1
|
Effect of the topical administration of N-(2-(4-bromophenylamino)-5-(trifluoromethyl)phenyl)nicotinamide compound in a murine subcutaneous melanoma model. Anticancer Drugs 2021; 31:718-727. [PMID: 32568827 DOI: 10.1097/cad.0000000000000944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conventional treatments for metastatic melanomas are still ineffective and generate numerous side effects, justifying the search for new therapies. The antimetastatic effect of the named N-(2-(4-bromophenylamino)-5-(trifluoromethyl)phenyl)nicotinamide (SRVIC30) compound has been previously demonstrated in murine melanoma. Herein, we aimed to evaluate its effect when topically administrated in a murine subcutaneous melanoma model. For that, mice C57BL/6 were injected subcutaneously with 2 × 10 B16-F10 cells. Topical treatment began when tumors became visible on animal's back. Therefore, tumor volume was measured three times a week until it reaches 12 mm approximately. At this point, 40 mg oil-in-water cream (Lanette) without (control mice; n = 10) or with SRVIC30 compound (SRVIC30 group; n = 10 animals) were spread daily over the tumor external surface using a small brush for 14 days. The treatments increased the percentage of peroxidase antioxidant enzyme and dead cells via caspase-3 activation, with a consequent deposit of collagen fibers in the tumors. In addition, the skin of treated animals showed the presence of inflammatory infiltrate. Finally, SRVIC30 did not show signs of toxicity. Thus, we concluded that the topic administration of SRVIC30 was able to influence crucial anticancer processes such as tumor cells apoptosis and surrounding microenvironment.
Collapse
|
2
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Owumi SE, Nwozo SO, Arunsi UO, Oyelere AK, Odunola OA. Co-administration of Luteolin mitigated toxicity in rats' lungs associated with doxorubicin treatment. Toxicol Appl Pharmacol 2021; 411:115380. [PMID: 33358696 DOI: 10.1016/j.taap.2020.115380] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX), is a drug against lung malignancies with undesirable side effect including oxidative, inflammatory and apoptotic effects. Luteolin (LUT), present in fruits and vegetables is pharmacologically active against oxido-inflammatory and apoptotic responses. The present study examined the effect of LUT on DOX-induced lungs and blood dysfunction in Wistars rat (sex: male; 10 weeks old, 160 ± 5 g). Randomly grouped (n = 10) rats were treated as follows: control, LUT alone (100 mg/kg; per os), DOX (2 mg/kg; i. p), and co-treated rats with LUT (50 or 100 mg/kg) and DOX for two consecutive weeks. DOX alone adversely altered the final body and relative organ weights, red and white blood cell and platelet counts. DOX significantly (p > 0.05) reduced lungs antioxidant capacity, and anti-inflammatory cytokines; increased biomarkers of oxidative stress, caspase-3 activity, and pro-inflammatory cytokine. Morphological damages accompanied these biochemical alterations in the lung of experimental rats. Co-treatment with LUT, dose-dependently reversed DOX-mediated changes in rats' survival, toxic responses, and diminished oxidative stress in rat's lungs. Furthermore, co-treatment with LUT resulted in the reduction of pro-inflammatory cytokines and apoptotic biomarkers, increased red and white blood cell, platelet counts and abated pathological injuries in rat lungs treated with DOX alone. In essence, our findings indicate that LUT dose-dependently mitigated DOX-induced toxicities in the lungs and haematopoietic systems. Supplementation of patients on DOX-chemotherapy with phytochemicals exhibiting antioxidant activities, specifically LUT, could circumvent the onset of unintended toxic responses in the lungs and haematopoietic system exposed to DOX.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria.
