1
|
Zhao X, Yang J, Wang H, Xu H, Zhou Y, Duan L. MicroRNAs in Plants Development and Stress Resistance. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255181 DOI: 10.1111/pce.15546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/22/2025]
Abstract
Plant growth and development are governed by a rigorously timed sequence of ontogenetic programmes. MicroRNAs (miRNAs), a class of short noncoding RNAs, function as master regulators of gene expression by targeting mRNAs for cleavage or direct translational inhibition at the posttranscriptional level in eukaryotes. Numerous miRNA molecules that control significant agronomic properties in plants have been found. On the one hand, miRNAs target transcription factors (TFs) to determine plant structure, such as root development, internode elongation, leaf morphogenesis, sex determination and nutrient transition. On the other hand, miRNAs alter expression levels to adapt to biological and abiotic stresses, including fungi, bacteria, viruses, drought, waterlogging, high temperature, low temperature, salinity, nutrient deficiencies, heavy metals and other abiotic stresses. To fully understand the role of miRNAs in plants, we review the regulatory role of miRNAs in plant development and stress resistance. Beyond that, we propose that the novel miRNA in review can be effectively further studied with artificial miRNA (amiRNA) or short tandem target mimics (STTM) and miRNA delivery in vitro can be used to improve crop yield and agricultural sustainability.
Collapse
Affiliation(s)
- Xi Zhao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jia Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haiyan Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haidong Xu
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
2
|
Chopra S, Sharma SG, Kaur S, Kumar V, Guleria P. Understanding the microRNA-mediated regulation of plant-microbe interaction and scope for regulation of abiotic and biotic stress tolerance in plants. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2025; 136:102565. [DOI: 10.1016/j.pmpp.2025.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Zhang Y, Chen X, Geng S, Zhang X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. FRONTIERS IN PLANT SCIENCE 2025; 16:1545912. [PMID: 40017819 PMCID: PMC11866847 DOI: 10.3389/fpls.2025.1545912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025]
Abstract
Waterlogging is a major abiotic stress affecting plant growth and productivity. Regardless of rainfall or irrigated environments, plants frequently face waterlogging, which may range from short-term to prolonged durations. Excessive precipitation and soil moisture disrupt crop growth, not because of the water itself but due to oxygen deficiency caused by water saturation. This lack of oxygen triggers a cascade of detrimental effects. Once the soil becomes saturated, oxygen depletion leads to anaerobic respiration in plant roots, weakening their respiratory processes. Waterlogging impacts plant morphology, growth, and metabolism, often increasing ethylene production and impairing vital physiological functions. Plants respond to waterlogging stress by altering their morphological structures, energy metabolism, hormone synthesis, and signal transduction pathways. This paper synthesizes findings from previous studies to systematically analyze the effects of waterlogging on plant yield, hormone regulation, signal transduction, and adaptive responses while exploring the mechanisms underlying plant tolerance to waterlogging. For instance, waterlogging reduces crop yield and disrupts key physiological and biochemical processes, such as hormone synthesis and nutrient absorption, leading to deficiencies of essential nutrients like potassium and calcium. Under waterlogged conditions, plants exhibit morphological changes, including the formation of adventitious roots and the development of aeration tissues to enhance oxygen transport. This review also highlighted effective strategies to improve plant tolerance to waterlogging. Examples include strengthening field management practices, applying exogenous hormones such as 6-benzylaminopurine (6-BA) and γ-aminobutyric acid (GABA), overexpressing specific genes (e.g., ZmEREB180, HvERF2.11, and RAP2.6L), and modifying root architecture. Lastly, we discuss future challenges and propose directions for advancing research in this field.
Collapse
Affiliation(s)
- Yusen Zhang
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Xiaojuan Chen
- Inner Mongolia University of Bryophyte Resources and Conservation Laboratory, Inner Mongolia University, Hohhot, China
| | - Shiying Geng
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Xiujuan Zhang
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| |
Collapse
|
4
|
Zhang L, Wang S, Yang X, He L, Hu L, Tang R, Li J, Liu Z. Physiological and Multi-Omics Integrative Analysis Provides New Insights into Tolerance to Waterlogging Stress in Sesame ( Sesamum indicum L.). Int J Mol Sci 2025; 26:351. [PMID: 39796205 PMCID: PMC11720211 DOI: 10.3390/ijms26010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Plant growth and development require water, but excessive water hinders growth. Sesame (Sesamum indicum L.) is an important oil crop; it is drought-tolerant but sensitive to waterlogging, and its drought tolerance has been extensively studied. However, the waterlogging tolerance of sesame still has relatively few studies. In this study, two kinds of sesame, R (waterlogging-tolerant) and S (waterlogging-intolerant), were used as materials, and they were treated with waterlogging stress for 0, 24, 72, and 120 h. Physiological analysis showed that after waterlogging, sesame plants responded to stress by increasing the contents of ascorbate peroxidase (APX), glutathione (GSH), and some other antioxidants. The results of the multi-omics analysis of sesame under waterlogging stress revealed 15,652 (R) and 12,156 (S) differentially expressed genes (DEGs), 41 (R) and 47 (S) differentially expressed miRNAs (DEMis), and 896 (R) and 1036 (S) differentially accumulated metabolites (DAMs). The combined DEMi-DEG analysis that 24 DEMis regulated 114 DEGs in response to waterlogging stress. In addition, 13 hub genes and three key pathways of plant hormone signal transduction, glutathione metabolism, and glyoxylate and dicarboxylate metabolism were identified by multi-omics analysis under waterlogging stress. The results showed that sesame regulated the content of hormones and antioxidants and promoted energy conversion in the plant through the above pathways to adapt to waterlogging stress. In summary, this study further analyzed the response mechanism of sesame to waterlogging stress and provides helpful information for the breeding of plants for waterlogging tolerance and genetic improvement.
Collapse
Affiliation(s)
- Lu Zhang
- Agricultural College, Hunan Agricultural University, Changsha 410128, China;
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (S.W.); (X.Y.); (L.H.); (L.H.); (R.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Suhua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (S.W.); (X.Y.); (L.H.); (L.H.); (R.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xuele Yang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (S.W.); (X.Y.); (L.H.); (L.H.); (R.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Luqiu He
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (S.W.); (X.Y.); (L.H.); (L.H.); (R.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Liqin Hu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (S.W.); (X.Y.); (L.H.); (L.H.); (R.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Rui Tang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (S.W.); (X.Y.); (L.H.); (L.H.); (R.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jiguang Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (S.W.); (X.Y.); (L.H.); (L.H.); (R.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Zhongsong Liu
- Agricultural College, Hunan Agricultural University, Changsha 410128, China;
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
5
|
Yoo YH, Cho SY, Lee I, Kim N, Lee SK, Cho KS, Kim EY, Jung KH, Hong WJ. Characterization of the Regulatory Network under Waterlogging Stress in Soybean Roots via Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2538. [PMID: 39339513 PMCID: PMC11435190 DOI: 10.3390/plants13182538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Flooding stress caused by climate change is a serious threat to crop productivity. To enhance our understanding of flooding stress in soybean, we analyzed the transcriptome of the roots of soybean plants after waterlogging treatment for 10 days at the V2 growth stage. Through RNA sequencing analysis, 870 upregulated and 1129 downregulated differentially expressed genes (DEGs) were identified and characterized using Gene Ontology (GO) and MapMan software (version 3.6.0RC1). In the functional classification analysis, "alcohol biosynthetic process" was the most significantly enriched GO term in downregulated DEGs, and phytohormone-related genes such as ABA, cytokinin, and gibberellin were upregulated. Among the transcription factors (TFs) in DEGs, AP2/ERFs were the most abundant. Furthermore, our DEGs encompassed eight soybean orthologs from Arabidopsis and rice, such as 1-aminocyclopropane-1-carboxylate oxidase. Along with a co-functional network consisting of the TF and orthologs, the expression changes of those genes were tested in a waterlogging-resistant cultivar, PI567343. These findings contribute to the identification of candidate genes for waterlogging tolerance in soybean, which can enhance our understanding of waterlogging tolerance.
Collapse
Affiliation(s)
- Yo-Han Yoo
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Seung-Yeon Cho
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-Y.C.); (E.Y.K.)
| | - Inhye Lee
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Namgeol Kim
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Seuk-Ki Lee
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Kwang-Soo Cho
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Eun Young Kim
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-Y.C.); (E.Y.K.)
| | - Ki-Hong Jung
- Graduate School of Green Bio-Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-Y.C.); (E.Y.K.)
- Graduate School of Green Bio-Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
6
|
Grigas A, Steponavičius D, Kemzūraitė A, Tarasevičienė Ž, Domeika R. Spatial heterogeneity in the properties of hydroponic wheat fodder and its sustainability. Sci Rep 2024; 14:19312. [PMID: 39164383 PMCID: PMC11335933 DOI: 10.1038/s41598-024-70128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
This study was conducted to determine the heterogeneity of the quantitative and qualitative properties of fodder growth in cultivated hydroponic wheat fodder (HWF) in the growth tray area and to evaluate the impact on the environment. HWF was grown using nutrient film technique. Yield productivity (YP) of HWF in the growth tray area was divided into four characteristic zones (A, B, C, and D). The most fertile zone A accounted for only 22.3 ± 4.2% of the entire growth tray area, while zone B accounted for 44.7 ± 4.0%. Zones C and D, which accounted for 28.0 ± 1.3% and 5.0 ± 0.3% area, respectively, pose various problems for forage production, i.e., they negatively impact the quantity and quality of HWF, as well as the environment. If all areas in the growth tray support the highest fodder YP (zones A and B), then one kg of dry wheat grains will yield about 6-7 kg of HWF (consisting of 10.7-12.4% dry matter, 17.3-17.5% crude protein, 1.8-2.3% starch, 13.1-14.4% crude fiber, and 4.5-4.6% ether extract). Results of life cycle assessment show that HWF with YPs of 3-5 kg from one kg of dry grains (zones C and D) has the most adverse impact on the environment (150 and 220 kg CO2eq t-1). Under optimum conditions (zone A), CO2eq varied from 94 to 115 kg CO2eq t-1 of feed. Environmentally, HWF production had the most impact on marine aquatic ecotoxicity, abiotic depletion, global warming potential, and freshwater aquatic ecotoxicity.
