama at Birmingham, Shelby 714, 1825 University Blvd., Birmingham, AL, 35294, USA.
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- University of Alabama at Birmingham, 1020 Faculty Office Tower, 510 20th Street South, Birmingham, AL, 35294, USA.
| |
Collapse
|
42
|
NRSF and Its Epigenetic Effectors: New Treatments for Neurological Disease. Brain Sci 2018; 8:brainsci8120226. [PMID: 30572571 PMCID: PMC6316267 DOI: 10.3390/brainsci8120226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/02/2022] Open
Abstract
The Neuron Restrictive Silencer Factor (NRSF) is the well-known master transcriptional repressor of the neuronal phenotype. Research to date has shown that it is an important player in the growth and development of the nervous system. Its role in the maturation of neural precursor cells to adult neurons has been well characterized in stem cell models. While much has been characterized from a developmental perspective, research is revealing that NRSF plays a role in various neurological diseases, ranging from neurodegenerative, neuropsychiatric, to cancer. Dysregulation of NRSF activity disrupts downstream gene expression that is responsible for neuronal cell homeostasis in several models that contribute to pathologic states. Interestingly, it is now becoming apparent that the dysregulation of NRSF contributes to neurological disease through epigenetic mechanisms. Although NRSF itself is a transcription factor, its major effectors are chromatin modifiers. At the level of epigenetics, changes in NRSF activity have been well characterized in models of neuropathic pain and epilepsy. Better understanding of the epigenetic basis of brain diseases has led to design and use of small molecules that can prevent NRSF from repressing gene expression by neutralizing its interactions with its chromatin remodelers. This review will address the basic function of NRSF and its cofactors, investigate their mechanisms, then explore how their dysfunction can cause disease states. This review will also address research on NRSF as a therapeutic target and delve into new therapeutic strategies that focus on disrupting NRSF’s ability to recruit chromatin remodelers.
Collapse
|
43
|
Neuroendocrine Key Regulator Gene Expression in Merkel Cell Carcinoma. Neoplasia 2018; 20:1227-1235. [PMID: 30414538 PMCID: PMC6226622 DOI: 10.1016/j.neo.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 01/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive non-melanoma skin cancer of the elderly which is associated with the Merkel cell polyomavirus (MCPyV). MCC reveals a trilinear differentiation characterized by neuroendocrine, epithelial and pre/pro B-cell lymphocytic gene expression disguising the cellular origin of MCC. Here we investigated the expression of the neuroendocrine key regulators RE1 silencing transcription factor (REST), neurogenic differentiation 1 (NeuroD1) and the Achaete-scute homolog 1 (ASCL1) in MCC. All MCCs were devoid of REST and were positive for NeuroD1 expression. Only one MCC tissue revealed focal ASCL1 expression. This was confirmed in MCPyV-positive MCC cell lines. Of interest, MCPyV-negative cell lines did express REST. The introduction of REST expression in REST-negative, MCPyV-positive MCC cells downregulated the neuroendocrine gene expression. The lack of the neuroendocrine master regulator ASCL1 in almost all tested MCCs points to an important role of the absence of the negative regulator REST towards the MCC neuroendocrine phenotype. This is underlined by the expression of the REST-regulated microRNAs miR-9/9* in REST-negative MCC cell lines. These data might provide the basis for the understanding of neuroendocrine gene expression profile which is expected to help to elucidate the cellular origin of MCC.
Collapse
|
44
|
Burkholder NT, Mayfield JE, Yu X, Irani S, Arce DK, Jiang F, Matthews WL, Xue Y, Zhang YJ. Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST). J Biol Chem 2018; 293:16851-16861. [PMID: 30217818 DOI: 10.1074/jbc.ra118.004722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
The RE1-silencing transcription factor (REST) is the major scaffold protein for assembly of neuronal gene silencing complexes that suppress gene transcription through regulating the surrounding chromatin structure. REST represses neuronal gene expression in stem cells and non-neuronal cells, but it is minimally expressed in neuronal cells to ensure proper neuronal development. Dysregulation of REST function has been implicated in several cancers and neurological diseases. Modulating REST gene silencing is challenging because cellular and developmental differences can affect its activity. We therefore considered the possibility of modulating REST activity through its regulatory proteins. The human small C-terminal domain phosphatase 1 (SCP1) regulates the phosphorylation state of REST at sites that function as REST degradation checkpoints. Using kinetic analysis and direct visualization with X-ray crystallography, we show that SCP1 dephosphorylates two degron phosphosites of REST with a clear preference for phosphoserine 861 (pSer-861). Furthermore, we show that SCP1 stabilizes REST protein levels, which sustains REST's gene silencing function in HEK293 cells. In summary, our findings strongly suggest that REST is a bona fide substrate for SCP1 in vivo and that SCP1 phosphatase activity protects REST against degradation. These observations indicate that targeting REST via its regulatory protein SCP1 can modulate its activity and alter signaling in this essential developmental pathway.
