1
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
2
|
Luo J, Liu Z, Wang Q, Tan S. Liver iron overload and fat content analyzed by magnetic resonance contribute to evaluatingthe progression of chronic hepatitis B. Biomed Rep 2024; 20:23. [PMID: 38169881 PMCID: PMC10758915 DOI: 10.3892/br.2023.1711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic hepatitis B (CHB) and its complications still have a major role in liver-related mortality. It has been indicated that hepatic iron and steatosis may influence liver fibrosis and carcinogenesis. The present study aimed to assess the liver iron and fat in patients with CHB by MRI in order to estimate the associations among liver iron, fat and the severity and progression of liver fibrosis. In the present retrospective study, consecutive patients with CHB examined from August 2018 to August 2020 were analyzed. Liver iron and fat content were assessed by MRI, which was measured as liver iron content (LIC) and proton density fat fraction (PDFF). A total of 340 patients were included in the current study. For LIC, the median value was 1.68 mg/g and elevated LIC was seen in 122 patients (35.9%). For liver fat content, the median value of PDFF was 3.1%, while only 15.0% of patients had liver steatosis (PDFF ≥5%). Age, total bilirubin and sex were independent predictive factors of liver iron overload [odds ratio (OR)=1.036, 1.005 and 8.834, respectively]. A higher platelet count (OR=1.005) and no portal hypertension (OR=0.381) independently predicted liver steatosis. The areas under the receiver operating characteristic curves of PDFF for the identification of liver cirrhosis estimated by different non-invasive tools ranged from 0.629 to 0.704. It was concluded that iron overload was common in patients with CHB, particularly in those with older age, male sex and high total bilirubin level, and liver steatosis was less common in CHB. Liver iron and fat content analyzed by MRI may contribute to the evaluation of the severity and progression of CHB.
Collapse
Affiliation(s)
- Jinni Luo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhenzhen Liu
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Qian Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
3
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. Circulating microRNAs and hepcidin as predictors of iron homeostasis and anemia among school children: a biochemical and cross-sectional survey analysis. Eur J Med Res 2023; 28:595. [PMID: 38102707 PMCID: PMC10724951 DOI: 10.1186/s40001-023-01579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) can control several biological processes. Thus, the existence of these molecules plays a significant role in regulating human iron metabolism or homeostasis. PURPOSE The study aimed to determine the role of circulating microRNAs and hepcidin in controlling iron homeostasis and evaluating possible anemia among school children. METHODS The study was based on a biochemical and cross-sectional survey study that included three hundred fifty school children aged 12-18 years old. RT-PCR and immunoassay analysis were accomplished to estimate iron concentration, Hgb, serum ferritin (SF), soluble transferrin receptor (sTfR), total body iron stores (TIBs), total oxidative stress (TOS), total antioxidant capacity (TAC), α-1-acid glycoprotein (AGP), high sensitive C-reactive protein (hs-CRP), and miRNAs; miR-146a, miR-129b, and miR-122 in 350 school adolescents. RESULTS Iron disorders were cross-sectionally predicted in 28.54% of the study population; they were classified into 14.26% with ID, 5.7% with IDA, and 8.6% with iron overload. The overall proportion of iron depletion was significantly higher in girls (20.0%) than in boys (8.6%). MicroRNAs; miR-146a, miR-125b, and miR-122 were significantly upregulated with lower hepcidin expression in adolescence with ID and IDA compared to iron-overloaded subjects, whereas downregulation of these miRNAs was linked with higher hepcidin. Also, a significant correlation was recorded between miRNAs, hepcidin levels, AGP, hs-CRP, TAC, and other iron-related indicators. CONCLUSION Molecular microRNAs such as miR-146a, miR-125b, and miR-122 were shown to provide an additional means of controlling or regulating cellular iron uptake or metabolism either via the oxidative stress pathway or regulation of hepcidin expression via activating genes encoding Hfe and Hjv activators, which promote iron regulation. Thus, circulating miRNAs as molecular markers and serum hepcidin could provide an additional means of controlling or regulating cellular iron and be associated as valuable markers in diagnosing and treating cases with different iron deficiencies.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Departments of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Amir Iqbal
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Ye Y, Xie J, Wang L, He C, Tan Y. Chronic hepatitis B complicated with secondary hemochromatosis was cured clinically: A case report. Open Med (Wars) 2023; 18:20230693. [PMID: 37016704 PMCID: PMC10066873 DOI: 10.1515/med-2023-0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Abstract
Chronic hepatitis B (CHB) often causes iron overload in the liver but rarely causes severe secondary hemochromatosis (SH). A 48-year-old man was infected with CHB via vertical transmission. For 21 years, nonstandard treatment with second-line hepatitis B antiviral drugs has been administered. Repeated abnormalities in the liver transaminase function and continuous low-level replication of the hepatitis B virus (HBV) have been detected. The skin had turned black 5 years back. Biochemical tests and imaging revealed the presence of hemochromatosis. A liver biopsy suggested severe iron overload. Two genetic tests ruled out hereditary hemochromatosis. The patient was diagnosed with SH and treated with 400 ml bloodletting once per week and an iron-chelating agent. After 12 weeks, liver function was normal, and the skin turned white. First, hepatitis B surface antigen (HBsAg) was lost, and HBV DNA was copied at low levels. The patient was diagnosed with an occult hepatitis B infection. HBV DNA was undetectable after 4 weeks of antiviral treatment with tenofovir. Upon reviewing the patient’s medical history, hemochromatosis was believed to be related to CHB with chronic inflammatory damage and no complete virological response. Improvements in hemochromatosis may promote HBsAg disappearance.
Collapse
Affiliation(s)
- Yun Ye
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, Jiangsu Province, China
| | - Jing Xie
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, Jiangsu Province, China
| | - Lina Wang
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, Jiangsu Province, China
| | - Cong He
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, Jiangsu Province, China
| | - Youwen Tan
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, Jiangsu Province, China
| |
Collapse
|
5
|
Zheng H, Yang F, Deng K, Wei J, Liu Z, Zheng YC, Xu H. Relationship between iron overload caused by abnormal hepcidin expression and liver disease: A review. Medicine (Baltimore) 2023; 102:e33225. [PMID: 36930080 PMCID: PMC10019217 DOI: 10.1097/md.0000000000033225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Iron is essential to organisms, the liver plays a vital role in its storage. Under pathological conditions, iron uptake by the intestine or hepatocytes increases, allowing excess iron to accumulate in liver cells. When the expression of hepcidin is abnormal, iron homeostasis in humans cannot be regulated, and resulting in iron overload. Hepcidin also regulates the release of iron from siderophores, thereby regulating the concentration of iron in plasma. Important factors related to hepcidin and systemic iron homeostasis include plasma iron concentration, body iron storage, infection, inflammation, and erythropoietin. This review summarizes the mechanism and regulation of iron overload caused by hepcidin, as well as related liver diseases caused by iron overload and treatment.
Collapse
Affiliation(s)
- Haoran Zheng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Fan Yang
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Kaige Deng
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaxin Wei
- Department of Emergency, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhenting Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-Chang Zheng
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Haifeng Xu
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
7
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
8
|
Yan Y, Qiu Y, Davgadorj C, Zheng C. Novel Molecular Therapeutics Targeting Signaling Pathway to Control Hepatitis B Viral Infection. Front Cell Infect Microbiol 2022; 12:847539. [PMID: 35252042 PMCID: PMC8894711 DOI: 10.3389/fcimb.2022.847539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous canonical cellular signaling pathways modulate hepatitis B virus (HBV) replication. HBV genome products are known to play a significant role in regulating these cellular pathways for the liver’s viral-related pathology and physiology and have been identified as the main factor in hepatocarcinogenesis. Signaling changes during viral replication ultimately affect cellular persistence, multiplication, migration, genome instability, and genome damage, leading to proliferation, evasion of apoptosis, block of differentiation, and immortality. Recent studies have documented that numerous signaling pathway agonists or inhibitors play an important role in reducing HBV replication in vitro and in vivo, and some have been used in phase I or phase II clinical trials. These optional agents as molecular therapeutics target cellular pathways that could limit the replication and transcription of HBV or inhibit the secretion of the small surface antigen of HBV in a signaling-independent manner. As principle-based available information, a combined strategy including antiviral therapy and immunomodulation will be needed to control HBV infection effectively. In this review, we summarize recent findings on interventions of molecular regulators in viral replication and the interactions of HBV proteins with the components of the various targeting cellular pathways, which may assist in designing novel agents to modulate signaling pathways to prevent HBV replication or carcinogenesis.
