1
|
Yadav S, Yadav V, Siegler MA, Moënne-Loccoz P, Jameson GNL, Goldberg DP. A Nonheme Iron(III) Superoxide Complex Leads to Sulfur Oxygenation. J Am Chem Soc 2024; 146:7915-7921. [PMID: 38488295 PMCID: PMC11318076 DOI: 10.1021/jacs.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road,Parkville, Victoria 3010, Australia
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother 2023; 162:114606. [PMID: 36989716 DOI: 10.1016/j.biopha.2023.114606] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.
Collapse
Affiliation(s)
- Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
3
|
Koch K, Strandback E, Jha S, Richter G, Bourgeois B, Madl T, Macheroux P. Oxidative stress-induced structural changes in the microtubule-associated flavoenzyme Irc15p from Saccharomyces cerevisiae. Protein Sci 2019; 28:176-190. [PMID: 30267443 PMCID: PMC6296175 DOI: 10.1002/pro.3517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 11/07/2022]
Abstract
The genome of the yeast Saccharomyces cerevisiae encodes a canonical lipoamide dehydrogenase (Lpd1p) as part of the pyruvate dehydrogenase complex and a highly similar protein termed Irc15p (increased recombination centers 15). In contrast to Lpd1p, Irc15p lacks a pair of redox active cysteine residues required for the reduction of lipoamide and thus it is very unlikely that Irc15p performs a similar dithiol-disulfide exchange reaction as reported for lipoamide dehydrogenases. We expressed IRC15 in Escherichia coli and purified the produced protein to conduct a detailed biochemical characterization. Here, we show that Irc15p is a dimeric protein with one FAD per protomer. Photoreduction of the protein generates the fully reduced hydroquinone without the occurrence of a flavin semiquinone radical. Similarly, reduction with NADH or NADPH yields the flavin hydroquinone without the occurrence of intermediates as observed for lipoamide dehydrogenase. The redox potential of Irc15p was -313 ± 1 mV and is thus similar to lipoamide dehydrogenase. Reduced Irc15p is oxidized by several artificial electron acceptors such as potassium ferricyanide, 2,6-dichlorophenol-indophenol, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, and menadione. However, disulfides such as cystine, glutathione, and lipoamide were unable to react with reduced Irc15p. Limited proteolysis and SAXS-measurements revealed that the NADH-dependent formation of hydrogen peroxide caused a substantial structural change in the dimeric protein. Therefore, we hypothesize that Irc15p undergoes a conformational change in the presence of elevated levels of hydrogen peroxide, which is a putative biomarker of oxidative stress. This conformational change may in turn modulate the interaction of Irc15p with other key players involved in regulating microtubule dynamics.
Collapse
Affiliation(s)
- Karin Koch
- Institute of BiochemistryGraz University of TechnologyGrazAustria
| | | | - Shalinee Jha
- Institute of BiochemistryGraz University of TechnologyGrazAustria
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and BiochemistryMedical University of GrazGrazAustria
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and BiochemistryMedical University of GrazGrazAustria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and BiochemistryMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyGrazAustria
| |
Collapse
|
4
|
Houwman JA, André E, Westphal AH, van Berkel WJH, van Mierlo CPM. The Ribosome Restrains Molten Globule Formation in Stalled Nascent Flavodoxin. J Biol Chem 2016; 291:25911-25920. [PMID: 27784783 PMCID: PMC5207065 DOI: 10.1074/jbc.m116.756205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Folding of proteins usually involves intermediates, of which an important type is the molten globule (MG). MGs are ensembles of interconverting conformers that contain (non-)native secondary structure and lack the tightly packed tertiary structure of natively folded globular proteins. Whereas MGs of various purified proteins have been probed to date, no data are available on their presence and/or effect during protein synthesis. To study whether MGs arise during translation, we use ribosome-nascent chain (RNC) complexes of the electron transfer protein flavodoxin. Full-length isolated flavodoxin, which contains a non-covalently bound flavin mononucleotide (FMN) as cofactor, acquires its native α/β parallel topology via a folding mechanism