Collapse
Affiliation(s)
| | | | - Xiaohua Yu
- the Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | | | | | - Faqin Jiang
- the School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Yuanchao Xue
- the Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yan Jessie Zhang
- From the Departments of Molecular Biosciences and .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
45
|
Sertraline, chlorprothixene, and chlorpromazine characteristically interact with the REST-binding site of the corepressor mSin3, showing medulloblastoma cell growth inhibitory activities. Sci Rep 2018; 8:13763. [PMID: 30213984 PMCID: PMC6137095 DOI: 10.1038/s41598-018-31852-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of repressor-element 1 silencing transcription factor REST/NRSF is related to several neuropathies, including medulloblastoma, glioblastoma, Huntington’s disease, and neuropathic pain. Inhibitors of the interaction between the N-terminal repressor domain of REST/NRSF and the PAH1 domain of its corepressor mSin3 may ameliorate such neuropathies. In-silico screening based on the complex structure of REST/NRSF and mSin3 PAH1 yielded 52 active compounds, including approved neuropathic drugs. We investigated their binding affinity to PAH1 by NMR, and their inhibitory activity toward medulloblastoma cell growth. Interestingly, three antidepressant and antipsychotic medicines, sertraline, chlorprothixene, and chlorpromazine, were found to strongly bind to PAH1. Multivariate analysis based on NMR chemical shift changes in PAH1 residues induced by ligand binding was used to identify compound characteristics associated with cell growth inhibition. Active compounds showed a new chemo-type for inhibitors of the REST/NRSF-mSin3 interaction, raising the possibility of new therapies for neuropathies caused by dysregulation of REST/NRSF.
Collapse
|
46
|
Cristofaro I, Spinello Z, Matera C, Fiore M, Conti L, De Amici M, Dallanoce C, Tata AM. Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells. Neurochem Int 2018; 118:52-60. [DOI: 10.1016/j.neuint.2018.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
|
47
|
Lu L, Marisetty A, Liu B, Kamal MM, Gumin J, Veo B, Cai Y, Kassem DH, Weng C, Maynard ME, Hood KN, Fuller GN, Pan ZZ, Cykowski MD, Dash PK, Majumder S. REST overexpression in mice causes deficits in spontaneous locomotion. Sci Rep 2018; 8:12083. [PMID: 30108242 PMCID: PMC6092433 DOI: 10.1038/s41598-018-29441-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Overexpression of REST has been implicated in brain tumors, ischemic insults, epilepsy, and movement disorders such as Huntington's disease. However, owing to the lack of a conditional REST overexpression animal model, the mechanism of action of REST overexpression in these disorders has not been established in vivo. We created a REST overexpression mouse model using the human REST (hREST) gene. Our results using these mice confirm that hREST expression parallels endogenous REST expression in embryonic mouse brains. Further analyses indicate that REST represses the dopamine receptor 2 (Drd2) gene, which encodes a critical nigrostriatal receptor involved in regulating movement, in vivo. Overexpression of REST using Drd2-Cre in adult mice results in increased REST and decreased DRD2 expression in the striatum, a major site of DRD2 expression, and phenocopies the spontaneous locomotion deficits seen upon global DRD2 deletion or specific DRD2 deletion from indirect-pathway medium spiny neurons. Thus, our studies using this mouse model not only reveal a new function of REST in regulating spontaneous locomotion but also suggest that REST overexpression in DRD2-expressing cells results in spontaneous locomotion deficits.
Collapse
Affiliation(s)
- Li Lu
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anantha Marisetty
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohamed Mostafa Kamal
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bethany Veo
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pediatrics/Hematology and Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - YouQing Cai
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dina Hamada Kassem
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Connie Weng
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhizhong Z Pan
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sadhan Majumder
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Neuro-oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Yu Y, Li S, Zhang H, Zhang X, Guo D, Zhang J. NRSF/REST levels are decreased in cholangiocellular carcinoma but not hepatocellular carcinoma compared with normal liver tissues: A tissue microarray study. Oncol Lett 2018; 15:6592-6598. [PMID: 29725406 DOI: 10.3892/ol.2018.8169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
The transcription factor neuron-restrictive silencer factor (NRSF), also termed repressor element 1-silencing transcription factor (REST), has been previously demonstrated to repress the expression of neuronal genes in non-neuronal cells, facilitating the controlled development and organization of nerve tissue. However, previous studies have reported NRSF/REST to be upregulated or downregulated in multiple types of carcinoma. Liver diseases are a major global health concern, with cirrhosis and liver carcinoma among the most common causes of mortality worldwide. A previous study demonstrated that there were >400 NRSF/REST target genes in mouse liver cells; however, the expression profile of NRSF/REST in human liver disease remains unclear. The present study examined NRSF/REST expression in human normal and liver carcinoma samples using tissue microarray immunohistochemistry. The results demonstrated that in normal liver tissues, NRSF/REST can be detected in the cytoplasm and nuclei of the cell; whereas in the liver carcinoma tissue, NRSF/REST is only detected in the cytoplasm. Furthermore, the number of samples with high levels of NRSF/REST was significantly lower in cholangiocellular carcinoma samples compared with normal tissues. Additionally, no detectable sex- or age-associated differences were identified in NRSF/REST expression among all the tissues examined. In conclusion, the results of the present study revealed nuclear loss of NRSF/REST in hepatic carcinomas and decreased expression of NRSF/REST in cholangiocellular carcinoma, indicating that the cytoplasmic translocation of NRSF/REST may be involved in liver tumorigenesis. A low expression level of NRSF/REST may be a novel biomarker for cholangiocellular carcinoma.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shan Li
