1
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
2
|
Gao Y, Li M, Wang B, Ma Y. Prognostic value of Nrf2/HO-1 expression and its correlation with occurrence in esophageal squamous cell carcinoma. Genes Genomics 2023; 45:723-739. [PMID: 37043130 DOI: 10.1007/s13258-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/16/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is thought to be started and developed by genes associated with inflammation. A cancer's ability to spread and grow can be aided by nuclear factor erythroid-2 related factor 2 (Nrf2) hyperactivation, which can also make a tumor more resistant to chemotherapy and radiation treatment. However, it is still unknown how Nrf2 gene expression affects ESCC prognosis and controls function throughout ESCC advancement. OBJECTIVE The expression of Nrf2 and HO-1 in ESCC and precancerous esophageal precancerous lesions was analyzed, and their relationship with esophageal squamous cell carcinoma was analyzed. METHODS Immunohistochemistry (IHC) was used to confirm the expression of Nrf2 and heme oxygenase-1 (HO-1) proteins in tissue microarrays from Chinese populations with ESCC. We looked at the connections between Nrf2/HO-1 expression and invading immune cells using the TIMER database. RESULTS Ethnicity and N stage are associated with Nrf2 overexpression. Differentiation, N stage, vascular invasion, distant metastasis, and American Joint Committee on Cancer (AJCC) staging are all associated with HO-1 overexpression. The expression of Nrf2 and HO-1 had a favorable correlation. Patients with elevated Nrf2 and HO-1 expression had lower progression-free survival (PFS) and overall survival (OS). In high-grade intraepithelial neoplasia, Nrf2 and HO-1 expression generally occurred, partially in low-grade intraepithelial neoplasia specimens, and rarely in normal mucosa. We further show that Nrf2 suppression is linked to higher immunological marker expression and lower immune cell infiltration. CONCLUSION The prognosis of ESCC may be improved by inhibiting the expression of Nrf2 and HO-1. A lack of immune cells was seen in ESCC with Nrf2 impairment.
Collapse
Affiliation(s)
- Yongmei Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengyan Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Wang
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuqing Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
4
|
Li N, Zhao Y, Wang F, Song L, Qiao M, Wang T, Huang X. Folic acid alleviates lead acetate-mediated cardiotoxicity by down-regulating the expression levels of Nrf2, HO-1, GRP78, and CHOP proteins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55916-55927. [PMID: 35322363 DOI: 10.1007/s11356-022-19821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to explore the interventional effects of folic acid on the heart damage caused by lead acetate exposure. Twenty-four 60-day-old male Sprague-Dawley (SD) rats were randomly divided into 4 groups with 6 rats in each group. The control group (C group) was normal rats; the lead exposure group (L group) rats drank 0.2% lead acetate solution freely for 14 days. The rats in the intervention group (T group) were given 0.2% lead acetate solution for 14 days, respectively, and 0.4 mg/kg BW folic acid solution was given to the rats by gavage on the 7th day of lead administration. The rats in the folic acid group (group E) were given 0.4 mg/kg BW folic acid solution by gavage. To weigh rat body weight and heart weight, calculate heart index, and observe the expression level of nuclear factor erythroid 2-related factor 2(Nrf2), heme oxygenase 1(HO-1), glucose-regulated protein 78/binding immunoglobulin protein (GRP78), and C/EBP-homologous protein (CHOP) by immunofluorescence method. The results showed that compared with group C, serum lead levels in group L and T were significantly increased (P < 0.05); superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX) levels in group L were significantly decreased (P < 0.05), and malondialdehyde (MDA) content was significantly higher increased (P < 0.05), and the GSH-PX content in group T were significantly increased in group L (P < 0.05), and the MDA content in group T was significantly lower than that in group L (P < 0.05). Compared with group C, the expression of Nrf2, HO-1, GRP78, and CHOP in group L increased significantly, and the difference was statistically significant (P < 0.05). Compared with the L group, the expression of Nrf2, HO-1, GRP78, and CHOP in the T group was reduced. Therefore, folic acid has a certain protective effect on the oxidative damage of lead-exposed rat heart tissue. Lead exposure will increase ROS, NO, MDA, and other oxidizing substances and reduce the level of GSH, SOD, CAT, GPx, and other antioxidant factors, which will lead to cardiac hypertrophy, cardiac index increase, oxidative stress, Nrf2, and HO-1. The expression of stress-related proteins such as GRP78 and CHOP also increased, leading to cardiomyocyte apoptosis. After a folic acid intervention, these changes can be significantly reversed.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yali Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tianlin Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
5
|
Du F, Huang H, Cao Y, Ran Y, Wu Q, Chen B. Notoginsenoside R1 Protects Against High Glucose-Induced Cell Injury Through AMPK/Nrf2 and Downstream HO-1 Signaling. Front Cell Dev Biol 2021; 9:791643. [PMID: 34926469 PMCID: PMC8672164 DOI: 10.3389/fcell.2021.791643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Notoginsenoside R1 (NGR1), the primary bioactive compound found in Panax notoginseng, is believed to have antihypertrophic and antiapoptotic properties, and has long been used to prevent and treat cardiovascular diseases. However, its potential role in prevention of diabetic cardiomyopathy remains unclear. The present study aimed to investigate the mechanism of NGR1 action in high glucose-induced cell injury. H9c2 cardiomyocytes were cultured in a high-glucose medium as an in-vitro model, and apoptotic cells were visualized using TUNEL staining. Expression of Nrf2 and HO-1 was measured using Western blotting or reverse transcription-quantitative PCR (RT-qPCR). The Nrf2 small interfering (si) RNA was transfected into cardiomyocytes using Opti-MEM containing Lipofectamine® RNAiMAX. NGR1 protected H9c2 cardiomyocytes from cell death, apoptosis and hypertrophy induced by high glucose concentration. Expression of auricular natriuretic peptide and brain natriuretic peptide was remarkably reduced in NGR1-treated H9C2 cells. Western blot analysis showed that high glucose concentration markedly inhibited AMPK, Nrf2 and HO-1, and this could be reversed by NGR1 treatment. However, the cardioprotective effect of NGR1 was attenuated by compound C, which reverses Nrf2 and HO-1 expression levels, suggesting that AMPK upregulates Nrf2 and HO-1 gene expression, protein synthesis and secretion. Transfection of H9C2 cells with Nrf2 siRNA markedly reduced the cardioprotective effect of NGR1 via reduced expression of HO-1. These results indicated that NGR1 attenuated high glucose-induced cell injury via AMPK/Nrf2 signaling and its downstream target, the HO-1 pathway. We conclude that the cardioprotective effects of NGR1 result from upregulation of AMPK/Nrf2 signaling and HO-1 expression in cardiomyocytes. Our findings suggest that NGR1 treatment might provide a novel therapy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fawang Du
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Huiling Huang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yalin Cao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Ran
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Baolin Chen
- Nanmingtang Clinic, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
6
|
Cykowiak M, Krajka-Kuźniak V, Kleszcz R, Kucińska M, Szaefer H, Piotrowska-Kempisty H, Plewiński A, Murias M, Baer-Dubowska W. Comparison of the Impact of Xanthohumol and Phenethyl Isothiocyanate and Their Combination on Nrf2 and NF-κB Pathways in HepG2 Cells In Vitro and Tumor Burden In Vivo. Nutrients 2021; 13:3000. [PMID: 34578877 PMCID: PMC8465864 DOI: 10.3390/nu13093000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Increasing evidence suggests that combinations of phytochemicals are more efficient than single components in the modulation of signaling pathways involved in cancer development. In this study, the impact of phenethyl isothiocyanate (PEITC), indole-3-carbinol (I3C), xanthohumol, (X), and resveratrol (RES) and their combinations on the activation and expression of Nrf2 and NF-κB in human hepatocytes and HCC cells were evaluated. Methods: THLE-2 and HepG2 cells were exposed to single phytochemicals and their combinations for 24 h. The activation of Nrf2 and NF-κB, expression of their target genes, and effect on cells survival were assessed. The tumor burden was evaluated in mice carrying xenografts. Results: All phytochemicals enhanced the activation and expression of Nrf2 and its target genes SOD and NQO1 in HepG2 cells. The increased expression of NQO1 (~90%) was associated with increased ROS generation. X + PEITC downregulated NF-κB activation reducing binding of its active subunits to DNA resulting in diminished COX-2 expression. In contrast to single phytochemicals, X + PEITC induced apoptosis. Moderate reduction of tumor burden in mice carrying xenografts following X and PEITC or their combination was observed. Conclusions: Since Nrf2 is overexpressed in HCC its reduced activation together with diminished level of NF-κB by X + PEITC may be considered as a strategy to support conventional HCC therapy.