Collapse
Affiliation(s)
- Yan Yan
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Yan Yan, ; Chunfu Zheng,
| | - Yuanwang Qiu
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chantsalmaa Davgadorj
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Yan Yan, ; Chunfu Zheng,
| |
Collapse
|
9
|
Li H, Shen X, Tong Y, Ji T, Feng Y, Tang Y, Mai R, Ye J, Que T, Luo X. Aggravation of hepatic ischemia‑reperfusion injury with increased inflammatory cell infiltration is associated with the TGF‑β/Smad3 signaling pathway. Mol Med Rep 2021; 24:580. [PMID: 34132369 PMCID: PMC8223105 DOI: 10.3892/mmr.2021.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/18/2021] [Indexed: 11/06/2022] Open
Abstract
Ischemia‑reperfusion (IR) injury is a major challenge influencing the outcomes of hepatic transplantation. Transforming growth factor‑β (TGF‑β) and its downstream gene, SMAD family member 3 (Smad3), have been implicated in the pathogenesis of chronic hepatic injuries, such as hepatic fibrosis. Thus, the present study aimed to investigate the role of the TGF‑β/Smad3 signaling pathway on hepatic injury induced by IR in vivo. In total, 20 129S2/SvPasCrl wild‑type (WT) mice were randomized into two groups; 10 mice underwent IR injury surgery and 10 mice were sham‑operated. Histopathological changes in liver tissues and serum levels of alanine aminotransferase (ALT) were examined to confirm hepatic injury caused by IR surgery. The expression levels of TGF‑β1, Smad3 and phosphorylated‑Smad3 (p‑Smad3) were detected via western blotting. Furthermore, a total of five Smad3‑/‑ 129S2/SvPasCrl mice (Smad3‑/‑ mice) and 10 Smad3+/+ littermates received IR surgery, while another five Smad3‑/‑ mice and 10 Smad3+/+ littermates received the sham operation. Histopathological changes in liver tissues and serum levels of ALT were then compared between the groups. Furthermore, hepatic apoptosis and inflammatory cell infiltration after IR were evaluated in the liver tissues of Smad3‑/‑ mice and Smad3+/+ mice. The results demonstrated that the expression levels of TGF‑β1, Smad3 and p‑Smad3 were elevated in hepatic tissue from WT mice after IR injury. Aggravated hepatic injury, increased apoptosis and enhanced inflammatory cell infiltration induced by hepatic IR injury were observed in the Smad3‑/‑ mice compared with in Smad3+/+ mice. Collectively, the current findings suggested that activation of the TGF‑β/Smad3 signaling pathway was present alongside the hepatic injury induced by IR. However, the TGF‑β/Smad3 signaling pathway may have an effect on protecting against liver tissue damage caused by IR injury in vivo.
Collapse
Affiliation(s)
- Haixia Li
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoyun Shen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yifan Tong
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Tong Ji
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yan Feng
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanping Tang
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rongyun Mai
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiaxiang Ye
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ting Que
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoling Luo
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Han C, Wei Y, Wang X, Ba C, Shi W. Protective effect of Salvia miltiorrhiza polysaccharides on liver injury in chickens. Poult Sci 2019; 98:3496-3503. [PMID: 30953070 DOI: 10.3382/ps/pez153] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
This study investigated the effects of Salvia miltiorrhiza polysaccharides (SMPs) on the injury of chicken hepatocytes in vitro and in vivo. In in vitro studies primary cultured hepatocytes were isolated by 2-step collagenase perfusion. Carbon tetrachloride (CCL4) was added to the hepatocytes to establish a hepatocyte injury model. Hepatocytes were treated with different concentrations of SMPs to detect the protective effects of SMPs on CCL4-induced hepatocyte injury. The results of the control group showed that chicken hepatocytes grew well and their morphology was normal. After CCL4 treatment, the activity of alanine transaminase (ALT) and aspartate transaminase (AST) of hepatocytes increased compared with the normal control group. SMPs treatment downregulated the contents of ALT, AST, and malondialdehyde (MDA), and upregulated the contents of glutathione (GSH) and cytochrome P450 (CYP450). An acute chicken liver injury model was established in vivo with 2.0 mL/kg 50% CCL4. Oral administration of SMP at different doses exhibited preventive success. The results showed that compared with the control group, the contents of total protein (TP), albumin (Alb), and GSH in the liver injury model group were significantly decreased and the levels of liver index, ALT, AST, and MDA were significantly increased. In contrast, in the SMP group the contents of TP, Alb, and GSH were significantly increased, and the levels of liver index, ALT, AST, and MDA were significantly decreased compared with the model group. Therefore, we conclude that SMPs have good protective effect on chicken liver damage in vivo and in vitro.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Yuanyuan Wei
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Cuijing Ba
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| |
Collapse
|
11
|
Ayala-Peña VB, Armiento MN, Fernández Bell Fano PM, Santillán GE, Scolaro LA. Infection of Rat Osteoblasts with Junin Virus Promotes the Expression of Bone Morphogenetic Protein 6, an Osteogenic Differentiation Inducer. Intervirology 2019; 62:1-8. [PMID: 31121597 DOI: 10.1159/000499466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The arenavirus Junin virus (JUNV), causative agent of the argentine hemorrhagic fever, is able to modulate several signaling pathways involved in cell survival and multiplication. OBJECTIVES We aimed to characterize the infection of rat osteoblasts (OBCs) with JUNV and its consequence on the modulation of osteogenic genes expression, thus studying the ability of this virus to induce cell differentiation. In addition, we evaluated the effect of purinergic agonists on viral replication. METHOD Quantification of infectivity by plaque forming unit (PFU) assay, synthesis of viral proteins by western blot and immunofluorescence, and expression of osteogenic differentiation markers (ODM) by quantitative real-time polymerase chain reaction were employed. RESULTS Infection of OBCs with JUNV (MOI 0.01 PFU/cell) showed a peak of infectivity, reaching 1.5 × 105 PFU/mL at the second day post-infection (p.i.). A marked restriction in multiplication was detected at day 7 p.i. that did not impair the establishment of a persistent stage of infection in OBCs. Analysis of mRNAs corresponding to ODM such as alkaline phosphatase, bone sialo-protein, and bone morphogenetic proteins (BMPs) 4 and 6 revealed that only the levels of BMP-6 were significantly higher in infected cells. Treatment with the purinergic agonists ATPγS, UTP, ADP, or UDP diminished viral titer and reduced the expression of the viral nucleoprotein. Also, treatment with 10 μM ATPγS reduced the stimulation of BMP-6 expression induced by the infection. CONCLUSIONS These data demonstrate that JUNV is capable of infecting OBCs and point out BMP-6 as a key factor during this process.
