1
|
Bruinooge AJG, Mao R, Gottschalk TH, Srinathan SK, Buduhan G, Tan L, Halayko AJ, Kidane B. Identifying biomarkers of ventilator induced lung injury during one-lung ventilation surgery: a scoping review. J Thorac Dis 2022; 14:4506-4520. [PMID: 36524064 PMCID: PMC9745541 DOI: 10.21037/jtd-20-2301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/14/2022] [Indexed: 10/08/2023]
Abstract
Background Ventilator-induced lung injury (VILI) can occur as a result of mechanical ventilation to two lungs. Thoracic surgery often requires one-lung ventilation (OLV). The potential for VILI is likely higher in OLV. The impact of OLV on development of post-operative pulmonary complications is not well understood. We aimed to perform a scoping review to determine reliable biomarkers of VILI after OLV. Methods A scoping review was performed using Cochrane Collaboration methodology. We searched Medline, EMBASE and SCOPUS. Gray literature was searched. Studies of adult human or animal models without pre-existing lung damage exposed to OLV, with biomarker responses analyzed were included. Results After screening 5,613 eligible papers, 89 papers were chosen for full text review, with 29 meeting inclusion. Approximately half (52%, n=15) of studies were conducted in humans in an intra-operative setting. Bronchoalveolar lavage (BAL) & serum analyses with enzyme-linked immunosorbent assay (ELISA)-based assays were most commonly used. The majority of analytes were investigated by a single study. Of the analytes that were investigated by two or more studies (n=31), only 16 were concordant in their findings. Across all sample types and studies 84% (n=66) of the 79 inflammatory markers and 75% (n=6) of the 8 anti-inflammatory markers tested were found to increase. Half (48%) of all studies showed an increase in TNF-α or IL-6. Conclusions A scoping review of the state of the evidence demonstrated that candidate biomarkers with the most evidence and greatest reliability are general markers of inflammation, such as IL-6 and TNF-α assessed using ELISA assays. Studies were limited in the number of biomarkers measured concurrently, sample size, and studies using human participants. In conclusion these identified markers can potentially serve as outcome measures for studies on OLV.
Collapse
Affiliation(s)
- Allan J. G. Bruinooge
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | | | | | - Sadeesh K. Srinathan
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
| | - Gordon Buduhan
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
| | - Lawrence Tan
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
| | - Andrew J. Halayko
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
3
|
Fragoulis A, Biller K, Fragoulis S, Lex D, Uhlig S, Reiss LK. Reference Gene Selection for Gene Expression Analyses in Mouse Models of Acute Lung Injury. Int J Mol Sci 2021; 22:ijms22157853. [PMID: 34360619 PMCID: PMC8346155 DOI: 10.3390/ijms22157853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
qRT-PCR still remains the most widely used method for quantifying gene expression levels, although newer technologies such as next generation sequencing are becoming increasingly popular. A critical, yet often underappreciated, problem when analysing qRT-PCR data is the selection of suitable reference genes. This problem is compounded in situations where up to 25% of all genes may change (e.g., due to leukocyte invasion), as is typically the case in ARDS. Here, we examined 11 widely used reference genes for their suitability in commonly used models of acute lung injury (ALI): ventilator-induced lung injury (VILI), in vivo and ex vivo, lipopolysaccharide plus mechanical ventilation (MV), and hydrochloric acid plus MV. The stability of reference gene expression was determined using the NormFinder, BestKeeper, and geNorm algorithms. We then proceeded with the geNorm results because this is the only algorithm that provides the number of reference genes required to achieve normalisation. We chose interleukin-6 (Il-6) and C-X-C motif ligand 1 (Cxcl-1) as the genes of interest to analyse and demonstrate the impact of inappropriate normalisation. Reference gene stability differed between the ALI models and even within the subgroup of VILI models, no common reference gene index (RGI) could be determined. NormFinder, BestKeeper, and geNorm produced slightly different, but comparable results. Inappropriate normalisation of Il-6 and Cxcl1 gene expression resulted in significant misinterpretation in all four ALI settings. In conclusion, choosing an inappropriate normalisation strategy can introduce different kinds of bias such as gain or loss as well as under- or overestimation of effects, affecting the interpretation of gene expression data.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany;
| | - Kristina Biller
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
| | - Stephanie Fragoulis