| | - Sarah O Nwozo
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham NG8 1AF, UK
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Oyeronke A Odunola
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Mandler WK, Nurkiewicz TR, Porter DW, Kelley EE, Olfert IM. Microvascular Dysfunction Following Multiwalled Carbon Nanotube Exposure Is Mediated by Thrombospondin-1 Receptor CD47. Toxicol Sci 2018; 165:90-99. [PMID: 29788500 PMCID: PMC6111784 DOI: 10.1093/toxsci/kfy120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) disrupts peripheral microvascular function. Thrombospondin-1 (TSP-1) is highly expressed during lung injury and has been shown to alter microvascular reactivity. It is unclear exactly how TSP-1 exerts effects on vascular function, but we hypothesized that the TSP-1 receptor CD47 may mediate changes in vasodilation. Wildtype (WT) or CD47 knockout (CD47 KO) C57B6/J-background animals were exposed to 50 µg of MWCNT or saline control via pharyngeal aspiration. Twenty-four hours postexposure, intravital microscopy was performed to assess arteriolar dilation and venular leukocyte adhesion and rolling. To assess tissue redox status, electron paramagnetic resonance and NOx measurements were performed, while inflammatory biomarkers were measured via multiplex assay.Vasodilation was impaired in the WT + MWCNT group compared with control (57 ± 9 vs 90 ± 2% relaxation), while CD47 KO animals showed no impairment (108 ± 8% relaxation). Venular leukocyte adhesion and rolling increased by >2-fold, while the CD47 KO group showed no change. Application of the antioxidant apocynin rescued normal leukocyte activity in the WT + MWCNT group. Lung and plasma NOx were reduced in the WT + MWCNT group by 47% and 32%, respectively, while the CD47 KO groups were unchanged from control. Some inflammatory cytokines were increased in the CD47 + MWCNT group only. In conclusion, TSP-1 is an important ligand mediating MWCNT-induced microvascular dysfunction, and CD47 is a component of this dysregulation. CD47 activation likely disrupts nitric oxide (•NO) signaling and promotes leukocyte-endothelial interactions. Impaired •NO production, signaling, and bioavailability is linked to a variety of cardiovascular diseases in which TSP-1/CD47 may play an important role.
Collapse
Affiliation(s)
- William Kyle Mandler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Timothy R Nurkiewicz
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV 26506
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- West Virginia Clinical and Translational Science Institute, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506
| | - Dale W Porter
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV 26506
- National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Eric E Kelley
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV 26506
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- West Virginia Clinical and Translational Science Institute, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506
| | - Ivan Mark Olfert
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV 26506
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- West Virginia Clinical and Translational Science Institute, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506
| |
Collapse
|
5
|
Groeneveld ME, van der Reijden JJ, Tangelder GJ, Westin LC, Renwarin L, Musters RJP, Wisselink W, Yeung KK. Peroxynitrite Footprint in Circulating Neutrophils of Abdominal Aortic Aneurysm Patients is Lower in Statin than in Non-statin Users. Eur J Vasc Endovasc Surg 2017; 54:331-339. [PMID: 28712812 DOI: 10.1016/j.ejvs.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/02/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Extensive reactive oxygen and nitrogen species (also reactive species) production is a mechanism involved in abdominal aortic aneurysm (AAA) development. White blood cells (WBCs) are a known source of reactive species. Their production may be decreased by statins, thereby reducing the AAA growth rate. Reactive species production in circulating WBCs of AAA patients and the effect of statins on their production was investigated. METHODS This observational study investigated reactive species production in vivo and ex vivo in circulating WBCs of AAA patients, using venous blood from patients prior to elective AAA repair (n = 34; 18 statin users) and from healthy volunteers (n = 10). Reactive species production was quantified in circulating WBCs using immunofluorescence microscopy: nitrotyrosine (footprint of peroxynitrite, a potent reactive nitrogen species) in snap frozen blood smears; mitochondrial superoxide and cytoplasmic hydrogen peroxide (both reactive oxygen species) by live cell imaging. Neutrophils, lymphocytes, and monocytes were examined individually. RESULTS In AAA patients using statins, the median nitrotyrosine level in neutrophils was 646 (range 422-2059), in lymphocytes 125 (range 74-343), and in monocytes 586 (range 291-663). Median levels in AAA patients not using statins were for neutrophils 928 (range 552-2095, p = .03), lymphocytes 156 (101-273, NS), and for monocytes 536 (range 535-1635, NS). The statin dose tended to correlate negatively with nitrotyrosine in neutrophils (Rs -0.32, p = .06). The median levels in controls were lower for neutrophils 466 (range 340-820, p < .01) and for monocytes 191 (range 102-386, p = .03), but similar for lymphocytes 99 (range 82-246) when compared to the AAA patients. There were no differences in mitochondrial superoxide and cytoplasmic hydrogen peroxide between statin and non-statin users within AAA patients. CONCLUSIONS It was found that the peroxynitrite footprint in circulating neutrophils and monocytes of AAA patients is higher than in controls. AAA patients treated with statins had a lower peroxynitrite footprint in neutrophils than non-statin users.
