1
|
Hu H, Wan S, Hu Y, Wang Q, Li H, Zhang N. Deciphering the role of APOE in cerebral amyloid angiopathy: from genetic insights to therapeutic horizons. Ann Med 2025; 57:2445194. [PMID: 39745195 DOI: 10.1080/07853890.2024.2445194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid-β (Aβ) peptides in the walls of medium and small vessels of the brain and leptomeninges, is a major cause of lobar hemorrhage in elderly individuals. Among the genetic risk factors for CAA that continue to be recognized, the apolipoprotein E (APOE) gene is the most significant and prevalent, as its variants have been implicated in more than half of all patients with CAA. While the presence of the APOE ε4 allele markedly increases the risk of CAA, the ε2 allele confers a protective effect relative to the common ε3 allele. These allelic variants encode three APOE isoforms that differ at two amino acid positions. The primary physiological role of APOE is to mediate lipid transport in the brain and periphery; however, it has also been shown to be involved in a wide array of biological functions, particularly those involving Aβ, in which it plays a known role in processing, production, aggregation, and clearance. The challenges posed by the reliance on postmortem histological analyses and the current absence of an effective intervention underscore the urgency for innovative APOE-targeted strategies for diagnosing CAA. This review not only deepens our understanding of the impact of APOE on the pathogenesis of CAA but can also help guide the exploration of targeted therapies, inspiring further research into the therapeutic potential of APOE.
Collapse
Affiliation(s)
- Hantian Hu
- Tianjin Medical University, Tianjin, China
| | - Siqi Wan
- Tianjin Medical University, Tianjin, China
| | - Yuetao Hu
- Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Tianjin Medical University, Tianjin, China
| | - Hanyu Li
- Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Singh A, Kaakinen M, Elamaa H, Kiviniemi V, Eklund L. The glycosaminoglycan chains of perlecan regulate the perivascular fluid transport. Fluids Barriers CNS 2025; 22:48. [PMID: 40340918 PMCID: PMC12063283 DOI: 10.1186/s12987-025-00648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/28/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND The perivascular conduct pathway that connects the cerebrospinal fluid spaces with the interstitial fluid in the parenchyma are of importance for solute clearance from the brain. In this pathway, the relatively wide perivascular space (PVS) surrounding the pial arteries provides a low-resistant passage while around the perforating arteries, the solute movement is along the basement membrane (BM), that prevents the free exchange of interstitial fluids and solutes. We hypothesize that this selectivity involves specific components of the vascular BM, which is mainly composed of type IV collagen (Col IV) and laminin networks interconnected by nidogens and heparan sulphate proteoglycans (HSPGs). Perlecan is the major HSPG in the BM that binds to Col IV and laminin via glycosaminoglycan (GAG) chains to form a molecular sieve. GAGs may also provide the charge selectivity required for filtration, and also a scaffold for amyloid-β (Aβ) aggregation. The purpose of this study was the functional characterization of perivascular fluid transport and brain clearance in mice lacking perlecan GAG chains. METHODS We generated a novel mouse line (Hspg2∆3∆91) lacking perlecan GAG side chains and investigated perivascular flow and brain clearance in these mice using intravital multiphoton and fluorescence recovery after photobleaching techniques, and functional assays with various tracers. Potentially deleterious effects on brain homeostasis were investigated using transcriptomic, proteomic and immunohistochemical methods. The Hspg2∆3∆91 mice were crossed with a 5xFAD line to examine the importance of GAGs in Aβ aggregation. RESULTS We observed a delayed inflow of CSF tracer into the Hspg2∆3∆91 brain with no changes in the clearance of parenchymal injected tracers. Quantification of the Aβ plaques revealed fewer and smaller plaques in the walls of the pial arteries at six months of age, but not in the brain parenchyma. Surprisingly, perlecan GAG deficiency had no severe deleterious effects on brain homeostasis in transcriptomic and proteomic analyses. CONCLUSIONS Potential brain clearance mechanisms are dependent on the flow through special ECM structures. BM is mainly known for its barrier function, whereas very little is known about how passage along the perivascular ECM is established. This study shows that the GAG composition of the BM affects the solute dynamics and Aβ deposition in the periarterial space.
Collapse
Affiliation(s)
- Abhishek Singh
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Harri Elamaa
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Oulu Functional Neuroimaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Divecha YA, Rampes S, Tromp S, Boyanova ST, Fleckney A, Fidanboylu M, Thomas SA. The microcirculation, the blood-brain barrier, and the neurovascular unit in health and Alzheimer disease: The aberrant pericyte is a central player. Pharmacol Rev 2025; 77:100052. [PMID: 40215558 PMCID: PMC12163501 DOI: 10.1016/j.pharmr.2025.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/28/2025] [Indexed: 05/27/2025] Open
Abstract
High fidelity neuronal signaling is enabled by a stable local microenvironment. A high degree of homeostatic regulation of the brain microenvironment, and its separation from the variable and potentially neurotoxic contents of the blood, is brought about by the central nervous system barriers. Evidence from clinical and preclinical studies implicates brain microcirculation, cerebral hypoperfusion, blood-brain barrier dysfunction, and reduced amyloid clearance in Alzheimer pathophysiology. Studying this dysregulation is key to understanding Alzheimer disease (AD), identifying drug targets, developing treatment strategies, and improving prescribing to this vulnerable population. This review has 2 parts: part 1 describes the cerebral microcirculation, cerebral blood flow, extracellular fluid drainage, and the neurovascular unit components with an emphasis on the blood-brain barrier, and part 2 summarizes how each aspect is altered in AD. Discussing the neurovascular unit structures separately allows us to conclude that aberrant pericytes are an early contributor and central to understanding AD pathophysiology. Pericytes have multiple functions including maintenance of blood-brain barrier integrity and the control of capillary blood flow, capillary stalling, neurovascular coupling, intramural periarterial drainage, glia-lymphatic (glymphatic) drainage, and consequently amyloid and tau clearance. Pericytes are vasoactive, express cholinergic and adrenergic receptors, and exhibit apolipoprotein E isoform-specific transport pathways. Hypoperfusion in AD is linked to a pericyte-mediated response. Deficient endothelial cell-pericyte (PDGBB-PDGFRβ) signaling loops cause pericyte dysfunction, which contributes and even initiates AD degeneration. We conclude that pericytes are central to understanding AD pathophysiology, are an interesting therapeutic target in AD, and have an emerging role in regenerative therapy. SIGNIFICANCE STATEMENT: Dysregulation and dysfunction of the neurovascular unit and fluid circulation (including blood, cerebrospinal fluid, and interstitial fluid) occurs in Alzheimer disease. A central player is the aberrant pericyte. This has fundamental implications to understanding disease pathophysiology and the development of therapies.
Collapse
Affiliation(s)
- Yasmin Amy Divecha
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sanketh Rampes
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sabine Tromp
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sevda T Boyanova
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Alice Fleckney
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Mehmet Fidanboylu
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sarah Ann Thomas
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom.
| |
Collapse
|
4
|
Zhao N, Pessell AF, Chung TD, Searson PC. Brain vascular basement membrane: comparison of human and mouse brain at the transcriptomic and proteomic levels. Matrix Biol 2025:S0945-053X(25)00036-8. [PMID: 40294830 DOI: 10.1016/j.matbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
The cerebrovascular basement membrane (BM) is a key component of the blood-brain barrier (BBB). The BM provides structural support for brain microvascular endothelial cells and the supporting cells of the neurovascular unit, and facilitates cell signaling through adhesion receptors, regulates the concentration of soluble factors, and serves as an additional barrier for transport. However, our understanding of the composition of BM remains incomplete. Here we analyze recent proteomic and genomic data to assess the composition of BM in human and mouse brain, and in tissue-engineered BBB models. All data sets confirm that the main components of brain BM are collagen IV a1/2, laminin, along with agrin, perlecan, and nidogen. Transcriptomic data from human BMECs suggests that the main laminin isoform is Laminin 321, while transcriptomic data from mice and proteomic data from mice and humans suggest that Laminin 521 is the predominant isoform. Transcriptomic data from iBMECs suggest that Laminin 511 is the predominant isoform. The supporting molecules agrin, perlecan, and nidogen were detected at significant levels in all studies, although only nidogen 1 was detected in the human transcriptomic data sets. No significant differences in human BM composition were observed in BMECs along the arterio-venous axis, or in comparison of healthy and AD brains.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Dewing JM, Keable A, Laslo A, Chinezu L, Ivanescu A, Ratnayaka JA, Kalaria R, Slevin M, Verma A, Carare RO. Proportions of Basement Membrane Proteins in Cerebrovascular Smooth Muscle Cells After Exposure to Hypercapnia and Amyloid Beta. Cells 2025; 14:614. [PMID: 40277938 PMCID: PMC12025956 DOI: 10.3390/cells14080614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Vascular basement membranes (BMs), composed of laminins, collagen IV, fibronectin, and perlecan, are secreted by endothelial cells, pericytes, smooth muscle cells (SMCs), and astrocytes. In the brain, amyloid beta (Aβ) is eliminated along cerebrovascular BMs of capillaries and arteries as intramural periarterial drainage (IPAD). Ageing modifies vascular BMs, impairing IPAD and leading to Aβ deposition as cerebral amyloid angiopathy. To better understand the molecular determinants of IPAD in ageing, we quantified the relative abundance of BMs secreted by human-derived cerebral endothelial cells, pericytes, brain vascular SMCs, and astrocytes in vitro. We then assessed BM protein levels in SMCs under hypercapnia (8% CO2) as a model of vascular ageing, with and without Aβ exposure. Of the four cell types, we found SMCs secreted the highest levels of fibronectin, laminin, and perlecan, whilst pericytes secreted the highest levels of collagen IV. Hypercapnia increased the expression of collagen IV and fibronectin in SMCs but decreased the expression of laminin. The expression of perlecan increased under hypercapnia, but only in the presence of Aβ. This work highlights the varying compositions of vascular BMs and the dynamic differential responses of SMCs to Aβ and hypercapnia, helping to elucidate the age-related changes that impair IPAD in cerebral vessels.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.K.); (J.A.R.); (R.O.C.)