Collapse
Affiliation(s)
- Victoria B Ayala-Peña
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - María N Armiento
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Pablo M Fernández Bell Fano
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Graciela E Santillán
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (INBIOSUR-CONICET), Bahía Blanca, Argentina
| | - Luis A Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina,
| |
Collapse
|
12
|
Liu M, Sun F, Feng Y, Sun X, Li J, Fan Q, Liu M. MicroRNA-132-3p represses Smad5 in MC3T3-E1 osteoblastic cells under cyclic tensile stress. Mol Cell Biochem 2019; 458:143-157. [DOI: 10.1007/s11010-019-03538-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
|
13
|
Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: Mechanistic and clinical aspects. World J Gastroenterol 2019; 25:521-538. [PMID: 30774269 PMCID: PMC6371002 DOI: 10.3748/wjg.v25.i5.521] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterised by excessive deposition of extracellular matrix that interrupts normal liver functionality. It is a pathological stage in several untreated chronic liver diseases such as the iron overload syndrome hereditary haemochromatosis, viral hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis and diabetes. Interestingly, regardless of the aetiology, iron-loading is frequently observed in chronic liver diseases. Excess iron can feed the Fenton reaction to generate unquenchable amounts of free radicals that cause grave cellular and tissue damage and thereby contribute to fibrosis. Moreover, excess iron can induce fibrosis-promoting signals in the parenchymal and non-parenchymal cells, which accelerate disease progression and exacerbate liver pathology. Fibrosis regression is achievable following treatment, but if untreated or unsuccessful, it can progress to the irreversible cirrhotic stage leading to organ failure and hepatocellular carcinoma, where resection or transplantation remain the only curative options. Therefore, understanding the role of iron in liver fibrosis is extremely essential as it can help in formulating iron-related diagnostic, prognostic and treatment strategies. These can be implemented in isolation or in combination with the current approaches to prepone detection, and halt or decelerate fibrosis progression before it reaches the irreparable stage. Thus, this review narrates the role of iron in liver fibrosis. It examines the underlying mechanisms by which excess iron can facilitate fibrotic responses. It describes the role of iron in various clinical pathologies and lastly, highlights the significance and potential of iron-related proteins in the diagnosis and therapeutics of liver fibrosis.
Collapse
Affiliation(s)
- Kosha J Mehta
- School of Population Health and Environmental Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, United Kingdom
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London SE1 0AA, United Kingdom
| | - Sebastien Je Farnaud
- Faculty Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Paul A Sharp
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
14
|
Russo A, Potenza N. Antiproliferative Activity of microRNA-125a and its Molecular Targets. Microrna 2018; 8:173-179. [PMID: 30394225 DOI: 10.2174/2211536608666181105114739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNA-125a is present in all animals with bilateral symmetry and displays a conserved nucleotide sequence with a section of 11 bases including the seed region that is identical in all considered species. It primarily downregulates the expression of LIN28, thereby promoting cell differentiation and larval phase transitions in nematodes, mammals and insects. OBJECTIVE In this review, we focus on the cellular control of miR-125a expression and its antiproliferative activity. RESULTS In mammalians, microRNA-125a is present in most adult organs and tissues in which it targets proteins involved in the mitogenic response, such as membrane receptors, intracellular signal transducers, or transcription factors, with the overall effect of inhibiting cell proliferation. Tissue levels of miR-125a generally raise during differentiation but it is often downregulated in cancers, e.g. colon, cervical, gastric, ovarian, lung, and breast cancers, osteosarcoma, neuroblastoma, glioblastoma, medulloblastoma, retinoblastoma and hepatocellular carcinoma. CONCLUSION The antiproliferative activity of miR-125a, demonstrated in many cell types, together with the notion that this miRNA is downregulated in several kinds of cancers, give a substantial support to the concept that miR-125a plays an oncosuppressive role.
Collapse
Affiliation(s)
- Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
15
|
Sagnelli E, Potenza N, Onorato L, Sagnelli C, Coppola N, Russo A. Micro-RNAs in hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. World J Hepatol 2018; 10:558-570. [PMID: 30310534 PMCID: PMC6177563 DOI: 10.4254/wjh.v10.i9.558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression at the post-transcriptional level by affecting both the stability and translation of complementary mRNAs. Several studies have shown that miRNAs are important regulators in the conflicting efforts between the virus (to manipulate the host for its successful propagation) and the host (to inhibit the virus), culminating in either the elimination of the virus or its persistence. An increasing number of studies report a role of miRNAs in hepatitis B virus (HBV) replication and pathogenesis. In fact, HBV is able to modulate different host miRNAs, particularly through the transcriptional transactivator HBx protein and, conversely, different cellular miRNAs can regulate HBV gene expression and replication by a direct binding to HBV transcripts or indirectly targeting host factors. The present review will discuss the role of miRNAs in the pathogenesis of HBV-related diseases and their role as a biomarker in the management of patients with HBV-related disease and as therapeutic targets.
Collapse
Affiliation(s)
- Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy.
| | - Nicoletta Potenza
- DISTABIF, University of Campania "Luigi Vanvitelli", Naples 80100, Italy
| | - Lorenzo Onorato
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Aniello Russo
- DISTABIF, University of Campania "Luigi Vanvitelli", Naples 80100, Italy
| |
Collapse
|
16
|
Coppola N, Onorato L, Panella M, de Stefano G, Mosca N, Minichini C, Messina V, Potenza N, Starace M, Alessio L, Farella N, Sagnelli E, Russo A. Correlation Between the Hepatic Expression of Human MicroRNA hsa-miR-125a-5p and the Progression of Fibrosis in Patients With Overt and Occult HBV Infection. Front Immunol 2018; 9:1334. [PMID: 29951066 PMCID: PMC6008383 DOI: 10.3389/fimmu.2018.01334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS To evaluate the correlation between the hepatic expression pattern of hsa-miR-125a-5p and HBV-DNA and the progression of fibrosis in patients with overt or occult HBV infection. METHODS We enrolled all the HBsAg-positive treatment naive patients (overt HBV group) and all the HBsAg-negative patients with hepatocellular carcinoma and with a positive HBV-DNA in their hepatic tissue (occult HBV group), who underwent a diagnostic liver biopsy between April 2007 and April 2015. Tissue concentrations of HBV-DNA and hsa-miR-125a-5p were then analyzed by real-time quantitative PCR. Necroinflammatory activity and fibrosis were evaluated according to the Ishak score. RESULTS During the study period, we enrolled 64 patients with overt and 10 patients with occult HBV infection. In the overt HBV group, 35 of 64 (54.7%) showed a mild fibrosis (staging 0-2), 17 (26.6%) a moderate fibrosis (staging 3-4), while the remaining 12 (18.7%) had a cirrhosis. All patients in the occult HBV group were cirrhotic. Patients with more advanced fibrosis stage showed a higher mean age when compared with those with mild (p < 0.00001) or moderate fibrosis (p < 0.00001) and were more frequently male than patients with staging 0-2 (p = 0.04). Similarly, patients with occult B infection were older than HBsAg-positive patients. Liver concentrations of miR-125a-5p were significantly higher in patients with cirrhosis (9.75 ± 4.42 AU) when compared with patients with mild (1.39 ± 0.94, p = 0.0002) or moderate fibrosis (2.43 ± 2.18, p = 0.0006) and were moderately higher in occult than in overt HBV infection (p = 0.09). Moreover, we found an inverse correlation, although not statistically significant, between the tissue HBV-DNA levels and the staging of fibrosis. CONCLUSION This study suggests a correlation between the tissue expression of hsa-miR-125a-5p and the progression of liver damage in a group of patients with occult or overt HBV infection. If confirmed, these data suggest the hsa-miR-125a-5p may be a novel biomarker of hepatic damage.
