1
|
Vukovich MJ, Raju N, Kgagudi P, Manamela NP, Abu-Shmais AA, Gripenstraw KR, Wasdin PT, Shen X, Dwyer B, Akoad J, Lynch RM, Montefiori DC, Richardson SI, Moore PL, Georgiev IS. Development of LIBRA-seq for the guinea pig model system as a tool for the evaluation of antibody responses to multivalent HIV-1 vaccines. J Virol 2024; 98:e0147823. [PMID: 38085509 PMCID: PMC10804973 DOI: 10.1128/jvi.01478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/24/2024] Open
Abstract
Consistent elicitation of serum antibody responses that neutralize diverse clades of HIV-1 remains a primary goal of HIV-1 vaccine research. Prior work has defined key features of soluble HIV-1 Envelope (Env) immunogen cocktails that influence the neutralization breadth and potency of multivalent vaccine-elicited antibody responses including the number of Env strains in the regimen. We designed immunization groups that consisted of different numbers of SOSIP Env strains to be used in a cocktail immunization strategy: the smallest cocktail (group 2) consisted of a set of two Env strains, which were a subset of the three Env strains that made up group 3, which, in turn, were a subset of the six Env strains that made up group 4. Serum neutralizing titers were modestly broader in guinea pigs that were immunized with a cocktail of three Envs compared to cocktails of two and six, suggesting that multivalent Env immunization could provide a benefit but may be detrimental when the cocktail size is too large. We then adapted the LIBRA-seq platform for antibody discovery to be compatible with guinea pigs, and isolated several tier 2 neutralizing monoclonal antibodies. Three antibodies isolated from two separate guinea pigs were similar in their gene usage and CDR3s, establishing evidence for a guinea pig public clonotype elicited through vaccination. Taken together, this work investigated multivalent HIV-1 Env immunization strategies and provides a novel methodology for screening guinea pig B cell receptor antigen specificity at a high-throughput level using LIBRA-seq.IMPORTANCEMultivalent vaccination with soluble Env immunogens is at the forefront of HIV-1 vaccination strategies but little is known about the influence of the number of Env strains included in vaccine cocktails. Our results suggest that adding more strains is sometimes beneficial but may be detrimental when the number of strains is too high. In addition, we adapted the LIBRA-seq platform to be compatible with guinea pig samples and isolated several tier 2 neutralizing monoclonal antibodies, some of which share V and J gene usage and >70% CDR3 identity, thus establishing the existence of public clonotypes in guinea pigs elicited through vaccination.
Collapse
Affiliation(s)
- Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Prudence Kgagudi
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P. Manamela
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathryn R. Gripenstraw
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Perry T. Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bridget Dwyer
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jumana Akoad
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Rebecca M. Lynch
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simone I. Richardson
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Immunology and Inflammation, Vanderbilt Institute for Infection, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Dale GA, Wilkins DJ, Rowley J, Scharer CD, Tipton CM, Hom J, Boss JM, Corces V, Sanz I, Jacob J. Somatic Diversification of Rearranged Antibody Gene Segments by Intra- and Interchromosomal Templated Mutagenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2141-2153. [PMID: 35418472 PMCID: PMC9047068 DOI: 10.4049/jimmunol.2100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The ability of the humoral immune system to generate Abs capable of specifically binding a myriad of Ags is critically dependent on the somatic hypermutation program. This program induces both templated mutations (i.e., gene conversion) and untemplated mutations. In humans, somatic hypermutation is widely believed to result in untemplated point mutations. In this study, we demonstrate detection of large-scale templated events that occur in human memory B cells and circulating plasmablasts. We find that such mutations are templated intrachromosomally from IGHV genes and interchromosomally from IGHV pseudogenes as well as other homologous regions unrelated to IGHV genes. These same donor regions are used in multiple individuals, and they predominantly originate from chromosomes 14, 15, and 16. In addition, we find that exogenous sequences placed at the IgH locus, such as LAIR1, undergo templated mutagenesis and that homology appears to be the major determinant for donor choice. Furthermore, we find that donor tracts originate from areas in proximity with open chromatin, which are transcriptionally active, and are found in spatial proximity with the IgH locus during the germinal center reaction. These donor sequences are inserted into the Ig gene segment in association with overlapping activation-induced cytidine deaminase hotspots. Taken together, these studies suggest that diversity generated during the germinal center response is driven by untemplated point mutations as well as templated mutagenesis using local and distant regions of the genome.