| | - Abby Keable
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.K.); (J.A.R.); (R.O.C.)
| | - Alexandru Laslo
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology “G.E.Palade” Targu Mures, 540142 Targu-Mures, Romania; (A.L.); (L.C.); (A.I.); (M.S.)
| | - Laura Chinezu
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology “G.E.Palade” Targu Mures, 540142 Targu-Mures, Romania; (A.L.); (L.C.); (A.I.); (M.S.)
| | - Adrian Ivanescu
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology “G.E.Palade” Targu Mures, 540142 Targu-Mures, Romania; (A.L.); (L.C.); (A.I.); (M.S.)
| | - J. Arjuna Ratnayaka
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.K.); (J.A.R.); (R.O.C.)
| | - Raj Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne NE4 5PL, UK;
| | - Mark Slevin
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology “G.E.Palade” Targu Mures, 540142 Targu-Mures, Romania; (A.L.); (L.C.); (A.I.); (M.S.)
| | - Ajay Verma
- Formation Venture Engineering Foundry, Boston, MA 02494, USA;
| | - Roxana O. Carare
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.K.); (J.A.R.); (R.O.C.)
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology “G.E.Palade” Targu Mures, 540142 Targu-Mures, Romania; (A.L.); (L.C.); (A.I.); (M.S.)
| |
Collapse
|
6
|
Iadecola C, Anrather J. The immunology of stroke and dementia. Immunity 2025; 58:18-39. [PMID: 39813992 PMCID: PMC11736048 DOI: 10.1016/j.immuni.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Ischemic stroke and vascular cognitive impairment, caused by a sudden arterial occlusion or more subtle but protracted vascular insufficiency, respectively, are leading causes of morbidity and mortality worldwide with limited therapeutic options. Innate and adaptive immunity have long been implicated in neurovascular injury, but recent advances in methodology and new experimental approaches have shed new light on their contributions. A previously unappreciated dynamic interplay of brain-resident, meningeal, and systemic immune cells with the ischemic brain and its vasculature has emerged, and new insights into the frequent overlap between vascular and Alzheimer pathology have been provided. Here, we critically review these recent findings, place them in the context of current concepts on neurovascular pathologies and Alzheimer's disease, and highlight their impact on recent stroke and Alzheimer therapies.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
7
|
Xu M, Wang L, Meng Y, Kang G, Jiang Q, Yan T, Che F. The role of lipid metabolism in cognitive impairment. ARQUIVOS DE NEURO-PSIQUIATRIA 2025; 83:1-13. [PMID: 39814004 PMCID: PMC11735072 DOI: 10.1055/s-0044-1792097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/27/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD), diabetic cognitive impairment (DCI), and vascular dementia (VD) are considered the most common causes of severe cognitive impairment in clinical practice. Numerous factors can influence their progression, and many studies have recently revealed that metabolic disorders play crucial roles in the progression of cognitive impairment. Mounting evidence indicate that the regulation of lipid metabolism is a major factor in maintaining brain homeostasis. Generally, abnormalities in lipid metabolism can affect amyloid-beta (Aβ) deposition, tau hyperphosphorylation, and insulin resistance through lipid metabolic signaling cascades; affect the neuronal membrane structure, neurotransmitter synthesis and release; and promote synapse growth, which can impact neural signal transmission and exacerbate disease progression in individuals with cognitive impairment, including AD, DCI, and VD. Moreover, apolipoprotein E (APOE), a key protein in lipid transport, is involved in the occurrence and development of the aforementioned diseases by regulating lipid metabolism. The present article mainly discusses how lipid metabolic disorders in the brain microenvironment are involved in regulating the progression of cognitive impairment, and it explores the regulatory effects of targeting the key lipid transport protein APOE in the context of the role of lipid metabolism in the common pathogenesis of three diseases-Aβ deposition, tau hyperphosphorylation, and insulin resistance-which will help elucidate the potential of targeting lipid metabolism for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Meifang Xu
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Liyuan Wang
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
| | - Yun Meng
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Guiqiong Kang
- Guangzhou University of Chinese Medicine, Linyi People's Hospital, Linyi Shandong Province, China.
| | - Qing Jiang
- Harbin Medical University, First Affiliated Hospital, Department of Neurosurgery, Harbin Heilongjiang Province, China.
- Key Colleges and Universities, Laboratory of Neurosurgery, Harbin Heilongjiang Province, China.
| | - Tao Yan
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Fengyuan Che
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| |
Collapse
|
8
|
Tripathi S, Sharma Y, Kumar D. Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:259-281. [PMID: 39722484 DOI: 10.2174/0113892037326839241014054430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ε4 allele is one of the main genetic risk factors for AD. While the APOE gene's ε4 allele considerably increases the chance of developing AD, the ε2 allele is protective compared to the prevalent ε3 variant. It is fiercely discussed how APOE affects the development and course of disease since it has a variety of activities that influence both neuronal and non-neuronal cells. ApoE4 contributes to the formation of tau tangles, deposition of Aβ, neuroinflammation, and other processes. Four decades of research have provided a significant understanding of the structure of APOE and how this may affect the neuropathology and pathogenesis of AD. APOE is a crucial lipid transporter essential for the growth of the central nervous system (CNS), upkeep, and repair. The mechanisms by which APOE contributes to the pathophysiology of AD are still up for discussion, though. Evidence suggests that APOE affects the brain's clearance and deposition of Aβ. Additionally, APOE has Aβ-independent pathways in AD, which has led to the identification of new functions for APOE, including mitochondrial dysfunction. This study summarizes important studies that describe how APOE4 affects well-known AD pathologies, including tau pathology, Aβ, neuroinflammation, and dysfunction of neural networks. This study also envisions some of the therapeutic approaches being used to target APOE4 in the hopes of preventing or treating AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
9
|
Wright SA, Lennon R, Greenhalgh AD. Basement membranes' role in immune cell recruitment to the central nervous system. J Inflamm (Lond) 2024; 21:53. [PMID: 39707430 DOI: 10.1186/s12950-024-00426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Basement membranes form part of the extracellular matrix (ECM), which is the structural basis for all tissue. Basement membranes are cell-adherent sheets found between cells and vascular endothelia, including those of the central nervous system (CNS). There is exceptional regional specialisation of these structures, both in tissue organisation and regulation of tissue-specific cellular processes. Due to their location, basement membranes perform a key role in immune cell trafficking and therefore are important in inflammatory processes causing or resulting from CNS disease and injury. This review will describe basement membranes in detail, with special focus on the brain. We will cover how genetic changes drive brain pathology, describe basement membranes' role in immune cell recruitment and how they respond to various brain diseases. Understanding how basement membranes form the junction between the immune and central nervous systems will be a major advance in understanding brain disease.
Collapse
Affiliation(s)
- Shaun A Wright
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Lennon
- Cell Matrix Biology & Regenerative Medicine and Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
10
|
Luo Z, Zhu Y, Zhu Y, Liu B, Li Y, Yin L, Liu J, Xu Z, Ren H, Yang X. Cognitive function in Parkinson's disease: associations with perivascular space in basal ganglia. Neurol Sci 2024; 45:5973-5981. [PMID: 39212793 DOI: 10.1007/s10072-024-07729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cognitive impairment is one of the most common symptoms of Parkinson's disease (PD), and may be detectable through changes in neural features visualized by magnetic resonance imaging (MRI). Mild cognitive impairment is a transitional state between normal aging and dementia, and early recognition of Parkinson's disease with mild cognitive impairment (PD-MCI) can help improve the quality of life and treatment for patients. This study investigated the association of enlarged perivascular space (EPVS) and white matter hyperintensity (WMH) with PD-MCI. AIMS This study aimed to evaluate whether EPVS and WMH can be used as potential MRI markers for PD-MCI. METHODS This retrospective study involved 200 patients with PD who underwent cranial MRI in our hospital from April 2021 to April 2022. Patients were divided into those with no cognitive impairment (PD-NCI) or mild cognitive impairment. Uni- and multivariate logistic regression analyzed associations of EPVS, WMH, and clinicodemographic characteristics with cognitive decline. RESULTS Univariate regression identified severe EPVS in basal ganglia, severe WMH, older age, late-onset, male sex, low educational level, longer duration of disease, low triglycerides, low uric acid, and low scores on the Mini-mental State Exam as risk factors for PD-MCI. After adjusting for clinicodemographic risk factors in multivariate regression, low education level and EPVS in basal ganglia remained risk factors for cognitive impairment. CONCLUSIONS Severe EPVS in basal ganglia and poor education, but not WMH, are independent risk factors of PD-MCI. Our findings suggest that non-invasive detection of EPVS in basal ganglia by MRI may be a valuable early indicator of cognitive decline in PD patients.
Collapse
Affiliation(s)
- Zhenglong Luo
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
| | - Yangfan Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
| | - Yongyun Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
| | - Bin Liu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
| | - Yuxia Li
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
| | - Lei Yin
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
| | - Jie Liu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
| | - Zhong Xu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China.
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China.
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China.