that contains an off-pathway intermediate with molten globular characteristics. Extensive population of this MG state occurs at physiological ionic strength for apoflavodoxin variant F44Y, in which a phenylalanine at position 44 is changed to a tyrosine. Here, we show for the first time that ascertaining the binding rate of FMN as a function of ionic strength can be used as a tool to determine the presence of the off-pathway MG on the ribosome. Application of this methodology to F44Y apoflavodoxin RNCs shows that at physiological ionic strength the ribosome influences formation of the off-pathway MG and forces the nascent chain toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Estelle André
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Carlo P M van Mierlo
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
5
|
Beveridge R, Migas LG, Payne KAP, Scrutton NS, Leys D, Barran PE. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding. Nat Commun 2016; 7:12163. [PMID: 27418477 PMCID: PMC4947166 DOI: 10.1038/ncomms12163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/08/2016] [Indexed: 11/09/2022] Open
Abstract
Fdc1 is a decarboxylase enzyme that requires the novel prenylated FMN cofactor for activity. Here, we use it as an exemplar system to show how native top-down and bottom-up mass spectrometry can measure the structural effect of cofactor binding by a protein. For Fdc1(Ubix), the cofactor confers structural stability to the enzyme. IM-MS shows the holo protein to exist in four closely related conformational families, the populations of which differ in the apo form; the two smaller families are more populated in the presence of the cofactor and depopulated in its absence. These findings, supported by MD simulations, indicate a more open structure for the apo form. HDX-MS reveals that while the dominant structural changes occur proximal to the cofactor-binding site, rearrangements on cofactor binding are evident throughout the protein, predominantly attributable to allosteric conformational tightening, consistent with IM-MS data.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Lukasz G Migas
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Karl A P Payne
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - David Leys
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
6
|
Yutthanasirikul R, Nagano T, Jimbo H, Hihara Y, Kanamori T, Ueda T, Haruyama T, Konno H, Yoshida K, Hisabori T, Nishiyama Y. Oxidation of a Cysteine Residue in Elongation Factor EF-Tu Reversibly Inhibits Translation in the Cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2016; 291:5860-5870. [PMID: 26786107 DOI: 10.1074/jbc.m115.706424] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
Translational elongation is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803, and elongation factor G has been identified as a target of oxidation by ROS. In the present study we examined the sensitivity to oxidation by ROS of another elongation factor, EF-Tu. The structure of EF-Tu changes dramatically depending on the bound nucleotide. Therefore, we investigated the sensitivity to oxidation in vitro of GTP- and GDP-bound EF-Tu as well as that of nucleotide-free EF-Tu. Assays of translational activity with a reconstituted translation system from Escherichia coli revealed that GTP-bound and nucleotide-free EF-Tu were sensitive to oxidation by H2O2, whereas GDP-bound EF-Tu was resistant to H2O2. The inactivation of EF-Tu was the result of oxidation of Cys-82, a single cysteine residue, and subsequent formation of both an intermolecular disulfide bond and sulfenic acid. Replacement of Cys-82 with serine rendered EF-Tu resistant to inactivation by H2O2, confirming that Cys-82 was a target of oxidation. Furthermore, oxidized EF-Tu was reduced and reactivated by thioredoxin. Gel-filtration chromatography revealed that some of the oxidized nucleotide-free EF-Tu formed large complexes of >30 molecules. Atomic force microscopy revealed that such large complexes dissociated into several smaller aggregates upon the addition of dithiothreitol. Immunological analysis of the redox state of EF-Tu in vivo showed that levels of oxidized EF-Tu increased under strong light. Thus, resembling elongation factor G, EF-Tu appears to be sensitive to ROS via oxidation of a cysteine residue, and its inactivation might be reversed in a redox-dependent manner.