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huiyan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuqing Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Deyu Guo
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
49
|
Shaik S, Kennis B, Maegawa S, Schadler K, Yanwen Y, Callegari K, Lulla RR, Goldman S, Nazarian J, Rajaram V, Fangusaro J, Gopalakrishnan V. REST upregulates gremlin to modulate diffuse intrinsic pontine glioma vasculature. Oncotarget 2018; 9:5233-5250. [PMID: 29435175 PMCID: PMC5797046 DOI: 10.18632/oncotarget.23750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/16/2017] [Indexed: 12/30/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive glial tumor that occurs in children. The extremely poor median and 5-year survival in children afflicted with DIPG highlights the need for novel biology-driven therapeutics. Here, we have implicated the chromatin remodeler and regulator of brain development called RE1 Silencing Transcription Factor (REST), in DIPG pathology. We show that REST protein is aberrantly elevated in at least 21% of DIPG tumors compared to normal controls. Its knockdown in DIPG cell lines diminished cell growth and decreased their tumorigenicity in mouse intracranial models. DIPGs are vascularized tumors and interestingly, REST loss in DIPG cells also caused a substantial decline in tumor vasculature as measured by a decrease in CD31 and VEGFR2 staining. These observations were validated in vitro, where a significant decline in tube formation by human umbilical vein endothelial cells (HUVEC) was seen following REST-loss in DIPG cells. Mechanistically, REST controlled the secretion of a pro-angiogenic molecule and ligand for VEGFR2 called Gremlin-1 (GREM-1), and was associated with enhanced AKT activation. Importantly, the decline in tube formation caused by REST loss could be rescued by addition of recombinant GREM-1, which also caused AKT activation in HUVECs and human brain microvascular endothelial cells (HBMECs). In summary, our study is the first to demonstrate autocrine and paracrine functions for REST in DIPG development. It also provides the foundation for future investigations on anti-angiogenic therapies targeting GREM-1 in combination with drugs that target REST-associated chromatin remodeling activities.
Collapse
Affiliation(s)
- Shavali Shaik
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Bridget Kennis
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Shinji Maegawa
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Keri Schadler
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Yanwen
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Keri Callegari
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Rishi R. Lulla
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stewart Goldman
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Javad Nazarian
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Veena Rajaram
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jason Fangusaro
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
- Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Marisetty AL, Singh SK, Nguyen TN, Coarfa C, Liu B, Majumder S. REST represses miR-124 and miR-203 to regulate distinct oncogenic properties of glioblastoma stem cells. Neuro Oncol 2017; 19:514-523. [PMID: 28040710 DOI: 10.1093/neuonc/now232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Glioblastoma (GBM) is one of the most common, aggressive, and invasive human brain tumors. There are few reliable mechanism-based therapeutic approaches for GBM patients. The transcriptional repressor RE1 silencing transcriptional factor (REST) regulates the oncogenic properties of a class of GBM stem-like cells (high-REST [HR]-GSCs) in humans. However, it has been unclear whether REST represses specific targets to regulate specific oncogenic functions or represses all targets with overlapping functions in GSCs. Methods We used genome-wide, biochemical, and mouse intracranial tumorigenic assays to identify and determine functions of microRNA (miR) targets of REST in 2 independent HR-GSC lines. Results Here we show that REST represses 2 major miR gene targets in HR-GSCs: miR-203, a new target, and miR-124, a known target. Gain of function of miR-124 or miR-203 in HR-GSCs increased survival in tumor-bearing mice. Importantly, the increased survival of tumor-bearing mice caused by knockdown of REST in HR-GSCs was reversed by double knockdown of REST and either miR-203 or miR-124, indicating that these 2 miRs are critical tumor suppressors that are repressed in REST-mediated tumorigenesis. We further show that while miR-124 and the REST-miR-124 pathways regulate self-renewal, apoptosis and invasion, miR-203 and the REST-miR-203 pathways regulate only invasion. We further identify and validate potential mRNA targets of miR-203 and miR-124 in REST-mediated HR-GSC tumor invasion. Conclusions These findings indicate that REST regulates its miR gene targets with overlapping functions and suggest how REST maintains oncogenic competence in GSCs. These mechanisms could potentially be utilized to block REST-mediated GBM tumorigenesis.
Collapse
Affiliation(s)
- Anantha L Marisetty
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sanjay K Singh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tran N Nguyen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bin Liu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sadhan Majumder
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.,Neuro-Oncology, The Brain Tumor Center, The University of Texas M. D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| |
Collapse
|