Collapse
Affiliation(s)
- Marta Cykowiak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (H.S.); (W.B.-D.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (H.S.); (W.B.-D.)
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (H.S.); (W.B.-D.)
| | - Małgorzata Kucińska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (H.S.); (W.B.-D.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Adam Plewiński
- Centre for Advanced Technologies, Adam Mickiewicz University, 10, Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland;
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (H.S.); (W.B.-D.)
| |
Collapse
|
7
|
Zhu L, Yi X, Ma C, Luo C, Kong L, Lin X, Gao X, Yuan Z, Wen L, Li R, Wu J, Yi J. Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway. Toxins (Basel) 2020; 12:toxins12090540. [PMID: 32842569 PMCID: PMC7551141 DOI: 10.3390/toxins12090540] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
T-2 toxin, the most toxic of the trichothecenes, is widely found in grains and feeds, and its intake poses serious risks to the health of humans and animals. An important cytotoxicity mechanism of T-2 toxin is the production of excess free radicals, which in turn leads to oxidative stress. Betulinic acid (BA) has many biological activities, including antioxidant activity, which is a plant-derived pentacyclic triterpenoid. The protective effects and mechanisms of BA in blocking oxidative stress caused by acute exposure to T-2 toxin in the thymus of mice was studied. BA pretreatment reduced ROS production, decreased the MDA content, and increased the content of IgG in serum and the levels of SOD and GSH in the thymus. BA pretreatment also reduced the degree of congestion observed in histopathological tissue sections of the thymus induced by T-2 toxin. Besides, BA downregulated the phosphorylation of the p38, JNK, and ERK proteins, while it upregulated the expression of the Nrf2 and HO-1 proteins in thymus tissues. The results indicated that BA could protect the thymus against the oxidative damage challenged by T-2 toxin by activating Nrf2 and suppressing the MAPK signaling pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xianglian Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chaoyang Ma
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chenxi Luo
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Li Kong
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xing Lin
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xinyu Gao
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Zhihang Yuan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rongfang Li
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Jing Wu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| | - Jine Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| |
Collapse
|
8
|
Guilloux G, Gibeaux R. Mechanisms of spindle assembly and size control. Biol Cell 2020; 112:369-382. [PMID: 32762076 DOI: 10.1111/boc.202000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
The spindle is crucial for cell division by allowing the faithful segregation of replicated chromosomes to daughter cells. Proper segregation is ensured only if microtubules (MTs) and hundreds of other associated factors interact to assemble this complex structure with the appropriate architecture and size. In this review, we describe the latest view of spindle organisation as well as the molecular gradients and mechanisms underlying MT nucleation and spindle assembly. We then discuss the overlapping physical and molecular constraints that dictate spindle morphology, concluding with a focus on spindle size regulation.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
9
|
Activation of the Nrf2 response by oleanolic acid oxime morpholide (3-hydroxyiminoolean-12-en-28-oic acid morpholide) is associated with its ability to induce apoptosis and inhibit proliferation in HepG2 hepatoma cells. Eur J Pharmacol 2020; 883:173307. [PMID: 32668287 DOI: 10.1016/j.ejphar.2020.173307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
Abstract
Our previous study demonstrated that new oleanolic acid oxime (OAO) derivatives and their conjugates with aspirin (ASP) inhibit NF-κB activation. Evidence exists that the downregulation of NF-κB negatively interferes with the Nrf2 signaling pathway. This study aimed to evaluate the effect of these compounds on Nrf2 activation and its cellular consequences in human hepatoma HepG2 cells and immortalized normal hepatocytes THLE-2. The results showed the enhanced activation and expression of Nrf2 as a result of treatment with OAO derivatives themselves and to less extent by their ASP conjugates, mainly in HepG2 cells. The association between cytotoxicity evaluated in our previous study and Nrf2 activation was observed. In this regard, compounds (18) with morpholide substituent at the C-17 position of OAO molecule and (12) with methyl ester substituent at the same position of OAO molecule to the most extent activated Nrf2 and subsequently cell cycle arrest at G2/M, leading to increased apoptosis and the number of resting HepG2 cells. The derivative of OAO (18) substituted with ASP (19) also affected Nrf2 activation and expression, but this effect was less pronounced in comparison with non-conjugated OAO. However, conjugation enhanced Nrf2 activation in normal THLE-2 cells. These results confirmed our earlier suggestion that OAO derivatives conjugated with ASP have the potential for application in the liver cancer chemoprevention. OAO themselves, particularly OAO substituted with morpholide, may be considered therapeutic agents, which may support conventional treatment strategy. Further studies are required to confirm this suggestion.
Collapse
|
10
|
Huang J, Huang LQ, He HS, Yan J, Huang C, Wang R, Guan Y, Huang DP. Overexpression of heme oxygenase-1 in bone marrow stromal cells promotes multiple myeloma resistance through the JAK2/STAT3 pathway. Life Sci 2020; 257:118088. [PMID: 32663573 DOI: 10.1016/j.lfs.2020.118088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 01/16/2023]
Abstract
AIMS Bone marrow stromal cells (BMSCs) have been reported to interact with multiple myeloma (MM) and exert a vital function of the survival of MM cells. Heme oxygenase-1 (HO-1), a cytoprotective enzyme, has the potential to become a hematological malignancies targeted gene. This study aimed to investigate the role of HO-1 in MM resistance of BMSCs and its possible mechanisms. MAIN METHODS In this study, the expression of related proteins was detected by RT-qPCR and Western blot. HO-1 expression was regulated by lentivirus transfection. Cell viability and apoptosis were detected by Flow cytometry and CCK-8. Cytokine secretion was assayed by ELISA. The survival and carcinogenic abilities was detected by clone formation assay. KEY FINDINGS HO-1 expression in the BMSCs of stage III MM patients was substantially increased, compared with that of healthy donors and stage I/II patients. The results of co-culture of BMSCs and MM cells indicated that, the upregulated HO-1 inhibited the apoptosis of co-cultured MM cells, while downregulated HO-1 promoted the chemosensitivity of co-cultured MM cells, moreover, the upregulated HO-1 in BMSCs increased the colony-formation ability of MM cells. This protective capability may be regulated by CXCL12/CXCR4 signaling. High HO-1 expression in BMSCs can promote the phosphorylation of the JAK2/STAT3 pathway, thereby increasing secretion of SDF-1 in BMSCs and activating CXCL12/CXCR4 signaling. In addition, direct contact between BMSCs and MM cells may cause drug resistance. SIGNIFICANCE These results indicated that the regulation of HO-1 in BMSCs may be a new effective method of MM therapy.