Collapse
Affiliation(s)
- Andrius Grigas
- Department of Agricultural Engineering and Safety, Vytautas Magnus University Agriculture Academy, Studentų St. 15A, 53362, Akademija, Kaunas District, Lithuania
| | - Dainius Steponavičius
- Department of Agricultural Engineering and Safety, Vytautas Magnus University Agriculture Academy, Studentų St. 15A, 53362, Akademija, Kaunas District, Lithuania
| | - Aurelija Kemzūraitė
- Department of Agricultural Engineering and Safety, Vytautas Magnus University Agriculture Academy, Studentų St. 15A, 53362, Akademija, Kaunas District, Lithuania.
| | - Živilė Tarasevičienė
- Department of Plant Biology and Food Sciences, Vytautas Magnus University Agriculture Academy, Studentų St. 11, 53361, Akademija, Kaunas District, Lithuania
| | - Rolandas Domeika
- Department of Agricultural Engineering and Safety, Vytautas Magnus University Agriculture Academy, Studentų St. 15A, 53362, Akademija, Kaunas District, Lithuania
| |
Collapse
|
7
|
Gui G, Zhang Q, Hu W, Liu F. Application of multiomics analysis to plant flooding response. FRONTIERS IN PLANT SCIENCE 2024; 15:1389379. [PMID: 39193215 PMCID: PMC11347887 DOI: 10.3389/fpls.2024.1389379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Flooding, as a natural disaster, plays a pivotal role in constraining the growth and development of plants. Flooding stress, including submergence and waterlogging, not only induces oxygen, light, and nutrient deprivation, but also alters soil properties through prolonged inundation, further impeding plant growth and development. However, hypoxia (or anoxia) is the most serious and direct damage to plants caused by flooding. Moreover, flooding disrupts the structural integrity of plant cell walls and compromises endoplasmic reticulum functionality, while hindering nutrient absorption and shifting metabolic processes from normal aerobic respiration to anaerobic respiration. It can be asserted that flooding exerts comprehensive effects on plants encompassing phenotypic changes, transcriptional alterations, protein dynamics, and metabolic shifts. To adapt to flooding environments, plants employ corresponding adaptive mechanisms at the phenotypic level while modulating transcriptomic profiles, proteomic characteristics, and metabolite levels. Hence, this study provides a comprehensive analysis of transcriptomic, proteomic, and metabolomics investigations conducted on flooding stress on model plants and major crops, elucidating their response mechanisms from diverse omics perspectives.
Collapse
Affiliation(s)
- Guangya Gui
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| | - Qi Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| |
Collapse
|
8
|
Hassani SB, Latifi M, Aliniaeifard S, Sohrabi Bonab S, Nasiri Almanghadim N, Jafari S, Mohebbifar E, Ahangir A, Seifikalhor M, Rezadoost H, Bosacchi M, Rastogi A, Bernard F. Response to Cadmium Toxicity: Orchestration of Polyamines and microRNAs in Maize Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1991. [PMID: 37653908 PMCID: PMC10223431 DOI: 10.3390/plants12101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is a heavy metal that is widely contaminating the environment due to its uses in industries as corrosive reagents, paints, batteries, etc. Cd can easily be absorbed through plant roots and may have serious negative impacts on plant growth. To investigate the mechanisms utilized by plants to cope with Cd toxicity, an experiment was conducted on maize seedlings. We observed that the plant growth and photosynthetic mechanism were negatively influenced during 20 days of Cd stress. The expression levels of ornithine decarboxylase (ORDC) increased in the six seedlings under Cd exposure compared to the control. However, Cd toxicity led to an increase in putrescine (Put) content only on day 15 when compared to the control plants. In fact, with the exception of day 15, the increases in the ORDC transcript levels did not show a direct correlation with the observed increases in Put content. Spermidine and Spermine levels were reduced on day 6 by Cd application, which was parallel with suppressed Spermidine synthase gene. However, an increase in Spermidine and Spermine levels was observed on day 12 along with a significant elevation in Spermidine synthase expression. On day 6, Cd was observed to start accumulating in the root with an increase in the expression of microRNA 528; while on day 15, Cd started to be observed in the shoot part with an increase in microRNA 390 and microRNA 168. These results imply that different miRNAs may regulate polyamines (PAs) in maize under Cd toxicity, suggesting a plant-derived strategy to commit a PAs/miRNA-regulated mechanism/s in different developmental stages (time points) in response to Cd exposure.
Collapse
Affiliation(s)
- Seyedeh Batool Hassani
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Mojgan Latifi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran 33916-53755, Iran
| | - Shabnam Sohrabi Bonab
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Neda Nasiri Almanghadim
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Sara Jafari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Elham Mohebbifar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Anahita Ahangir
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | | | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Massimo Bosacchi
- Park at the Danforth Plant Science Center, KWS Gateway Research Center, LLC, BRDG, Saint Louis, MO 95618, USA
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Françoise Bernard
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| |
Collapse
|
9
|
Wang L, Li H, Li J, Li G, Zahid MS, Li D, Ma C, Xu W, Song S, Li X, Wang S. Transcriptome analysis revealed the expression levels of genes related to abscisic acid and auxin biosynthesis in grapevine ( Vitis vinifera L.) under root restriction. FRONTIERS IN PLANT SCIENCE 2022; 13:959693. [PMID: 36092429 PMCID: PMC9449541 DOI: 10.3389/fpls.2022.959693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The root system is essential for the stable growth of plants. Roots help anchor plants in the soil and play a crucial role in water uptake, mineral nutrient absorption and endogenous phytohormone formation. Root-restriction (RR) cultivation, a powerful technique, confines plant roots to a specific soil space. In the present study, roots of one-year-old "Muscat Hamburg" grapevine under RR and control (nR) treatments harvested at 70 and 125 days after planting were used for transcriptome sequencing, and in total, 2031 (nR7 vs. nR12), 1445 (RR7 vs. RR12), 1532 (nR7 vs. RR7), and 2799 (nR12 vs. RR12) differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment analysis demonstrated that there were several genes involved in the response to different phytohormones, including abscisic acid (ABA), auxin (IAA), ethylene (ETH), gibberellins (GAs), and cytokinins (CTKs). Among them, multiple genes, such as PIN2 and ERF113, are involved in regulating vital plant movements by various phytohormone pathways. Moreover, following RR cultivation, DEGs were enriched in the biological processes of plant-type secondary cell wall biosynthesis, the defense response, programmed cell death involved in cell development, and the oxalate metabolic process. Furthermore, through a combined analysis of the transcriptome and previously published microRNA (miRNA) sequencing results, we found that multiple differentially expressed miRNAs (DEMs) and DEG combinations in different comparison groups exhibited opposite trends, indicating that the expression levels of miRNAs and their target genes were negatively correlated. Furthermore, RR treatment indeed significantly increased the ABA content at 125 days after planting and significantly decreased the IAA content at 70 days after planting. Under RR cultivation, most ABA biosynthesis-related genes were upregulated, while most IAA biosynthesis-related genes were downregulated. These findings lay a solid foundation for further establishing the network through which miRNAs regulate grapevine root development through target genes and for further exploring the molecular mechanism through which endogenous ABA and IAA regulate root architecture development in grapevine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Jiang J, Zhu H, Li N, Batley J, Wang Y. The miR393-Target Module Regulates Plant Development and Responses to Biotic and Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23169477. [PMID: 36012740 PMCID: PMC9409142 DOI: 10.3390/ijms23169477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous small RNAs, are broadly involved in plant development, morphogenesis and responses to various environmental stresses, through manipulating the cleavage, translational expression, or DNA methylation of target mRNAs. miR393 is a conserved miRNA family present in many plants, which mainly targets genes encoding the transport inhibitor response1 (TIR1)/auxin signaling F-box (AFB) auxin receptors, and thus greatly affects the auxin signal perception, Aux/IAA degradation, and related gene expression. This review introduces the advances made on the miR393/target module regulating plant development and the plant’s responses to biotic and abiotic stresses. This module is valuable for genetic manipulation of optimized conditions for crop growth and development and would also be helpful in improving crop yield through molecular breeding.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Haotian Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Na Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: (J.B.); (Y.W.)