Collapse
Affiliation(s)
- Gordon A Dale
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA
| | - Daniel J Wilkins
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA
| | - Jordan Rowley
- Department of Biology, Emory University, Atlanta, GA
| | | | - Christopher M Tipton
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Jennifer Hom
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Jeremy M Boss
- Emory University School of Medicine, Emory University, Atlanta, GA; and
| | - Victor Corces
- Department of Biology, Emory University, Atlanta, GA
| | - Ignacio Sanz
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Joshy Jacob
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA;
| |
Collapse
|
3
|
Wang Y, Krémer V, Iannascoli B, Goff ORL, Mancardi DA, Ramke L, de Chaisemartin L, Bruhns P, Jönsson F. Specificity of mouse and human Fcgamma receptors and their polymorphic variants for IgG subclasses of different species. Eur J Immunol 2022; 52:753-759. [PMID: 35133670 DOI: 10.1002/eji.202149766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/05/2022]
Abstract
Immunoglobulin G (IgG) is the predominant antibody class generated during infections and used for the generation of therapeutic antibodies. Antibodies are mainly characterized in or generated from animal models that support particular infections, respond to particular antigens or allow the generation of hybridomas. Due to the availability of numerous transgenic mouse models and the ease of performing bioassays with human blood cells in vitro, most antibodies from species other than mice and humans are tested in vitro using human cells and/or in vivo using mice. In this process, it is expected, but not yet systematically documented, that IgG from these species interact with human or mouse IgG receptors (FcγRs). In this study, we undertook a systematic assessment of binding specificities of IgG from various species to the families of mouse and human FcγRs, including their polymorphic variants. Our results document the specific binding patterns for each of these IgG (sub)classes, reveal possible caveats of antibody-based immunoassays, and will be a useful reference for the transition from one animal model to preclinical mouse models or human cell-based bioassays. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Wang
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Vanessa Krémer
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Bruno Iannascoli
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Odile Richard-Le Goff
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - David A Mancardi
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Leoni Ramke
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Luc de Chaisemartin
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015.,APHP, Bichat Hospital, Immunology Department, Paris, F-75018
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015.,CNRS, Paris, F-75016
| |
Collapse
|
4
|
Stokes JV, Walker DH, Varela-Stokes AS. The guinea pig model for tick-borne spotted fever rickettsioses: A second look. Ticks Tick Borne Dis 2020; 11:101538. [PMID: 32993947 PMCID: PMC7530330 DOI: 10.1016/j.ttbdis.2020.101538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The guinea pig (Cavia porcellus) has an established track record as an animal model, with its utility in rickettsial research documented as early as the turn of the 20th century. From identifying Rickettsia rickettsii as the agent of Rocky Mountain spotted fever and ticks as the natural transmission route to evaluating protective immunity and treatment for tick-borne rickettsiae, guinea pigs have been essential for advances in our understanding of spotted fever rickettsioses (SFR). Tick feeding on guinea pigs is feasible and results in transmission of tick-borne rickettsiae. The resulting infection leads to the recapitulation of SFR as defined by clinical signs that include fever, unthrift, and in the case of transmission by a Rickettsia parkeri-infected Amblyomma maculatum tick, a characteristic eschar at the site of the bite. No other small animal model recapitulates SFR, is large enough to collect multiple blood and skin samples for longitudinal studies, and has an immune system as similar to the human immune system. In the 1980s, the use of the guinea pig was significantly reduced due to advances made to the more reproductively prolific and inexpensive murine model. These advances included the development of genetically modified murine strains, which resulted in the expansion of murine-specific reagents and assays. Still, the advantages of the guinea pig as a model for SFR persist, novel assays are being developed to better monitor guinea pig immune responses, and tools, like CRISPR/Cas9, are now available. These technical advances allow guinea pigs to again contribute to our understanding of SFR. Importantly, returning to the guinea pig model with enhanced tools will enable rickettsial researchers to corroborate and potentially refine results acquired using mice. This minireview summarizes Cavia porcellus as an animal model for human tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- John V Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Andrea S Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
5
|