Collapse
Affiliation(s)
- Jun Huang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Lai-Quan Huang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - He-Sheng He
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Jiawei Yan
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Chen Huang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Ran Wang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Yan Guan
- Wannan Medical College, Wuhu 241001, China
| | - Dong-Ping Huang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China.
| |
Collapse
|
11
|
Chávez E, Velasco-Loyden G, Lozano-Rosas MG, Aguilar-Maldonado B, Muciño-Hernández G, Castro-Obregón S, Chagoya de Sánchez V. Role of autophagy in the chemopreventive effect of the IFC-305 compound in the sequential model of cirrhosis-hepatocellular carcinoma in the rat and in vitro. Am J Cancer Res 2020; 10:1844-1856. [PMID: 32642295 PMCID: PMC7339275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/30/2020] [Indexed: 06/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) can be originated from various etiologies and is preceded mostly by cirrhosis. Unfortunately, there is no effective treatment due to its late prognosis. Alterations in autophagy have been reported during the development and progression of HCC. Autophagy allows for the maintenance of a positive energy balance and the proper functioning of organelles through the selective degradation of cellular components. It has been demonstrated that autophagy suppresses spontaneous tumorigenesis in the liver. Therefore, autophagy has become a therapeutic target for effective HCC therapies. We have previously demonstrated that the adenosine-derived compound, IFC-305, has a chemopreventive effect on HCC, in addition to maintaining mitochondrial function in a sequential model of cirrhosis-HCC. Thus, the aim of this work was to determine if IFC-305 has an effect on autophagy in the sequential model of cirrhosis-HCC induced by diethylnitrosamine or in vitro in the HCC cell line HepG2 and mouse embryonic fibroblasts. The results of this work showed that IFC-305 modifies the levels of the BECN1, p62/SQSTM1 and LC3-II proteins that play an important role in the autophagic process. In vivo, IFC-305 regulates the levels of the PINK1 and PARKIN proteins that specifically mark mitochondria for repair or degradation. In the HepG2 cell line, its effect was accompanied by a decrease in cell viability. Interestingly, in nontumoral cells the time to autophagy induction was different compared to the HepG2 cells. This study suggests that autophagy induction may be part of the mechanism by which IFC-305 maintains mitochondrial function, thereby facilitating the prevention and reversal of HCC.
Collapse
Affiliation(s)
- Enrique Chávez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Gabriela Velasco-Loyden
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - María Guadalupe Lozano-Rosas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Beatriz Aguilar-Maldonado
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Victoria Chagoya de Sánchez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| |
Collapse
|
12
|
Zheng S, Deng Z, Chen F, Zheng L, Pan Y, Xing Q, Tsao R, Li H. Synergistic antioxidant effects of petunidin and lycopene in H9c2 cells submitted to hydrogen peroxide: Role of Akt/Nrf2 pathway. J Food Sci 2020; 85:1752-1763. [PMID: 32476138 DOI: 10.1111/1750-3841.15153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023]
Abstract
Phenolics and carotenoids coexist in fruits and vegetables and could possess interaction effects after consumption. The present study aims to elucidate the possible mechanisms of the antioxidant interactions between anthocyanins and carotenoids using petunidin and lycopene as examples in hydrogen peroxide (H2 O2 )-induced heart myofibroblast cell (H9c2) line model. The results revealed that petunidin and lycopene showed antioxidant effects and petunidin in a larger proportion mixed with lycopene, for example, petunidin: lycopene = 9:1 significantly protected against the loss of the cell viability (8.98 ± 1.03%) and intracellular antioxidant enzyme activities of superoxide dismutase (SOD, 27.07 ± 3.51%), catalase (CAT, 29.51 ± 6.12%), and glutathione peroxidase (GSH-Px, 20.33 ± 2.65%). Moreover, the messenger RNA (mRNA) and protein expressions of NAD(P)H quinone reductase (NQO1) and heme oxygenase (HO-1) of the nuclear factor erythrocyte 2-related factor 2 (Nrf2) signaling pathway were significantly induced in petunidin, lycopene, and synergistic combinations, suggesting that the antioxidant action was through activating the Nrf2 antioxidant response pathway. This was further validated by Nrf2 siRNA, and the results that petunidin significantly induced more of NQO1 expression and lycopene more of HO-1 suggested that the synergism may be a result of concerted actions by the two compounds on these two different target genes of the Nrf2 pathway. The two compounds also significantly increased the phosphorylation of Akt in synergistic combinations. Findings of the present study demonstrated that petunidin and lycopene exerted synergistic antioxidant effects when petunidin in a larger proportion in the combinations and contribute to the prevention of cellular redox homeostasis, which might provide a theoretical basis for phenolics and carotenoids playing beneficial effects on the cardiovascular risk. PRACTICAL APPLICATION: In this study, we revealed that the combined treatments of petunidin and lycopen inhibited H2 O2 -induced oxidative damage in myocardial cells. Moreover, the treatments contributed to the Nrf2 pathway and the restoration of cellular redox homeostasis might provide a theoretical basis for phenolics and carotenoids playing beneficial effects on the cardiovascular risk.
Collapse
Affiliation(s)
- Shilian Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.,Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Fang Chen
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Yao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Qian Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| |
Collapse
|
13
|
Fragoso-Saavedra M, Vega-López MA. Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations. J Leukoc Biol 2020; 108:835-850. [PMID: 32392638 DOI: 10.1002/jlb.4mr0320-488r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over 90% of pathogens of medical importance invade the organism through mucosal surfaces, which makes it urgent to develop safe and effective mucosal vaccines and mucosal immunization protocols. Besides, parenteral immunization does not provide adequate protective immunity in mucosal surfaces. Effective mucosal vaccination could protect local and systemic compartments and favor herd immunity. Although various mucosal adjuvants and Ag-delivery systems have been developed, none has filled the gap to control diseases caused by complex mucosal pathogens. Among the strategies to counteract them, recombinant virions from the baculovirus Autographa californica multiple nucleopolyhedrovirus (rAcMNPV) are useful vectors, given their safety and efficacy to produce mucosal and systemic immunity in animal infection models. Here, we review the immunogenic properties of rAcMNPV virions from the perspectives of mucosal immunology and vaccinology. Some features, which are analyzed and extrapolated from studies with different particulate antigens, include size, shape, surface molecule organization, and danger signals, all needed to break the tolerogenic responses of the mucosal immune tissues. Also, we present a condensed discussion on the immunity provided by rAcMNPV virions against influenza virus and human papillomavirus in animal models. Through the text, we highlight the advantages and limitations of this experimental immunization platform.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| | - Marco A Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| |
Collapse
|
14
|
Olmedo M, Mata‐Cabana A, Jesús Rodríguez‐Palero M, García‐Sánchez S, Fernández‐Yañez A, Merrow M, Artal‐Sanz M. Prolonged quiescence delays somatic stem cell-like divisions in Caenorhabditis elegans and is controlled by insulin signaling. Aging Cell 2020; 19:e13085. [PMID: 31852031 PMCID: PMC6996950 DOI: 10.1111/acel.13085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Cells can enter quiescence in adverse conditions and resume proliferation when the environment becomes favorable. Prolonged quiescence comes with a cost, reducing the subsequent speed and potential to return to proliferation. Here, we show that a similar process happens during Caenorhabditis elegans development, providing an in vivo model to study proliferative capacity after quiescence. Hatching under starvation provokes the arrest of blast cell divisions that normally take place during the first larval stage (L1). We have used a novel method to precisely quantify each stage of postembryonic development to analyze the consequences of prolonged L1 quiescence. We report that prolonged L1 quiescence delays the reactivation of blast cell divisions in C. elegans, leading to a delay in the initiation of postembryonic development. The transcription factor DAF-16/FOXO is necessary for rapid recovery after extended arrest, and this effect is independent from its role as a suppressor of cell proliferation. Instead, the activation of DAF-16 by decreased insulin signaling reduces the rate of L1 aging, increasing proliferative potential. We also show that yolk provisioning affects the proliferative potential after L1 arrest modulating the rate of L1 aging, providing a possible mechanistic link between insulin signaling and the maintenance of proliferative potential. Furthermore, variable yolk provisioning in embryos is one of the sources of interindividual variability in recovery after quiescence of genetically identical animals. Our results support the relevance of L1 arrest as an in vivo model to study stem cell-like aging and the mechanisms for maintenance of proliferation potential after quiescence.