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (J.B.); (Y.W.)
| |
Collapse
|
11
|
Sheoran S, Gupta M, Kumari S, Kumar S, Rakshit S. Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize ( Zea mays L.) and their implications in breeding programs. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:26. [PMID: 37309532 PMCID: PMC10248626 DOI: 10.1007/s11032-022-01294-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Global climate change leads to the concurrence of a number of abiotic stresses including moisture stress (drought, waterlogging), temperature stress (heat, cold), and salinity stress, which are the major factors affecting maize production. To develop abiotic stress tolerance in maize, many quantitative trait loci (QTL) have been identified, but very few of them have been utilized successfully in breeding programs. In this context, the meta-QTL analysis of the reported QTL will enable the identification of stable/real QTL which will pave a reliable way to introgress these QTL into elite cultivars through marker-assisted selection. In this study, a total of 542 QTL were summarized from 33 published studies for tolerance to different abiotic stresses in maize to conduct meta-QTL analysis using BiomercatorV4.2.3. Among those, only 244 major QTL with more than 10% phenotypic variance were preferably utilised to carry out meta-QTL analysis. In total, 32 meta-QTL possessing 1907 candidate genes were detected for different abiotic stresses over diverse genetic and environmental backgrounds. The MQTL2.1, 5.1, 5.2, 5.6, 7.1, 9.1, and 9.2 control different stress-related traits for combined abiotic stress tolerance. The candidate genes for important transcription factor families such as ERF, MYB, bZIP, bHLH, NAC, LRR, ZF, MAPK, HSP, peroxidase, and WRKY have been detected for different stress tolerances. The identified meta-QTL are valuable for future climate-resilient maize breeding programs and functional validation of candidate genes studies, which will help to deepen our understanding of the complexity of these abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01294-9.
Collapse
Affiliation(s)
- Seema Sheoran
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| | - Shweta Kumari
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sandeep Kumar
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
- ICAR-Indian Institute of Pulses Research, Regional Station, Phanda, Bhopal, 462030 India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| |
Collapse
|
12
|
Manik SMN, Quamruzzaman M, Zhao C, Johnson P, Hunt I, Shabala S, Zhou M. Genome-Wide Association Study Reveals Marker Trait Associations (MTA) for Waterlogging-Triggered Adventitious Roots and Aerenchyma Formation in Barley. Int J Mol Sci 2022; 23:ijms23063341. [PMID: 35328762 PMCID: PMC8954902 DOI: 10.3390/ijms23063341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
Waterlogging is an environmental stress, which severely affects barley growth and development. Limited availability of oxygen in the root zone negatively affects the metabolism of the whole plant. Adventitious roots (AR) and root cortical aerenchyma (RCA) formation are the most important adaptive traits that contribute to a plant's ability to survive in waterlogged soil conditions. This study used a genome-wide association (GWAS) approach using 18,132 single nucleotide polymorphisms (SNPs) in a panel of 697 barley genotypes to reveal marker trait associations (MTA) conferring the above adaptive traits. Experiments were conducted over two consecutive years in tanks filled with soil and then validated in field experiments. GWAS analysis was conducted using general linear models (GLM), mixed linear models (MLM), and fixed and random model circulating probability unification models (FarmCPU model), with the FarmCPU showing to be the best suited model. Six and five significant (approximately -log10 (p) ≥ 5.5) MTA were identified for AR and RCA formation under waterlogged conditions, respectively. The highest -log10 (p) MTA for adventitious root and aerenchyma formation were approximately 9 and 8 on chromosome 2H and 4H, respectively. The combination of different MTA showed to be more effective in forming RCA and producing more AR under waterlogging stress. Genes from major facilitator superfamily (MFS) transporter and leucine-rich repeat (LRR) families for AR formation, and ethylene responsive factor (ERF) family genes and potassium transporter family genes for RCA formation were the potential candidate genes involved under waterlogging conditions. Several genotypes, which performed consistently well under different conditions, can be used in breeding programs to develop waterlogging-tolerant varieties.
Collapse
Affiliation(s)
- S. M. Nuruzzaman Manik
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Md Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Peter Johnson
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Ian Hunt
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
- Correspondence:
| |
Collapse
|
13
|
Mishra V, Singh A, Gandhi N, Sarkar Das S, Yadav S, Kumar A, Sarkar AK. A unique miR775- GALT9 module regulates leaf senescence in Arabidopsis during post-submergence recovery by modulating ethylene and the abscisic acid pathway. Development 2022; 149:274011. [DOI: 10.1242/dev.199974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here, we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates GALACTOSYLTRANSFERASE 9 (GALT9) and their expression is inversely affected at 24 h of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild-type and MIM775 Arabidopsis shoot. A similar recovery phenotype in the galt9 mutant indicates the role of the miR775-GALT9 module in post-submergence recovery. We predicted that Golgi-localized GALT9 is potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29 and ORE1), ethylene signalling (EIN2 and EIN3) and abscisic acid (ABA) biosynthesis (NCED3) pathway genes occurs in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role for the miR775-GALT9 module in post-submergence recovery through a crosstalk between the ethylene signalling and ABA biosynthesis pathways.
Collapse
Affiliation(s)
- Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| | - Nidhi Gandhi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabari Sarkar Das
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal 721104, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananda K. Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| |
Collapse
|
14
|
Kumar S, Abass Ahanger M, Alshaya H, Latief Jan B, Yerramilli V. Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Singh P, Dutta P, Chakrabarty D. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. PLANT CELL REPORTS 2021; 40:1617-1630. [PMID: 34159416 DOI: 10.1007/s00299-021-02736-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 05/06/2023]
Abstract
One of the most interesting signaling molecules that regulates a wide array of adaptive stress responses in plants are the micro RNAs (miRNAs) that are a unique class of non-coding RNAs constituting novel mechanisms of post-transcriptional gene regulation. Recent studies revealed the role of miRNAs in several biotic and abiotic stresses by regulating various phytohormone signaling pathways as well as by targeting a number of transcription factors (TFs) and defense related genes. Phytohormones are signal molecules modulating the plant growth and developmental processes by regulating gene expression. Studies concerning miRNAs in abiotic stress response also show their vital roles in abiotic stress signaling. Current research indicates that miRNAs may act as possible candidates to create abiotic stress tolerant crop plants by genetic engineering. Yet, the detailed mechanism governing the dynamic expression networks of miRNAs in response to stress tolerance remains unclear. In this review, we provide recent updates on miRNA-mediated regulation of phytohormones combating various stress and its role in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Transcriptome Analysis Reveals Genes of Flooding-Tolerant and Flooding-Sensitive Rapeseeds Differentially Respond to Flooding at the Germination Stage. PLANTS 2021; 10:plants10040693. [PMID: 33916802 PMCID: PMC8065761 DOI: 10.3390/plants10040693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/31/2022]
Abstract
Flooding results in significant crop yield losses due to exposure of plants to hypoxic stress. Various studies have reported the effect of flooding stress at seedling establishment or later stages. However, the molecular mechanism prevailing at the germination stage under flooding stress remains enigmatic. The present study highlights the comparative transcriptome analysis in two rapeseed lines, i.e., flooding-tolerant (Santana) and -sensitive (23651) lines under control and 6-h flooding treatments at the germination stage. A total of 1840 up-regulated and 1301 down-regulated genes were shared by both lines in response to flooding. There were 4410 differentially expressed genes (DEGs) with increased expression and 4271 DEGs with reduced expression shared in both control and flooding conditions. Gene ontology (GO) enrichment analysis revealed that “transcription regulation”, “structural constituent of cell wall”, “reactive oxygen species metabolic”, “peroxidase”, oxidoreductase”, and “antioxidant activity” were the common processes in rapeseed flooding response. In addition, the processes such as “hormone-mediated signaling pathway”, “response to organic substance response”, “motor activity”, and “microtubule-based process” are likely to confer rapeseed flooding resistance. Mclust analysis clustered DEGs into nine modules; genes in each module shared similar expression patterns and many of these genes overlapped with the top 20 DEGs in some groups. This work provides a comprehensive insight into gene responses and the regulatory network in rapeseed flooding stress and provides guidelines for probing the underlying molecular mechanisms in flooding resistance.
Collapse
|
17
|
Chaudhary S, Grover A, Sharma PC. MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops. Life (Basel) 2021; 11:life11040289. [PMID: 33800690 PMCID: PMC8066829 DOI: 10.3390/life11040289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Crop yield is challenged every year worldwide by changing climatic conditions. The forecasted climatic scenario urgently demands stress-tolerant crop varieties to feed the ever-increasing global population. Molecular breeding and genetic engineering approaches have been frequently exploited for developing crops with desired agronomic traits. Recently, microRNAs (miRNAs) have emerged as powerful molecules, which potentially serve as expression markers during stress conditions. The miRNAs are small non-coding endogenous RNAs, usually 20-24 nucleotides long, which mediate post-transcriptional gene silencing and fine-tune the regulation of many abiotic- and biotic-stress responsive genes in plants. The miRNAs usually function by specifically pairing with the target mRNAs, inducing their cleavage or repressing their translation. This review focuses on the exploration of the functional role of miRNAs in regulating plant responses to abiotic and biotic stresses. Moreover, a methodology is also discussed to mine stress-responsive miRNAs from the enormous amount of transcriptome data available in the public domain generated using next-generation sequencing (NGS). Considering the functional role of miRNAs in mediating stress responses, these molecules may be explored as novel targets for engineering stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Correspondence: (S.C.); (P.C.S.)
| | - Atul Grover
- Defence Institute of Bio-Energy Research, Defence Research and Development Organisation (DRDO), Haldwani 263139, India;
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
- Correspondence: (S.C.); (P.C.S.)
| |
Collapse
|
18
|
Differential Expression of Maize and Teosinte microRNAs under Submergence, Drought, and Alternated Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9101367. [PMID: 33076374 PMCID: PMC7650716 DOI: 10.3390/plants9101367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Submergence and drought stresses are the main constraints to crop production worldwide. MicroRNAs (miRNAs) are known to play a major role in plant response to various stresses. In this study, we analyzed the expression of maize and teosinte miRNAs by high-throughput sequencing of small RNA libraries in maize and its ancestor teosinte (Zea mays ssp. parviglumis), under submergence, drought, and alternated stress. We found that the expression patterns of 67 miRNA sequences representing 23 miRNA families in maize and other plants were regulated by submergence or drought. miR159a, miR166b, miR167c, and miR169c were downregulated by submergence in both plants but more severely in maize. miR156k and miR164e were upregulated by drought in teosinte but downregulated in maize. Small RNA profiling of teosinte subject to alternate treatments with drought and submergence revealed that submergence as the first stress attenuated the response to drought, while drought being the first stress did not alter the response to submergence. The miRNAs identified herein, and their potential targets, indicate that control of development, growth, and response to oxidative stress could be crucial for adaptation and that there exists evolutionary divergence between these two subspecies in miRNA response to abiotic stresses.