Al-Saffar FJ, Al-bbadi HN. Histomorphological and Histochemical Investigation of The Vagina of Adult Guinea Pigs (Cavia porcellus). THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i1.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study was carried out to identify the morphological, histological and histochemical features of the vagina of the adult guinea pig (Cavia porcellus). To perform such project, 14 adult guinea pigs at their diestrous period were bought from the local breeders directly. Animals were euthanized, dissected and subsequently specimens from the cranial, middle and caudal portions of the vagina were collected and fixed. Fixation was implemented by using 10% neutral buffered formalin and Bouin’s solution. Post routine processing such as dehydration, clearing, embedding and blocks preparation, tissue sections of 6 μm were prepared and stained by using hematoxylin-eosin, Masson’s Trichrome, Alcian blue and Periodic acid shiff stains. Gross findings revealed that the vagina in the adult guinea pigs was characteristically very long tube-like structure with wide diameter. The vagina entirely was running ventral to the colon and then under the rectum in the pelvic cavity. It was terminated caudally by the vaginal orifice independent to the urethral orifice of the urinary system. Microscopic findings revealed mucous columnar lining epithelium which was folded at the vaginal fornix decreased caudally toward the external vaginal orifice where the epithelium changed into stratified squamous epithelium not keratinized. Thin dense lamina propria was continuous with loose connective tissue of the submucosa. Thickness of tunica muscularis was decreased which was surrounded with thick adventitia. Histochemically, the non-ciliated mucous columnar cells present in the lining epithelium of the cranial and middle regions of the vagina were positively stained with AB (pH 2.5) and PAS stains. The reaction with AB (pH 2.5) was more intense compared to the staining with PAS so that it indicated that mucin was more acidic than neutral in nature. Characteristic conclusions include that the vagina opening was U-shaped not circular and closed by transparent closure during the diestrous period. Histologically, the vagina also lined with mucoid lining and only the orifice and adjacent area lined with stratified squamous epithelium. Moreover, current study recorded differences in both macroscopic and microscopic aspects of the vagina in the guinea pigs compared to other animal considered laboratory species.
Collapse
|
6
|
AL-Saffar FJ, Nasif RH. Morphological Study of The Pancreas and Duodenum in Adult Guinea Pigs (Cavia porcellus). THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i1.928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to investigate the morphological features of the pancreas and duodenum of the adult males and females guinea pigs. Eight animals of each sex were collected to conduct this project. The selected organs were photographed in situ and macro morphometric measurements were conducted on them. Gross findings revealed that the pancreas of guinea pig was of compact type, of two lobes (right and left) connected by large central part (body). The organ drains the pancreatic secretion toward the last part of the ascending duodenum via minor pancreatic duct with absence of major pancreatic duct. The duodenum of the guinea pig was very short and V-shaped. The beginning of the duodenum contains duodenal papilla in which found central orifice for the exit of bile secretions of the common bile duct. In conclusions, the present findings showed the presence of only one minor pancreatic duct and such result was significantly different than most rodents by having major pancreatic duct. The duodenum in the studied guinea pigs was characteristically very short and V-shaped differently to other animals that have U-shaped and long duodenum.
Collapse
|
7
|
Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci 2019; 8:145-169. [PMID: 31846352 DOI: 10.1146/annurev-animal-021419-083720] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
Collapse
Affiliation(s)
- Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China;
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China;
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Hospital Huddinge, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
8
|
Lei L, Tran K, Wang Y, Steinhardt JJ, Xiao Y, Chiang CI, Wyatt RT, Li Y. Antigen-Specific Single B Cell Sorting and Monoclonal Antibody Cloning in Guinea Pigs. Front Microbiol 2019; 10:672. [PMID: 31065249 PMCID: PMC6489837 DOI: 10.3389/fmicb.2019.00672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Here, we have established an antigen-specific single B cell sorting and monoclonal antibody (mAb) cloning platform for analyzing immunization- or viral infection-elicited antibody response at the clonal level in guinea pigs. We stained the peripheral blood mononuclear cells (PBMCs) from a guinea pig immunized with HIV-1 envelope glycoprotein trimer mimic (BG505 SOSIP), using anti-guinea pig IgG and IgM fluorochrome conjugates, along with fluorochrome-conjugated BG505 SOSIP trimer as antigen (Ag) probe to sort for Ag-specific IgGhi IgMlo B cells at single cell density. We then designed a set of guinea pig immunoglobulin (Ig) gene-specific primers to amplify cDNAs encoding B cell receptor variable regions [V(D)J segments] from the sorted Ag-specific B cells. B cell V(D)J sequences were verified by sequencing and annotated by IgBLAST, followed by cloning into Ig heavy- and light-chain expression vectors containing human IgG1 constant regions and co-transfection into 293F cells to reconstitute full-length antibodies in a guinea pig-human chimeric IgG1 format. Of 88 antigen-specific B cells isolated, we recovered 24 (27%) cells with native-paired heavy and light chains. Furthermore, 85% of the expressed recombinant mAbs bind positively to the antigen probe by enzyme-linked immunosorbent and/or BioLayer Interferometry assays, while five mAbs from four clonal lineages neutralize the HIV-1 tier 1 virus ZM109. In summary, by coupling Ag-specific single B cell sorting with gene-specific single cell RT-PCR, our method exhibits high efficiency and accuracy, which will facilitate future efforts in isolating mAbs and analyzing B cell responses to infections or immunizations in the guinea pig model.