Collapse
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Public Medicine, University of Campania, Luigi Vanvitelli, Naples, Italy
- Infectious Diseases Unit, AORN Sant’Anna e San Sebastiano, Caserta, Italy
| | - Lorenzo Onorato
- Department of Mental Health and Public Medicine, University of Campania, Luigi Vanvitelli, Naples, Italy
| | - Marta Panella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Giorgio de Stefano
- IX Interventional Ultrasound Unit for Infectious Diseases, AORN dei Colli, P.O. Cotugno, Naples, Italy
| | - Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Carmine Minichini
- Department of Mental Health and Public Medicine, University of Campania, Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Messina
- Infectious Diseases Unit, AORN Sant’Anna e San Sebastiano, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Mario Starace
- Department of Mental Health and Public Medicine, University of Campania, Luigi Vanvitelli, Naples, Italy
| | - Loredana Alessio
- Infectious Diseases Unit, AORN Sant’Anna e San Sebastiano, Caserta, Italy
| | - Nunzia Farella
- IX Interventional Ultrasound Unit for Infectious Diseases, AORN dei Colli, P.O. Cotugno, Naples, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, University of Campania, Luigi Vanvitelli, Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
17
|
Bandi S, Gupta S, Tchaikovskaya T, Gupta S. Differentiation in stem/progenitor cells along fetal or adult hepatic stages requires transcriptional regulators independently of oscillations in microRNA expression. Exp Cell Res 2018; 370:1-12. [PMID: 29883712 DOI: 10.1016/j.yexcr.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Understanding mechanisms in lineage differentiation is critical for organ development, pathophysiology and oncogenesis. To determine whether microRNAs (miRNA) may serve as drivers or adjuncts in hepatic differentiation, we studied human embryonic stem cell-derived hepatocytes and primary hepatocytes representing fetal or adult stages. Model systems were used for hepatic lineage advancement or regression under culture conditions with molecular assays. Profiles of miRNA in primary fetal and adult hepatocytes shared similarities and distinctions from pluripotent stem cells or stem cell-derived early fetal-like hepatocytes. During phenotypic regression in fetal or adult hepatocytes, miRNA profiles oscillated to regain stemness-associated features that had not been extinguished in stem cell-derived fetal-like hepatocytes. These oscillations in stemness-associated features were not altered in fetal-like hepatocytes by inhibitory mimics for dominantly-expressed miRNA, such as hsa-miR-99b, -100, -214 and -221/222. The stem cell-derived fetal-like hepatocytes were permissive for miRNA characterizing mature hepatocytes, including mimics for hsa-miR-122, -126, -192, -194 and -26b, although transfections of the latter did not advance hepatic differentiation. Examination of genome-wide mRNA expression profiles in stem cell-derived or primary fetal hepatocytes indicated targets of highly abundant miRNA regulated general processes, e.g., cell survival, growth and proliferation, functional maintenance, etc., without directing cell differentiation. Among upstream regulators of gene networks in stem cell-derived hepatocytes included HNF4A, SNAI1, and others, which affect transcriptional circuits directing lineage development or maintenance. Therefore, miRNA expression oscillated in response to microenvironmental conditions, whereas lineage-specific transcriptional regulators, such as HNF4A, were necessary for directing hepatic differentiation. This knowledge will be helpful for understanding the contribution of stem cells in pathophysiological states and oncogenesis, as well as for applications of stem cell-derived hepatocytes.
Collapse
Affiliation(s)
- Sriram Bandi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sanchit Gupta
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Tatyana Tchaikovskaya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States; Diabetes Center, Albert Einstein College of Medicine, Bronx, NY, United States; The Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States; The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
18
|
Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression. J Neurosci 2018; 38:4791-4810. [PMID: 29695415 DOI: 10.1523/jneurosci.2423-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/21/2022] Open
Abstract
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases.SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders.
Collapse
|
19
|
Coppola N, de Stefano G, Panella M, Onorato L, Iodice V, Minichini C, Mosca N, Desiato L, Farella N, Starace M, Liorre G, Potenza N, Sagnelli E, Russo A. Lowered expression of microRNA-125a-5p in human hepatocellular carcinoma and up-regulation of its oncogenic targets sirtuin-7, matrix metalloproteinase-11, and c-Raf. Oncotarget 2018; 8:25289-25299. [PMID: 28445974 PMCID: PMC5421930 DOI: 10.18632/oncotarget.15809] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
Human microRNA-125a-5p (miR-125a) is expressed in most tissues where it downregulates the expression of membrane receptors or intracellular transductors of mitogenic signals, thus limiting cell proliferation. Expression of this miRNA generally increases with cell differentiation whereas it is downregulated in several types of tumors, such as breast, lung, ovarian, gastric, colon, and cervical cancers, neuroblastoma, medulloblastoma, glioblastoma, and retinoblastoma. In this study, we focused on hepatocellular carcinoma and used real-time quantitative PCR to measure miR-125a expression in 55 tumor biopsies and in matched adjacent non-tumor liver tissues. This analysis showed a downregulation of miR-125a in 80 % of patients, with a mean decrease of 4.7-fold. Comparison of miRNA downregulation with clinicopathological parameters of patients didn't yield significant correlations except for serum bilirubin. We then evaluated the expression of known targets of miR-125a and found that sirtuin-7, matrix metalloproteinase-11, and c-Raf were up-regulated in tumor tissue by 2.2-, 3-, and 1.7-fold, respectively. Overall, these data support a tumor suppressor role for miR-125a and encourage further studies aimed at the comprehension of the molecular mechanisms governing its expression, eventually leading to treatments to restore its expression in tumor cells.
Collapse
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Public Medicine, Second University of Naples, Naples, Italy
| | - Giorgio de Stefano
- IX Interventional Ultrasound Unit for Infectious Diseases, AORN dei Colli, P.O. Cotugno, Naples, Italy
| | - Marta Panella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Naples, Italy
| | - Lorenzo Onorato
- Department of Mental Health and Public Medicine, Second University of Naples, Naples, Italy
| | - Valentina Iodice
- IX Interventional Ultrasound Unit for Infectious Diseases, AORN dei Colli, P.O. Cotugno, Naples, Italy
| | - Carmine Minichini
- Department of Mental Health and Public Medicine, Second University of Naples, Naples, Italy
| | - Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Naples, Italy
| | - Luisa Desiato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Naples, Italy
| | - Nunzia Farella
- IX Interventional Ultrasound Unit for Infectious Diseases, AORN dei Colli, P.O. Cotugno, Naples, Italy
| | - Mario Starace
- Department of Mental Health and Public Medicine, Second University of Naples, Naples, Italy
| | - Giulia Liorre
- IX Interventional Ultrasound Unit for Infectious Diseases, AORN dei Colli, P.O. Cotugno, Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Naples, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Second University of Naples, Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Naples, Italy
| |
Collapse
|
20
|
He Q, Li W, Ren J, Huang Y, Huang Y, Hu Q, Chen J, Chen W. ZEB2 inhibits HBV transcription and replication by targeting its core promoter. Oncotarget 2017; 7:16003-11. [PMID: 26895378 PMCID: PMC4941293 DOI: 10.18632/oncotarget.7435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major cause of liver diseases, especially liver cirrhosis and hepatocellular carcinoma. However, the interaction between host and HBV has not been fully elucidated. ZEB2 is a Smad-interacting, multi-zinc finger protein that acts as a transcription factor or repressor for several signaling pathways. This study found that the expression of ZEB2 was decreased in HBV-expressing cells. Overexpression of ZEB2 inhibited HBV DNA replicative intermediates, 3.5kb mRNA, core protein level, and the secretion of HBsAg and HBeAg. In contrast, ZEB2 knockdown promoted HBV replication. Furthermore, ZEB2 could bind to HBV core promoter and inhibit its promoter activity. Mutation at the ZEB2 binding site in HBV core promoter eradicated ZEB2-mediated inhibition of HBV replication. This study identifies ZEB2 as a novel host restriction factor that inhibits HBV replication in hepatocytes. These data may shed light on development of new antiviral strategies.
Collapse
Affiliation(s)
- Qiao He
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanyu Li
- The Second Affiliated Hospital and The Key Laboratory of Molecular Biology of Infectious Diseases designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- The Second Affiliated Hospital and The Key Laboratory of Molecular Biology of Infectious Diseases designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yecai Huang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Second Affiliated Hospital and The Key Laboratory of Molecular Biology of Infectious Diseases designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Zou DM, Rong DD, Zhao H, Su L, Sun WL. Improvement of chronic hepatitis B by iron chelation therapy in a patient with iron overload: A case report. Medicine (Baltimore) 2017; 96:e9566. [PMID: 29384977 PMCID: PMC6392519 DOI: 10.1097/md.0000000000009566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE This report describes seroconversion of hepatitis B surface antigen (HBsAg) in a patient with marked iron overload caused by chronic hepatitis B (CHB) after receiving iron chelation therapy and discusses the role of iron chelation therapy in CHB. PATIENT CONCERNS Increased serum ferritin level for 2 months. DIAGNOSIS Secondary iron overload and CHB. INTERVENTION To relieve iron load of the body, the patient underwent regular phlebotomy therapy and deferoxamine (DFO) therapy. During the therapy, serum ferritin and hepatitis B virus (HBV) were monitored and the iron concentration of the liver and heart were followed by T2* of magnetic resonance imaging (MRI) scan. OUTCOMES Serum ferritin gradually decreased. Approximately 1 year after the therapy, HBsAg turned persistently negative. LESSONS Iron chelation therapy may attenuate HBV infection.