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, P.R. China.
| |
Collapse
|
11
|
Moore A, Ritchie MD. Is the Relationship Between Cardiovascular Disease and Alzheimer's Disease Genetic? A Scoping Review. Genes (Basel) 2024; 15:1509. [PMID: 39766777 PMCID: PMC11675426 DOI: 10.3390/genes15121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cardiovascular disease (CVD) and Alzheimer's disease (AD) are two diseases highly prevalent in the aging population and often co-occur. The exact relationship between the two diseases is uncertain, though epidemiological studies have demonstrated that CVDs appear to increase the risk of AD and vice versa. This scoping review aims to examine the current identified overlapping genetics between CVDs and AD at the individual gene level and at the shared pathway level. METHODS Following PRISMA-ScR guidelines for a scoping review, we searched the PubMed and Scopus databases from 1990 to October 2024 for articles that involved (1) CVDs, (2) AD, and (3) used statistical methods to parse genetic relationships. RESULTS Our search yielded 2918 articles, of which 274 articles passed screening and were organized into two main sections: (1) evidence of shared genetic risk; and (2) shared mechanisms. The genes APOE, PSEN1, and PSEN2 reportedly have wide effects across the AD and CVD spectrum, affecting both cardiac and brain tissues. Mechanistically, changes in three main pathways (lipid metabolism, blood pressure regulation, and the breakdown of the blood-brain barrier (BBB)) contribute to subclinical and etiological changes that promote both AD and CVD progression. However, genetic studies continue to be limited by the availability of longitudinal data and lack of cohorts that are representative of diverse populations. CONCLUSIONS Highly penetrant familial genes simultaneously increase the risk of CVDs and AD. However, in most cases, sets of dysregulated genes within larger-scale mechanisms, like changes in lipid metabolism, blood pressure regulation, and BBB breakdown, increase the risk of both AD and CVDs and contribute to disease progression.
Collapse
Affiliation(s)
- Anni Moore
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Informatics, Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Laslo A, Laslo L, Arbănași EM, Ujlaki-Nagi AA, Chinezu L, Ivănescu AD, Arbănași EM, Cărare RO, Cordoș BA, Popa IA, Brînzaniuc K. Pathways to Alzheimer's Disease: The Intersecting Roles of Clusterin and Apolipoprotein E in Amyloid-β Regulation and Neuronal Health. PATHOPHYSIOLOGY 2024; 31:545-558. [PMID: 39449522 PMCID: PMC11503414 DOI: 10.3390/pathophysiology31040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) within the extracellular spaces of the brain as plaques and along the blood vessels in the brain, a condition also known as cerebral amyloid angiopathy (CAA). Clusterin (CLU), or apolipoprotein J (APOJ), is a multifunctional glycoprotein that has a role in many physiological and neurological conditions, including AD. The apolipoprotein E (APOE) is a significant genetic factor in AD, and while the primary physiological role of APOE in the brain and peripheral tissues is to regulate lipid transport, it also participates in various other biological processes, having three basic human forms: APOE2, APOE3, and APOE4. Notably, the APOE4 allele substantially increases the risk of developing late-onset AD. The main purpose of this review is to examine the roles of CLU and APOE in AD pathogenesis in order to acquire a better understanding of AD pathogenesis from which to develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alexandru Laslo
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Laura Laslo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
| | - Eliza-Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| | - Emil-Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | | | - Bogdan Andrei Cordoș
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
- Centre for Experimental Medical and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ioana Adriana Popa
- Clinic of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Klara Brînzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| |
Collapse
|
13
|
Gu H, Liu LL, Wu A, Yu Y, Emir U, Sawiak SJ, Territo PR, Farlow MR, Zheng W, Du Y. Lead Acetate Exposure and Cerebral Amyloid Accumulation: Mechanistic Evaluations in APP/PS1 Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107004. [PMID: 39412896 PMCID: PMC11482597 DOI: 10.1289/ehp14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND The role of environmental factors in Alzheimer's disease (AD) pathogenesis remains elusive. Mounting evidence suggests that acute and past exposure to the environmental toxicant lead (Pb) is associated with longitudinal decline in cognitive function, brain atrophy, and greater brain β -amyloid (A β ) deposition. However, the nature of Pb-induced amyloid deposition and how it contributes to AD development remain unclear. OBJECTIVES This study investigates the role of Pb in the pathogenesis of cerebral amyloid angiopathy (CAA) and whether plasminogen activator inhibitor-1 (PAI-1) contributes to this process in the APP/PS1 mouse model. METHODS Female APP/PS1 mice at 8 wk of age were administered either 50 mg / kg Pb-acetate (PbAc) (i.e., 27 mg Pb / kg ) or an equivalent molar concentration of sodium acetate (NaAc) via oral gavage once daily for 8 wk. Amyloid deposition and vascular amyloid were determined by immunostaining. In addition, A β perivascular drainage, vascular binding assay, and microglial endocytosis were examined to determine underlying mechanisms. Furthermore, magnetic resonance imaging demyelination imaging was performed in vivo measure the level of demyelination. Finally, Y-maze and Morris water maze tests were assessed to evaluate the cognitive function of mice. RESULTS APP/PS1 mice (an AD mice model) exposed to PbAc demonstrated more vascular amyloid deposition less neocortical myelination, and lower cognitive function, as well as greater vascular binding to A β 40 , higher A β 40 / A β 42 ratios, strikingly lower A β 40 levels in the perivascular drainage, and microglial endocytosis. Importantly, exposure to a specific PAI-1 inhibitor, tiplaxtinin, which previously was reported to lower CAA pathology in mice, resulted in less CAA-related outcomes following PbAc exposure. DISCUSSION Our findings suggest that PbAc induced CAA/AD pathogenesis via the PAI-1 signaling in the APP/PS1 mouse model, and the inhibition of PAI-1 could be a potential therapeutic target for PbAc-mediated CAA/AD disorders. https://doi.org/10.1289/EHP14384.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Luqing L. Liu
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Alanna Wu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yongqi Yu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Uzay Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Stephen J. Sawiak
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Paul R. Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Moody JN, Howard E, Nolan KE, Prieto S, Logue MW, Hayes JP, for the Alzheimer’s Disease Neuroimaging Initiative. Traumatic Brain Injury and Genetic Risk for Alzheimer's Disease Impact Cerebrospinal Fluid β-Amyloid Levels in Vietnam War Veterans. Neurotrauma Rep 2024; 5:760-769. [PMID: 39184178 PMCID: PMC11342050 DOI: 10.1089/neur.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Traumatic brain injuries (TBIs) may increase the risk for Alzheimer's disease (AD) and its neuropathological correlates, although the mechanisms of this relationship are unclear. The current study examined the synergistic effects of TBI and genetic risk for AD on β-amyloid (Aβ) levels among Vietnam War Veterans. We hypothesized that the combination of TBI and higher polygenic risk score (PRS) for AD would be associated with lower cerebrospinal fluid (CSF) Aβ42/40. Data were obtained from the Department of Defense Alzheimer's Disease Neuroimaging Initiative. Participants included Vietnam War Veterans without dementia who identified as White non-Hispanic/Latino and had available demographic, clinical assessment, genetic, and CSF biomarker data. Lifetime TBI history was assessed using The Ohio State University TBI Identification Method. Participants were categorized into those with and without TBI. Among those with a prior TBI, injury severity was defined as either mild or moderate/severe. CSF Aβ42/40 ratios were calculated. Genetic propensity for AD was assessed using PRSs. Hierarchical linear regression models examined the interactive effects of TBI and PRS for AD on Aβ42/40. Exploratory analyses examined the interaction between TBI severity and PRS. The final sample included 88 male Vietnam War Veterans who identified as White non-Hispanic/Latino (M age = 68.3 years), 49 of whom reported a prior TBI. There was a significant interaction between TBI and PRS, such that individuals with TBI and higher PRS for AD had lower Aβ42/40 (B = -0.45, 95% CI: -0.86 to -0.05, p = 0.03). This relationship may be stronger with increasing TBI severity (p = 0.05). Overall, TBI was associated with lower Aβ42/40, indicating greater amyloid deposition in the brain, in the context of greater polygenic risk for AD. These findings highlight who may be at increased risk for AD neuropathology following TBI.
Collapse
Affiliation(s)
- Jena N. Moody
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Erica Howard
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Kate E. Nolan
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Prieto
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- Psychiatry and Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jasmeet P. Hayes
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
15
|
Pradeepkiran JA, Baig J, Seman A, Reddy PH. Mitochondria in Aging and Alzheimer's Disease: Focus on Mitophagy. Neuroscientist 2024; 30:440-457. [PMID: 36597577 DOI: 10.1177/10738584221139761] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid β and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.
Collapse
Affiliation(s)
| | - Javaria Baig
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Seman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
16
|
Narasimhan S, Holtzman DM, Apostolova LG, Cruchaga C, Masters CL, Hardy J, Villemagne VL, Bell J, Cho M, Hampel H. Apolipoprotein E in Alzheimer's disease trajectories and the next-generation clinical care pathway. Nat Neurosci 2024; 27:1236-1252. [PMID: 38898183 DOI: 10.1038/s41593-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.