Collapse
|
19
|
Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions. 3 Biotech 2020; 10:440. [PMID: 33014683 PMCID: PMC7501393 DOI: 10.1007/s13205-020-02416-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
Sugarcane (Saccharum spp.) crop is vulnerable to many abiotic stresses such as drought, salinity, waterlogging, cold and high temperature due to climate change. Over the past few decades new breeding and genomic approaches have been used to enhance the genotypic performance under abiotic stress conditions. In sugarcane, introgression of genes from wild species and allied genera for abiotic stress tolerance traits plays a significant role in the development of several stress-tolerant varieties. Moreover, the genomics and transcriptomics approaches have helped to elucidate the key genes/TFs and pathways involved in abiotic stress tolerance in sugarcane. Several novel miRNAs families /proteins or regulatory elements that are responsible for drought, salinity, and cold tolerance have been identified through high-throughput sequencing. The existing sugarcane monoploid genome sequence information opens new gateways and opportunities for researchers to improve the desired traits through efficient genome editing tools, such as the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system. TALEN mediated mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane significantly reduces the lignin content in the cell wall which is amenable for biofuel production from lignocellulosic biomass. In this review, we focus on current breeding with genomic approaches and their substantial role in enhancing cane production under the abiotic stress conditions, which is expected to provide new insights to plant breeders and biotechnologists to modify their strategy in developing stress-tolerant sugarcane varieties, which can highlight the future demand of cane, bio-energy, and viability of sugar industries.
Collapse
|
20
|
Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley ( Hordeum vulgare L.). PLANTS 2020; 9:plants9020240. [PMID: 32069892 PMCID: PMC7076447 DOI: 10.3390/plants9020240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
- Correspondence: ; Tel.: +1-204-578-6573
| |
Collapse
|
21
|
Esposito S, Aversano R, Bradeen JM, Di Matteo A, Villano C, Carputo D. Deep-sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:133-142. [PMID: 30597710 DOI: 10.1111/plb.12955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Among wild species used in potato breeding, Solanum commersonii displays the highest tolerance to low temperatures under both acclimated (ACC) and non-acclimated (NACC) conditions. It is also the first wild potato relative with a known whole genome sequence. Recent studies have shown that abiotic stresses induce changes in the expression of many small non-coding RNA (sncRNA). We determined the small non-coding RNA (sncRNAome) of two clones of S. commersonii contrasting in their cold response phenotypes via smRNAseq. Differential analysis provided evidence that expression of several miRNAs changed in response to cold stress conditions. Conserved miR408a and miR408b changed their expression under NACC conditions, whereas miR156 and miR169 were differentially expressed only under ACC conditions. We also report changes in tasiRNA and secondary siRNA expression under both stress conditions. Our results reveal possible roles of sncRNA in the regulatory networks associated with tolerance to low temperatures and provide useful information for a more strategic use of genomic resources in potato breeding.
Collapse
Affiliation(s)
- S Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - R Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - J M Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - A Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - C Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - D Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
22
|
Applications and Trends of Machine Learning in Genomics and Phenomics for Next-Generation Breeding. PLANTS 2019; 9:plants9010034. [PMID: 31881663 PMCID: PMC7020215 DOI: 10.3390/plants9010034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Crops are the major source of food supply and raw materials for the processing industry. A balance between crop production and food consumption is continually threatened by plant diseases and adverse environmental conditions. This leads to serious losses every year and results in food shortages, particularly in developing countries. Presently, cutting-edge technologies for genome sequencing and phenotyping of crops combined with progress in computational sciences are leading a revolution in plant breeding, boosting the identification of the genetic basis of traits at a precision never reached before. In this frame, machine learning (ML) plays a pivotal role in data-mining and analysis, providing relevant information for decision-making towards achieving breeding targets. To this end, we summarize the recent progress in next-generation sequencing and the role of phenotyping technologies in genomics-assisted breeding toward the exploitation of the natural variation and the identification of target genes. We also explore the application of ML in managing big data and predictive models, reporting a case study using microRNAs (miRNAs) to identify genes related to stress conditions.
Collapse
|
23
|
Seeve CM, Sunkar R, Zheng Y, Liu L, Liu Z, McMullen M, Nelson S, Sharp RE, Oliver MJ. Water-deficit responsive microRNAs in the primary root growth zone of maize. BMC PLANT BIOLOGY 2019; 19:447. [PMID: 31651253 PMCID: PMC6814125 DOI: 10.1186/s12870-019-2037-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/12/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNA-mediated gene regulatory networks play a significant role in plant growth and development and environmental stress responses. RESULTS We identified 79 microRNAs (miRNAs) and multiple miRNA variants (isomiRs) belonging to 26 miRNA families in the primary root growth zone of maize seedlings grown at one of three water potentials: well-watered (- 0.02 MPa), mild water deficit stress (- 0.3 MPa), and severe water deficit stress (- 1.6 MPa). The abundances of 3 miRNAs (mild stress) and 34 miRNAs representing 17 families (severe stress) were significantly different in water-deficit stressed relative to well-watered controls (FDR < 0.05 and validated by stem loop RT-qPCR). Degradome sequencing revealed 213 miRNA-regulated transcripts and trancriptome profiling revealed that the abundance of 77 (miRNA-regulated) were regulated by water-defecit stress. miR399e,i,j-3p was strongly regulated by water-defcit stress implicating the possibility of nutrient deficiency during stress. CONCLUSIONS We have identified a number of maize miRNAs that respond to specific water deficits applied to the primary root growth zone. We have also identified transcripts that are targets for miRNA regulation in the root growth zone under water-deficit stress. The miR399e,i,j-3p that is known to regulate phosphate uptake in response to nutrient deficiencies responds to water-deficit stress, however, at the seedling stage the seed provides adequate nutrients for root growth thus miR399e,i,j-3p may play a separate role in water-deficit responses. A water-deficit regulated maize transcript, similar to known miR399 target mimics, was identified and we hypothesized that it is another regulatory player, moderating the role of miR399e,i,j-3p, in primary root growth zone water deficit responses.
Collapse
Affiliation(s)
- Candace M. Seeve
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Yun Zheng
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Zhijie Liu
- Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Michael McMullen
- Division of Plant Sciences, Columbia, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Sven Nelson
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Robert E. Sharp
- Division of Plant Sciences, Columbia, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Melvin J. Oliver
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
24
|
He J, Jiang Z, Gao L, You C, Ma X, Wang X, Xu X, Mo B, Chen X, Liu L. Genome-Wide Transcript and Small RNA Profiling Reveals Transcriptomic Responses to Heat Stress. PLANT PHYSIOLOGY 2019; 181:609-629. [PMID: 31395615 PMCID: PMC6776850 DOI: 10.1104/pp.19.00403] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/27/2019] [Indexed: 05/17/2023]
Abstract
Because of climate change, crops will experience increasing heat stress. However, the ways in which heat stress affects crop growth and yield at the molecular level remain poorly understood. We generated spatiotemporal mRNA and small RNA transcriptome data, spanning seven tissues at three time points, to investigate the effects of heat stress on vegetative and reproductive development in maize (Zea mays). Among the small RNAs significantly induced by heat stress was a plastid-derived 19-nucleotide small RNA, which is possibly the residual footprint of a pentatricopeptide repeat protein. This suggests that heat stress induces the turnover of certain plastid transcripts. Consistently, genes responsible for photosynthesis in chloroplasts were repressed after heat stress. Analysis also revealed that the abundance of 24-nucletide small interfering RNAs from transposable elements was conspicuously reduced by heat stress in tassels and roots; nearby genes showed a similar expression trend. Finally, specific microRNA and passenger microRNA species were identified, which in other plant species have not before been reported as responsive to heat stress. This study generated an atlas of genome-wide transcriptomic responses to heat stress, revealing several key regulators as potential targets for thermotolerance improvement in maize.