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
| | - Dennis Lex
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
| | - Stefan Uhlig
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
| | - Lucy Kathleen Reiss
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
- Correspondence:
| |
Collapse
|
4
|
Bos LDJ, Scicluna BP, Ong DSY, Cremer O, van der Poll T, Schultz MJ. Understanding Heterogeneity in Biologic Phenotypes of Acute Respiratory Distress Syndrome by Leukocyte Expression Profiles. Am J Respir Crit Care Med 2020; 200:42-50. [PMID: 30645145 DOI: 10.1164/rccm.201809-1808oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rationale: Two biologic phenotypes of acute respiratory distress syndrome (ARDS) have been identified based on plasma protein markers in four previous studies. Objectives: To determine if blood leukocyte gene expression is different between the "reactive" and "uninflamed" phenotype. Methods: This is a new study adding blood leukocyte transcriptomics and bioinformatics analysis to an existing patient cohort of ARDS in patients with sepsis admitted to two ICUs during a 1.5-year period. Canonical pathway analysis was performed. Measurements and Main Results: A total of 210 patients with sepsis and ARDS were included, of whom 128 had a reactive and 82 an uninflamed phenotype. A total of 3,332/11,443 (29%) transcripts were significantly different between the phenotypes. Canonical pathway analysis showed upregulation of oxidative phosphorylation genes indicative of mitochondrial dysfunction (52% of genes in pathway). The uninflamed phenotype was characterized by upregulation of mitogen-activated protein kinase pathways. Conclusions: A third of genes are differentially expressed between biologic phenotypes of ARDS supporting the observation that the subgroups of ARDS are incomparable in terms of pathophysiology. These data provide additional support for biologic heterogeneity in patients with ARDS and suggests that a personalized approach to intervention focusing on oxidative phosphorylation is pivotal in this condition.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- 1 Intensive Care, Laboratory of Experimental Intensive Care and Anesthesiology.,2 Department of Respiratory Medicine
| | - Brendon P Scicluna
- 3 Center of Experimental Molecular Medicine, and.,4 Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Infection and Immunity, Amsterdam University Medical Center, location Academic Medical Center, Amsterdam, the Netherlands
| | - David S Y Ong
- 5 Department of Microbiology, Julius Center for Health Sciences and Primary Care.,6 Department of Epidemiology, Julius Center for Health Sciences and Primary Care, and
| | - Olaf Cremer
- 7 Intensive Care, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | | | - Marcus J Schultz
- 1 Intensive Care, Laboratory of Experimental Intensive Care and Anesthesiology.,8 Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| |
Collapse
|
5
|
Krabbe J, Ruske N, Kanzler S, Reiss LK, Ludwig A, Uhlig S, Martin C. Retrograde perfusion in isolated perfused mouse lungs-Feasibility and effects on cytokine levels and pulmonary oedema formation. Basic Clin Pharmacol Toxicol 2019; 125:279-288. [PMID: 30925204 DOI: 10.1111/bcpt.13236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/22/2019] [Indexed: 01/20/2023]
Abstract
Retrograde lung vascular perfusion can appear in high-risk surgeries. The present report is the first to study long-term retrograde perfusion of isolated perfused mouse lungs (IPLs) and to use the tyrosine kinase ephB4 and its ligand ephrinB2 as potential markers for acute lung injury. Mouse lungs were subjected to anterograde or retrograde perfusion with normal-pressure ventilation (NV) or high-pressure ventilation (=overventilation, OV) for 4 hours. Outcome parameters were cytokine, ephrinB2 and ephB4 levels in perfusate samples and bronchoalveolar lavage (BAL), and the wet-to-dry ratio. Anterograde perfusion was feasible for 4 hours, while lungs receiving retrograde perfusion presented considerable collapse rates. Retrograde perfusion resulted in an increased wet-to-dry ratio when combined with high-pressure ventilation; other physiological parameters were not affected. Cytokine levels in BAL and perfusate, as well as levels of soluble ephB4 in BAL were increased in OV, while soluble ephrinB2 BAL levels were increased in retrograde perfusion. BAL levels of ephrinB2 and ephB4 were also determined in vivo, including mice ventilated for 7 hours with normal-volume ventilation (NVV) or high-volume ventilation (HVV) with increased levels of ephB4 in HVV BAL compared to NVV. Retrograde perfusion in IPL is limited as a routine method to investigate effects due to collapse for yet unclear reasons. If successful, retrograde perfusion has an influence on pulmonary oedema formation. In BAL, ephrinB2 seems to be up-regulated by flow reversal, while ephB4 is a marker for acute lung injury.