Collapse
Affiliation(s)
- Rayakorn Yutthanasirikul
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takanori Nagano
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Haruhiko Jimbo
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yukako Hihara
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takashi Kanamori
- GeneFrontier Corporation, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa 277-0882, Japan,; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | - Takamitsu Haruyama
- Bio-AFM Frontier Research Center, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan, and
| | - Hiroki Konno
- Bio-AFM Frontier Research Center, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan, and
| | - Keisuke Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Yoshitaka Nishiyama
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan,.
| |
Collapse
|
7
|
Lindhoud S, Pirchi M, Westphal AH, Haran G, van Mierlo CPM. Gradual Folding of an Off-Pathway Molten Globule Detected at the Single-Molecule Level. J Mol Biol 2015; 427:3148-57. [PMID: 26163276 DOI: 10.1016/j.jmb.2015.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Molten globules (MGs) are compact, partially folded intermediates that are transiently present during folding of many proteins. These intermediates reside on or off the folding pathway to native protein. Conformational evolution during folding of off-pathway MGs is largely unexplored. Here, we characterize the denaturant-dependent structure of apoflavodoxin's off-pathway MG. Using single-molecule fluorescence resonance energy transfer (smFRET), we follow conversion of unfolded species into MG down to denaturant concentrations that favor formation of native protein. Under strongly denaturing conditions, fluorescence resonance energy transfer histograms show a single peak, arising from unfolded protein. The smFRET efficiency distribution shifts to higher value upon decreasing denaturant concentration because the MG folds. Strikingly, upon approaching native conditions, the fluorescence resonance energy transfer efficiency of the MG rises above that of native protein. Thus, smFRET exposes the misfolded nature of apoflavodoxin's off-pathway MG. We show that conversion of unfolded into MG protein is a gradual, second-order-like process that simultaneously involves separate regions within the polypeptide.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Menahem Pirchi
- Chemical Physics Department, Weizmann Institute of Science, Herzl St 234, Rehovot 76100, Israel
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Gilad Haran
- Chemical Physics Department, Weizmann Institute of Science, Herzl St 234, Rehovot 76100, Israel.
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
8
|
Houwman JA, Westphal AH, van Berkel WJH, van Mierlo CPM. Stalled flavodoxin binds its cofactor while fully exposed outside the ribosome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1317-24. [PMID: 26073784 DOI: 10.1016/j.bbapap.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/26/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
Correct folding of proteins is crucial for cellular homeostasis. More than thirty percent of proteins contain one or more cofactors, but the impact of these cofactors on co-translational folding remains largely unknown. Here, we address the binding of flavin mononucleotide (FMN) to nascent flavodoxin, by generating ribosome-arrested nascent chains that expose either the entire protein or C-terminally truncated segments thereof. The native α/β parallel fold of flavodoxin is among the most ancestral and widely distributed folds in nature and exploring its co-translational folding is thus highly relevant. In Escherichia coli (strain BL21(DE3) Δtig::kan) FMN turns out to be limiting for saturation of this flavoprotein on time-scales vastly exceeding those of flavodoxin synthesis. Because the ribosome affects protein folding, apoflavodoxin cannot bind FMN during its translation. As a result, binding of cofactor to released protein is the last step in production of this flavoprotein in the cell. We show that once apoflavodoxin is entirely synthesized and exposed outside the ribosome to which it is stalled by an artificial linker containing the SecM sequence, the protein is natively folded and capable of binding FMN.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
9
|
Lindhoud S, Westphal AH, van Mierlo CPM, Visser AJWG, Borst JW. Rise-time of FRET-acceptor fluorescence tracks protein folding. Int J Mol Sci 2014; 15:23836-50. [PMID: 25535076 PMCID: PMC4284793 DOI: 10.3390/ijms151223836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 01/15/2023] Open
Abstract
Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| | - Antonie J W G Visser
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| |
Collapse
|