Collapse
Affiliation(s)
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University in St. Louis, St. Louis, MO, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute and the University of Melbourne, Parkville, Victoria, Australia
| | - John Hardy
- Department of Neurodegenerative Disease and Dementia Research Institute, Reta Lila Weston Research Laboratories, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
17
|
Foley KE, Wilcock DM. Three major effects of APOE ε4 on Aβ immunotherapy induced ARIA. Front Aging Neurosci 2024; 16:1412006. [PMID: 38756535 PMCID: PMC11096466 DOI: 10.3389/fnagi.2024.1412006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The targeting of amyloid-beta (Aβ) plaques therapeutically as one of the primary causes of Alzheimer's disease (AD) dementia has been an ongoing effort spanning decades. While some antibodies are extremely promising and have been moved out of clinical trials and into the clinic, most of these treatments show similar adverse effects in the form of cerebrovascular damage known as amyloid-related imaging abnormalities (ARIA). The two categories of ARIA are of major concern for patients, families, and prescribing physicians, with ARIA-E presenting as cerebral edema, and ARIA-H as cerebral hemorrhages (micro- and macro-). From preclinical and clinical trials, it has been observed that the greatest genetic risk factor for AD, APOEε4, is also a major risk factor for anti-Aβ immunotherapy-induced ARIA. APOEε4 carriers represent a large population of AD patients, and, therefore, limits the broad adoption of these therapies across the AD population. In this review we detail three hypothesized mechanisms by which APOEε4 influences ARIA risk: (1) reduced cerebrovascular integrity, (2) increased neuroinflammation and immune dysregulation, and (3) elevated levels of CAA. The effects of APOEε4 on ARIA risk is clear, however, the underlying mechanisms require more research.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
18
|
McMillan IO, Gearing M, Wang L. Vascular Heparan Sulfate and Amyloid-β in Alzheimer's Disease Patients. Int J Mol Sci 2024; 25:3964. [PMID: 38612775 PMCID: PMC11012074 DOI: 10.3390/ijms25073964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of extracellular amyloid-β peptides (Aβ) within the cerebral parenchyma and vasculature, which is known as cerebral amyloid angiopathy (CAA). This study utilized confocal imaging to investigate heparan sulfate (HS) expression within the cerebrovasculature and its associations with Aβ, gender, and ApoE4 genotype in AD. Our investigation revealed elevated levels of HS in the cerebrovasculature of AD patients with severe CAA. Additionally, these patients exhibited higher HS colocalization with Aβ in the cerebrovasculature, including both endothelial and vascular smooth muscle cell compartments. Intriguingly, a reversal in the polarized expression of HS within the cerebrovasculature was detected in AD patients with severe CAA. Furthermore, male patients exhibited lower levels of both parenchymal and cerebrovascular HS. Additionally, ApoE4 carriers displayed heightened cerebrovascular Aβ expression and a tendency of elevated cerebrovascular HS levels in AD patients with severe CAA. Overall, these findings reveal potential intricate interplay between HS, Aβ, ApoE, and vascular pathology in AD, thereby underscoring the potential roles of cerebrovascular HS in CAA development and AD pathology. Further study of the underlying mechanisms may present novel therapeutic avenues for AD treatment.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA;
| | - Marla Gearing
- Department of Pathology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA;
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA;
| |
Collapse
|
19
|
Wojtas AM, Dammer EB, Guo Q, Ping L, Shantaraman A, Duong DM, Yin L, Fox EJ, Seifar F, Lee EB, Johnson ECB, Lah JJ, Levey AI, Levites Y, Rangaraju S, Golde TE, Seyfried NT. Proteomic Changes in the Human Cerebrovasculature in Alzheimer's Disease and Related Tauopathies Linked to Peripheral Biomarkers in Plasma and Cerebrospinal Fluid. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301099. [PMID: 38260316 PMCID: PMC10802758 DOI: 10.1101/2024.01.10.24301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aleksandra M. Wojtas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Qi Guo
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingyan Ping
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Ananth Shantaraman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward J. Fox
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Fatemeh Seifar
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, PA, USA
| | - Erik C. B. Johnson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I. Levey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Yona Levites
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd E. Golde
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
20
|
Hu YH, Su T, Wu L, Wu JF, Liu D, Zhu LQ, Yuan M. Deregulation of the Glymphatic System in Alzheimer's Disease: Genetic and Non-Genetic Factors. Aging Dis 2024; 16:AD.2023.1229. [PMID: 38270115 PMCID: PMC11745449 DOI: 10.14336/ad.2023.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive degeneration of brain function. AD gradually affects the parts of the brain that control thoughts, language, behavior and mental function, severely impacting a person's ability to carry out daily activities and ultimately leading to death. The accumulation of extracellular amyloid-β peptide (Aβ) and the aggregation of intracellular hyperphosphorylated tau are the two key pathological hallmarks of AD. AD is a complex condition that involves both non-genetic risk factors (35%) and genetic risk factors (58-79%). The glymphatic system plays an essential role in clearing metabolic waste, transporting tissue fluid, and participating in the immune response. Both non-genetic and genetic risk factors affect the glymphatic system to varying degrees. The main purpose of this review is to summarize the underlying mechanisms involved in the deregulation of the glymphatic system during the progression of AD, especially concerning the diverse contributions of non-genetic and genetic risk factors. In the future, new targets and interventions that modulate these interrelated mechanisms will be beneficial for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yan-Hong Hu
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ting Su
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Lin Wu
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Jun-Fang Wu
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
21
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
22
|
Aurelian S, Ciobanu A, Cărare R, Stoica SI, Anghelescu A, Ciobanu V, Onose G, Munteanu C, Popescu C, Andone I, Spînu A, Firan C, Cazacu IS, Trandafir AI, Băilă M, Postoiu RL, Zamfirescu A. Topical Cellular/Tissue and Molecular Aspects Regarding Nonpharmacological Interventions in Alzheimer's Disease-A Systematic Review. Int J Mol Sci 2023; 24:16533. [PMID: 38003723 PMCID: PMC10671501 DOI: 10.3390/ijms242216533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most complex and challenging developments at the beginning of the third millennium is the alarming increase in demographic aging, mainly-but not exclusively-affecting developed countries. This reality results in one of the harsh medical, social, and economic consequences: the continuously increasing number of people with dementia, including Alzheimer's disease (AD), which accounts for up to 80% of all such types of pathology. Its large and progressive disabling potential, which eventually leads to death, therefore represents an important public health matter, especially because there is no known cure for this disease. Consequently, periodic reappraisals of different therapeutic possibilities are necessary. For this purpose, we conducted this systematic literature review investigating nonpharmacological interventions for AD, including their currently known cellular and molecular action bases. This endeavor was based on the PRISMA method, by which we selected 116 eligible articles published during the last year. Because of the unfortunate lack of effective treatments for AD, it is necessary to enhance efforts toward identifying and improving various therapeutic and rehabilitative approaches, as well as related prophylactic measures.
Collapse
Affiliation(s)
- Sorina Aurelian
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Gerontology and Geriatrics Clinic Division, St. Luca Hospital for Chronic Illnesses, 041915 Bucharest, Romania
| | - Adela Ciobanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Roxana Cărare
- Faculty of Medicine, University of Southampton, Southampton SO16 7NS, UK;
| | - Simona-Isabelle Stoica
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Aurelian Anghelescu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Constantin Munteanu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Carmen Firan
- NeuroRehabilitation Compartment, The Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022104 Bucharest, Romania;
| | - Ioana Simona Cazacu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Andreea-Iulia Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Andreea Zamfirescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Gerontology and Geriatrics Clinic Division, St. Luca Hospital for Chronic Illnesses, 041915 Bucharest, Romania
| |
Collapse
|
23
|
Bonnar O, Shaw K, Anderle S, Grijseels DM, Clarke D, Bell L, King SL, Hall CN. APOE4 expression confers a mild, persistent reduction in neurovascular function in the visual cortex and hippocampus of awake mice. J Cereb Blood Flow Metab 2023; 43:1826-1841. [PMID: 37350319 PMCID: PMC10676141 DOI: 10.1177/0271678x231172842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/24/2023]
Abstract
Vascular factors are known to be early and important players in Alzheimer's disease (AD) development, however the role of the ε4 allele of the Apolipoprotein (APOE) gene (a risk factor for developing AD) remains unclear. APOE4 genotype is associated with early and severe neocortical vascular deficits in anaesthetised mice, but in humans, vascular and cognitive dysfunction are focused on the hippocampal formation and appear later. How APOE4 might interact with the vasculature to confer AD risk during the preclinical phase represents a gap in existing knowledge. To avoid potential confounds of anaesthesia and to explore regions most relevant for human disease, we studied the visual cortex and hippocampus of awake APOE3 and APOE4-TR mice using 2-photon microscopy of neurons and blood vessels. We found mild vascular deficits: vascular density and functional hyperaemia were unaffected in APOE4 mice, and neuronal or vascular function did not decrease up to late middle-age. Instead, vascular responsiveness was lower, arteriole vasomotion was reduced and neuronal calcium signals during visual stimulation were increased. This suggests that, alone, APOE4 expression is not catastrophic but stably alters neurovascular physiology. We suggest this state makes APOE4 carriers more sensitive to subsequent insults such as injury or beta amyloid accumulation.
Collapse
Affiliation(s)
| | | | - Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Dori M Grijseels
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Devin Clarke
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Laura Bell
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Sarah L King
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Catherine N Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| |
Collapse
|
24
|
Ozsan McMillan I, Li JP, Wang L. Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. Am J Physiol Cell Physiol 2023; 324:C893-C909. [PMID: 36878848 PMCID: PMC10069967 DOI: 10.1152/ajpcell.00247.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-β peptides (Aβ), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aβ metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aβ in plaques in the AD brain, directly binds and accelerates Aβ aggregation, and mediates Aβ internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aβ clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aβ interaction, and the molecules involved in modulating Aβ metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aβ metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center, University of Uppsala, Uppsala, Sweden
- SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
25
|
Du F, Shusta EV, Palecek SP. Extracellular matrix proteins in construction and function of in vitro blood-brain barrier models. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1130127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly impermeable barrier separating circulating blood and brain tissue. A functional BBB is critical for brain health, and BBB dysfunction has been linked to the pathophysiology of diseases such as stroke and Alzheimer’s disease. A variety of models have been developed to study the formation and maintenance of the BBB, ranging from in vivo animal models to in vitro models consisting of primary cells or cells differentiated from human pluripotent stem cells (hPSCs). These models must consider the composition and source of the cellular components of the neurovascular unit (NVU), including brain microvascular endothelial cells (BMECs), brain pericytes, astrocytes, and neurons, and how these cell types interact. In addition, the non-cellular components of the BBB microenvironment, such as the brain vascular basement membrane (BM) that is in direct contact with the NVU, also play key roles in BBB function. Here, we review how extracellular matrix (ECM) proteins in the brain vascular BM affect the BBB, with a particular focus on studies using hPSC-derived in vitro BBB models, and discuss how future studies are needed to advance our understanding of how the ECM affects BBB models to improve model performance and expand our knowledge on the formation and maintenance of the BBB.