Collapse
Affiliation(s)
- Julia Krabbe
- Medical Faculty, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany.,Medical Faculty, Institute of Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Nadine Ruske
- Medical Faculty, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Stephanie Kanzler
- Medical Faculty, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Lucy Kathleen Reiss
- Medical Faculty, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Medical Faculty, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Medical Faculty, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Christian Martin
- Medical Faculty, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW ARDS is a severe pulmonary disease characterized by inflammation. However, inflammation-directed therapies have yet failed to improve the outcome in ARDS patients. One of the reasons may be the underestimated complexity of inflammation. Here, we summarize recent insights into the complex interrelations between inflammatory circuits. RECENT FINDINGS Gene expression analysis from animal models or from patients with ARDS, sepsis or trauma show an enormous number of differentially expressed genes with highly significant overlaps between the various conditions. These similarities, however, should not obscure the complexity of inflammation. We suggest to consider inflammation in ARDS as a system controlled by scale-free networks of genome-wide molecular interaction with hubs (e.g. NFκB, C/EBPβ, ATF3), exhibiting nonlinear emergence and the ability to adapt, meaning for instance that mild and life-threatening inflammation in ARDS are distinct processes. In order to comprehend this complex system, it seems necessary to combine model-driven simulations, data-driven modelling and hypothesis-driven experimental studies. Recent experimental studies have illustrated how several regulatory circuits interact during pulmonary inflammation, including the resolution of inflammation, the inflammasome, autophagy and apoptosis. SUMMARY We suggest that therapeutic interventions in ARDS should be based on a systems approach to inflammation.
Collapse
|
7
|
Lasso P, Gomez-Cadena A, Urueña C, Donda A, Martinez-Usatorre A, Barreto A, Romero P, Fiorentino S. Prophylactic vs. Therapeutic Treatment With P2Et Polyphenol-Rich Extract Has Opposite Effects on Tumor Growth. Front Oncol 2018; 8:356. [PMID: 30234017 PMCID: PMC6127621 DOI: 10.3389/fonc.2018.00356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 11/14/2022] Open
Abstract
Polyphenols have tumoricidal effects via anti-proliferative, anti-angiogenic and cytotoxic mechanisms and have recently been demonstrated to modulate the immune response through their anti- or pro- oxidant activity. Nevertheless, it remains controversial whether antioxidant-rich supplements have real beneficial effects on health, especially in complex diseases such as cancer. We previously identified a polyphenol-rich extract obtained from Caesalpinia spinosa (P2Et) with anti-tumor activity in both breast carcinoma and melanoma. The present work evaluated the ability of P2Et extract to modulate the immune system in either the steady state or following tumor challenge. We found that the prophylactic treatment of healthy mice increased the number of CD4+ and CD8+ activated T, NK, regulatory T, dendritic and myeloid-derived suppressor cells in lymphoid organs together with a significant increase in plasma IL-6. Interestingly, this pre-conditioning of the host immune system with P2Et did not involve a protective effect against the control of tumor growth and metastasis in transplantable models of melanoma (B16) and breast cancer (4T1), but in contrast, a detrimental effect was observed in both models. We further demonstrated that this effect was at least partly due to an increase in regulatory T cells, myeloid-derived suppressor cells, and proinflammatory cytokines, with a concomitant decrease in CD4+ and CD8+ T cells. Taken together, these results suggest that the anti-tumor and immunomodulation properties of the P2Et extract critically depend on the presence of the tumor and might be mediated by the complex interactions between the tumor cells and the other components of the tumor microenvironment.