Collapse
Affiliation(s)
| | - Dong-Dong Rong
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China
| | | | | | | |
Collapse
|
22
|
Pan J, Tong S, Tang J. Alteration of microRNA profiles by a novel inhibitor of human La protein in HBV-transformed human hepatoma cells. J Med Virol 2017; 90:255-262. [PMID: 28885699 PMCID: PMC5763324 DOI: 10.1002/jmv.24941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
Abstract
A pyrazolopyridine HBSC11 was previously identified as a novel inhibitor of human La protein with anti‐hepatitis B virus (HBV) activity. However, the underlying mechanism(s) of HBV inhibition by HBSC11 remains unclear. This study aimed to examine the regulation of microRNA (miRNA) by HBSC11 in HBV‐transformed human hepatoma HepG2.2.15 cells using microarray and quantitative real‐time PCR. Target genes of the differentially expressed miRNAs were predicted and subjected to bioinformatics analysis. Results showed that HBSC11 significantly upregulated the expression of miR‐3912‐5p, miR‐6793‐5p, and miR‐7159‐5p in HepG2.2.15 cells. Target genes of the three miRNAs were mainly involved in the regulation of nucleic acid‐templated transcription, negative regulation of gene expression, nucleic acid binding transcription factor activity and regulation of phosphorylation. In addition, target genes were enriched in certain regulatory pathways related to HBV infection and HBV‐associated disease progression, such as the transforming growth factor (TGF)‐β, Wnt, and p53 signaling. Our study demonstrates the involvement of miR‐3912‐5p, miR‐6793‐5p, and miR‐7159‐5p and the potential modulation of specific pathways (TGF‐β, Wnt, and p53 signaling) in HBSC11‐mediated inhibition of HBV replication. This study provides insight into the molecular mechanism of the action of HBSC11 against HBV infection and will support the development of antiviral drugs targeting La protein.
Collapse
Affiliation(s)
- Jiaqian Pan
- Department of Clinical Pharmacy, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Tang
- Department of Clinical Pharmacy, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Potenza N, Panella M, Castiello F, Mosca N, Amendola E, Russo A. Molecular mechanisms governing microRNA-125a expression in human hepatocellular carcinoma cells. Sci Rep 2017; 7:10712. [PMID: 28878257 PMCID: PMC5587745 DOI: 10.1038/s41598-017-11418-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNA-125a-5p (miR-125a) is a vertebrate homolog of lin-4, the first discovered microRNA, and plays a fundamental role in embryo development by downregulating Lin-28 protein. MiR-125a is also expressed in differentiated cells where it generally acts as an antiproliferative factor by targeting membrane receptors or intracellular transductors of mitogenic signals. MiR-125a expression is downregulated in several tumors, including hepatocellular carcinoma (HCC) where it targets sirtuin-7, matrix metalloproteinase-11, VEGF-A, Zbtb7a, and c-Raf. In this study, we have isolated the transcription promoter of human miR-125a and characterized its activity in HCC cells. It is a TATA-less Pol II promoter provided with an initiator element and a downstream promoter element, located 3939 bp upstream the genomic sequence of the miRNA. The activity of the promoter is increased by the transcription factor NF-kB, a master regulator of inflammatory response, and miR-125a itself was found to strengthen this activation through inhibition of TNFAIP3, a negative regulator of NF-kB. This finding contributes to explain the increased levels of miR-125a observed in the liver of patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100, Caserta, Italy
| | - Marta Panella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100, Caserta, Italy
| | - Filomena Castiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100, Caserta, Italy
| | - Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100, Caserta, Italy
| | - Elena Amendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
24
|
Enhanced antiviral and antifibrotic effects of short hairpin RNAs targeting HBV and TGF-β in HBV-persistent mice. Sci Rep 2017. [PMID: 28634402 PMCID: PMC5478661 DOI: 10.1038/s41598-017-04170-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hepatitis B virus (HBV) causes acute and chronic liver infection, which may lead to liver cirrhosis and hepatocellular carcinoma. Current treatments including interferons and nucleotide analogs, have limited therapeutic effects, underscoring the need to identify effective therapeutic options to inhibit HBV replication and prevent complications. Previous animal models mimicking chronic HBV infection do not faithfully reflect disease progression in humans. Here, we used our established HBV-persistent mouse line with liver fibrosis to evaluate the efficacy of novel therapies. The combination of two short hairpin RNAs (dual-shRNA) against different coding regions of HBV delivered by a self-complementary AAV vector showed better antiviral effects than single shRNA both in vitro and in HBV-persistent mice. The dual-shRNA also exhibited stronger antifibrotic activity in vivo. Vector carrying shRNA against TGF-β, though did not inhibit HBV replication alone, enhanced the antiviral and antifibrotic activities of single and dual HBV shRNAs. Co-administration of TGF-β shRNA and HBV dual-shRNA decreased HBV DNA, HBV RNA, HBsAg, HBeAg, and liver fibrosis markers in serum and tissues, and improved liver morphology more effectively than single treatments. Our results suggest that the combination of shRNAs against HBV and TGF-β could be developed into a viable treatment for human HBV infection.
Collapse
|
25
|
Abstract
Hepatitis B virus (HBV) infection is a worldwide health problem, with approximately one third of populations have been infected, among which 3-5% of adults and more than 90% of children developed to chronic HBV infection. Host immune factors play essential roles in the outcome of HBV infection. Thus, ineffective immune response against HBV may result in persistent virus replications and liver necroinflammations, then lead to chronic HBV infection, liver cirrhosis, and even hepatocellular carcinoma. Cytokine balance was shown to be an important immune characteristic in the development and progression of hepatitis B, as well as in an effective antiviral immunity. Large numbers of cytokines are not only involved in the initiation and regulation of immune responses but also contributing directly or indirectly to the inhibition of virus replication. Besides, cytokines initiate downstream signaling pathway activities by binding to specific receptors expressed on the target cells and play important roles in the responses against viral infections and, therefore, might affect susceptibility to HBV and/or the natural course of the infection. Since cytokines are the primary causes of inflammation and mediates liver injury after HBV infection, we have discussed recent advances on the roles of various cytokines [including T helper type 1 cells (Th1), Th2, Th17, regulatory T cells (Treg)-related cytokines] in different phases of HBV infection and cytokine-related mechanisms for impaired viral control and liver damage during HBV infection. We then focus on experimental therapeutic applications of cytokines to gain a better understanding of this newly emerging aspect of disease pathogenesis.
Collapse
|
26
|
Correlation of serum hepcidin levels with disease progression in hepatitis B virus-related disease assessed by nanopore film based assay. Sci Rep 2016; 6:34252. [PMID: 27694815 PMCID: PMC5046114 DOI: 10.1038/srep34252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection often develop into cirrhosis, and both are major risk factors of hepatocellular carcinoma. However, effective approaches for the monitoring of HBV-related disease progress are still in need. Increased iron storage has an important role in HBV-related diseases. Hepcidin is a key regulator of iron homeostasis whose expression changes are often indicative of abnormal iron metabolism. There are few reports of hepcidin levels in patients with HBV infections, and the available results are inconsistent. In this study, using a recently validated nanopore silica film based method, we measured serum hepcidin levels in 46 HBV-related patients and 20 healthy controls. Patients were divided into three groups: chronic hepatitis B without cirrhosis; HBV-related cirrhosis; and HBV-related cirrhosis with hepatocellular carcinoma. Compared to healthy controls, the mean serum hepcidin level was significantly higher in CHB patients without cirrhosis, and in those with hepatocellular carcinoma, but not in those with cirrhosis. Iron-loading, viral infection and liver dysfunction are determined to be the major regulators of hepcidin in these patients. These observations suggest correlations between serum hepcidin and progression of chronic HBV infection, and may shed a new light on the development of biomarkers for HBV-related disease surveillance.
Collapse
|
27
|
Niu L, Cui X, Qi Y, Xie D, Wu Q, Chen X, Ge J, Liu Z. Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice. PLoS One 2016; 11:e0156090. [PMID: 27224286 PMCID: PMC4880333 DOI: 10.1371/journal.pone.0156090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy.