Collapse
Affiliation(s)
- Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zengming Jiang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenjiang You
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaofeng Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
25
|
Xu X, Wang K, Pan J, Chen X. Small RNA sequencing identifies cucumber miRNA roles in waterlogging-triggered adventitious root primordia formation. Mol Biol Rep 2019; 46:6381-6389. [PMID: 31538299 DOI: 10.1007/s11033-019-05084-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
The formation of adventitious roots (ARs) is a key morphological adaptation of cucumber (Cucumis sativus L.) to waterlogging stress. MicroRNAs (miRNAs) constitute a group of non-coding small RNAs (sRNA) that play crucial roles in regulating diverse biological processes, including waterlogging acclimation. However, which specific miRNAs and how they are involved in waterlogging-triggered de novo AR primordia formation are not fully known. Here, Illumina sRNA sequencing was applied to sequence six sRNA libraries generated from the waterlogging-tolerant cucumber Zaoer-N after 48 h of waterlogging and the control. A total of 358 cucumber miRNAs, 312 known and 46 novel, were obtained. Among them, 23 were differentially expressed, with 10 and 13 being up- and downregulated, respectively. A qPCR expression study confirmed that the identified differentially expressed miRNAs were credible. A total of 657 putative miRNA target genes were predicted for the 23 miRNAs using an in silico approach. A gene ontology enrichment analysis revealed that target genes functioning in cell redox homeostasis, cytoskeleton, photosynthesis and cell growth were over-represented. In total, 58 of the 657 target genes showed inverse expression patterns compared with their respective miRNAs through a combined analysis of sRNA- and RNA-sequencing-based transcriptome datasets using the same experimental design. The target gene annotation included a peroxidase, a GDSL esterases/lipase and two heavy metal-associated isoprenylated plant proteins. Our results provide an important framework for understanding the unique miRNA patterns seen in responses to waterlogging and the miRNA-mediated formation of de novo AR primordia in cucumber.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kaixuan Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiawei Pan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
26
|
Fei Y, Luo C, Tang W. Differential Expression of MicroRNAs During Root Formation in Taxus Chinensis Var. mairei Cultivars. Open Life Sci 2019; 14:97-109. [PMID: 33817141 PMCID: PMC7874753 DOI: 10.1515/biol-2019-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/15/2019] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to play key roles in the regulation of plant growth and development by modifying the expression of their target genes. However, the influence of miRNAs on root formation and development in woody plants, such as Taxus chinensis, remains largely unknown. In the current study, we explored the phytohormone-response and nutrition-response miRNA expression profiles during T. chinensis rooting by quantitative real-time PCR (qPCR). We identified six phytohormone-response miRNAs, namely, miR164a, miR165, miR167a, miR171b, miR319, and miR391, and eight nutrition-response miRNAs, namely, miR169b, miR395a, miR399c, miR408, miR826, miR827, miR857, and miR2111a, that were differentially expressed at different rooting phases of T. chinensis. Using northern blot analysis of the putative target genes of these miRNAs, we detected the relative gene expression changes of the target genes. Taken together, our results suggest that miRNAs are involved in root formation of T. chinensis and that miRNAs may play important regulatory roles in primary root, crown root, and root hair formation by targeting phytohormone and/or nutrition response genes in T. chinensis. For the first time, these results expand our understanding of the molecular mechanisms of plant root formation and development in a conifer species.
Collapse
Affiliation(s)
- Yongjun Fei
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei Province 434025, Jingzhou, People's Republic of China
| | - Caroline Luo
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, Chapel Hill, USA
| | - Wei Tang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei Province 434025, Jingzhou, People's Republic of China
| |
Collapse
|
27
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|
28
|
Hou Y, Jiang F, Zheng X, Wu Z. Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (S. habrochaites). BMC PLANT BIOLOGY 2019; 19:100. [PMID: 30866807 PMCID: PMC6416974 DOI: 10.1186/s12870-019-1698-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/27/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND MicroRNA (miRNA) are key players in regulating expression of target genes at post-transcriptional level. A number of miRNAs are implicated in modulating tolerance to various abiotic stresses. Waterlogging is an abiotic stress that deters plant growth and productivity by hypoxia. Dozens of reports mention about the miRNAs expressed in response to waterlogging and hypoxia. Despite the fact that tomato is a model vegetable but waterlogging sensitive crop, the role of miRNAs in hypoxia tolerance is poorly understood in tomato. RESULTS In this study, we investigated the differentially expressed miRNAs between hypoxia-treated and untreated wild tomato root by using high-throughput sequencing technology. A total of 33 known miRNAs were lowly expressed, whereas only 3 miRNAs showed higher expression in hypoxia-treated wild tomato root compared with untreated wild tomato root. Then two conserved and lowly expressed miRNAs, miR171 and miR390, were deactivated by Short Tandem Target Mimic (STTM) technology in Arabidopsis. As the results, the number and length of lateral roots were more in STTM171 and STTM390 transgenic lines compared with that of wild type plant, which partly phenocopy the increase root number and shortening the root length in hypoxia-treated wild tomato root. CONCLUSIONS The differentially expressed miRNAs between hypoxia-treated wild tomato and control root, which contribute to the auxin homeostasis, morphologic change, and stress response, might result in reduction in the biomass and length of the root in hypoxiated conditions.
Collapse
Affiliation(s)
- Yabing Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaolan Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
29
|
Li D, Qiao H, Qiu W, Xu X, Liu T, Jiang Q, Liu R, Jiao Z, Zhang K, Bi L, Chen R, Kan Y. Identification and functional characterization of intermediate-size non-coding RNAs in maize. BMC Genomics 2018; 19:730. [PMID: 30286715 PMCID: PMC6172812 DOI: 10.1186/s12864-018-5103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of eukaryote genomes can be actively transcribed into non-coding RNAs (ncRNAs), which are functionally important in development and evolution. In the study of maize, an important crop for both humans and animals, aside from microRNAs and long non-coding RNAs, few studies have been conducted on intermediate-size ncRNAs. RESULTS We constructed a homogenized cDNA library of 50-500 nt RNAs in the maize inbred line Chang 7-2. Sequencing revealed 169 ncRNAs, which contained 58 known and 111 novel ncRNAs (including 70 snoRNAs, 27 snRNAs, 13 unclassified ncRNAs and one tRNA). Forty of the novel ncRNAs were specific to the Panicoideae, and 24% of them are located on sense-strand of the 5' or 3' terminus of protein coding genes on chromosome. Target site analysis found that 22 snoRNAs can guide to 38 2'-O-methylation and pseudouridylation modification sites of ribosomal RNAs and small nuclear RNAs. Expression analysis showed that 43 ncRNAs exhibited significantly altered expression in different tissues or developmental stages of maize seedlings, eight ncRNAs had tissue-specific expression and five ncRNAs were strictly accumulated in the early stage of leaf development. Further analysis showed that 3 of the 5 stage-specific ncRNAs (Zm-3, Zm-18, and Zm-73) can be highly induced under drought and salt stress, while one snoRNA Zm-8 can be repressed under PEG-simulated drought condition. CONCLUSIONS We provided a genome-wide identification and functional analysis of ncRNAs with a size range of 50-500 nt in maize. 111 novel ncRNAs were cloned and 40 ncRNAs were determined to be specific to Panicoideae. 43 ncRNAs changed significantly during maize development, three ncRNAs can be strongly induced under drought and salt stress, suggesting their roles in maize stress response. This work set a foundation for further study of intermediate-size ncRNAs in maize.
Collapse
Affiliation(s)
- Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Wujie Qiu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xin Xu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Tiemei Liu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Qianling Jiang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhujin Jiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Kun Zhang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Lijun Bi
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
30
|
Moradi K, Khalili F. Assessment of pattern expression of miR172 and miR169 in response to drought stress in Echinacea purpurea L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Singh A, Gautam V, Singh S, Sarkar Das S, Verma S, Mishra V, Mukherjee S, Sarkar AK. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. PLANTA 2018; 248:545-558. [PMID: 29968061 DOI: 10.1007/s00425-018-2927-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/12/2018] [Indexed: 05/07/2023]
Abstract
Present review addresses the advances made in the understanding of biogenesis of plant small RNAs and their role in plant development. We discuss the elaborate role of microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) in various aspects of plant growth and development and highlight relevance of small RNA mobility. Small non-coding RNAs regulate various aspects of plant development. Small RNAs (sRNAs) of 21-24 nucleotide length are derived from double-stranded RNAs through the combined activity of several biogenesis and processing components. These sRNAs function by negatively regulating the expression of target genes. miRNAs and ta-siRNAs constitute two important classes of endogenous small RNAs in plants, which play important roles in plant growth and developmental processes like embryogenesis, organ formation and patterning, shoot and root growth, and reproductive development. Biogenesis of miRNAs is a multistep process which includes transcription, processing and modification, and their loading onto RNA-induced silencing complex (RISC). RISC-loaded miRNAs carry out post-transcriptional silencing of their target(s). Recent studies identified orthologues of different biogenesis components of novel and conserved small RNAs from different model plants. Although many small RNAs have been identified from diverse plant species, only a handful of them have been functionally characterized. In this review, we discuss the advances made in understanding the biogenesis, functional conservation/divergence in miRNA-mediated gene regulation, and the developmental role of small RNAs in different plant species.
Collapse
Affiliation(s)
- Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shabari Sarkar Das
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swati Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shalini Mukherjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
32
|
MicroRNAs in durum wheat seedlings under chronic and short-term nitrogen stress. Funct Integr Genomics 2018; 18:645-657. [PMID: 29948458 DOI: 10.1007/s10142-018-0619-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Nitrogen is an essential macronutrient for plant growth and reproduction. In durum wheat, an appropriate nitrogen soil availability is essential for an optimal seed development. miRNAs contribute to the environmental change adaptation of plants through the regulation of important genes involved in stress processes. In this work, nitrogen stress response was evaluated in durum wheat seedlings of Ciccio and Svevo cultivars. Eight small RNA libraries from leaves and roots of chronically stressed plants were sequenced to detect conserved and novel miRNAs. A total of 294 miRNAs were identified, 7 of which were described here for the first time. The expression level of selected miRNAs and target genes was analyzed by qPCR in seedlings subjected to chronic (Ciccio and Svevo, leaves and roots) or short-term (Svevo roots) stress conditions. Some miRNAs showed an immediate stress response, and their level of expression was either maintained or returned to a basal level during a long-term stress. Other miRNAs showed a gradual up- or downregulation during the short-term stress. The newly identified miRNA ttu-novel-106 showed an immediate strongly downregulation after nitrogen stress, which was negatively correlated with the expression of MYB-A, its putative target gene. PHO2 gene was significantly upregulated after 24-48-h stress, corresponding to a downregulation of miR399b. Ttu-miR399b putative binding sites in the 5' UTR region of the Svevo PHO2 gene were identified in the A and B genomes. Both MYB-A and PHO2 genes were validated for their cleavage site using 5' RACE assay.