Collapse
Affiliation(s)
- María Olmedo
- Departamento de GenéticaFacultad de BiologíaUniversidad de SevillaSevilleSpain
| | | | - María Jesús Rodríguez‐Palero
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | | | - Antonio Fernández‐Yañez
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | - Martha Merrow
- Institute of Medical PsychologyFaculty of MedicineLMU MunichMunichGermany
| | - Marta Artal‐Sanz
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| |
Collapse
|
15
|
Canesin G, Hejazi SM, Swanson KD, Wegiel B. Heme-Derived Metabolic Signals Dictate Immune Responses. Front Immunol 2020; 11:66. [PMID: 32082323 PMCID: PMC7005208 DOI: 10.3389/fimmu.2020.00066] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Heme is one of the most abundant molecules in the body acting as the functional core of hemoglobin/myoglobin involved in the O2/CO2 carrying in the blood and tissues, redox enzymes and cytochromes in mitochondria. However, free heme is toxic and therefore its removal is a significant priority for the host. Heme is a well-established danger-associated molecular pattern (DAMP), which binds to toll-like receptor 4 (TLR4) to induce immune responses. Heme-derived metabolites including the bile pigments, biliverdin (BV) and bilirubin (BR), were first identified as toxic drivers of neonatal jaundice in 1800 but have only recently been appreciated as endogenous drivers of multiple signaling pathways involved in protection from oxidative stress and regulators of immune responses. The tissue concentration of heme, BV and BR is tightly controlled. Heme oxygenase-1 (HO-1, encoded by HMOX1) produces BV by heme degradation, while biliverdin reductase-A (BLVR-A) generates BR by the subsequent conversion of BV. BLVR-A is a fascinating protein that possesses a classical protein kinase domain, which is activated in response to BV binding to its enzymatic site and initiates the downstream mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. This links BLVR-A activity to cell growth and survival pathways. BLVR-A also contains a bZip DNA binding domain and a nuclear export sequence (NES) and acts as a transcription factor to regulate the expression of immune modulatory genes. Here we will discuss the role of heme-related immune response and the potential for targeting the heme system for therapies directed toward hepatitis and cancer.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Seyed M. Hejazi
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Kenneth D. Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Barbara Wegiel
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Sesamin Enhances Nrf2-Mediated Protective Defense against Oxidative Stress and Inflammation in Colitis via AKT and ERK Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2432416. [PMID: 31534619 PMCID: PMC6732632 DOI: 10.1155/2019/2432416] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/18/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD) with high incidence and prevalence in many countries. Patients with UC usually suffer from a lifetime of debilitating physical symptoms. Therefore, developing effective therapeutic strategy that can manage this disease better and improve patients' life quality is in urgent need. Sesamin (SSM) is a lignan derived from sesame seeds. In this study, the protective effect of SSM against UC and the underlying mechanism were investigated in vitro and in vivo. Our data showed that SSM protected Caco-2 cells from H2O2-induced oxidative stress injury via GSH-mediated scavenging of reactive oxygen species (ROS). Dual luciferase reporter assay showed that the transcriptional activity of nuclear factor erythroid-related factor 2 (Nrf2) was significantly increased by SSM, and the ability of SSM to activate Nrf2-targeted genes was further confirmed in Caco-2 cells using western blot and quantitative real-time PCR (qRT-PCR). In contrast, Nrf2 knockdown abolished the protective effect of SSM. Additionally, we found that SSM also activated advanced protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) in Caco-2 cells, while either AKT or ERK inhibition can prevent SSM-mediated nuclear translocation of Nrf2. Furthermore, SSM displayed a better protective effect against dextran sulfate sodium- (DSS-) induced UC compared with 5-aminosalicylic acid (5-ASA) in C57BL/6 mice. The enhanced Nrf2 signaling and activated AKT/ERK were also observed in the colon of mice after SSM administration. These results first demonstrate the protective effect of SSM against UC and indicate that the effect is associated with AKT/ERK activation and subsequent Nrf2 signaling enhancement. This study provides a new insight into the medicinal value of SSM and proposes it as a new natural nutrition for better managing the symptoms of UC.
Collapse
|
17
|
DNA polymerase-γ hypothesis in nucleoside reverse transcriptase-induced mitochondrial toxicity revisited: A potentially protective role for citrus fruit-derived naringenin? Eur J Pharmacol 2019; 852:159-166. [PMID: 30876974 DOI: 10.1016/j.ejphar.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) form the backbone in combination antiretroviral therapy (cARVs). They halt chain elongation of the viral cDNA by acting as false substrates in counterfeit incorporation mechanism to viral RNA-dependent DNA polymerase. In the process genomic DNA polymerase as well as mitochondrial DNA (mtDNA) polymerase-γ (which has a much higher affinity for these drugs at therapeutic doses) are also impaired. This leads to mitochondrial toxicity that manifests clinically as mitochondrial myopathy, peripheral neuropathy, hyperlactatemia or lactic acidosis and lipoatrophy. This has led to the revision of clinical guidelines by World Health Organization to remove stavudine from first-line listing in the treatment of HIV infections. Recent reports have implicated oxidative stress besides mtDNA polymerase-γ hypothesis in NRTI-induced metabolic complications. Reduced plasma antioxidant concentrations have been reported in HIV positive patients on cARVs but clinical intervention with antioxidant supplements have not been successful either due to low efficacy or poor experimental designs. Citrus fruit-derived naringenin has previously been demonstrated to possess antioxidant and free radical scavenging properties which could prevent mitochondrial toxicity associated with these drugs. This review revisits the controversy surrounding mtDNA polymerase-γ hypothesis and evaluates the potential benefits of naringenin as a potent anti-oxidant and free radical scavenger which as a nutritional supplement or therapeutic adjunct could mitigate the development of mitochondrial toxicity associated with these drugs.
Collapse
|
18
|
Marine Compound 3-bromo-4,5-dihydroxybenzaldehyde Protects Skin Cells against Oxidative Damage via the Nrf2/HO-1 Pathway. Mar Drugs 2019; 17:md17040234. [PMID: 31010200 PMCID: PMC6521005 DOI: 10.3390/md17040234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we aimed to illustrate the potential bio-effects of 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on the antioxidant/cytoprotective enzyme heme oxygenase-1 (HO-1) in keratinocytes. The antioxidant effects of 3-BDB were examined via reverse transcription PCR, Western blotting, HO-1 activity assay, and immunocytochemistry. Chromatin immunoprecipitation analysis was performed to test for nuclear factor erythroid 2-related factor 2 (Nrf2) binding to the antioxidant response element of the HO-1 promoter. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the cytoprotective effects of 3-BDB were mediated by the activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, Akt) signaling. Moreover, 3-BDB induced the phosphorylation of ERK and Akt, while inhibitors of ERK and Akt abrogated the 3-BDB-enhanced levels of HO-1 and Nrf2. Finally, 3-BDB protected cells from H2O2- and UVB-induced oxidative damage. This 3-BDB-mediated cytoprotection was suppressed by inhibitors of HO-1, ERK, and Akt. The present results indicate that 3-BDB activated Nrf2 signaling cascades in keratinocytes, which was mediated by ERK and Akt, upregulated HO-1, and induced cytoprotective effects against oxidative stress.
Collapse
|
19
|
Raghunath A, Sundarraj K, Arfuso F, Sethi G, Perumal E. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers (Basel) 2018; 10:cancers10120481. [PMID: 30513925 PMCID: PMC6315366 DOI: 10.3390/cancers10120481] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
The liver executes versatile functions and is the chief organ for metabolism of toxicants/xenobiotics. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third foremost cause of cancer death worldwide. Oxidative stress is a key factor related with the development and progression of HCC. Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) is a cytosolic transcription factor, which regulates redox homeostasis by activating the expression of an array of antioxidant response element-dependent genes. Nrf2 displays conflicting roles in normal, healthy liver and HCC; in the former, Nrf2 offers beneficial effects, whereas in the latter it causes detrimental effects favouring the proliferation and survival of HCC. Sustained Nrf2 activation has been observed in HCC and facilitates its progression and aggressiveness. This review summarizes the role and mechanism(s) of action of Nrf2 dysregulation in HCC and therapeutic options that can be employed to modulate this transcription factor.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| |
Collapse
|
20
|
Jeong H, Shin JY, Kim MJ, Na J, Ju BG. Activation of Aryl Hydrocarbon Receptor Negatively Regulates Thymic Stromal Lymphopoietin Gene Expression via Protein Kinase Cδ-p300-NF-κB Pathway in Keratinocytes under Inflammatory Conditions. J Invest Dermatol 2018; 139:1098-1109. [PMID: 30503244 DOI: 10.1016/j.jid.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Epithelial-derived thymic stromal lymphopoietin (TSLP) plays an important role in pathogenesis in several types of dermatitis. Recently, the anti-inflammatory effects of aryl hydrocarbon receptor (AhR) have been reported in inflamed skin. In this study, keratinocytes were stimulated with tumor necrosis factor-α or flagellin in combination with AhR ligands or antagonist. TSLP gene expression and recruitment of transcriptional regulator to TSLP gene promoter were determined. The effects of AhR activation were also studied in DNFB-induced dermatitis model. We found that AhR activation suppressed upregulation of TSLP expression in keratinocytes treated with tumor necrosis factor-α or flagellin. In addition, AhR activation induced protein kinase Cδ-mediated phosphorylation of p300 at serine 89, leading to decreased acetylation and DNA binding activity of NF-κB p65 to the TSLP gene promoter. We also found that AhR activation alleviates dermatitis induced by DNFB treatment. Protein kinase Cδ depletion by small interfering RNA abolished the beneficial effect of AhR activation on dermatitis. Our study suggests that AhR activation may help to reduce inflammation in the dermatitis via downregulation of TSLP expression.