Collapse
Affiliation(s)
- Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alejandra Gomez-Cadena
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia.,Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alena Donda
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Amaia Martinez-Usatorre
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pedro Romero
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
8
|
Krabbe J, Ruske N, Braunschweig T, Kintsler S, Spillner JW, Schröder T, Kalverkamp S, Kanzler S, Rieg AD, Uhlig S, Martin C. The effects of hydroxyethyl starch and gelatine on pulmonary cytokine production and oedema formation. Sci Rep 2018; 8:5123. [PMID: 29572534 PMCID: PMC5865122 DOI: 10.1038/s41598-018-23513-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/15/2018] [Indexed: 01/27/2023] Open
Abstract
Recently, side effects of plasma expanders like hydroxyethyl starch and gelatine gained considerable attention. Most studies have focused on the kidneys; lungs remain unconsidered. Isolated mouse lungs were perfused for 4 hours with buffer solutions based on hydroxyethyl starch (HES) 130/0.4, HES 200/0.5 or gelatine and ventilated with low or high pressure under physiological pH and alkalosis. Outcome parameters were cytokine levels and the wet-to-dry ratio. For cytokine release, murine and human PCLS were incubated in three different buffers and time points.In lungs perfused with the gelatine based buffer IL-6, MIP-2 and KC increased when ventilated with high pressure. Wet-to-dry ratios increased stronger in lungs perfused with gelatine - compared to HES 130/0.4. Alkalotic perfusion resulted in higher cytokine levels but normal wet-to-dry ratio. Murine PCLS supernatants showed increased IL-6 and KC when incubated in gelatine based buffer, whereas in human PCLS IL-8 was elevated. In murine IPL HES 130/0.4 has lung protective effects in comparison to gelatine based infusion solutions, especially in the presence of high-pressure ventilation. Gelatine perfusion resulted in increased cytokine production. Our findings suggest that gelatine based solutions may have side effects in patients with lung injury or lung oedema.
Collapse
Affiliation(s)
- Julia Krabbe
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Intensive Care and Intermediate Care, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nadine Ruske
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Svetlana Kintsler
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jan W Spillner
- Departement of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, Boxgraben 99, 52064, Aachen, Germany
| | - Sebastian Kalverkamp
- Departement of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Stephanie Kanzler
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Annette D Rieg
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| |
Collapse
|
9
|
Lilburn DML, Tatler AL, Six JS, Lesbats C, Habgood A, Porte J, Hughes-Riley T, Shaw DE, Jenkins G, Meersmann T. Investigating lung responses with functional hyperpolarized xenon-129 MRI in an ex vivo rat model of asthma. Magn Reson Med 2016; 76:1224-35. [PMID: 26507239 PMCID: PMC5026173 DOI: 10.1002/mrm.26003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Asthma is a disease of increasing worldwide importance that calls for new investigative methods. Ex vivo lung tissue is being increasingly used to study functional respiratory parameters independent of confounding systemic considerations but also to reduce animal numbers and associated research costs. In this work, a straightforward laboratory method is advanced to probe dynamic changes in gas inhalation patterns by using an ex vivo small animal ovalbumin (OVA) model of human asthma. METHODS Hyperpolarized (hp) (129) Xe was actively inhaled by the excised lungs exposed to a constant pressure differential that mimicked negative pleural cavity pressure. The method enabled hp (129) Xe MRI of airway responsiveness to intravenous methacholine (MCh) and airway challenge reversal through salbutamol. RESULTS Significant differences were demonstrated between control and OVA challenged animals on global lung hp (129) Xe gas inhalation with P < 0.05 at MCh dosages above 460 μg. Spatial mapping of the regional hp gas distribution revealed an approximately three-fold increase in heterogeneity for the asthma model organs. CONCLUSION The experimental results from this proof of concept work suggest that the ex vivo hp noble gas imaging arrangement and the applied image analysis methodology may be useful as an adjunct to current diagnostic techniques. Magn Reson Med 76:1224-1235, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- David M L Lilburn
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Amanda L Tatler
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Joseph S Six
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Clémentine Lesbats
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Anthony Habgood
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Joanne Porte
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Theodore Hughes-Riley
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Dominick E Shaw
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Gisli Jenkins
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Thomas Meersmann