Collapse
|
33
|
Balyan S, Kumar M, Mutum RD, Raghuvanshi U, Agarwal P, Mathur S, Raghuvanshi S. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Sci Rep 2017; 7:15446. [PMID: 29133823 PMCID: PMC5684420 DOI: 10.1038/s41598-017-15450-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022] Open
Abstract
Comparative characterization of microRNA-mediated stress regulatory networks in contrasting rice cultivars is critical to decipher plant stress response. Consequently, a multi-level comparative analysis, using sRNA sequencing, degradome analysis, enzymatic and metabolite assays and metal ion analysis, in drought tolerant and sensitive rice cultivars was conducted. The study identified a group of miRNAs "Cultivar-specific drought responsive" (CSDR)-miRNAs (osa-miR159f, osa-miR1871, osa-miR398b, osa-miR408-3p, osa-miR2878-5p, osa-miR528-5p and osa-miR397a) that were up-regulated in the flag-leaves of tolerant cultivar, Nagina 22 (N22) and Vandana, but down-regulated in the sensitive cultivar, Pusa Basmati 1 (PB1) and IR64, during drought. Interestingly, CSDR-miRNAs target several copper-protein coding transcripts like plantacyanins, laccases and Copper/Zinc superoxide dismutases (Cu/Zn SODs) and are themselves found to be similarly induced under simulated copper-starvation in both N22 and PB1. Transcription factor OsSPL9, implicated in Cu-homeostasis also interacted with osa-miR408-3p and osa-miR528-5p promoters. Further, N22 flag leaves showed lower SOD activity, accumulated ROS and had a higher stomata closure. Interestingly, compared to PB1, internal Cu levels significantly decreased in the N22 flag-leaves, during drought. Thus, the study identifies the unique drought mediated dynamism and interplay of Cu and ROS homeostasis, in the flag leaves of drought tolerant rice, wherein CSDR-miRNAs play a pivotal role.
Collapse
Affiliation(s)
- Sonia Balyan
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Mukesh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Roseeta Devi Mutum
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Priyanka Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
34
|
da Maia LC, Cadore PRB, Benitez LC, Danielowski R, Braga EJB, Fagundes PRR, Magalhães AM, Costa de Oliveira A. Transcriptome profiling of rice seedlings under cold stress. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:419-429. [PMID: 32480575 DOI: 10.1071/fp16239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/11/2016] [Indexed: 05/27/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important species for food production worldwide, besides being an excellent genetic model among the grasses. Cold is one of the major abiotic factors reducing rice yield, primarily affecting germination and reproduction phases. Currently, the RNAseq technique allows the identification of differential expressed genes in response to a given treatment, such as cold stress. In the present work, a transcriptome (RNAseq) analysis was performed in the V3 phase for contrasting genotypes Oro (tolerant) and Tio Taka (sensitive), in response to cold (13°C). A total of 241 and 244M readings were obtained, resulting in the alignment of 25.703 and 26.963 genes in genotypes Oro and Tio Taka respectively. The analyses revealed 259 and 5579 differential expressed genes in response to cold in the genotypes Oro and Tio Taka respectively. Ontology classes with larger changes were metabolic process ~27%, cellular process ~21%, binding ~30% and catalytic activity ~22%. In the genotype Oro, 141 unique genes were identified, 118 were common between Oro and Tio Taka and 5461 were unique to Tio Taka. Genes involved in metabolic routes of signal transduction, phytohormones, antioxidant system and biotic stress were identified. These results provide an understanding that breeding for a quantitative trait, such as cold tolerance at germination, several gene loci must be simultaneously selected. In general, few genes were identified, but it was not possible to associate only one gene function as responsible for the cultivar tolerance; since different genes from different metabolic routes were identified. The genes described in the present work will be useful for future investigations and for the detailed validation in marker assisted selection projects for cold tolerance in the germination of rice.
Collapse
Affiliation(s)
- Luciano C da Maia
- Universidade Federal de Pelotas, Department of Plant Sciences, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Pablo R B Cadore
- Universidade Federal de Pelotas, Department of Plant Sciences, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Leticia C Benitez
- Universidade Federal de Pelotas, Department of Botany, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Rodrigo Danielowski
- Universidade Federal de Pelotas, Department of Plant Sciences, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Eugenia J B Braga
- Universidade Federal de Pelotas, Department of Botany, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Paulo R R Fagundes
- EMBRAPA - Brazilian Agricultural Research Corporation, BR-392 Road, Km 78, 9° Distrito, Monte Bonito, Pelotas/RS - Brazil
| | - Ariano M Magalhães
- EMBRAPA - Brazilian Agricultural Research Corporation, BR-392 Road, Km 78, 9° Distrito, Monte Bonito, Pelotas/RS - Brazil
| | - Antonio Costa de Oliveira
- Universidade Federal de Pelotas, Department of Plant Sciences, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| |
Collapse
|
35
|
Xu J, Li Y, Wang Y, Liu X, Zhu XG. Altered expression profiles of microRNA families during de-etiolation of maize and rice leaves. BMC Res Notes 2017; 10:108. [PMID: 28235420 PMCID: PMC5324284 DOI: 10.1186/s13104-016-2367-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that play important regulatory roles in plants. Although many miRNA families are sequentially and functionally conserved across plant kingdoms (Dezulian et al. in Genome Biol 13, 2005), they still differ in many aspects such as family size, average length, genomic loci etc. (Unver et al. in Int J Plant Genomics, 2009). RESULTS In this study, we investigated changes of miRNA expression profiles during greening process of etiolated seedlings of Oryza sativa (C3) and Zea mays (C4) to explore conserved and species-specific characteristics of miRNAs between these two species. Futhermore, we predicted 47 and 42 candidate novel miRNAs using parameterized monocot specific miRDeep2 pipeline in maize and rice respectively. Potential targets of miRNAs comprising both mRNA and long non-coding RNA (lncRNA) were examined to clarify potential regulation of photosynthesis. Based on our result, two putative positive Kranz regulators reported by Wang et al. (2010) were predicted as potential targets of miR156. A few photosynthesis related genes such as sulfate adenylytransferase (APS3), chlorophyll a/b binding family protein etc. were suggested to be regulated by miRNAs. However, no C4 shuttle genes were predicted to be direct targets of either known or candidate novel miRNAs. CONCLUSIONS This study provided the comprehensive list of miRNA that showed altered expression during the de-etiolation process and a number of candidate miRNAs that might play regulatory roles in C3 and C4 photosynthesis.
Collapse
Affiliation(s)
- Jiajia Xu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yaling Wang
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Liu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Li G, Deng Y, Geng Y, Zhou C, Wang Y, Zhang W, Song Z, Gao L, Yang J. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats. FRONTIERS IN PLANT SCIENCE 2017; 8:2078. [PMID: 29259617 PMCID: PMC5723390 DOI: 10.3389/fpls.2017.02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/21/2017] [Indexed: 05/10/2023]
Abstract
Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5' RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.
Collapse
Affiliation(s)
- Gengyun Li
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ying Deng
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yupeng Geng
- Institute of Ecology and Geobotany, Yunnan University, Kunming, China
| | - Chengchuan Zhou
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yuguo Wang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Wenju Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Zhiping Song
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Lexuan Gao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| | - Ji Yang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| |
Collapse
|
37
|
Li Y, Alonso-Peral M, Wong G, Wang MB, Millar AA. Ubiquitous miR159 repression of MYB33/65 in Arabidopsis rosettes is robust and is not perturbed by a wide range of stresses. BMC PLANT BIOLOGY 2016; 16:179. [PMID: 27542984 PMCID: PMC4992245 DOI: 10.1186/s12870-016-0867-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/05/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND The microR159 (miR159) - GAMYB pathway is conserved in higher plants, where GAMYB, expression promotes programmed cell death in seeds (aleurone) and anthers (tapetum). In cereals, restriction of GAMYB expression to seeds and anthers is mainly achieved transcriptionally, whereas in Arabidopsis this is achieved post-transcriptionally, as miR159 silences GAMYB (MYB33 and MYB65) in vegetative tissues, but not in seeds and anthers. However, we cannot rule out a role for miR159-MYB33/65 pathway in Arabidopsis vegetative tissues; a loss-of-function mir159 Arabidopsis mutant displays strong pleiotropic defects and numerous reports have documented changes in miR159 abundance during stress and hormone treatments. Hence, we have investigated the functional role of this pathway in vegetative tissues. RESULTS It was found that the miR159-MYB33/65 pathway was ubiquitously present throughout rosette development. However, miR159 appears to continuously repress MYB33/MYB65 expression to levels that have no major impact on rosette development. Inducible inhibition of miR159 resulted in MYB33/65 de-repression and associated phenotypic defects, indicating that a potential role in vegetative development is only possible through MYB33 and MYB65 if miR159 levels decrease. However, miR159 silencing of MYB33/65 appeared extremely robust; no tested abiotic stress resulted in strong miR159 repression. Consistent with this, the stress responses of an Arabidopsis mutant lacking the miR159-MYB33/65 pathway were indistinguishable from wild-type. Moreover, expression of viral silencing suppressors, either via transgenesis or viral infection, was unable to prevent miR159 repression of MYB33/65, highlighting the robustness of miR159-mediated silencing. CONCLUSIONS Despite being ubiquitously present, molecular, genetic and physiological analysis failed to find a major functional role for the miR159-MYB33/65 pathway in Arabidopsis rosette development or stress response. Although it is likely that this pathway is important for a stress not tested here or in different plant species, our findings argue against the miR159-MYB33/65 pathway playing a major conserved role in general stress response. Finally, in light of the robustness of miR159-mediated repression of MYB33/65, it appears unlikely that low fold-level changes of miR159 abundance in response to stress would have any major physiological impact in Arabidopsis.