Collapse
|
26
|
Andica C, Kamagata K, Takabayashi K, Kikuta J, Kaga H, Someya Y, Tamura Y, Kawamori R, Watada H, Taoka T, Naganawa S, Aoki S. Neuroimaging findings related to glymphatic system alterations in older adults with metabolic syndrome. Neurobiol Dis 2023; 177:105990. [PMID: 36621631 DOI: 10.1016/j.nbd.2023.105990] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The glymphatic system is a glial-based perivascular network that promotes brain metabolic waste clearance. Reduced glymphatic flow has been observed in rat models of type 2 diabetes and hypertension, indicating the role of vascular risk factors in the glymphatic system. However, little is known about how vascular risk factors affect the human glymphatic system. The present study aims to assess the relationships between metabolic syndrome (MetS), a cluster of vascular risk factors, and the glymphatic system function using diffusion magnetic resonance imaging (MRI)-based measures of water diffusivity in the glymphatic compartments, including the brain interstitial space and perivascular spaces around the deep medullary vein. We hypothesized that vascular risk factors are associated with glymphatic dysfunction, leading to cognitive impairment in older adults. METHODS This cross-sectional study assessed 61 older adults (age range, 65-82 years) who had participated in the Bunkyo Health Study, including 15 healthy controls (mean age, 70.87 ± 4.90 years) and 46 individuals with MetS (mean age, 71.76 ± 4.61 years). Fractional volume of extracellular-free water (FW) and an index of diffusion tensor imaging along the perivascular space (DTI-ALPS) were used as indirect indicators of water diffusivity in the interstitial extracellular and perivenous spaces of white matter, respectively. RESULTS After adjusting for age, sex, years of education, total Fazekas scale, Pittsburgh sleep quality index (PSQI) score, and intracranial volume (ICV), a significantly (P = 0.030; Cohen's d = 1.01) higher FW was observed in individuals with MetS than in the healthy controls. Furthermore, individuals with MetS had a significantly (P = 0.031; Cohen's d = 0.86) lower ALPS index than the healthy controls, with age, sex, years of education, total Fazekas scale, PSQI score, ICV, fractional anisotropy, and mean diffusivity included as confounding factors. Higher FW was significantly associated with lower ALPS index (r = -0.37; P = 0.004). Multiple linear regression (MLR) with backward elimination analyses showed that higher diastolic blood pressure (BP; standardized β = 0.33, P = 0.005) was independently associated with higher FW, whereas higher fasting plasma glucose levels (standardized β = -0.63, P = 0.002) or higher Brinkman index of cigarette consumption cumulative amount (standardized β = -0.27, P = 0.022) were associated with lower ALPS index. The lower ALPS index (standardized β, 0.28; P = 0.040) was associated with poorer global cognitive performance, which was determined using the Japanese version of the Montreal Cognitive Assessment (MOCA-J) scores. Finally, partial correlation analyses showed a significant correlation between higher FW and lower MOCA-J scores (r = -0.35; P = 0.025) and between higher FW and higher diastolic BP (r = 0.32, P = 0.044). CONCLUSION The present study shows the changes in diffusion MRI-based measures reflected by the higher FW and lower ALPS index in older adults with MetS, possibly due to the adverse effect of vascular risk factors on the glymphatic system. Our findings also indicate the associations between the diffusion MRI-based measures and elevated diastolic BP, hyperglycemia, smoking habit, and poorer cognitive performance. However, owing to the limitations of this study, the results should be cautiously interpreted.
Collapse
Affiliation(s)
- Christina Andica
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan; Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideyoshi Kaga
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shigeki Aoki
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan; Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
27
|
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022; 16:1010164. [PMID: 36440263 PMCID: PMC9684644 DOI: 10.3389/fnins.2022.1010164] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain's oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo. However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer's disease, and Parkinson's disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
Collapse
Affiliation(s)
- Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sierra N. Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Congxiyu Wang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
29
|
Venular amyloid accumulation in transgenic Fischer 344 Alzheimer’s disease rats. Sci Rep 2022; 12:15287. [PMID: 36088484 PMCID: PMC9464208 DOI: 10.1038/s41598-022-19549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Strong evidence demonstrates a significant association between cerebral amyloid angiopathy (CAA) and Alzheimer’s disease (AD). For this reason, interest in understanding the underlying vascular pathologies that contribute to AD remain. CAA research has primarily focused on arterioles and capillaries, overlooking the draining venules. Therefore, this study sought to examine venular amyloid pathology and its relationship to arteriolar amyloidosis throughout AD progression in the TgF344-AD rat model. Antibodies targeting the amyloid-beta peptide (Aβ) sequence suggest morphological differences between arteriolar and venular amyloid. Mass spectrometric analyses of isolated cortical parenchymal plaques, arteriolar and venular amyloid demonstrated presence of Aβ in all three samples, as well as proteins known to be associated with AD. Histopathological analysis indicates a significant age effect for both arteriolar and venular amyloid accumulation, with accumulation initiated in the somatosensory cortex followed by the motor and cingulate cortex. Lastly, significant arteriolar amyloid accumulates relative to venular amyloid deposition in AD progression. Overall, understanding venular and arteriolar amyloid pathology provides insight into the complex connection between CAA and AD.
Collapse
|
30
|
Liu CC, Zhao J, Fu Y, Inoue Y, Ren Y, Chen Y, Doss SV, Shue F, Jeevaratnam S, Bastea L, Wang N, Martens YA, Qiao W, Wang M, Zhao N, Jia L, Yamazaki Y, Yamazaki A, Rosenberg CL, Wang Z, Kong D, Li Z, Kuchenbecker LA, Trottier ZA, Felton L, Rogers J, Quicksall ZS, Linares C, Knight J, Chen Y, Kurti A, Kanekiyo T, Fryer JD, Asmann YW, Storz P, Wang X, Peng J, Zhang B, Kim BYS, Bu G. Peripheral apoE4 enhances Alzheimer's pathology and impairs cognition by compromising cerebrovascular function. Nat Neurosci 2022; 25:1020-1033. [PMID: 35915180 PMCID: PMC10009873 DOI: 10.1038/s41593-022-01127-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/22/2022] [Indexed: 12/21/2022]
Abstract
The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain. Liver-expressed apoE4 compromised synaptic plasticity and cognition by impairing cerebrovascular functions. Plasma proteome profiling revealed apoE isoform-dependent functional pathways highlighting cell adhesion, lipoprotein metabolism and complement activation. ApoE3 plasma from young mice improved cognition and reduced vessel-associated gliosis when transfused into aged mice, whereas apoE4 compromised the beneficial effects of young plasma. A human induced pluripotent stem cell-derived endothelial cell model recapitulated the plasma apoE isoform-specific effect on endothelial integrity, further supporting a vascular-related mechanism. Upon breeding with amyloid model mice, liver-expressed apoE4 exacerbated brain amyloid pathology, whereas apoE3 reduced it. Our findings demonstrate pathogenic effects of peripheral apoE4, providing a strong rationale for targeting peripheral apoE to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Yuanxin Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Minghui Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dehui Kong
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Lindsey Felton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Justin Rogers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joshua Knight
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
31
|
Pinheiro A, Demissie S, Scruton A, Charidimou A, Parva P, DeCarli C, Seshadri S, Romero JR. Association of Apolipoprotein E ɛ4 Allele with Enlarged Perivascular Spaces. Ann Neurol 2022; 92:23-31. [PMID: 35373386 PMCID: PMC9233108 DOI: 10.1002/ana.26364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Enlarged perivascular spaces have emerged as markers of cerebral small vessel disease and are linked to perivascular drainage dysfunction. The apolipoprotein E-ɛ4 (APOE-ɛ4) allele is the strongest genetic risk factor for cerebral amyloid angiopathy and Alzheimer's neuropathology, but the underlying mechanisms remain unclear. We studied the relationship between APOE-ɛ4 and the topography and burden of enlarged perivascular spaces to elucidate underlying mechanisms between APOE-ɛ4 and adverse clinical outcomes. METHODS We included 3,564 Framingham Heart Study participants with available genotypes and magnetic resonance imaging. Enlarged perivascular spaces in the basal ganglia and centrum semiovale were rated using a validated scale. We related APOE-ɛ4 allele presence to high burden of enlarged perivascular spaces in each region and a mixed score reflecting high burden in both regions using multivariable logistic regression. Exploratory analyses incorporated presence of cerebral microbleeds and assessed effect modification by hypertension. RESULTS Mean age was 60.7 years (SD = 14.6), 1,644 (46.1%) were men, 1,486 (41.8%) were hypertensive, and 836 (23.5%) participants were APOE-ɛ4 carriers. APOE-ɛ4 was associated with high burden of enlarged perivascular spaces in the centrum semiovale (odds ratio [OR] = 1.45, 95% confidence interval [CI] = 1.16, 1.81) and mixed regions (OR = 1.37, 95% CI = 1.11, 1.68). Associations were slightly stronger in hypertensive subjects. INTERPRETATION The APOE-ɛ4 allele plays a modest role in the burden of enlarged perivascular spaces in the centrum semiovale. Further studies are needed to clarify the underlying small vessel disease type in community-dwelling individuals with predominant centrum semiovale enlarged perivascular spaces, which may be hypertensive angiopathy in our sample. ANN NEUROL 2022;92:23-31.