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
10
|
Xu ZP, Gu LB, Bian QM, Li PY, Wang LJ, Chen XX, Zhang JY. A novel method for right one-lung ventilation modeling in rabbits. Exp Ther Med 2016; 12:1213-1219. [PMID: 27446346 DOI: 10.3892/etm.2016.3434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/26/2016] [Indexed: 01/10/2023] Open
Abstract
There is no standard method by which to establish a right one-lung ventilation (OLV) model in rabbits. In the present study, a novel method is proposed to compare with two other methods. After 0.5 h of baseline two-lung ventilation (TLV), 40 rabbits were randomly divided into sham group (TLV for 3 h as a contrast) and three right-OLV groups (right OLV for 3 h with different methods): Deep intubation group, clamp group and blocker group (deeply intubate the self-made bronchial blocker into the left main bronchus, the novel method). These three methods were compared using a number of variables: Circulation by heart rate (HR), mean arterial pressure (MAP); oxygenation by arterial blood gas analysis; airway pressure; lung injury by histopathology; and time, blood loss, success rate of modeling. Following OLV, compared with the sham group, arterial partial pressure of oxygen and arterial hemoglobin oxygen saturation decreased, peak pressure increased and lung injury scores were higher in three OLV groups at 3 h of OLV. All these indexes showed no differences between the three OLV groups. During right-OLV modeling, less time was spent in the blocker group (6±2 min), compared with the other two OLV groups (13±4 min in deep intubation group, P<0.05; 33±9 min in clamp group, P<0.001); more blood loss was observed in clamp group (11.7±2.8 ml), compared with the other two OLV groups (2.3±0.5 ml in deep intubation group, P<0.001; 2.1±0.6 ml in blocker group, P<0.001). The first-time and final success rate of modeling showed no differences among the three OLV groups. Deep intubation of the self-made bronchial blocker into the left main bronchus is an easy, effective and reliable method to establish a right-OLV model in rabbits.
Collapse
Affiliation(s)
- Ze-Ping Xu
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Cancer Institute, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Lian-Bing Gu
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Cancer Institute, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Qing-Ming Bian
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Cancer Institute, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Peng-Yi Li
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Cancer Institute, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Li-Jun Wang
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Cancer Institute, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiao-Xiang Chen
- Department of Gynecology, Jiangsu Cancer Hospital, Jiangsu Cancer Institute, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jing-Yuan Zhang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Cancer Institute, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
Woods SJ, Waite AAC, O'Dea KP, Halford P, Takata M, Wilson MR. Kinetic profiling of in vivo lung cellular inflammatory responses to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 2015; 308:L912-21. [PMID: 25770178 PMCID: PMC4421782 DOI: 10.1152/ajplung.00048.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/07/2015] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation, through overdistension of the lung, induces substantial inflammation that is thought to increase mortality among critically ill patients. The mechanotransduction processes involved in converting lung distension into inflammation during this ventilator-induced lung injury (VILI) remain unclear, although many cell types have been shown to be involved in its pathogenesis. This study aimed to identify the profile of in vivo lung cellular activation that occurs during the initiation of VILI. This was achieved using a flow cytometry-based method to quantify the phosphorylation of several markers (p38, ERK1/2, MAPK-activated protein kinase 2, and NF-κB) of inflammatory pathway activation within individual cell types. Anesthetized C57BL/6 mice were ventilated with low (7 ml/kg), intermediate (30 ml/kg), or high (40 ml/kg) tidal volumes for 1, 5, or 15 min followed by immediate fixing and processing of the lungs. Surprisingly, the pulmonary endothelium was the cell type most responsive to in vivo high-tidal-volume ventilation, demonstrating activation within just 1 min, followed by the alveolar epithelium. Alveolar macrophages were the slowest to respond, although they still demonstrated activation within 5 min. This order of activation was specific to VILI, since intratracheal lipopolysaccharide induced a very different pattern. These results suggest that alveolar macrophages may become activated via a secondary mechanism that occurs subsequent to activation of the parenchyma and that the lung cellular activation mechanism may be different between VILI and lipopolysaccharide. Our data also demonstrate that even very short periods of high stretch can promote inflammatory activation, and, importantly, this injury may be immediately manifested within the pulmonary vasculature.