Collapse
Affiliation(s)
- Hayan Jeong
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Youn Shin
- Department of Life Science, Sogang University, Seoul, Korea
| | - Min-Jung Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jungtae Na
- Department of Life Science, Sogang University, Seoul, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul, Korea.
| |
Collapse
|
21
|
Wang Y, Li L, Wang Y, Zhu X, Jiang M, Song E, Song Y. New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: Induction of the Nrf2 signaling pathway. Eur J Pharmacol 2018; 822:128-137. [PMID: 29355553 DOI: 10.1016/j.ejphar.2018.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
A large population of drug candidates have failed "from bench to bed" due to unwanted toxicities. We intend to develop an alternative approach for drug discovery, that is, to seek candidates from "safe" compounds. Rebaudioside A (Reb-A) is an approved commercial sweetener from Stevia rebaudiana Bertoni. We found that Reb-A protects against carbon tetrachloride (CCl4)-induced oxidative injury in human liver hepatocellular carcinoma (HepG2) cells. Reb-A showed antioxidant activity on reducing cellular reactive oxygen species and malondialdehyde levels while increasing glutathione levels and superoxide dismutase and catalase activities. Reb-A treatment induced nuclear factor erythroid-derived 2-like 2 (Nrf2) activation and antioxidant response element activity, as well as the expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Further mechanistic studies indicated that c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), mitogen-active protein kinase (MAPK) and protein kinase C epsilon (PKCε) signaling was upregulated. Thus, the present in vitro study conclusively demonstrated that Reb-A is an activator of Nrf2 and is a potential candidate hepatoprotective agent. More importantly, the present study illustrated that seeking drug candidates from "safe" compounds is a promising strategy.
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Linyao Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Mingdong Jiang
- Department of Radiation Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China.
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
22
|
Son HJ, Sohn SH, Kim N, Lee HN, Lee SM, Nam RH, Park JH, Song CH, Shin E, Na HY, Kim JS, Lee DH, Surh YJ. Effect of Estradiol in an Azoxymethane/Dextran Sulfate Sodium-Treated Mouse Model of Colorectal Cancer: Implication for Sex Difference in Colorectal Cancer Development. Cancer Res Treat 2018; 51:632-648. [PMID: 30064198 PMCID: PMC6473282 DOI: 10.4143/crt.2018.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Purpose This study demonstrates that estradiol downregulates inflammation and inhibits colorectal cancer (CRC) development in azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model. Materials and Methods AOM/DSS-treated male and female mice were sacrificed at weeks 2, 10, and 16, to assess estrogen effects on colitis and carcinogenesis. Macroscopic and histologic severity of colitis and Western blot and quantitative real-time polymerase chain reaction were evaluated, to measure inflammatory mediators and cytokines. Results Compared with AOM/DSS-treated male mice (M-AOM/DSS group), AOM/DSS-treated male mice with estradiol administration (M-AOM/DSS+estr group) displayed at week 2 significantly decreased severity of colitis. At weeks 10 and 16, AOM/DSS-treated female mice (F-AOM/DSS group) and the M-AOM/DSS+estr group showed significantly lower tumor multiplicity compared with the M-AOM/DSS group. At week 2, F-AOM/DSS group had a lower level of nuclear factor-κB (NF-κB) expression and higher level of nuclear factor erythroid 2-related factor 2 (Nrf2) expression, compared to the M-AOM/DSS group. At week 2, expression levels of NF-κB and its related mediators decreased in the M-AOM/DSS+estr group, while levels of Nrf2 and Nrf2-related anti-oxidant enzymes increased. In addition, estradiol significantly increased Nod-like receptor protein 3 (NLRP3) inflammasome expressions in AOM/DSS-treated male mice. In contrast, at weeks 10 and 16, Nrf2 and its-related anti-oxidant enzymes and NLRP3 inflammasome were highly expressed in M-AOM/DSS group and in F-AOM/DSS group, who developed cancer. Conclusion The data suggest that estradiol inhibits the initiation of CRC by regulating Nrf2-related pathways. Moreover, these imply the dual role of Nrf2 and NLRP3 inflammasome, including promotion of tumor progression upon tumor initiation.
Collapse
Affiliation(s)
- Hee Jin Son
- Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hwa Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ha-Na Lee
- Tumor Microenvironment Global Core Research Center, Seoul National University College of Pharmacy, Seoul, Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Shin
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hee Young Na
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, Seoul National University College of Pharmacy, Seoul, Korea
| |
Collapse
|
23
|
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24:1679-1707. [PMID: 29713125 PMCID: PMC5922990 DOI: 10.3748/wjg.v24.i16.1679] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are caused by different etiological agents, mainly alcohol consumption, viruses, drug intoxication or malnutrition. Frequently, liver diseases are initiated by oxidative stress and inflammation that lead to the excessive production of extracellular matrix (ECM), followed by a progression to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that some natural products display hepatoprotective properties. Naringenin is a flavonoid with antioxidant, antifibrogenic, anti-inflammatory and anticancer properties that is capable of preventing liver damage caused by different agents. The main protective effects of naringenin in liver diseases are the inhibition of oxidative stress, transforming growth factor (TGF-β) pathway and the prevention of the transdifferentiation of hepatic stellate cells (HSC), leading to decreased collagen synthesis. Other effects include the inhibition of the mitogen activated protein kinase (MAPK), toll-like receptor (TLR) and TGF-β non-canonical pathways, the inhibition of which further results in a strong reduction in ECM synthesis and deposition. In addition, naringenin has shown beneficial effects on nonalcoholic fatty liver disease (NAFLD) through the regulation of lipid metabolism, modulating the synthesis and oxidation of lipids and cholesterol. Moreover, naringenin protects from HCC, since it inhibits growth factors such as TGF-β and vascular endothelial growth factor (VEGF), inducing apoptosis and regulating MAPK pathways. Naringenin is safe and acts by targeting multiple proteins. However, it possesses low bioavailability and high intestinal metabolism. In this regard, formulations, such as nanoparticles or liposomes, have been developed to improve naringenin bioavailability. We conclude that naringenin should be considered in the future as an important candidate in the treatment of different liver diseases.
Collapse
Affiliation(s)
- Erika Hernández-Aquino
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| |
Collapse
|
24
|
Tian B, Lu ZN, Guo XL. Regulation and role of nuclear factor-E2-related factor 2 (Nrf2) in multidrug resistance of hepatocellular carcinoma. Chem Biol Interact 2017; 280:70-76. [PMID: 29223570 DOI: 10.1016/j.cbi.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/06/2023]
Abstract
Hepatocellular carcinoma (HCC) chemoresistance, which is regarded as a kind of stress management reaction to chemotherapy drugs, severely hinders the therapy outcomes of HCC treatment. Stress management is generally achieved by activating certain signal pathways and chemical factors, among which, nuclear factor-E2-related factor2 (Nrf2) is a key factor in HCC chemoresistance formation. Nrf2 is a nuclear factor that coordinates the induction and expression of a battery of genes encoding cytoprotective proteins when participating in the Nrf2antioxidant response element (Nrf2/ARE) pathway, which is one of the most important intracellular antioxidant stress pathways. This review summarizes the recent understanding of the involvement of Nrf2 in the chemoresistance of liver cancer, its target proteins, expression regulation and potential Nrf2 inhibitors that sensitize chemotherapy drugs in HCC.