Collapse
Affiliation(s)
- Liman Niu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongxue Xie
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qian Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xinxin Chen
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (ZL); (JG)
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (ZL); (JG)
| |
Collapse
|
28
|
Dai X, Yi X, Sun Z, Ruan P. Cimicifuga foetida L. plus adefovir effectively inhibits the replication of hepatitis B virus in patients with chronic hepatitis B. Biomed Rep 2016; 4:493-497. [PMID: 27073640 DOI: 10.3892/br.2016.601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/21/2016] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to assess the anti-hepatitis B virus (HBV) effect of Cimicifuga foetida L. (C. foetida) in the patients with chronic hepatitis B (CHB). A total of 60 randomly selected patients with CHB were recruited and divided into groups I and II. The patients in group I received a monotherapy of adefovir (ADV), and the patients in group II received a combination therapy of ADV and C. foetida for >48 weeks. Intrahepatic (IH) HBV covalently closed circular DNA (cccDNA), serum HBV DNA, hepatitis B surface antigen (HBsAg), alanine aminotransferase levels and serum interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) levels were quantified during the test. Following the treatment, a significant reduction of the median IH cccDNA level was identified in group II (P=0.017), but not in group I (P=0.05, and P=0.01 between the 2 groups), and a significant reduction of log10 HBsAg was identified in groups I (P=0.012) and II (P<0.0001, and P=0.20 between the 2 groups). A significant increase of the median serum IFN-γ level was found in group II (P=0.0005), but not in group I (P=0.06, and P=0.004 between the 2 groups), and a significant reduction of the median TGF-β level was identified in groups I (P<0.0001) and II (P<0.0001, and P=0.002 between the 2 groups). A total of 24 patients in group I, and 27 patients in group II achieved a sustained virological response (P=0.0386), and 20 patients in group I and 24 in group II achieved hepatitis B e antigen seroclearance (P=0.0442). In conclusion, C. foetida can effectively inhibit HBV transcription and replication in the patients by stimulating the release of the inflammatory cytokines, such as IFN-γ.
Collapse
Affiliation(s)
- Xiufang Dai
- Department of Breast Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xianfu Yi
- Department of Emergency, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zequn Sun
- Department of Breast Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Peng Ruan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
29
|
Lamontagne J, Mell JC, Bouchard MJ. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression. PLoS Pathog 2016; 12:e1005438. [PMID: 26891448 PMCID: PMC4758756 DOI: 10.1371/journal.ppat.1005438] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.
Collapse
Affiliation(s)
- Jason Lamontagne
- Graduate Program in Microbiology and Immunology, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua C. Mell
- Department of Microbiology and Immunology, Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
30
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
31
|
Serum miR-181b Is Correlated with Hepatitis B Virus Replication and Disease Progression in Chronic Hepatitis B Patients. Dig Dis Sci 2015; 60:2346-52. [PMID: 25976622 DOI: 10.1007/s10620-015-3649-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previously, we reported that microRNA-181b (miR-181b) activates hepatic stellate cells partly through the phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/Akt pathway. AIMS The main objective of this study was to ascertain whether serum miR-181b expression is correlated with that of liver hepatitis B virus (HBV) DNA and disease progression in chronic hepatitis B (CHB) patients. METHODS Serum miR-181b and liver HBV DNA levels were quantified in 64 CHB patients with real-time PCR. Liver fibrosis and necroinflammation were graded according to the Ishak scoring system. RESULTS Serum miR-181b levels were evaluated in the CHB group, compared with healthy controls. Expression in patients with HBsAg (+) was higher than that in patients with HBsAg (-). Notably, serum miR-181b and liver HBV DNA levels were significantly correlated (P < 0.05). Serum miR-181 levels were higher in patients with serum HBV DNA > 10(3) IU/ml (P = 0.017), histologic activity index (HAI) >8 (P = 0.001) and fibrosis score >4 (P < 0.0001). Liver HBV DNA levels were higher in patients with abnormal alanine aminotransferase (ALT) values (P = 0.004), serum HBV DNA levels > 10(3) IU/ml (P = 0.034) and fibrosis score >4 (P = 0.006). Using multivariate logistic regression analysis, serum miR-181b was identified as an independent predictor of disease progression (OR 4.172, 95 % CI 1.838-9.473, P = 0.009 for HAI >8; OR 5.387, 95 % CI 2.067-14.036, P = 0.001 for fibrosis score >4). CONCLUSIONS Serum miR-181b is correlated with liver and serum HBV DNA levels as well as disease progression in CHB.
Collapse
|
32
|
Lamontagne J, Steel LF, Bouchard MJ. Hepatitis B virus and microRNAs: Complex interactions affecting hepatitis B virus replication and hepatitis B virus-associated diseases. World J Gastroenterol 2015; 21:7375-7399. [PMID: 26139985 PMCID: PMC4481434 DOI: 10.3748/wjg.v21.i24.7375] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) is the leading risk factor for the development of hepatocellular carcinoma (HCC). With nearly 750000 deaths yearly, hepatocellular carcinoma is the second highest cause of cancer-related death in the world. Unfortunately, the molecular mechanisms that contribute to the development of HBV-associated HCC remain incompletely understood. Recently, microRNAs (miRNAs), a family of small non-coding RNAs that play a role primarily in post-transcriptional gene regulation, have been recognized as important regulators of cellular homeostasis, and altered regulation of miRNA expression has been suggested to play a significant role in virus-associated diseases and the development of many cancers. With this in mind, many groups have begun to investigate the relationship between miRNAs and HBV replication and HBV-associated disease. Multiple findings suggest that some miRNAs, such as miR-122, and miR-125 and miR-199 family members, are playing a role in HBV replication and HBV-associated disease, including the development of HBV-associated HCC. In this review, we discuss the current state of our understanding of the relationship between HBV and miRNAs, including how HBV affects cellular miRNAs, how these miRNAs impact HBV replication, and the relationship between HBV-mediated miRNA regulation and HCC development. We also address the impact of challenges in studying HBV, such as the lack of an effective model system for infectivity and a reliance on transformed cell lines, on our understanding of the relationship between HBV and miRNAs, and propose potential applications of miRNA-related techniques that could enhance our understanding of the role miRNAs play in HBV replication and HBV-associated disease, ultimately leading to new therapeutic options and improved patient outcomes.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Virus Replication
Collapse
|
33
|
Zheng J, Zhou Z, Xu Z, Li G, Dong P, Chen Z, Lin D, Chen B, Yu F. Serum microRNA-125a-5p, a useful biomarker in liver diseases, correlates with disease progression. Mol Med Rep 2015; 12:1584-90. [PMID: 25815788 DOI: 10.3892/mmr.2015.3546] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
It has been demonstrated that liver microRNA-125a-5p (miR-125a-5p) is correlated with disease progression in different liver diseases, including liver fibrosis and hepatocellular carcinoma (HCC). The present study investigated whether serum miR-125a-5p correlated with the progression of different liver diseases. Serum samples were obtained from healthy individuals, patients with chronic hepatitis B who had undergone a liver biopsy, and patients with HCC and were analyzed for the levels of miR-125a-5p. Compared with the healthy controls, the serum levels of miR-125a-5p were significantly higher in the liver fibrosis serum, and were reduced in HCC. With the development of liver fibrosis, there was a significant increase in the expression of miR-125a-5p (P<0.05). In comparing histological activity index (HAI) scores, higher expression levels of miR125a-5p were observed in the high HAI score group (P<0.05). Furthermore, correlation between serum miR-125a-5p and viral replication (P<0.001) was observed. Notably, miR-125a-5p demonstrated significant correlation with other markers in the liver fibrosis group (P<0.001). In the patients with HCC, lower serum levels of miR-125a-5p were correlated with a poor prognosis, determined by Kaplan-Meier curve analysis (P=0.009). In the liver fibrosis and HCC groups, different expression levels of serum miR-125a-5p were observed, and were correlated with disease progression. The results of the present study suggested that serum miR-125a-5p may be used as a non-invasive biomarker for monitoring disease progression in liver diseases.