Collapse
Affiliation(s)
- Yanjiao Li
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601 ACT Australia
| | - Maria Alonso-Peral
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601 ACT Australia
| | - Gigi Wong
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601 ACT Australia
| | - Ming-Bo Wang
- CSIRO, Agriculture, Canberra, 2601 ACT Australia
| | - Anthony A Millar
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601 ACT Australia
| |
Collapse
|
38
|
Abstract
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
39
|
Niedojadło J, Dełeńko K, Niedojadło K. Regulation of poly(A) RNA retention in the nucleus as a survival strategy of plants during hypoxia. RNA Biol 2016; 13:531-43. [PMID: 27002417 DOI: 10.1080/15476286.2016.1166331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Last finding indicates that post-transcriptional processes are significant in low-oxygen conditions, but their nature is poorly understood. Here, we localized poly(A) RNA and mRNA coding proteins involved and not involved with resistance to hypoxia in Lupinus luteus and Arabidopsis thaliana during submergence and after recovery of aerobic conditions. We showed a strong nuclear accumulation of poly(A) RNA and 6 of 7 studied mRNAs with a concurrent strong reduction in RNA polymerase II transcription during hypoxia. In this study, the nucleus did not accumulate mRNA of the ADH1 (alcohol dehydrogenase 1) gene, which is a core hypoxia gene. The RNA accumulation in the nucleus is among the mechanisms of post-transcriptional gene regulation that prevents translation. However re-aeration was accompanied by a strong increase in the amount of the mRNAs in the cytoplasm and a simultaneous decrease in nuclear mRNAs. This finding indicates that the nucleus is a storage site for those of mRNAs which are not involved in the response to hypoxia for use by the plants after the hypoxic stress. In this study, the highest intensity of RNA accumulation occurred in Cajal bodies (CBs); the intensity of accumulation was inversely correlated with transcription. Under hypoxia, ncb-1 mutants of Arabidopsis thaliana with a complete absence of CBs died sooner than wild type (WT), accompanied by a strong reduction in the level of poly(A) RNA in the nucleus. These results suggest that the CBs not only participate in the storage of the nuclear RNA, but they also could take part in its stabilization under low-oxygen conditions.
Collapse
Affiliation(s)
- Janusz Niedojadło
- a Department of Cell Biology, Faculty of Biology and Environment Protection , Nicolaus Copernicus University , Torun , Poland
| | - Konrad Dełeńko
- a Department of Cell Biology, Faculty of Biology and Environment Protection , Nicolaus Copernicus University , Torun , Poland
| | - Katarzyna Niedojadło
- a Department of Cell Biology, Faculty of Biology and Environment Protection , Nicolaus Copernicus University , Torun , Poland
| |
Collapse
|
40
|
Sobkowiak A, Jończyk M, Adamczyk J, Szczepanik J, Solecka D, Kuciara I, Hetmańczyk K, Trzcinska-Danielewicz J, Grzybowski M, Skoneczny M, Fronk J, Sowiński P. Molecular foundations of chilling-tolerance of modern maize. BMC Genomics 2016; 17:125. [PMID: 26897027 PMCID: PMC4761173 DOI: 10.1186/s12864-016-2453-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent progress in selective breeding of maize (Zea mays L.) towards adaptation to temperate climate has allowed the production of inbred lines withstanding cold springs with temperatures below 8 °C or even close to 0 °C, indicating that despite its tropical origins maize is not inherently cold-sensitive. RESULTS Here we studied the acclimatory response of three maize inbred lines of contrasting cold-sensitivity selected basing on multi-year routine field data. The field observations were confirmed in the growth chamber. Under controlled conditions the damage to the photosynthetic apparatus due to severe cold treatment was the least in the cold-tolerant line provided that it had been subjected to prior moderate chilling, i.e., acclimation. The cold-sensitive lines performed equally poorly with or without acclimation. To uncover the molecular basis of the attained cold-acclimatability we performed comparative transcriptome profiling of the response of the lines to the cold during acclimation phase by means of microarrays with a statistical and bioinformatic data analysis. CONCLUSIONS The analyses indicated three mechanisms likely responsible for the cold-tolerance: acclimation-dependent modification of the photosynthetic apparatus, cell wall properties, and developmental processes. Those conclusions supported the observed acclimation of photosynthesis to severe cold at moderate chilling and were further confirmed by experimentally showing specific modification of cell wall properties and repression of selected miRNA species, general regulators of development, in the cold-tolerant line subjected to cold stress.
Collapse
Affiliation(s)
- Alicja Sobkowiak
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Józef Adamczyk
- Plant Breeding Smolice Co. Ltd., Smolice 146, 63-740, Kobylin, Poland
| | - Jarosław Szczepanik
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Danuta Solecka
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Iwona Kuciara
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Katarzyna Hetmańczyk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.,Present address: Department of Genetics, Institute of Psychiatry and Neurology in Warsaw, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Joanna Trzcinska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Marcin Grzybowski
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Jan Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.
| |
Collapse
|
41
|
Dixit S, Kumar Biswal A, Min A, Henry A, Oane RH, Raorane ML, Longkumer T, Pabuayon IM, Mutte SK, Vardarajan AR, Miro B, Govindan G, Albano-Enriquez B, Pueffeld M, Sreenivasulu N, Slamet-Loedin I, Sundarvelpandian K, Tsai YC, Raghuvanshi S, Hsing YIC, Kumar A, Kohli A. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Sci Rep 2015; 5:15183. [PMID: 26507552 PMCID: PMC4623671 DOI: 10.1038/srep15183] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs. Here we demonstrate the requirement of multiple intra-QTL genes for the full impact of QTL qDTY12.1 on rice yield under drought. Multiple evidences are presented for the need of the transcription factor 'no apical meristem' (OsNAM12.1) and its co-localized target genes of separate GO categories for qDTY12.1 function, raising a regulon-like model of genetic architecture. The molecular underpinnings of qDTY12.1 support its effectiveness in further improving a drought tolerant genotype and for its validity in multiple genotypes/ecosystems/environments. Resolving the combinatorial value of OsNAM12.1 with individual intra-QTL genes notwithstanding, identification and analyses of qDTY12.1has fast-tracked rice improvement towards food security.
Collapse
Affiliation(s)
- Shalabh Dixit
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Akshaya Kumar Biswal
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Aye Min
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Amelia Henry
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Rowena H. Oane
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Manish L. Raorane
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Toshisangba Longkumer
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Isaiah M. Pabuayon
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Sumanth K. Mutte
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Adithi R. Vardarajan
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Berta Miro
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Ganesan Govindan
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Blesilda Albano-Enriquez
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Mandy Pueffeld
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 03, 06466 Gatersleben, Germany
| | - Nese Sreenivasulu
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 03, 06466 Gatersleben, Germany
| | - Inez Slamet-Loedin
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | | | - Yuan-Ching Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Yue-Ie C. Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Arvind Kumar
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Ajay Kohli
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| |
Collapse
|
42
|
Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:169-87. [PMID: 26312768 DOI: 10.1111/tpj.12999] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate the expression of target genes post-transcriptionally; they are known to play major roles in development and responses to abiotic stress. miR408 is a highly conserved miRNA in plants that responds to the availability of copper and targets genes encoding copper-containing proteins. It was recently recognized to be an important component of the HY5-SPL7 gene network that mediates a coordinated response to light and copper, illustrating its central role in the response of plants to the environment. Expression of miR408 is significantly affected by a variety of developmental and environmental conditions; however, its biological function is unknown. Involvement of miR408 in the abiotic stress response was investigated in Arabidopsis. Expression of miR408, as well as its target genes, was investigated in response to salinity, cold, oxidative stress, drought and osmotic stress. Analyses of transgenic plants with modulated miR408 expression revealed that higher miR408 expression leads to improved tolerance to salinity, cold and oxidative stress, but enhanced sensitivity to drought and osmotic stress. Cellular antioxidant capacity was enhanced in plants with elevated miR408 expression, as manifested by reduced levels of reactive oxygen species and induced expression of genes associated with antioxidative functions, including Cu/Zn superoxide dismutases (CSD1 and CSD2) and glutathione-S-transferase (GST-U25), as well as auxiliary genes: the copper chaperone CCS1 and the redox stress-associated gene SAP12. Overall, the results demonstrate significant involvement of miR408 in abiotic stress responses, emphasizing the central function of miR408 in plant survival.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| | - Shaul Burd
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
43
|
Gong F, Yang L, Tai F, Hu X, Wang W. "Omics" of maize stress response for sustainable food production: opportunities and challenges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:714-32. [PMID: 25401749 DOI: 10.1089/omi.2014.0125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.