Collapse
Affiliation(s)
- Lin Lei
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Karen Tran
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Yimeng Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - James J Steinhardt
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Richard T Wyatt
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Matsuzawa S, Isobe M, Kurosawa N. Guinea pig immunoglobulin VH and VL naïve repertoire analysis. PLoS One 2018; 13:e0208977. [PMID: 30543679 PMCID: PMC6292586 DOI: 10.1371/journal.pone.0208977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
The guinea pig has been used as a model to study various human infectious diseases because of its similarity to humans regarding symptoms and immune response, but little is known about the humoral immune response. To better understand the mechanism underlying the generation of the antibody repertoire in guinea pigs, we performed deep sequencing of full-length immunoglobulin variable chains from naïve B and plasma cells. We gathered and analyzed nearly 16,000 full-length VH, Vκ and Vλ genes and analyzed V and J gene segment usage profiles and mutation statuses by annotating recently reported genome data of guinea pig immunoglobulin genes. We found that approximately 70% of heavy, 73% of kappa and 81% of lambda functional germline V gene segments are integrated into the actual V(D)J recombination events. We also found preferential use of a particular V gene segment and accumulated mutation in CDRs 1 and 2 in antigen-specific plasma cells. Our study represents the first attempt to characterize sequence diversity in the expressed guinea pig antibody repertoire and provides significant insight into antibody repertoire generation and Ig-based immunity of guinea pigs.
Collapse
Affiliation(s)
- Shun Matsuzawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, Toyama-shi, Toyama, Japan
- Medical & Biological Laboratories Co., Ltd., Ina-shi, Nagano, Japan
| | - Masaharu Isobe
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, Toyama-shi, Toyama, Japan
| | - Nobuyuki Kurosawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, Toyama-shi, Toyama, Japan
- * E-mail:
| |
Collapse
|
10
|
Collins AM, Watson CT. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol 2018; 9:2249. [PMID: 30349529 PMCID: PMC6186787 DOI: 10.3389/fimmu.2018.02249] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic variants of germline light chain genes is also limited, even in well-studied species. In this review, the implications of this lack of diversity are considered. We explore germline and rearranged light chain genes in a variety of species, with a particular focus on human and mouse genes. The importance of the number, organization and orientation of the genes for the control of repertoire development is discussed, and we consider how primary rearrangements and receptor editing together shape the expressed light chain repertoire. The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has been hypothesized that an important function of the light chain is to guard against self-reactivity, and the role of secondary rearrangements in this process could explain the genomic organization of the light chain genes. It could also explain why the light chain repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that suitable light chain partners are usually available for each heavy chain that forms early in B cell development. We suggest that the co-evolved loci of the house mouse often became separated during the inbreeding of laboratory mice, resulting in new pairings of loci that are derived from different sub-species of the house mouse. A resulting vulnerability to self-reactivity could explain at least some mouse models of autoimmune disease.
Collapse
Affiliation(s)
- Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
11
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
12
|
Lanning DK, Esteves PJ, Knight KL. The remnant of the European rabbit (Oryctolagus cuniculus) IgD gene. PLoS One 2017; 12:e0182029. [PMID: 28832642 PMCID: PMC5568218 DOI: 10.1371/journal.pone.0182029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Although IgD first appeared, along with IgM, in the cartilaginous fishes and has been retained throughout subsequent vertebrate evolution, it has been lost in a diverse group of vertebrate species. We previously showed that, unlike vertebrates that express IgD, the rabbit lacks an IgD (Cδ) gene within 13.5 kb downstream of the IgM gene. We report here that, by conducting BLAST searches of rabbit Ig heavy chain genomic DNA with known mammalian IgD exons, we identified the remnant of the rabbit Cδ gene approximately 21 kb downstream of the IgM gene. The remnant Cδ locus lacks the δCH1 and hinge exons, but contains truncated δCH2 and δCH3 exons, as well as largely intact, but non-functional, secretory and transmembrane exons. In addition, we report that the Cδ gene probably became non-functional in leporids at least prior to the divergence of rabbits and hares ~12 million years ago.