Collapse
Affiliation(s)
- Samantha J. Woods
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Alicia A. C. Waite
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P. O'Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Paul Halford
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Michael R. Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
12
|
Reiss LK, Fragoulis A, Siegl S, Platen C, Kan YW, Nautiyal J, Parker M, Pufe T, Uhlig U, Martin C, Uhlig S, Wruck CJ. Interplay between nuclear factor erythroid 2-related factor 2 and amphiregulin during mechanical ventilation. Am J Respir Cell Mol Biol 2015; 51:668-77. [PMID: 24921206 DOI: 10.1165/rcmb.2013-0279oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mechanical ventilation (MV) elicits complex and clinically relevant cellular responses in the lungs. The current study was designed to define the role of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a major regulator of the cellular antioxidant defense system, in the pulmonary response to MV. Nrf2 activity was quantified in ventilated isolated perfused mouse lungs (IPL). Regulation of amphiregulin (AREG) was investigated in BEAS-2B cells with inactivated Nrf2 or Keap1, the inhibitor of Nrf2, using a luciferase vector with AREG promoter. AREG-dependent Nrf2 activity was examined in BEAS-2B cells, murine precision-cut lung slices (PCLS), and IPL. Finally, Nrf2 knockout and wild-type mice were ventilated to investigate the interplay between Nrf2 and AREG during MV in vivo. Lung functions and inflammatory parameters were measured. Nrf2 was activated in a ventilation-dependent manner. The knockdown of Nrf2 and Keap1 via short hairpin RNA in BEAS-2B cells and an EMSA with lung tissue revealed that AREG is regulated by Nrf2. Conversely, AREG application induced a significant Nrf2 activation in BEAS-2B cells, PCLS, and IPL. The signal transduction of ventilation-induced Nrf2 activation was shown to be p38 MAP kinase-dependent. In vivo ventilation experiments indicated that AREG is regulated by Nrf2 during MV. We conclude that Areg expression is regulated by Nrf2. During high-pressure ventilation, Nrf2 becomes activated and induces AREG, leading to a positive feedback loop between Nrf2 and AREG, which involves the p38 MAPK and results in the expression of cytoprotective genes.
Collapse
|
13
|
Marzec KM, Kochan K, Fedorowicz A, Jasztal A, Chruszcz-Lipska K, Dobrowolski JC, Chlopicki S, Baranska M. Raman microimaging of murine lungs: insight into the vitamin A content. Analyst 2015; 140:2171-7. [DOI: 10.1039/c4an01881h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composition of mice lung tissue was investigated using Raman confocal microscopy at 532 nm excitation wavelength supported with different experimental staining techniques as well as DFT calculations.
Collapse
Affiliation(s)
- K. M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
| | - K. Kochan
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
- Faculty of Chemistry
| | - A. Fedorowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
| | - A. Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
| | - K. Chruszcz-Lipska
- AGH University of Science and Technology
- Faculty of Drilling
- Oil and Gas
- 30-059 Krakow
- Poland
| | - J. Cz. Dobrowolski
- National Medicines Institute
- Warsaw
- Poland
- Institute of Nuclear Chemistry and Technology
- 16 Dorodna Str
| | - S. Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
- Department of Experimental Pharmacology
| | - M. Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
- Faculty of Chemistry
| |
Collapse
|
14
|
Nelson K, Bobba C, Ghadiali S, Jr DH, Black SM, Whitson BA. Animal models of ex vivo lung perfusion as a platform for transplantation research. World J Exp Med 2014; 4:7-15. [PMID: 24977117 PMCID: PMC4073219 DOI: 10.5493/wjem.v4.i2.7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/23/2014] [Accepted: 03/14/2014] [Indexed: 02/05/2023] Open
Abstract
Ex vivo lung perfusion (EVLP) is a powerful experimental model for isolated lung research. EVLP allows for the lungs to be manipulated and characterized in an external environment so that the effect of specific ventilation/perfusion variables can be studied independent of other confounding physiologic contributions. At the same time, EVLP allows for normal organ level function and real-time monitoring of pulmonary physiology and mechanics. As a result, this technique provides unique advantages over in vivo and in vitro models. Small and large animal models of EVLP have been developed and each of these models has their strengths and weaknesses. In this manuscript, we provide insight into the relative strengths of each model and describe how the development of advanced EVLP protocols is leading to a novel experimental platform that can be used to answer critical questions in pulmonary physiology and transplant medicine.