Collapse
Affiliation(s)
- Bing Tian
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhen-Ning Lu
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
25
|
Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox. Sci Rep 2017; 7:41854. [PMID: 28157180 PMCID: PMC5291092 DOI: 10.1038/srep41854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022] Open
Abstract
Mequindox (MEQ) is a synthetic antimicrobial agent of quinoxaline-1,4-dioxide group (QdNOs). The liver is regarded as the toxicity target of QdNOs, and the role of N → O group-associated various toxicities mediated by QdNOs is well recognized. However, the mechanism underlying the in vivo effects of MEQ on the liver, and whether the metabolic pathway of MEQ is altered in response to the pathophysiological conditions still remain unclear. We now provide evidence that MEQ triggers oxidative damage in the liver. Moreover, using LC/MS-ITTOF analysis, two metabolites of MEQ were detected in the liver, which directly confirms the potential connection between N → O group reduction metabolism of MEQ and liver toxicity. The gender difference in MEQ-induced oxidative stress might be due to adrenal toxicity and the generation of M4 (2-isoethanol 1-desoxymequindox). Furthermore, up-regulation of the MAPK and Nrf2-Keap1 family and phase II detoxifying enzymes (HO-1, GCLC and NQO1) were also observed. The present study demonstrated for the first time the protein peroxidation and a proposal metabolic pathway after chronic exposure of MEQ, and illustrated that the MAPK, Nrf2-Keap1 and NF-кB signaling pathways, as well as the altered metabolism of MEQ, were involved in oxidative toxicity mediated by MEQ in vivo.
Collapse
|
26
|
Nagahashi M, Matsuda Y, Moro K, Tsuchida J, Soma D, Hirose Y, Kobayashi T, Kosugi SI, Takabe K, Komatsu M, Wakai T. DNA damage response and sphingolipid signaling in liver diseases. Surg Today 2016; 46:995-1005. [PMID: 26514817 PMCID: PMC5053096 DOI: 10.1007/s00595-015-1270-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/04/2015] [Indexed: 02/06/2023]
Abstract
Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Daiki Soma
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shin-Ichi Kosugi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
27
|
Jin CH, So YK, Han SN, Kim JB. Isoegomaketone Upregulates Heme Oxygenase-1 in RAW264.7 Cells via ROS/p38 MAPK/Nrf2 Pathway. Biomol Ther (Seoul) 2016; 24:510-6. [PMID: 27582555 PMCID: PMC5012876 DOI: 10.4062/biomolther.2015.194] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/16/2016] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
Isoegomaketone (IK) was isolated from Perilla frutescens, which has been widely used as a food in Asian cuisine, and evaluated for its biological activity. We have already confirmed that IK induced the HO-1 expression via Nrf2 activation in RAW264.7 cells. In this study, we investigated the effect of IK on the mechanism of HO-1 expression. IK upregulated HO-1 mRNA and protein expression in a dose dependent manner. The level of HO-1 mRNA peaked at 4 h after 15 μM IK treatment. To investigate the mechanisms of HO-1 expression modulation by IK, we used pharmacological inhibitors for the protein kinase C (PKC) family, PI3K, and p38 MAPK. IK-induced HO-1 mRNA expression was only suppressed by SB203580, a specific inhibitor of p38 MAPK. ROS scavengers (N-acetyl-L-cysteine, NAC, and glutathione, GSH) also blocked the IK-induced ROS production and HO-1 expression. Furthermore, both NAC and SB203580 suppressed the IK-induced Nrf2 activation. In addition, ROS scavengers suppressed other oxidative enzymes such as catalase (CAT), glutathione S-transferase (GST), and NADH quinone oxidoreductase (NQO-1) in IK-treated RAW264.7 cells. Taken together, it can be concluded that IK induced the HO-1 expression through the ROS/p38 MAPK/ Nrf2 pathway in RAW264.7 cells.
Collapse
Affiliation(s)
- Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Yang Kang So
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| |
Collapse
|
28
|
Zou C, Zou C, Cheng W, Li Q, Han Z, Wang X, Jin J, Zou J, Liu Z, Zhou Z, Zhao W, Du Z. Heme oxygenase-1 retards hepatocellular carcinoma progression through the microRNA pathway. Oncol Rep 2016; 36:2715-2722. [PMID: 27571925 DOI: 10.3892/or.2016.5056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Heme metabolism system is involved in microRNA (miRNA) biogenesis. The complicated interplay between heme oxygenase-1 (HO-1) and miRNA has been observed in various tissues and diseases, including human malignancy. In the present study, our data showed that stable HO-1 overexpression in hepatocellular carcinoma (HCC) cells downregulated several oncomiRs. The most stably downregulated are miR-30d and miR-107. Iron, one of HO-1 catalytic products, was an important mediator in this regulation. Cell function analysis demonstrated that HO-1 inhibited the proliferation and metastasis of HepG2 cells, whereas miR-30d/miR-107 improved the proliferative and migratory ability of HepG2 cells. The beneficial effect of HO-1 in HCC inhibition could be reversed by upregulating miR-30d and miR-107. Akt and ERK pathways may be involved in the regulation of HO-1/miR-30d/miR-107 in HCC. These data indicate that HO-1 significantly suppresses HCC progression by regulating the miR-30d/miR-107 level, suggesting miR-30d/miR-107 regulation as a new molecular mechanism of HO-1 anticancer effect.
Collapse
Affiliation(s)
- Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Wanpeng Cheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhongjing Han
- Department of Hemopathology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang, P.R. China
| | - Xiaona Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jianfeng Jin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jiaqi Zou
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhiyan Liu
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhongqiu Zhou
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Weiming Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhimin Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
29
|
Huang J, Guo P, Ma D, Lin X, Fang Q, Wang J. Overexpression of heme oxygenase-1 induced by constitutively activated NF-κB as a potential therapeutic target for activated B-cell-like diffuse large B-cell lymphoma. Int J Oncol 2016; 49:253-64. [PMID: 27211510 DOI: 10.3892/ijo.2016.3529] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
There is an urgent requirement for a new therapeutic target for activated B-cell-like lymphoma (ABC-DLBCL), which is known to have dismal outcome and constitutive activation of NF-κB. Heme oxygenase-1 (HO-1) can inhibit apoptosis and promote proliferation in many cancers. To our knowledge, no studies have been performed on the correlation between HO-1 and DLBCL. In this study, immunohistochemical analysis of 31 tumor tissues from DLBCL patients [20 of ABC subtype and 11 of germinal center B-cell-like (GCB) subtype] and 11 normal lymph nodes revealed that HO-1 overexpression was characteristic of ABC-DLBCL. In addition, HO-1 mRNA expression levels were consistent with the immunohistochemistry results. High levels of HO-1 expression were significantly correlated with the involvement of more than 1 extranodal site (p=0.025), with a high positivity rate of Ki-67 (p<0.01). Similar to its anti-apoptotic role in other malignancies, HO-1 upregulation suppressed apoptosis of the ABC-DLBCL cell line OCI-ly10, whereas its downregulation sensitized the tumor cells to chemotherapeutic drugs. Further study demonstrated that the HO-1 overexpression was mediated by constitutively activated NF-κB which together played an anti-apoptotic role in ABC-DLBCL. Combination of the NF-κB inhibitor Bay11‑7082 and the lentivirus vector Lenti-siHO-1 significantly decreased HO-1 protein expression and increased apoptosis in OCI-ly10 cells. However, in GCB-DLBCL cells with low levels of NF-κB expression, the TNF-α-mediated activation of NF-κB leading to HO-1 upregulation rescued the cells from apoptosis caused by HO-1 silencing. These results indicated that HO-1 can be a potential target for the treatment of ABC-DLBCL.