Collapse
Affiliation(s)
- Dennis K. Lanning
- Department of Microbiology and Immunology, Center for Translational Research and Education, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
- * E-mail:
| | - Pedro J. Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Campus de Vairão, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Center for Translational Research and Education, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
13
|
Bastianello G, Arakawa H. A double-strand break can trigger immunoglobulin gene conversion. Nucleic Acids Res 2016; 45:231-243. [PMID: 27701075 PMCID: PMC5224512 DOI: 10.1093/nar/gkw887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022] Open
Abstract
All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy.,Università degli Studi di Milano, Dipartimento di Bioscienze, Via Celoria 26, 20133 Milan, Italy
| | - Hiroshi Arakawa
- IFOM - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
14
|
Han B, Yuan H, Wang T, Li B, Ma L, Yu S, Huang T, Li Y, Fang D, Chen X, Wang Y, Qiu S, Guo Y, Fei J, Ren L, Pan-Hammarström Q, Hammarström L, Wang J, Wang J, Hou Y, Pan Q, Xu X, Zhao Y. Multiple IgH Isotypes Including IgD, Subclasses of IgM, and IgY Are Expressed in the Common Ancestors of Modern Birds. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:5138-5147. [PMID: 27183632 DOI: 10.4049/jimmunol.1600307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 12/23/2022]
Abstract
Although evolutionarily just as ancient as IgM, it has been thought for many years that IgD is not present in birds. Based on the recently sequenced genomes of 48 bird species as well as high-throughput transcriptome sequencing of immune-related tissues, we demonstrate in this work that the ostrich (Struthio camelus) possesses a functional δ gene that encodes a membrane-bound IgD H chain with seven CH domains. Furthermore, δ sequences were clearly identified in many other bird species, demonstrating that the δ gene is widely distributed among birds and is only absent in certain bird species. We also show that the ostrich possesses two μ genes (μ1, μ2) and two υ genes (υ1, υ2), in addition to the δ and α genes. Phylogenetic analyses suggest that subclass diversification of both the μ and υ genes occurred during the early stages of bird evolution, after their divergence from nonavian reptiles. Although the positions of the two υ genes are unknown, physical mapping showed that the remaining genes are organized in the order μ1-δ-α-μ2, with the α gene being inverted relative to the others. Together with previous studies, our data suggest that birds and nonavian reptile species most likely shared a common ancestral IgH gene locus containing a δ gene and an inverted α gene. The δ gene was then evolutionarily lost in selected birds, whereas the α gene lost in selected nonavian reptiles. The data obtained in this study provide significant insights into the understanding of IgH gene evolution in tetrapods.
Collapse
Affiliation(s)
- Binyue Han
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hui Yuan
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tao Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bo Li
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Li Ma
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shuyang Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tian Huang
- School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Yan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Dongming Fang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Xiaoli Chen
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yongsi Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Si Qiu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Ying Guo
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Fei
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Qingjie Pan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
15
|
Qin T, Zhao H, Zhu H, Wang D, Du W, Hao H. Immunoglobulin genomics in the prairie vole (Microtus ochrogaster). Immunol Lett 2015; 166:79-86. [PMID: 26073565 DOI: 10.1016/j.imlet.2015.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 11/17/2022]
Abstract
In science, the prairie voles are ideal models for studying the regulatory mechanisms of social behavior in humans. The utility of the prairie vole as a biology model can be further enhanced by characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the prairie vole immunoglobulin heavy and light chain genes. The prairie vole IgH locus on chromosome 1 spans over 1600kb, and consists of at least 79 VH segments (28 potentially functional genes, 2 ORFs and 49 pseudogenes), 7 DH segments, 4 JH segments, four constant region genes (μ, γ, ɛ, and α), and two transmembrane regions of δ gene. The Igκ locus, found on three scaffolds (JH996430, JH996605 and JH996566), contains a totle of 124 Vκ segments (47 potentially functional genes, 1 ORF and 76 pseudogenes), 5 Jκ segments and a single Cκ gene. Two different transcriptional orientations were determined for these Vκ gene segments. In contrast, the Igλ locus on scaffold JH996473 and JH996489 includes 21 Vλ gene segments (14 potentially functional genes, 1 ORF and 6 pseudogenes), all with the same transcriptional polarity as the downstream Jλ-Cλ cluster. Phylogenetic analysis and sequence alignments suggested the prairie vole's large germline VH, Vκ and Vλ gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves.