Collapse
Affiliation(s)
- Adlin Pinheiro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- NHLBI's Framingham Heart Study, Framingham, MA
| | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- NHLBI's Framingham Heart Study, Framingham, MA
| | | | - Andreas Charidimou
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Pedram Parva
- Department of Radiology, Veterans Affairs Boston Healthcare System, Boston, MA
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Davis, CA
| | - Sudha Seshadri
- NHLBI's Framingham Heart Study, Framingham, MA
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX
| | - José R Romero
- NHLBI's Framingham Heart Study, Framingham, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
32
|
APOE ε4 and late-life cognition: mediation by structural brain imaging markers. Eur J Epidemiol 2022; 37:591-601. [PMID: 35471691 PMCID: PMC9288978 DOI: 10.1007/s10654-022-00864-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/19/2022] [Indexed: 11/03/2022]
Abstract
The apolipoprotein E allele 4 (APOE-ε4) is established as a major genetic risk factor for cognitive decline and late-onset Alzheimer's disease. Accumulating evidence has linked ε4 carriership to abnormal structural brain changes across the adult lifespan. To better understand the underlying causal mechanisms, we investigated the extent to which the effect of the ε4 allele on cognition is mediated by structural brain imaging markers in the population-based Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik). This study included 4527 participants (aged 76.3 ± 5.4 at baseline) who underwent the brain magnetic resonance imaging assessment (of brain tissue volumes, white matter lesion volume, subcortical and cortical infarcts, and cerebral microbleeds) and a battery of neuropsychological tests at baseline. Causal mediation analysis was used to quantify the mediation of the ε4 effect on cognition by these MRI markers, both individually and jointly. We observed that about 9% of the total effect of ε4 carriership on cognition was mediated by white matter lesion volume. This proportion increased to 25% when total brain tissue volume was jointly considered with white matter lesion volume. In analyses separating ε4 homozygotes from ε4 heterozygotes, the effect on global cognition of specifically ε4 homozygosity appeared to be partially mediated by cerebral microbleeds, particularly lobar microbleeds. There was no evidence of mediation of the ε4 effect by cortical or subcortical infarcts. This study shows that the ε4 effect on cognition is partly mediated by white matter lesion volume and total brain tissue volume. These findings suggest the joint role of cerebral small vessel disease and neurodegeneration in the ε4-cognition relationship.
Collapse
|
33
|
Mizuhara R, Mitaki S, Takamura M, Abe S, Onoda K, Yamaguchi S, Nagai A. Pulse pressure is associated with cognitive performance in Japanese non-demented population: a cross-sectional study. BMC Neurol 2022; 22:137. [PMID: 35410174 PMCID: PMC8996505 DOI: 10.1186/s12883-022-02666-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/08/2022] [Indexed: 12/31/2022] Open
Abstract
Background Growing evidence suggests that vascular risk factors, especially hypertension, relate not only to cardiovascular disease but also to cognitive impairment. However, the impact of pulse pressure on cognitive function remains controversial. In this study, we evaluated the associations between pulse pressure and cognitive function in a Japanese health examination cohort using propensity matching analysis. Methods We examined 2,546 individuals with a mean age of 60.8 ± 10.3 years who voluntarily participated in health examination. Clinical variables included pulse pressure, and brain magnetic resonance imaging (MRI). We divided the participants into the high and low pulse pressure groups with a pre-defined cut-off value of 65 mmHg and evaluated their physical examination data, cognitive functions including Okabe’s test, Kohs’ test, and silent brain lesions using propensity matching. To clarify whether pulse pressure and blood pressure have different implications for cognitive function, a mediating analysis was also conducted. Results From the 2,546 subjects, 439 (17.2%) were in the high PP group. The propensity matching algorithm produced 433 pairs of patients with similar propensities. Higher pulse pressure corresponded to lower Okabe and Kohs’ scores (44.3 ± 7.1 vs 42.7 ± 7.5; p = 0.002, 97.9 ± 18.0 vs 95.0 ± 18.1 p = 0.019, respectively). The relationship between pulse pressure and cognitive impairment was not significantly mediated by systolic blood pressure. We observed no significant associations between silent brain lesions and pulse pressure. Conclusion High pulse pressure was associated with lower cognitive performance without systolic blood pressure mediation in Japanese subjects without dementia. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02666-6.
Collapse
Affiliation(s)
- Ryo Mizuhara
- Department of Neurology, National Hospital Organization Maizuru Medical Center, 2410 Yukinaga, Maizuru, Kyoto, 625-8502, Japan. .,Department of Neurology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Shingo Mitaki
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Masahiro Takamura
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Satoshi Abe
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Keiichi Onoda
- Faculty of Psychology, Otemon Gakuin University, 2-1-15 Nishiai, Ibaraki, Osaka, 567-8502, Japan
| | - Shuhei Yamaguchi
- Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, Shimane, 693-8555, Japan
| | - Atsushi Nagai
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
34
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
35
|
Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer's disease. Acta Pharm Sin B 2022; 12:496-510. [PMID: 35256931 PMCID: PMC8897057 DOI: 10.1016/j.apsb.2021.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic variation in apolipoprotein E (APOE) influences Alzheimer's disease (AD) risk. APOE ε4 alleles are the strongest genetic risk factor for late onset sporadic AD. The AD risk is dose dependent, as those carrying one APOE ε4 allele have a 2-3-fold increased risk, while those carrying two ε4 alleles have a 10-15-fold increased risk. Individuals carrying APOE ε2 alleles have lower AD risk and those carrying APOE ε3 alleles have neutral risk. APOE is a lipoprotein which functions in lipid transport, metabolism, and inflammatory modulation. Isoform specific effects of APOE within the brain include alterations to Aβ, tau, neuroinflammation, and metabolism. Here we review the association of APOE with AD, the APOE isoform specific effects within brain and periphery, and potential therapeutics.
Collapse
Affiliation(s)
- Benjamin R. Troutwine
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Laylan Hamid
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Taylor A. Strope
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heather M. Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
37
|
Gireud-Goss M, Mack AF, McCullough LD, Urayama A. Cerebral Amyloid Angiopathy and Blood-Brain Barrier Dysfunction. Neuroscientist 2021; 27:668-684. [PMID: 33238806 PMCID: PMC9853919 DOI: 10.1177/1073858420954811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cerebral hemorrhage, a devastating subtype of stroke, is often caused by hypertension and cerebral amyloid angiopathy (CAA). Pathological evidence of CAA is detected in approximately half of all individuals over the age of 70 and is associated with cortical microinfarcts and cognitive impairment. The underlying pathophysiology of CAA is characterized by accumulation of pathogenic amyloid β (Aβ) fragments of amyloid precursor protein in the cerebral vasculature. Vascular deposition of Aβ damages the vessel wall, results in blood-brain barrier (BBB) leakiness, vessel occlusion or rupture, and leads to hemorrhages and decreased cerebral blood flow that negatively affects vessel integrity and cognitive function. Currently, the main hypothesis surrounding the mechanism of CAA pathogenesis is that there is an impaired clearance of Aβ peptides, which includes compromised perivascular drainage as well as dysfunction of BBB transport. Also, the immune response in CAA pathogenesis plays an important role. Therefore, the mechanism by which Aβ vascular deposition occurs is crucial for our understanding of CAA pathogenesis and for the development of potential therapeutic options.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexis F. Mack
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
38
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
39
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer's disease and age-matched non-demented brains. Mol Brain 2021; 14:110. [PMID: 34238312 PMCID: PMC8268468 DOI: 10.1186/s13041-021-00803-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular dysfunction is a hallmark feature of Alzheimer's disease (AD). One of the greatest risk factors for AD is the apolipoprotein E4 (E4) allele. The APOE4 genotype has been shown to negatively impact vascular amyloid clearance, however, its direct influence on the molecular integrity of the cerebrovasculature compared to other APOE variants (APOE2 and APOE3) has been largely unexplored. To address this, we employed a 10-plex tandem isobaric mass tag approach in combination with an ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method, to interrogate unbiased proteomic changes in cerebrovessels from AD and healthy control brains with different APOE genotypes. We first interrogated changes between healthy control cases to identify underlying genotype specific effects in cerebrovessels. EIF2 signaling, regulation of eIF4 and 70S6K signaling and mTOR signaling were the top significantly altered pathways in E4/E4 compared to E3/E3 cases. Oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction were the top significant pathways in E2E2 vs E3/E3cases. We also identified AD-dependent changes and their interactions with APOE genotype and found the highest number of significant proteins from this interaction was observed in the E3/E4 (192) and E4/E4 (189) cases. As above, EIF2, mTOR signaling and eIF4 and 70S6K signaling were the top three significantly altered pathways in E4 allele carriers (i.e. E3/E4 and E4/E4 genotypes). Of all the cerebrovascular cell-type specific markers identified in our proteomic analyses, endothelial cell, astrocyte, and smooth muscle cell specific protein markers were significantly altered in E3/E4 cases, while endothelial cells and astrocyte specific protein markers were altered in E4/E4 cases. These proteomic changes provide novel insights into the longstanding link between APOE4 and cerebrovascular dysfunction, implicating a role for impaired autophagy, ER stress, and mitochondrial bioenergetics. These APOE4 dependent changes we identified could provide novel cerebrovascular targets for developing disease modifying strategies to mitigate the effects of APOE4 genotype on AD pathogenesis.