Collapse
Affiliation(s)
- Jun Huang
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Pengxiang Guo
- People's Hospital of Guizhou Province, Guiyang 550004, P.R. China
| | - Dan Ma
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiaojing Lin
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, P.R. China
| | - Jishi Wang
- Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
30
|
Chen RC, Sun GB, Wang J, Zhang HJ, Sun XB. Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway. Food Funct 2016; 6:1331-44. [PMID: 25773745 DOI: 10.1039/c4fo01164c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Naringin (Nar) is a major and active flavanone glycoside derivative of several citrus species. The antioxidant properties of Nar have an important function in its cardioprotective effects in various models. However, the effects of Nar on Nrf2 activation and the expression of its downstream genes in myocardial cells are yet to be elucidated. This study was designed to investigate the protective effects of Nar against anoxia/reoxygenation (A/R)-induced injury in H9c2 cells and determine its effects on the activity of Nrf2 and the expression of phase II antioxidant enzymes. H9c2 cells were pretreated with Nar for 6 h before exposure to A/R. A/R treatment severely injured the H9c2 cells, which was accompanied by apoptosis. Nar also suppressed the A/R-induced mitochondrial membrane depolarization and caspase-3 activation. Nar pretreatment significantly reduced the apoptotic rate by enhancing the endogenous anti-oxidative activity of superoxide dismutase, glutathione peroxidase, and catalase, thereby inhibiting intracellular reactive oxygen species generation. Moreover, the presence of Nar alone in H9c2 cells increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, as well as consistently increased the protein levels of heme oxygenase (HO-1) and glutamate cysteine ligase (GCLC). Nar increased the phosphorylation of ERK1/2, PKCδ, and AKT. However, the Nar-mediated Nrf2 activation and cardioprotection were abolished through the genetic silencing of Nrf2 by siRNA and partially inhibited by specific inhibitors of ERK1/2, PKCδ, and AKT. Therefore, Nar provided cardioprotection by inducing the phosphorylation of ERK1/2, PKCδ, and AKT, which subsequently activated Nrf2 and its downstream genes.
Collapse
Affiliation(s)
- R C Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | | | | | | | | |
Collapse
|
31
|
Lawal AO, Marnewick JL, Ellis EM. Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3- dependent apoptosis in human hepatoma cell line. BMC Pharmacol Toxicol 2015; 16:41. [PMID: 26670903 PMCID: PMC4681021 DOI: 10.1186/s40360-015-0040-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Background Cadmium (Cd) is a well known environmental and industrial toxicant causing damaging effects in numerous organs. In this study, we examined the role of heme oxygenase-1 (HO-1) in modulating the Cd-induced apoptosis in human hepatoma (HepG2) cells after 24 h exposure. Methods HepG2 cells were exposed to 5 and 10 μM Cd as CdCl2 for 24 h while other sets of cells were pre-treated with either 10 μM Cobalt protoporphyrin (CoPPIX) or 10 μM Tin protoporphyrin (SnPPIX) for 24 h, or 50 μM Z-DEVD-FMK for 1 h before exposure to 5 and 10 μM CdCl2 for 24 h. Expressions of caspase 3, cytosolic cytochrome c, mitochondrial Bax and anti-apoptotic BCL-xl proteins were assessed by western blot. Intracellular reactive oxygen species (ROS) production was determined using the dihydrofluorescein diacetate (H2DFA) method. Cell viability was assessed by MTT assay, while a flow cytometry method was used to assess the level of apoptosis in the cell populations. Results Our results show that there were a significant increase in the expression of cytosolic cytochrome c, mitochondrial Bax protein, and caspase 3 at 5 and 10 μM compared to the control, but these increases were attenuated by the presence of CoPPIX. The presence of SnPPIX significantly enhanced Cd-induced caspase 3 activities. CoPPIX significantly decreased the level of ROS production by 24.6 and 22.2 % in 5 and 10 μM CdCl2, respectively, but SnPPIX caused a significant increase in ROS production in the presence of CdCl2. HepG2 cell viability was also significantly impaired by 13.89 and 32.53 % in the presence of 5 and 10 μM CdCl2, respectively, but the presence of CoPPIX and Z-DEVD-FMK significantly enhanced cell survival, while SnPPIX enhanced Cd-impaired cell viability. The presence of CoPPIX and Z-DEVD-FMK also significantly decreased the population of apoptotic and necrotic cells compared with Cd. Conclusion In summary, the present study showed that HO-1 attenuates the Cd-induced caspase 3 dependent pathway of apoptosis in HepG2 cells, probably by modulating Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Akeem O Lawal
- Oxidative Stress Research Centre, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville Campus, Bellville, 7535, South Africa. .,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G1 1XW, Glasgow, UK.
| | - Jeanine L Marnewick
- Oxidative Stress Research Centre, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville Campus, Bellville, 7535, South Africa.,Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville Campus, Bellville, 7535, South Africa
| | - Elizabeth M Ellis
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G1 1XW, Glasgow, UK
| |
Collapse
|
32
|
Zhang M, Zhang C, Zhang L, Yang Q, Zhou S, Wen Q, Wang J. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer 2015; 15:531. [PMID: 26194347 PMCID: PMC4507320 DOI: 10.1186/s12885-015-1541-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 07/13/2015] [Indexed: 12/18/2022] Open
Abstract
Background Nuclear factor E2-related factor 2 (Nrf2 or NFE2L2) is abundantly expressed in cancer cells and relates to proliferation, invasion, and chemoresistance. Our early observations also found that expression of Nrf2 was up-regulated in kinds of cancer including human hepatocellular carcinoma (HCC) cells. But there are limited reports about the expression, significance, function of Nrf2 in HCC. Methods First, Nrf2 expression was analyzed in HCC cell lines and tumor samples. Then, the relationship of Nrf2 with clinicopathological factors and survival were analyzed. Further, the effect of Nrf2 on cell proliferation, apoptosis, and metastasis was examined in vitro by modulating expression of Nrf2 through specific shRNA or expression plasmid. Last, the potential mechanisms were also investigated. Results Nrf2 was up-regulated in HCC, and expression of Nrf2 was correlated with tumor differentiation, metastasis, and tumor size. Univariate and multivariate analyses indicated that high Nrf2 expression might be a poor prognostic factor. Further studies demonstrated that inhibition of Nrf2 expression inhibited proliferation by inducing apoptosis and repressed invasion, and up-regulation of Nrf2 expression resulted in opposite phenotypes. Moreover, there are positive correlation between Nrf2 expression and that of Bcl-xL and MMP-9. Conclusion Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma partly through regulating expression of Bcl-xL and MMP-9.
Collapse
Affiliation(s)
- Mingxin Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| | - Chao Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| | - Lingmin Zhang
- Department of Anesthesiology, First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| | - Qi Yang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| | - Suna Zhou
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| | - Qinsheng Wen
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| | - Jingjie Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
33
|
Tsai CF, Kuo YH, Yeh WL, Wu CYJ, Lin HY, Lai SW, Liu YS, Wu LH, Lu JK, Lu DY. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells. Int J Mol Sci 2015; 16:5572-89. [PMID: 25768341 PMCID: PMC4394493 DOI: 10.3390/ijms16035572] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/20/2022] Open
Abstract
Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS), cyclooxygenase (COX)-2 and the production of nitric oxide (NO). Administration of CAPE resulted in increased expressions of hemeoxygenase (HO)-1and erythropoietin (EPO) in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK)-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Caren Yu-Ju Wu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Hsiao-Yun Lin
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 404, Taiwan.