Collapse
Affiliation(s)
- Jianjian Zheng
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhenxu Zhou
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziqiang Xu
- Institute of Organ Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guojun Li
- Department of Hepatology, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhanguo Chen
- Centre for Laboratory Diagnosis, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Dezhao Lin
- Department of General Surgery, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Bicheng Chen
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fujun Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
34
|
Kumar M, Sharma Y, Bandi S, Gupta S. Endogenous antiviral microRNAs determine permissiveness for hepatitis B virus replication in cultured human fetal and adult hepatocytes. J Med Virol 2015; 87:1168-83. [PMID: 25690916 DOI: 10.1002/jmv.24145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 12/13/2022]
Abstract
Superior cell culture models for hepatitis B virus (HBV) will help advance insights into host-virus interactions. To identify mechanisms regulating HBV replication, this study used cultured human HepG2 cells and adult or fetal hepatocytes transduced with adenoviral vector to express HBV upstream of green fluorescent protein. The vector efficiently transduced all cell types. In HepG2 cells, replicative viral intermediates, nucleocapsid-associated HBcAg, and HBsAg were expressed. However, in fetal or adult hepatocytes, pregenomic HBV RNA and viral RNAs were expressed, but nucleocapsid-associated HBcAg in cells or HBsAg in culture medium were absent, indicating interruptions in viral replication due to possible microRNA-related interference. MicroRNA profiling demonstrated that a large number of microRNAs with antiviral potential were differentially expressed in hepatocytes after culture. In transfection assays using HepG2 cells, candidate antiviral microRNAs, e.g., hsa-miR-24 or hsa-miR-638 decreased the levels of HBV transcripts or HBV gene products. Since candidate microRNAs could have targeted interferon response genes as an alternative explanation interferon signaling was examined. However, HBV replication in cultured hepatocytes was not restored despite successful inhibition of JAK1/2-STAT signaling by the inhibitor, ruxolitinib. Therefore, HBV was unable to complete replication in cultured hepatocytes due to expression of multiple antiviral microRNAs. This mechanism should help understand restrictions in HBV replication for developing HBV models in cultured cells while providing frameworks for pathophysiological studies of HBV replication in subsets of hepatocytes or stem/progenitor cells during hepatitis.
Collapse
Affiliation(s)
- Mukesh Kumar
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | |
Collapse
|
35
|
Fiorino S, Bacchi-Reggiani L, Sabbatani S, Grizzi F, di Tommaso L, Masetti M, Fornelli A, Bondi A, de Biase D, Visani M, Cuppini A, Jovine E, Pession A. Possible role of tocopherols in the modulation of host microRNA with potential antiviral activity in patients with hepatitis B virus-related persistent infection: a systematic review. Br J Nutr 2014; 112:1751-1768. [PMID: 25325563 DOI: 10.1017/s0007114514002839] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) infection represents a serious global health problem and persistent HBV infection is associated with an increased risk of cirrhosis, hepatocellular carcinoma and liver failure. Recently, the study of the role of microRNA (miRNA) in the pathogenesis of HBV has gained considerable interest as well as new treatments against this pathogen have been approved. A few studies have investigated the antiviral activity of vitamin E (VE) in chronic HBV carriers. Herein, we review the possible role of tocopherols in the modulation of host miRNA with potential anti-HBV activity. A systematic research of the scientific literature was performed by searching the MEDLINE, Cochrane Library and EMBASE databases. The keywords used were 'HBV therapy', 'HBV treatment', 'VE antiviral effects', 'tocopherol antiviral activity', 'miRNA antiviral activity' and 'VE microRNA'. Reports describing the role of miRNA in the regulation of HBV life cycle, in vitro and in vivo available studies reporting the effects of VE on miRNA expression profiles and epigenetic networks, and clinical trials reporting the use of VE in patients with HBV-related chronic hepatitis were identified and examined. Based on the clinical results obtained in VE-treated chronic HBV carriers, we provide a reliable hypothesis for the possible role of this vitamin in the modulation of host miRNA profiles perturbed by this viral pathogen and in the regulation of some cellular miRNA with a suggested potential anti-HBV activity. This approach may contribute to the improvement of our understanding of pathogenetic mechanisms involved in HBV infection and increase the possibility of its management and treatment.
Collapse
Affiliation(s)
- S Fiorino
- Unità Operativa di Medicina Interna, Ospedale di Budrio,Via Benni 44,40065Budrio, Bologna,Italy
| | - L Bacchi-Reggiani
- Istituto di Cardiologia, Policlinico S. Orsola-Malpighi, Università degli Studi di Bologna,Bologna,Italy
| | - S Sabbatani
- Istituto di Malattie Infettive, Policlinico S. Orsola-Malpighi, Università degli Studi di Bologna,Bologna,Italy
| | - F Grizzi
- Humanitas Clinical and Research Center,Rozzano, Milano,Italy
| | - L di Tommaso
- Humanitas Clinical and Research Center,Rozzano, Milano,Italy
| | - M Masetti
- Unità Operativa di Chirurgia A, Ospedale Maggiore Bologna,Bologna,Italy
| | - A Fornelli
- Servizio di Anatomia Patologica, Ospedale Maggiore,Bologna,Italy
| | - A Bondi
- Servizio di Anatomia Patologica, Ospedale Maggiore,Bologna,Italy
| | - D de Biase
- Dipartimento di Medicina Sperimentale,Università di Bologna, Ospedale Bellaria,Bologna,Italy
| | - M Visani
- Dipartimento di Farmacia e Biotecnologie,Università di Bologna,Bologna,Italy
| | - A Cuppini
- Unità Operativa di Medicina Interna, Ospedale di Budrio,Via Benni 44,40065Budrio, Bologna,Italy
| | - E Jovine
- Unità Operativa di Chirurgia A, Ospedale Maggiore Bologna,Bologna,Italy
| | - A Pession
- Dipartimento di Farmacia e Biotecnologie,Università di Bologna,Bologna,Italy
| |
Collapse
|
36
|
Qureshi A, Thakur N, Monga I, Thakur A, Kumar M. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau103. [PMID: 25380780 PMCID: PMC4224276 DOI: 10.1093/database/bau103] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host–virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ‘VIRmiRNA’ and 7283 of their target genes in ‘VIRmiRtar’. Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ‘AVIRmir’. The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna
Collapse
Affiliation(s)
- Abid Qureshi
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Nishant Thakur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Isha Monga
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Anamika Thakur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
37
|
Xie KL, Zhang YG, Liu J, Zeng Y, Wu H. MicroRNAs associated with HBV infection and HBV-related HCC. Theranostics 2014; 4:1176-92. [PMID: 25285167 PMCID: PMC4183996 DOI: 10.7150/thno.8715] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global problem and a major risk factor for hepatocellular carcinoma (HCC). microRNAs (miRNAs) comprise a group of small noncoding RNAs regulating gene expression at the posttranslational level, thereby participating in fundamental biological processes, including cell proliferation, differentiation, and apoptosis. In this review, we summarize the roles of miRNAs in HBV infection, the recently identified mechanism underlying dysregulation of miRNAs in HBV-associated HCC, and their association with hepatocarcinogenesis. Moreover, we discuss the recent advances in the use of circulating miRNAs in the early diagnosis of HCC as well as therapies based on these aberrantly expressed miRNAs.
Collapse
|
38
|
Mosca N, Castiello F, Coppola N, Trotta MC, Sagnelli C, Pisaturo M, Sagnelli E, Russo A, Potenza N. Functional interplay between hepatitis B virus X protein and human miR-125a in HBV infection. Biochem Biophys Res Commun 2014; 449:141-145. [PMID: 24824183 DOI: 10.1016/j.bbrc.2014.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/02/2014] [Indexed: 12/11/2022]
Abstract
The hepatitis B virus (HBV) is a widespread human pathogen and chronic HBV infection is a major risk factor for hepatocellular carcinoma (HCC). Some cellular microRNAs are emerging as important regulators of virus-host interaction, indirectly or directly modulating HBV replication and pathogenesis. miR-125a binds the viral transcript encoding the surface antigen and interferes with its expression, thus inhibiting viral replication. Intriguingly, liver miR-125a expression has been found increased in patients with high levels of hepatic HBV-DNA. The present study investigates the mechanism by which liver exposure to HBV induces the expression of miR-125a. The analyses were first performed on liver biopsies from HBV patients, showing that the expression of the viral transactivator X protein (HBx) paralleled the increase of miR-125a expression. Then, transfection of HCC cell lines with an HBx-expressing vector showed a substantial increase of miR-125a expression. Overall, the available data depict a self-inhibitory feedback loop in which HBV, through HBx, increases the expression of miR-125a, that in turn interferes with expression of HBV surface antigen, thus repressing viral replication.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| | - Filomena Castiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, via L. Armanni 5, 80135 Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, via L. Armanni 5, 80135 Naples, Italy.