Collapse
Affiliation(s)
- Joseph O Ojo
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA. .,The Open University, Milton Keynes, UK.
| | - Jon M Reed
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Gogce Crynen
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | | | - James Evans
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Benjamin Shackleton
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Maximillian Eisenbaum
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Charis Ringland
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Anastasia Edsell
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Michael Mullan
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Fiona Crawford
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA.,The Open University, Milton Keynes, UK
| | - Corbin Bachmeier
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
40
|
Sanjana F, Delgorio PL, Hiscox LV, DeConne TM, Hobson JC, Cohen ML, Johnson CL, Martens CR. Blood lipid markers are associated with hippocampal viscoelastic properties and memory in humans. J Cereb Blood Flow Metab 2021; 41:1417-1427. [PMID: 33103936 PMCID: PMC8142125 DOI: 10.1177/0271678x20968032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Age-related memory loss shares similar risk factors as cardiometabolic diseases including elevated serum triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C) and reduced high-density lipoprotein cholesterol (HDL-C). The mechanisms linking these aberrant blood lipids to memory loss are not completely understood but may be partially mediated by reduced integrity of the hippocampus (HC), the primary brain structure for encoding and recalling memories. In this study, we tested the hypothesis that blood lipid markers are independently associated with memory performance and HC viscoelasticity-a noninvasive measure of brain tissue microstructural integrity assessed by high-resolution magnetic resonance elastography (MRE). Twenty-six individuals across the adult lifespan were recruited (14 M/12 F; mean age: 42 ± 15 y; age range: 22-78 y) and serum lipid profiles were related to episodic memory and HC viscoelasticity. All subjects were generally healthy without clinically abnormal blood lipids or memory loss. Episodic memory was negatively associated with the TG/HDL-C ratio. HC viscoelasticity was negatively associated with serum TGs and the TG/HDL-C ratio, independent of age and in the absence of associations with HC volume. These data, although cross-sectional, suggest that subtle differences in blood lipid profiles in healthy adults may contribute to a reduction in memory function and HC tissue integrity.
Collapse
Affiliation(s)
- Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Theodore M DeConne
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Matthew L Cohen
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
41
|
Bliss ES, Wong RHX, Howe PRC, Mills DE. Benefits of exercise training on cerebrovascular and cognitive function in ageing. J Cereb Blood Flow Metab 2021; 41:447-470. [PMID: 32954902 PMCID: PMC7907999 DOI: 10.1177/0271678x20957807] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Derangements in cerebrovascular structure and function can impair cognitive performance throughout ageing and in cardiometabolic disease states, thus increasing dementia risk. Modifiable lifestyle factors that cause a decline in cardiometabolic health, such as physical inactivity, exacerbate these changes beyond those that are associated with normal ageing. The purpose of this review was to examine cerebrovascular, cognitive and neuroanatomical adaptations to ageing and the potential benefits of exercise training on these outcomes in adults 50 years or older. We systematically searched for cross-sectional or intervention studies that included exercise (aerobic, resistance or multimodal) and its effect on cerebrovascular function, cognition and neuroanatomical adaptations in this age demographic. The included studies were tabulated and described narratively. Aerobic exercise training was the predominant focus of the studies identified; there were limited studies exploring the effects of resistance exercise training and multimodal training on cerebrovascular function and cognition. Collectively, the evidence indicated that exercise can improve cerebrovascular function, cognition and neuroplasticity through areas of the brain associated with executive function and memory in adults 50 years or older, irrespective of their health status. However, more research is required to ascertain the mechanisms of action.
Collapse
Affiliation(s)
- Edward S Bliss
- Respiratory and Exercise Physiology Research Group, School of
Health and Wellbeing, University of Southern Queensland, Ipswich, Queensland,
Australia
- Edward S Bliss, School of Health and
Wellbeing, University of Southern Queensland, Toowoomba Campus, West St,
Toowoomba QLD 4350, Australia.
| | - Rachel HX Wong
- Centre for Health, Informatics, and Economic Research, Institute
for Resilient Regions, University of Southern Queensland, Ipswich, Queensland,
Australia
- School of Biomedical Sciences and Pharmacy, Clinical Nutrition
Research Centre, University of Newcastle, Callaghan, New South Wales,
Australia
| | - Peter RC Howe
- Centre for Health, Informatics, and Economic Research, Institute
for Resilient Regions, University of Southern Queensland, Ipswich, Queensland,
Australia
- School of Biomedical Sciences and Pharmacy, Clinical Nutrition
Research Centre, University of Newcastle, Callaghan, New South Wales,
Australia
- Allied Health and Human Performance, University of South
Australia, Adelaide, South Australia, Australia
| | - Dean E Mills
- Respiratory and Exercise Physiology Research Group, School of
Health and Wellbeing, University of Southern Queensland, Ipswich, Queensland,
Australia
| |
Collapse
|
42
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
43
|
Weller RO. Lessons learned from a career in neuropathology. FREE NEUROPATHOLOGY 2021; 2:27. [PMID: 37284630 PMCID: PMC10240952 DOI: 10.17879/freeneuropathology-2021-3634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/08/2023]
Affiliation(s)
- Roy O Weller
- Faculty of Medicine, Southampton University, United Kingdom
| |
Collapse
|
44
|
Howe MD, McCullough LD, Urayama A. The Role of Basement Membranes in Cerebral Amyloid Angiopathy. Front Physiol 2020; 11:601320. [PMID: 33329053 PMCID: PMC7732667 DOI: 10.3389/fphys.2020.601320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Dementia is a neuropsychiatric syndrome characterized by cognitive decline in multiple domains, often leading to functional impairment in activities of daily living, disability, and death. The most common causes of age-related progressive dementia include Alzheimer's disease (AD) and vascular cognitive impairment (VCI), however, mixed disease pathologies commonly occur, as epitomized by a type of small vessel pathology called cerebral amyloid angiopathy (CAA). In CAA patients, the small vessels of the brain become hardened and vulnerable to rupture, leading to impaired neurovascular coupling, multiple microhemorrhage, microinfarction, neurological emergencies, and cognitive decline across multiple functional domains. While the pathogenesis of CAA is not well understood, it has long been thought to be initiated in thickened basement membrane (BM) segments, which contain abnormal protein deposits and amyloid-β (Aβ). Recent advances in our understanding of CAA pathogenesis link BM remodeling to functional impairment of perivascular transport pathways that are key to removing Aβ from the brain. Dysregulation of this process may drive CAA pathogenesis and provides an important link between vascular risk factors and disease phenotype. The present review summarizes how the structure and composition of the BM allows for perivascular transport pathways to operate in the healthy brain, and then outlines multiple mechanisms by which specific dementia risk factors may promote dysfunction of perivascular transport pathways and increase Aβ deposition during CAA pathogenesis. A better understanding of how BM remodeling alters perivascular transport could lead to novel diagnostic and therapeutic strategies for CAA patients.
Collapse
Affiliation(s)
| | | | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
45
|
Fang Y, Gu LY, Tian J, Dai SB, Chen Y, Zheng R, Si XL, Jin CY, Song Z, Yan YP, Yin XZ, Pu JL, Zhang BR. MRI-visible perivascular spaces are associated with cerebrospinal fluid biomarkers in Parkinson's disease. Aging (Albany NY) 2020; 12:25805-25818. [PMID: 33234732 PMCID: PMC7803484 DOI: 10.18632/aging.104200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/29/2020] [Indexed: 12/25/2022]
Abstract
Perivascular spaces in the brain have been known to communicate with cerebrospinal fluid and contribute to waste clearance in animal models. In this study, we sought to determine the association between MRI-visible enlarged perivascular spaces (EPVS) and disease markers in Parkinson's disease (PD). We obtained longitudinal data from 245 patients with PD and 98 healthy controls from the Parkinson's Progression Marker Initiative. Two trained neurologists performed visual ratings on T2-weighted images to characterize EPVS in the centrum semiovale (CSO), the basal ganglia (BG) and the midbrain. We found that a greater proportion of patients with PD had low grade BG-EPVS relative to healthy controls. In patients with PD, lower grade of BG-EPVS and CSO-EPVS predicted lower CSF α-synuclein and t-tau. Lower grade of BG-EPVS were also associated with accelerated Hoehn &Yahr stage progression in patients with baseline stage 1. BG-EPVS might be a valuable predictor of disease progression.