Collapse
Affiliation(s)
- M E Groeneveld
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | - G J Tangelder
- Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - L C Westin
- Center for Digestive Diseases, Karolinska University Hospital, Karolinska, Sweden
| | - L Renwarin
- Medical Department, Royal Netherlands Navy, Eindhoven, The Netherlands
| | - R J P Musters
- Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - W Wisselink
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - K K Yeung
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Hernandez-Mijares A, Bañuls C, Rovira-Llopis S, Diaz-Morales N, Escribano-Lopez I, de Pablo C, Alvarez A, Veses S, Rocha M, Victor VM. Effects of simvastatin, ezetimibe and simvastatin/ezetimibe on mitochondrial function and leukocyte/endothelial cell interactions in patients with hypercholesterolemia. Atherosclerosis 2016; 247:40-47. [PMID: 26868507 DOI: 10.1016/j.atherosclerosis.2016.01.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cholesterol-lowering therapy has been related with several beneficial effects; however, its influence on oxidative stress and endothelial function is not fully elucidated. AIMS To investigate the effect of simvastatin and ezetimibe on mitochondrial function and leukocyte-endothelium interactions in polymorphonuclear cells of hyperlipidemic patients. METHODS Thirty-nine hyperlipidemic patients were randomly assigned to one of two groups: one received simvastatin (40 mg/day) and the other received ezetimibe (10 mg/day) for 4 weeks, after which both groups were administered combined therapy for an additional 4-week period. Lipid profile, mitochondrial parameters (oxygen consumption, reactive oxygen species (ROS) and membrane potential), glutathione levels, superoxide dismutase activity, catalase activity and leukocyte/endothelial cell interactions and adhesion molecules -VCAM-1, ICAM-1, E-selectin, were evaluated. RESULTS An improvement in lipid profile was observed after administration of simvastatin or ezetimibe alone (LDLc: -40.2 vs -19.6%, respectively), though this effect was stronger with the former (p < 0.001), and a further reduction was registered when the two were combined (LDLc: -50.7% vs -56.8%, respectively). In addition to this, simvastatin, ezetimibe and simvastatin + ezetimibe significantly increased oxygen consumption, membrane potential and glutathione content, and decreased levels of ROS, thereby improving mitochondrial function. Furthermore, simvastatin + ezetimibe increased catalase activity. In addition, simvastatin and simvastatin/ezetimibe improved leukocyte/endothelium interactions by decreasing leukocyte rolling and adhesion and increasing leukocyte rolling velocity. Finally, simvastatin, ezetimibe and simvastatin + ezetimibe reduced levels of the adhesion molecule ICAM-1, and ezetimibe + simvastatin significantly decreased levels of E-selectin. CONCLUSION Co-administration of simvastatin and ezetimibe has an additive cholesterol-lowering effect and beneficial consequences for mitochondrial function and leukocyte/endothelium interactions in leukocytes of hypercholesterolemic patients.