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, via L. Armanni 5, 80135 Naples, Italy.
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, via L. Armanni 5, 80135 Naples, Italy.
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
39
|
Zhang S, Sun WY, Wu JJ, Wei W. TGF-β signaling pathway as a pharmacological target in liver diseases. Pharmacol Res 2014; 85:15-22. [PMID: 24844437 DOI: 10.1016/j.phrs.2014.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/22/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023]
Abstract
Transforming growth factor β (TGF-β) belongs to a class of pleiotropic cytokines that are involved in the processes of embryonic development, wound healing, cell proliferation, and differentiation. Moreover, TGF-β is also regarded as a central regulator in the pathogenesis and development of various liver diseases because it contributes to almost all of the stages of disease progression. A range of liver cells are considered to secrete TGF-β ligands and express related receptors and, consequently, play a crucial role in the progression of liver disease via different signal pathways. In this manuscript, we review the role of the TGF-β signaling pathway in liver disease and the potential of targeting the TGF-β signaling in the pharmacological treatment of liver diseases.
Collapse
Affiliation(s)
- Sen Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, Anhui Province, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, Anhui Province, China.
| | - Jing-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, Anhui Province, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, Anhui Province, China.
| |
Collapse
|
40
|
Karimi-Googheri M, Daneshvar H, Nosratabadi R, Zare-Bidaki M, Hassanshahi G, Ebrahim M, Arababadi MK, Kennedy D. Important roles played by TGF-β in hepatitis B infection. J Med Virol 2013; 86:102-8. [PMID: 24009084 DOI: 10.1002/jmv.23727] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) which includes, fulminant, acute, chronic, asymptomatic, and occult HBV infection is the most prevalent virus that leads to human liver diseases. Chronic, asymptomatic, and occult infection can induce further sever diseases such as hepatocellular carcinoma (HCC) and cirrhosis of the liver. The underlying mechanisms that allow progression of the prolonged forms of the infection and subsequent HCC or cirrhosis of the liver are yet to be clarified. However, many researchers have suggested that immunological and genetic parameters may play important roles in the etiology of hepatitis B. Transforming growth factor beta (TGF-β) is an important cytokine with dual regulatory functions in the immune system and in the responses against viral infections. However, the pathways and mechanisms controlling these are not fully understood. The crucial roles of TGF-β in the development of Th17 and T regulatory lymphocytes, the main cell types involved in autoimmunity and destructive immune related diseases, have been documented and this provides insights into TGF-β function during hepatitis infection and subsequent HCC and cirrhosis of the liver. Recent findings also confirm that TGF-β directly alters hepatocyte function during hepatitis B, hence, the aim of this review is to address the current data regarding the association and status of TGF-β with hepatitis B infection and its related disorders including HCC and cirrhosis of the liver.
Collapse
|
41
|
Coppola N, Potenza N, Pisaturo M, Mosca N, Tonziello G, Signoriello G, Messina V, Sagnelli C, Russo A, Sagnelli E. Liver microRNA hsa-miR-125a-5p in HBV chronic infection: correlation with HBV replication and disease progression. PLoS One 2013; 8:e65336. [PMID: 23843939 PMCID: PMC3701058 DOI: 10.1371/journal.pone.0065336] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/24/2013] [Indexed: 02/06/2023] Open
Abstract
To study in HBsAg chronic carriers the expression of liver hsa-miR-125a-5p and its correlation with liver HBV-DNA values and clinical presentation, 27 consecutive Caucasian, HBsAg/anti-HBe/HBV-DNA-positive patients who were naive to nucleos(t)ide analogues and interferon therapy and had no marker of HCV, HDV or HIV infection and no history of alcohol intake were enrolled. For each patient, liver HBV DNA and liver hsa-miR-125a-5p were quantified by real-time PCR in relation to β-globin DNA or RNU6B, respectively. Liver fibrosis and necroinflammation were graded by applying Ishak's scoring system. Liver hsa-miR-125a-5p was detected in all patients enrolled and a correlation between its concentration and liver HBV DNA was demonstrated (p<0.0001). Higher liver hsa-miR-125a-5p concentrations were observed in patients with HBV-DNA plasma level >10(3) IU/ml (p<0.02), in those with HAI >6 (p = 0.02) and those with fibrosis score >2 (p<0.02) than in patients with lower scores. Higher HBV-DNA liver concentrations were found in patients with abnormal AST (p = 0.005) and ALT serum levels (p = 0.05), in those with serum HBV DNA higher than 10E3 IU/mL (p = 0.001) and those with fibrosis score >2 (p = 0.02) than in patients with a lower load. By multivariate logistic regression analysis, liver hsa-miR-125a-5p was identified as an independent predictor of disease progression: O.R. = 4.21, C.I. 95% = 1.08-16.43, p<0.05, for HAI >6; O.R. = 3.12, C.I. 95% = 1.17-8.27, p<0.05, for fibrosis score >2. In conclusion, in HBsAg/anti-HBe-positive patients, the liver hsa-miR-125a-5p level correlated with liver and plasma HBV-DNA values and was associated to a more severe disease progression.
Collapse
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Naples, Italy
| | - Nicoletta Potenza
- Department of Life Sciences, Second University of Naples, Caserta, Italy
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Naples, Italy
| | - Nicola Mosca
- Department of Life Sciences, Second University of Naples, Caserta, Italy
| | - Gilda Tonziello
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Naples, Italy
| | - Giuseppe Signoriello
- Department of Mental Health and Public Medicine, Section of Statistics, Second University of Naples, Naples, Italy
| | - Vincenzo Messina
- Division of Infectious and Tropical Diseases, AORN Sant'Anna e San Sebastiano di Caserta, Caserta, Italy
| | - Caterina Sagnelli
- Department of Clinical and Experimental Medicine and Surgery "F. Magrassi e A. Lanzara", Second University of Naples, Naples, Italy
| | - Aniello Russo
- Department of Life Sciences, Second University of Naples, Caserta, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Naples, Italy
- Division of Infectious and Tropical Diseases, AORN Sant'Anna e San Sebastiano di Caserta, Caserta, Italy
| |
Collapse
|
42
|
Potenza N, Russo A. Biogenesis, evolution and functional targets of microRNA-125a. Mol Genet Genomics 2013; 288:381-9. [PMID: 23783428 DOI: 10.1007/s00438-013-0757-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/31/2013] [Indexed: 02/07/2023]
Abstract
MicroRNAs are small non-coding RNAs that regulate gene expression at post-transcriptional level by inhibiting translation of complementary mRNAs and/or targeting them for degradation. MicroRNAs play crucial roles in development, cell differentiation, and apoptosis. In addition, recent studies indicate that they are important regulators of virus-host interactions. MicroRNA-125a is a homolog of C. elegans lin-4, the first discovered microRNA, shown to dictate the onset of larval stages in the nematode. In this review, we focus on the gene structure of microRNA-125a, its evolution, its expression pattern in mammalian organs and tissues, and its functional targets. Overall, the available data indicate that microRNA-125a plays crucial roles both in development and in the adult tissues. In fact, it (1) contributes to the control of phase transitions in development and/or cell differentiation; (2) regulates the expression of several target proteins that are involved in cell proliferation, apoptosis, and migration; (3) interferes with the expression of the hepatitis B virus surface antigen in liver cells, thus counteracting viral replication. These findings suggest that delivery of microRNA-125a mimics or treatments that modulate its cellular expression may be valuable tools for the development of new therapeutic strategies for human diseases, including cancer and viral hepatitis B.
Collapse
Affiliation(s)
- Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy,
| | | |
Collapse
|