Collapse
Affiliation(s)
- Fangping Gong
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University , Zhengzhou, China
| | | | | | | | | |
Collapse
|
44
|
Budak H, Kantar M, Bulut R, Akpinar BA. Stress responsive miRNAs and isomiRs in cereals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:1-13. [PMID: 25900561 DOI: 10.1016/j.plantsci.2015.02.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 05/18/2023]
Abstract
Abiotic and biotic stress conditions are vital determinants in the production of cereals, the major caloric source in human nutrition. Small RNAs, miRNAs and isomiRs are central to post-transcriptional regulation of gene expression in a variety of cellular processes including development and stress responses. Several miRNAs have been identified using new technologies and have roles in stress responses in plants, including cereals. The overall knowledge about the cereal miRNA repertoire, as well as an understanding of complex miRNA mediated mechanisms of target regulation in response to stress conditions, is far from complete. Ongoing efforts that add to our understanding of complex miRNA machinery have implications in plant response to stress conditions. Additionally, sequence variants of miRNAs (isomiRNAs or isomiRs), regulation of their expression through dissection of upstream regulatory elements, the role of Processing-bodies (P-bodies) in miRNA exerted gene regulation and yet unveiled organellar plant miRNAs are newly emerging topics, which will contribute to the elucidation of the miRNA machinery and its role in cereal tolerance against abiotic and biotic stresses.
Collapse
Affiliation(s)
- Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey.
| | - Melda Kantar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Reyyan Bulut
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Bala Ani Akpinar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| |
Collapse
|
45
|
Ferdous J, Hussain SS, Shi BJ. Role of microRNAs in plant drought tolerance. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:293-305. [PMID: 25583362 PMCID: PMC6680329 DOI: 10.1111/pbi.12318] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 05/19/2023]
Abstract
Drought is a normal and recurring climate feature in most parts of the world and plays a major role in limiting crop productivity. However, plants have their own defence systems to cope with adverse climatic conditions. One of these defence mechanisms is the reprogramming of gene expression by microRNAs (miRNAs). miRNAs are small noncoding RNAs of approximately 22 nucleotides length, which have emerged as important regulators of genes at post-transcriptional levels in a range of organisms. Some miRNAs are functionally conserved across plant species and are regulated by drought stress. These properties suggest that miRNA-based genetic modifications have the potential to enhance drought tolerance in cereal crops. This review summarizes the current understanding of the regulatory mechanisms of plant miRNAs, involvement of plant miRNAs in drought stress responses in barley (Hordeum vulgare L.), wheat (Triticum spp.) and other plant species, and the involvement of miRNAs in plant-adaptive mechanisms under drought stress. Potential strategies and directions for future miRNA research and the utilization of miRNAs in the improvement of cereal crops for drought tolerance are also discussed.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Urrbrae, SA, Australia
| | | | | |
Collapse
|
46
|
Campbell MT, Proctor CA, Dou Y, Schmitz AJ, Phansak P, Kruger GR, Zhang C, Walia H. Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize. PLoS One 2015; 10:e0120385. [PMID: 25806518 PMCID: PMC4373911 DOI: 10.1371/journal.pone.0120385] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022] Open
Abstract
Maize is highly sensitive to short term flooding and submergence. Early season flooding reduces germination, survival and growth rate of maize seedlings. We aimed to discover genetic variation for submergence tolerance in maize and elucidate the genetic basis of submergence tolerance through transcriptional profiling and linkage analysis of contrasting genotypes. A diverse set of maize nested association mapping (NAM) founder lines were screened, and two highly tolerant (Mo18W and M162W) and sensitive (B97 and B73) genotypes were identified. Tolerant lines exhibited delayed senescence and lower oxidative stress levels compared to sensitive lines. Transcriptome analysis was performed on these inbreds to provide genome level insights into the molecular responses to submergence. Tolerant lines had higher transcript abundance of several fermentation-related genes and an unannotated Pyrophosphate-Dependent Fructose-6-Phosphate 1-Phosphotransferase gene during submergence. A coexpression network enriched for CBF (C-REPEAT/DRE BINDING FACTOR: C-REPEAT/DRE BINDING FACTOR) genes, was induced by submergence in all four inbreds, but was more activated in the tolerant Mo18W. A recombinant inbred line (RIL) population derived from Mo18W and B73 was screened for submergence tolerance. A major QTL named Subtol6 was mapped to chromosome 6 that explains 22% of the phenotypic variation within the RIL population. We identified two candidate genes (HEMOGLOBIN2 and RAV1) underlying Subtol6 based on contrasting expression patterns observed in B73 and Mo18W. Sources of tolerance identified in this study (Subtol6) can be useful to increase survival rate during flooding events that are predicted to increase in frequency with climate change.
Collapse
Affiliation(s)
- Malachy T. Campbell
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, Lincoln, Nebraska, United States of America
| | - Christopher A. Proctor
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, Lincoln, Nebraska, United States of America
| | - Yongchao Dou
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, Nebraska, United States of America
| | - Aaron J. Schmitz
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, Lincoln, Nebraska, United States of America
| | - Piyaporn Phansak
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, Lincoln, Nebraska, United States of America
- Nakhon Phanom University, Muang District, Thailand
| | - Greg R. Kruger
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, Lincoln, Nebraska, United States of America
| | - Chi Zhang
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, Nebraska, United States of America
| | - Harkamal Walia
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, Lincoln, Nebraska, United States of America
| |
Collapse
|
47
|
Dey S, Corina Vlot A. Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. FRONTIERS IN PLANT SCIENCE 2015; 6:640. [PMID: 26379679 PMCID: PMC4552142 DOI: 10.3389/fpls.2015.00640] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/02/2015] [Indexed: 05/18/2023]
Abstract
The APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily of transcription factors (TFs) regulates physiological, developmental and stress responses. Most of the AP2/ERF TFs belong to the ERF family in both dicotyledonous and monocotyledonous plants. ERFs are implicated in the responses to both biotic and abiotic stress and occasionally impart multiple stress tolerance. Studies have revealed that ERF gene function is conserved in dicots and monocots. Moreover, successful stress tolerance phenotypes are observed on expression in heterologous systems, making ERFs promising candidates for engineering stress tolerance in plants. In this review, we summarize the role of ERFs in general stress tolerance, including responses to biotic and abiotic stress factors, and endeavor to understand the cascade of ERF regulation resulting in successful signal-to-response translation in monocotyledonous plants.
Collapse
Affiliation(s)
| | - A. Corina Vlot
- *Correspondence: A. Corina Vlot, Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany,
| |
Collapse
|
48
|
Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA. Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2525-43. [PMID: 25256907 DOI: 10.1007/s00122-014-2391-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/28/2014] [Indexed: 05/27/2023]
Abstract
Small RNAs that are highly conserved across many plant species are involved in stress responses. Plants are exposed to many types of unfavorable conditions during their life cycle that result in some degree of stress. Recent studies on microRNAs (miRNAs) have highlighted their great potential as regulators of stress tolerance in plants. One of the possible ways in which plants counter environmental stresses is by altering their gene expression by the action of miRNAs. miRNAs regulate the expression of target genes by hybridizing to their nascent reverse complementary sequences marking them for cleavage in the nucleus or translational repression in the cytoplasm. Some miRNAs have been reported to be key regulators in biotic as well as abiotic stress responses across many species. The present review highlights some of the regulatory roles of orthologous plant miRNAs in response to various types of stress conditions.
Collapse
Affiliation(s)
- Ravi Rajwanshi
- Genomics Core Facility, Department of Plant Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL, 62901-4415, USA,
| | | | | | | | | |
Collapse
|
49
|
Investigating the molecular genetic basis of heterosis for internode expansion in maize by microRNA transcriptomic deep sequencing. Funct Integr Genomics 2014; 15:261-70. [PMID: 25394807 DOI: 10.1007/s10142-014-0411-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/17/2023]
Abstract
Heterosis has been used widely in the breeding of maize and other crops and plays an important role in increasing yield, improving quality, and enhancing stress resistance, but its molecular mechanism is far from clear. To determine whether microRNA (miRNA)-dependent gene regulation is responsible for heterosis of elongating internodes below the ear and ear height in maize, a deep-sequencing strategy was applied to the elite hybrid Xundan20, which is currently cultivated widely in China, and its two parents. RNA was extracted from the eighth internode because it shows clear internode length heterosis. A total of 99 conserved maize miRNAs were detected in both the hybrid and parental lines. Most of these miRNAs were expressed nonadditively in the hybrid compared with its parental lines. These results indicated that miRNAs might participate in heterosis during internode expansion in maize and exert an influence on ear and plant height via the repression of their target genes. In total, eight novel miRNAs belonging to four miRNA families were predicted in the expanding internode. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid shows longer internodes and taller seedlings compared with its parental lines.
Collapse
|
50
|
Kong X, Zhang M, Xu X, Li X, Li C, Ding Z. System analysis of microRNAs in the development and aluminium stress responses of the maize root system. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1108-21. [PMID: 24985700 DOI: 10.1111/pbi.12218] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes through mRNA cleavage or translational inhibition. miRNA is known to play an important role in the root development and environmental responses in both the Arabidopsis and rice. However, little information is available to form a complete view of miRNAs in the development of the maize root system and Al stress responses in maize. Four sRNA libraries were generated and sequenced from the early developmental stage of primary roots (PRY), the later developmental stage of maize primary roots (PRO), seminal roots (SR) and crown roots (CR). Through integrative analysis, we identified 278 miRNAs (246 conserved and 32 novel ones) and found that the expression patterns of miRNAs differed dramatically in different maize roots. The potential targets of the identified conserved and novel miRNAs were also predicted. In addition, our data showed that CR is more resistant to Al stress compared with PR and SR, and the differentially expressed miRNAs are likely to play significant roles in different roots in response to environmental stress such as Al stress. Here, we demonstrate that the expression patterns of miRNAs are highly diversified in different maize roots. The differentially expressed miRNAs are correlated with both the development and environmental responses in the maize root. This study not only improves our knowledge about the roles of miRNAs in maize root development but also reveals the potential role of miRNAs in the environmental responses of different maize roots.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|