Collapse
Affiliation(s)
- Tong Qin
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Huijing Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Dong Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
16
|
Kim HK, Falugi F, Thomer L, Missiakas DM, Schneewind O. Protein A suppresses immune responses during Staphylococcus aureus bloodstream infection in guinea pigs. mBio 2015; 6:e02369-14. [PMID: 25564466 PMCID: PMC4313907 DOI: 10.1128/mbio.02369-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/01/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links V(H)3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High V(H)3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host B cell responses. Immunization with SpA(KKAA), which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity. IMPORTANCE Staphylococcus aureus is the leading cause of soft tissue and bloodstream infections; however, a vaccine with clinical efficacy is not available. Using mice to model staphylococcal infection, earlier work identified protective antigens; however, corresponding human clinical trials did not reach their endpoints. We show that B cell receptor (IgM) cross-linking by protein A is an important immune evasion strategy of S. aureus that can be monitored in a guinea pig model of bloodstream infection. Further, immunization with nontoxigenic protein A enables infected guinea pigs to elicit antibody responses that are protective against S. aureus. Thus, the guinea pig model may support preclinical development of staphylococcal vaccines.
Collapse
|
17
|
Qin T, Zhu H, Wang D, Hao H, Du W. Genomic organization and expression of immunoglobulin genes in the Chinese hamster (Cricetulus griseus). Scand J Immunol 2014; 81:11-22. [PMID: 25271137 DOI: 10.1111/sji.12243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022]
Abstract
In science, the hamsters are widely used as a model for studying the human diseases because they display many features like humans. The utility of the Chinese hamster as a biology model can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization and expression of the Chinese hamster immunoglobulin heavy and light chain genes. The Chinese hamster IgH locus contains 268 VH segments (132 potentially functional genes, 12 ORFs and 124 pseudogenes), 4 DH segments, 6 JH segments, four constant region genes (μ, γ, ε and α) and one reverse δ remnant fragment. The Igκ locus contains only a single Cκ gene, 4 Jκ segments and 48 Vκ segments (15 potentially functional genes and 33 pseudogenes), whereas the Igλ locus contains 4 Cλ genes, but only Cλ 3 and Cλ 4 each preceded by a Jλ gene segment. A total of 49 Vλ segments (39 potentially functional genes, 3 ORFs and 7 pseudogenes) were identified. Analysis of junctions of the recombined V(D)J transcripts reveals complex diversity in both expressed H and κ sequences, but the microhomology-directed VJ recombination obviously results in very limited diversity in the Chinese hamster λ gene despite more potential germline-encoded combinatorial diversity. This is the first study to make a comprehensive analysis of the Ig genes in the Chinese hamster, which provides insights into the Ig genes in placental mammals.
Collapse
Affiliation(s)
- T Qin
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Sun Y, Liu Z, Li Z, Lian Z, Zhao Y. Phylogenetic conservation of the 3' cryptic recombination signal sequence (3'cRSS) in the VH genes of jawed vertebrates. Front Immunol 2012; 3:392. [PMID: 23267360 PMCID: PMC3526766 DOI: 10.3389/fimmu.2012.00392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/05/2012] [Indexed: 11/13/2022] Open
Abstract
The VH replacement process is a RAG-mediated secondary recombination in which the variable region of a rearranged VHDJH is replaced by a different germline VH gene. In almost all human and mouse VH genes, two sequence features appear to be crucial for VH replacement. First, an embedded heptamer, which is located near the 3' end of the rearranged VH gene, serves as a cryptic recombination signal sequence (3'cRSS) for the VH replacement process. Second, a short stretch of nucleotides located downstream of the 3'cRSS serve as a footprint of the original VH region, frequently encoding charged amino acids. In this review, we show that both of these two features are conserved in the VH genes of all jawed vertebrates, which suggests that the VH replacement process may be a conserved mechanism.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University Beijing, China
| | | | | | | | | |
Collapse
|