Collapse
Affiliation(s)
- Yi Fang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Lu-Yan Gu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Shao-Bing Dai
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Ying Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xiao-Li Si
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.,Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Chong-Yao Jin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Ya-Ping Yan
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xin-Zhen Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
46
|
Lane CA, Barnes J, Nicholas JM, Sudre CH, Cash DM, Malone IB, Parker TD, Keshavan A, Buchanan SM, Keuss SE, James SN, Lu K, Murray-Smith H, Wong A, Gordon E, Coath W, Modat M, Thomas D, Richards M, Fox NC, Schott JM. Associations Between Vascular Risk Across Adulthood and Brain Pathology in Late Life: Evidence From a British Birth Cohort. JAMA Neurol 2020; 77:175-183. [PMID: 31682678 PMCID: PMC6830432 DOI: 10.1001/jamaneurol.2019.3774] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Question When is vascular risk during adulthood (early adulthood, midlife, or late life) most strongly associated with late-life brain structure and pathology? Findings In a propective cohort of 463 participants free of dementia from the population-based Insight 46 study, higher vascular risk in early adulthood was most strongly associated with smaller whole-brain volumes and greater white matter–hyperintensity volumes at age 69 to 71 years. There were no associations at any age with amyloid status. Meaning These findings are consistent with vascular risk influencing late-life brain health via cerebral small-vessel disease and lower brain volumes but not amyloidosis; vascular risk screening and modification may need to be considered from early adulthood. Importance Midlife vascular risk burden is associated with late-life dementia. Less is known about if and how risk exposure in early adulthood influences late-life brain health. Objective To determine the associations between vascular risk in early adulthood, midlife, and late life with late-life brain structure and pathology using measures of white matter–hyperintensity volume, β-amyloid load, and whole-brain and hippocampal volumes. Design, Setting, and Participants This prospective longitudinal cohort study, Insight 46, is part of the Medical Research Council National Survey of Health and Development, which commenced in 1946. Participants had vascular risk factors evaluated at ages 36 years (early adulthood), 53 years (midlife), and 69 years (early late life). Participants were assessed with multimodal magnetic resonance imaging and florbetapir-amyloid positron emission tomography scans between May 2015 and January 2018 at University College London. Participants with at least 1 available imaging measure, vascular risk measurements at 1 or more points, and no dementia were included in analyses. Exposures Office-based Framingham Heart study–cardiovascular risk scores (FHS-CVS) were derived at ages 36, 53, and 69 years using systolic blood pressure, antihypertensive medication usage, smoking, diabetic status, and body mass index. Analysis models adjusted for age at imaging, sex, APOE genotype, socioeconomic position, and, where appropriate, total intracranial volume. Main Outcomes and Measures White matter–hyperintensity volume was generated from T1/fluid-attenuated inversion recovery scans using an automated technique and whole-brain volume and hippocampal volume were generated from automated in-house pipelines; β-amyloid status was determined using a gray matter/eroded subcortical white matter standardized uptake value ratio threshold of 0.61. Results A total of 502 participants were assessed as part of Insight 46, and 463 participants (236 male [51.0%]) with at least 1 available imaging measure (mean [SD] age at imaging, 70.7 [0.7] years; 83 β-amyloid positive [18.2%]) who fulfilled eligibility criteria were included. Among them, FHS-CVS increased with age (36 years: median [interquartile range], 2.7% [1.5%-3.6%]; 53 years: 10.9% [6.7%-15.6%]; 69 years: 24.3% [14.9%-34.9%]). At all points, these scores were associated with smaller whole-brain volumes (36 years: β coefficient per 1% increase, −3.6 [95% CI, −7.0 to −0.3]; 53 years: −0.8 [95% CI, −1.5 to −0.08]; 69 years: −0.6 [95% CI, −1.1 to −0.2]) and higher white matter–hyperintensity volume (exponentiated coefficient: 36 years, 1.09 [95% CI, 1.01-1.18]; 53 years, 1.02 [95% CI, 1.00-1.04]; 69 years, 1.01 [95% CI, 1.00-1.02]), with largest effect sizes at age 36 years. At no point were FHS-CVS results associated with β-amyloid status. Conclusions and Relevance Higher vascular risk is associated with smaller whole-brain volume and greater white matter–hyperintensity volume at age 69 to 71 years, with the strongest association seen with early adulthood vascular risk. There was no evidence that higher vascular risk influences amyloid deposition, at least up to age 71 years. Reducing vascular risk with appropriate interventions should be considered from early adulthood to maximize late-life brain health.
Collapse
Affiliation(s)
- Christopher A Lane
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Josephine Barnes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,London School of Hygiene and Tropical Medicine, Department of Medical Statistics, University of London, London, United Kingdom
| | - Carole H Sudre
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thomas D Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah M Buchanan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah E Keuss
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| | - Kirsty Lu
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Heidi Murray-Smith
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| | - Elizabeth Gordon
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Marc Modat
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - David Thomas
- Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| |
Collapse
|
47
|
Frost M, Keable A, Baseley D, Sealy A, Andreea Zbarcea D, Gatherer M, Yuen HM, Sharp MM, Weller RO, Attems J, Smith C, Chiarot PR, Carare RO. Vascular α1A Adrenergic Receptors as a Potential Therapeutic Target for IPAD in Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13090261. [PMID: 32971843 PMCID: PMC7560129 DOI: 10.3390/ph13090261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 01/20/2023] Open
Abstract
Drainage of interstitial fluid from the brain occurs via the intramural periarterial drainage (IPAD) pathways along the basement membranes of cerebral capillaries and arteries against the direction of blood flow into the brain. The cerebrovascular smooth muscle cells (SMCs) provide the motive force for driving IPAD, and their decrease in function may explain the deposition of amyloid-beta as cerebral amyloid angiopathy (CAA), a key feature of Alzheimer’s disease. The α-adrenoceptor subtype α1A is abundant in the brain, but its distribution in the cerebral vessels is unclear. We analysed cultured human cerebrovascular SMCs and young, old and CAA human brains for (a) the presence of α1A receptor and (b) the distribution of the α1A receptor within the cerebral vessels. The α1A receptor was present on the wall of cerebrovascular SMCs. No significant changes were observed in the vascular expression of the α1A-adrenergic receptor in young, old and CAA cases. The pattern of vascular staining appeared less punctate and more diffuse with ageing and CAA. Our results show that the α1A-adrenergic receptor is preserved in cerebral vessels with ageing and in CAA and is expressed on cerebrovascular smooth muscle cells, suggesting that vascular adrenergic receptors may hold potential for therapeutic targeting of IPAD.
Collapse
Affiliation(s)
- Miles Frost
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Abby Keable
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Dan Baseley
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Amber Sealy
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Diana Andreea Zbarcea
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Maureen Gatherer
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Ho Ming Yuen
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Matt MacGregor Sharp
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Roy O. Weller
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newacstle upon Tyne NE4 5PL, UK;
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Paul R. Chiarot
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA;
| | - Roxana O. Carare
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
- Correspondence:
| |
Collapse
|
48
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
49
|
Carare RO, Aldea R, Agarwal N, Bacskai BJ, Bechman I, Boche D, Bu G, Bulters D, Clemens A, Counts SE, de Leon M, Eide PK, Fossati S, Greenberg SM, Hamel E, Hawkes CA, Koronyo‐Hamaoui M, Hainsworth AH, Holtzman D, Ihara M, Jefferson A, Kalaria RN, Kipps CM, Kanninen KM, Leinonen V, McLaurin J, Miners S, Malm T, Nicoll JAR, Piazza F, Paul G, Rich SM, Saito S, Shih A, Scholtzova H, Snyder H, Snyder P, Thormodsson FR, van Veluw SJ, Weller RO, Werring DJ, Wilcock D, Wilson MR, Zlokovic BV, Verma A. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA): Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease-Opportunities for Therapy. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12053. [PMID: 32775596 PMCID: PMC7396859 DOI: 10.1002/dad2.12053] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Two of the key functions of arteries in the brain are (1) the well-recognized supply of blood via the vascular lumen and (2) the emerging role for the arterial walls as routes for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid beta (Aβ), from the brain and retina. As the brain and retina possess no conventional lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via transport along basement membranes in the walls of capillaries and arteries that form the intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but the mechanisms underlying the failure are unclear. In some people this is reflected in the accumulation of Aβ plaques in the brain in Alzheimer's disease (AD) and deposition of Aβ within artery walls as cerebral amyloid angiopathy (CAA). Knowledge of the dynamics of IPAD and why it fails with age is essential for establishing diagnostic tests for the early stages of the disease and for devising therapies that promote the clearance of Aβ in the prevention and treatment of AD and CAA. This editorial is intended to introduce the rationale that has led to the establishment of the Clearance of Interstitial Fluid (ISF) and CSF (CLIC) group, within the Vascular Professional Interest Area of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diederik Bulters
- University of SouthamptonSouthamptonUK
- University Hospital Southampton NHS TrustSouthamptonUK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christopher M. Kipps
- University of SouthamptonSouthamptonUK
- University Hospital Southampton NHS TrustSouthamptonUK
| | | | | | | | | | - Tarja Malm
- University of Eastern FinlandKuopioFinland
| | | | | | | | | | - Satoshi Saito
- National Cerebral and Cardiovascular CenterOsakaJapan
| | - Andy Shih
- Seattle Children's HospitalSeattleWashingtonUSA
| | | | | | - Peter Snyder
- University of Rhode IslandSouth KingstownRhode IslandUSA
| | | | | | | | - David J. Werring
- Stroke Research CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | | | | | - Ajay Verma
- CODIAK BiosciencesCambridgeMassachusettsUSA
| |
Collapse
|
50
|
Ma J, Ma C, Li J, Sun Y, Ye F, Liu K, Zhang H. Extracellular Matrix Proteins Involved in Alzheimer's Disease. Chemistry 2020; 26:12101-12110. [PMID: 32207199 DOI: 10.1002/chem.202000782] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2020] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and characterized by cognitive and memory impairments. Emerging evidence suggests that the extracellular matrix (ECM) in the brain plays an important role in the etiology of AD. It has been detected that the levels of ECM proteins have changed in the brains of AD patients and animal models. Some ECM components, for example, elastin and heparan sulfate proteoglycans, are considered to promote the upregulation of extracellular amyloid-beta (Aβ) proteins. In addition, collagen VI and laminin are shown to have interactions with Aβ peptides, which might lead to the clearance of those peptides. Thus, ECM proteins are involved in both amyloidosis and neuroprotection in the AD process. However, the molecular mechanism of neuronal ECM proteins on the pathophysiology of AD remains elusive. More investigation of ECM proteins with AD pathogenesis is needed, and this may lead to novel therapeutic strategies and biomarkers for AD.
Collapse
Affiliation(s)
- Jun Ma
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P.R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chao Ma
- School of Engineering and Applied Sciences & Department of Physics, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Yao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P.R. China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|