Collapse
|
15
|
Gorski SA, Hahn YS, Braciale TJ. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog 2013; 9:e1003615. [PMID: 24068930 PMCID: PMC3777868 DOI: 10.1371/journal.ppat.1003615] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/29/2013] [Indexed: 01/21/2023] Open
Abstract
Respiratory virus infections, such as influenza, typically induce a robust type I (pro-inflammatory cytokine) immune response, however, the production of type 2 cytokines has been observed. Type 2 cytokine production during respiratory virus infection is linked to asthma exacerbation; however, type 2 cytokines may also be tissue protective. Interleukin (IL)-5 is a prototypical type 2 cytokine that is essential for eosinophil maturation and egress out of the bone marrow. However, little is known about the cellular source and underlying cellular and molecular basis for the regulation of IL-5 production during respiratory virus infection. Using a mouse model of influenza virus infection, we found a robust transient release of IL-5 into infected airways along with a significant and progressive accumulation of eosinophils into the lungs, particularly during the recovery phase of infection, i.e. following virus clearance. The cellular source of the IL-5 was group 2 innate lymphoid cells (ILC2) infiltrating the infected lungs. Interestingly, the progressive accumulation of eosinophils following virus clearance is reflected in the rapid expansion of c-kit+ IL-5 producing ILC2. We further demonstrate that the enhanced capacity for IL-5 production by ILC2 during recovery is concomitant with the enhanced expression of the IL-33 receptor subunit, ST2, by ILC2. Lastly, we show that NKT cells, as well as alveolar macrophages (AM), are endogenous sources of IL-33 that enhance IL-5 production from ILC2. Collectively, these results reveal that c-kit+ ILC2 interaction with IL-33 producing NKT and AM leads to abundant production of IL-5 by ILC2 and accounts for the accumulation of eosinophils observed during the recovery phase of influenza infection. IL-5 is a cytokine that is typically associated with parasitic infections and allergic reactions. The primary role of IL-5 is thought to be for the development and maturation of an innate immune cell type, the eosinophil, which is also a culprit in allergic diseases such as asthma. During respiratory virus infection, such as influenza infection, IL-5 and eosinophils are not thought to play a major role in host defense. Here we show that IL-5 is produced in response to influenza infection and results in the progressive accumulation of eosinophils in the lung. We show that a newly discovered cell type, the group 2 innate lymphoid cell (ILC2), is responsible for IL-5 production during influenza infection and that the capacity of ILC2 to make IL-5 is greatly increased following virus clearance, i.e. during the recovery phase. The production of IL-5 by ILC2 is in part regulated by NKT cells and IL-33 produced by this cell type during the recovery phase of influenza infection.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Eosinophilia/etiology
- Eosinophils/immunology
- Eosinophils/metabolism
- Eosinophils/pathology
- Eosinophils/virology
- Immunity, Innate
- Influenza A Virus, H1N1 Subtype/immunology
- Interleukin-33
- Interleukin-5/metabolism
- Interleukins/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Killer Cells, Natural/virology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung/virology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Macrophages, Alveolar/virology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/virology
- Protein Subunits/metabolism
- Receptors, Interleukin/metabolism
- Respiratory Tract Infections/immunology
- Respiratory Tract Infections/metabolism
- Respiratory Tract Infections/pathology
- Respiratory Tract Infections/virology
- Specific Pathogen-Free Organisms
- Up-Regulation
Collapse
Affiliation(s)
- Stacey Ann Gorski
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Thomas J. Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lilburn DML, Hughes-Riley T, Six JS, Stupic KF, Shaw DE, Pavlovskaya GE, Meersmann T. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI. PLoS One 2013; 8:e73468. [PMID: 24023683 PMCID: PMC3758272 DOI: 10.1371/journal.pone.0073468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/21/2013] [Indexed: 12/15/2022] Open
Abstract
Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) (129)Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129)Xe. Straightforward hp (129)Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp (129)Xe probe volumes during the inhalation cycle. Hp (129)Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.
Collapse
Affiliation(s)
- David M. L. Lilburn
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Theodore Hughes-Riley
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joseph S. Six
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Karl F. Stupic
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Dominick E. Shaw
- Nottingham Respiratory Research Unit, Nottingham City Hospital, Nottingham, United Kingdom
| | - Galina E. Pavlovskaya
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thomas Meersmann
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|