Collapse
Affiliation(s)
- Antonio Hernandez-Mijares
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain.
| | - Celia Bañuls
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Noelia Diaz-Morales
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Irene Escribano-Lopez
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Carmen de Pablo
- Department of Pharmacology and CIBERehd, Faculty of Medicine, University of Valencia, Spain
| | - Angeles Alvarez
- Department of Pharmacology and CIBERehd, Faculty of Medicine, University of Valencia, Spain; Fundación General de Universidad de Valencia, Valencia, Spain
| | - Silvia Veses
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
7
|
Kar S, Kavdia M. Endothelial NO and O₂·⁻ production rates differentially regulate oxidative, nitroxidative, and nitrosative stress in the microcirculation. Free Radic Biol Med 2013; 63:161-74. [PMID: 23639567 PMCID: PMC4051226 DOI: 10.1016/j.freeradbiomed.2013.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/04/2013] [Accepted: 04/13/2013] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction causes an imbalance in endothelial NO and O₂·⁻ production rates and increased peroxynitrite formation. Peroxynitrite and its decomposition products cause multiple deleterious effects including tyrosine nitration of proteins, superoxide dismutase (SOD) inactivation, and tissue damage. Studies have shown that peroxynitrite formation during endothelial dysfunction is strongly dependent on the NO and O₂·⁻ production rates. Previous experimental and modeling studies examining the role of NO and O₂·⁻ production imbalance on peroxynitrite formation showed different results in biological and synthetic systems. However, there is a lack of quantitative information about the formation and biological relevance of peroxynitrite under oxidative, nitroxidative, and nitrosative stress conditions in the microcirculation. We developed a computational biotransport model to examine the role of endothelial NO and O₂·⁻ production on the complex biochemical NO and O₂·⁻ interactions in the microcirculation. We also modeled the effect of variability in SOD expression and activity during oxidative stress. The results showed that peroxynitrite concentration increased with increase in either O₂·⁻ to NO or NO to O₂·⁻ production rate ratio (QO₂·⁻/QNO or QNO/QO₂·⁻, respectively). The peroxynitrite concentrations were similar for both production rate ratios, indicating that peroxynitrite-related nitroxidative and nitrosative stresses may be similar in endothelial dysfunction or inducible NO synthase (iNOS)-induced NO production. The endothelial peroxynitrite concentration increased with increase in both QO₂·⁻/QNO and QNO/QO₂·⁻ ratios at SOD concentrations of 0.1-100 μM. The absence of SOD may not mitigate the extent of peroxynitrite-mediated toxicity, as we predicted an insignificant increase in peroxynitrite levels beyond QO₂·⁻/QNO and QNO/QO₂·⁻ ratios of 1. The results support the experimental observations of biological systems and show that peroxynitrite formation increases with increase in either NO or O₂·⁻ production, and excess NO production from iNOS or from NO donors during oxidative stress conditions does not reduce the extent of peroxynitrite mediated toxicity.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
8
|
Kar S, Bhandar B, Kavdia M. Impact of SOD in eNOS uncoupling: a two-edged sword between hydrogen peroxide and peroxynitrite. Free Radic Res 2012; 46:1496-513. [PMID: 22998079 DOI: 10.3109/10715762.2012.731052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O(2)(•-)) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO(-)) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O(2)(•-) and ONOO(-) during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O(2)(•-) production and downstream reactions involving NO, O(2)(•-), ONOO(-), H(2)O(2) and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O(2)(•-), ONOO(-) and H(2)O(2) in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O(2)(•-) production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O(2)(•-) concentration by 90% at all [BH(4)]/[TBP] ratios, (iv) SOD reduces ONOO(-) concentration and increases H(2)O(2) concentration during eNOS uncoupling, (v) Catalase can reduce H(2)O(2) concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| | | | | |
Collapse
|