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yu-Shu Liu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Ling-Hsuan Wu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jheng-Kun Lu
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 404, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
34
|
Chichger H, Vang A, O'Connell KA, Zhang P, Mende U, Harrington EO, Choudhary G. PKC δ and βII regulate angiotensin II-mediated fibrosis through p38: a mechanism of RV fibrosis in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 308:L827-36. [PMID: 25659900 DOI: 10.1152/ajplung.00184.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 01/26/2023] Open
Abstract
Pulmonary hypertension (PH) eventually leads to right ventricular (RV) fibrosis and dysfunction that is associated with increased morbidity and mortality. Although angiotensin II plays an important role in RV remodeling associated with hypoxic PH, the molecular mechanisms underlying RV fibrosis in PH largely remain unresolved. We hypothesized that PKC-p38 signaling is involved in RV collagen accumulation in PH and in response to angiotensin II stimulation. Adult male Sprague-Dawley rats were exposed to 3 wk of normoxia or hypoxia (10% FiO2 ) as a model of PH. Hypoxic rats developed RV hypertrophy and fibrosis associated with an increase in PKC βII and δ protein expression and p38 dephosphorylation in freshly isolated RV cardiac fibroblasts. Further mechanistic studies were performed in cultured primary cardiac fibroblasts stimulated with angiotensin II, a key activator of ventricular fibrosis in PH. Angiotensin II induced a reduction in p38 phosphorylation that was attenuated following chemical inhibition of PKC βII and δ. Molecular and chemical inhibition of PKC βII and δ abrogated angiotensin II-induced cardiac fibroblast proliferation and collagen deposition in vitro. The effects of PKC inhibition on proliferation and fibrosis were reversed by chemical inhibition of p38. Conversely, constitutive activation of p38 attenuated angiotensin II-induced increase of cardiac fibroblast proliferation and collagen accumulation. PKC βII- and δ-dependent inactivation of p38 regulates cardiac fibroblast proliferation and collagen deposition in response to angiotensin II, which suggests that the PKC-p38 signaling in cardiac fibroblasts may be involved and important in the pathophysiology of RV fibrosis in PH.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Kelly A O'Connell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ulrike Mende
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
35
|
Mishra P, Singh SV, Verma AK, Srivastava P, Sultana S, Rath SK. Rosiglitazone induces cardiotoxicity by accelerated apoptosis. Cardiovasc Toxicol 2015; 14:99-119. [PMID: 24249632 DOI: 10.1007/s12012-013-9234-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Present investigation explores the cardiotoxicity of rosiglitazone (ROSI) using rat heart cardiomyocytes and db/db mice. In H9c2 cells, ROSI at 50 and 60 μM induced an increase in the percentage of apoptotic cells and superoxide generation, along with an increase in the expression of various subunits of NADPH oxidase and nitric oxide synthases, confirmed that ROSI-induced apoptosis in H9c2 cells is by ROS generation. The increase in the expression of the antioxidants like superoxide dismutase (SOD), catalase, glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) further confirmed this notion. Heme oxygenase-1, having an important role in cell protection against oxidative stress, was found to be increased along with induction of nuclear translocation of NF-E2-related factor and increased protein kinase C δ expression. Moreover, in db/db mice, oral administration of ROSI (10 mg/kg) for 10 days induced an increase in serum creatinine kinase-MB, tissue antioxidants like SOD, catalase, GR, GST, GPx expression, cardiac troponin T, and inducible nitric oxide synthase protein expression strongly support the in vitro findings. Furthermore, global gene expression studies also showed the perturbation of oxidative phosphorylation, fat cell differentiation, and electron transport chain following ROSI treatment in vivo. These results suggested that ROSI-induced cardiac damage is due to accelerated apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Pratibha Mishra
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | | | | | | | | | | |
Collapse
|
36
|
Hashimoto N, Oki T, Sasaki K, Suda I, Okuno S. Black Soybean Seed Coat Extract Prevents Hydrogen Peroxide-Mediated Cell Death via Extracellular Signal-Related Kinase Signalling in HepG2 Cells. J Nutr Sci Vitaminol (Tokyo) 2015; 61:275-9. [PMID: 26226966 DOI: 10.3177/jnsv.61.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidative stress reduces cell viability and contributes to disease processes. Flavonoids including anthocyanins and proanthocyanidins reportedly induce intracellular antioxidant defence systems. Thus, in this study, we examined the antioxidant effects of a commercial extract from black soybean seed coats (BE), which are rich in anthocyanin and proanthocyanidin, and investigated the associated intracellular mechanisms in HepG2 cells. HepG2 cells treated with hydrogen peroxide (HPO) showed 60% viability, whereas pretreatment with BE-containing media for 2 h ameliorated HPO-mediated cell death by up to 90%. Pretreatment with BE for 2 h partially blocked HPO-mediated activation of ERK in HepG2 cells, and that for 1 h led to a 20% increase in intracellular total protein phosphatase (PP) activity, which is known to deactivate protein kinases. These results indicate that BE prevents HPO-mediated cell damage by inhibiting ERK signalling, potentially via PPs.
Collapse
Affiliation(s)
- Naoto Hashimoto
- Crop and Agribusiness Research Division, NARO Kyushu Okinawa Agricultural Research Center
| | | | | | | | | |
Collapse
|
37
|
Jun YJ, Lee M, Shin T, Yoon N, Kim JH, Kim HR. eckol enhances heme oxygenase-1 expression through activation of Nrf2/JNK pathway in HepG2 cells. Molecules 2014; 19:15638-52. [PMID: 25268719 PMCID: PMC6271008 DOI: 10.3390/molecules191015638] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022] Open
Abstract
Eckol isolated from Ecklonia stolonifera was previously reported to exhibit cytoprotective activity with its intrinsic antioxidant activity in in vitro studies. In this study, we characterized the mechanism underlying the eckol-mediated the expression of heme oxygenase-1 (HO-1). Eckol suppressed the production of intracellular reactive oxygen species and increased glutathione level in HepG2 cells. Eckol treatment enhanced the expression of HO-1 at the both level of protein and mRNA in HepG2 cells. Enhanced expression of HO-1 by eckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and increased transcriptional activity. c-Jun NH2-terminal kinases (JNKs) and PI3K/Akt contributed to Nrf2-mediated HO-1 expression. These results demonstrate that the eckol-mediated expression of HO-1 in HepG2 cells is regulated by Nrf2 activation via JNK and PI3K/Akt signaling pathways, suggesting that eckol may be used as a natural antioxidant and cytoprotective agent.
Collapse
Affiliation(s)
- Young-Jin Jun
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea.
| | - Minsup Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea.
| | - Taisun Shin
- Department of Food Science and Nutrition, Chonnam National University, Yeosu 550-749, Korea.
| | - Nayoung Yoon
- Food Safety Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-eup, Busan 619-705, Korea.
| | - Ji-Hoe Kim
- Food Safety Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-eup, Busan 619-705, Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea.
| |
Collapse
|
38
|
Wei S, Wang Y, Chai Q, Fang Q, Zhang Y, Wang J. Potential crosstalk of Ca2+-ROS-dependent mechanism involved in apoptosis of Kasumi-1 cells mediated by heme oxygenase-1 small interfering RNA. Int J Oncol 2014; 45:2373-84. [PMID: 25231232 DOI: 10.3892/ijo.2014.2661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/27/2014] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia (AML) requires new therapies on the molecular level. Downregulation of heme oxygenase-1 (HO-1) by gene silencing improves the sensitivity of tumor cells to chemotherapy drugs and promotes apoptosis. For the first time, we verified that endoplasmic reticulum and mitochondrial apoptotic pathways were activated by small interfering RNA that targeted-silenced the expression of HO-1 in AML-M2 Kasumi-1 cells. Ca2+ was prone to accumulation and reactive oxygen species were easily generated, while mitochondrial transmembrane potential was reduced. Thus, cytochrome c was released from mitochondria to the cytoplasm and caspases were activated for the following cascade to facilitate apoptosis.
Collapse
Affiliation(s)
- Sixi Wei
- Department of Hematology, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, P.R. China
| | - Yating Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, P.R. China
| | - Qixiang Chai
- Department of Hematology, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, P.R. China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, P.R. China
| | - Yaming Zhang
- Department of Hematology, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, P.R. China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, P.R. China
| |
Collapse
|
39
|
Saw CLL, Guo Y, Yang AY, Paredes-Gonzalez X, Ramirez C, Pung D, Kong ANT. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem Toxicol 2014; 72:303-11. [PMID: 25111660 DOI: 10.1016/j.fct.2014.07.038] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/22/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
Abstract
Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations.
Collapse
Affiliation(s)
- Constance Lay Lay Saw
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anne Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ximena Paredes-Gonzalez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christina Ramirez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Cellular and Molecular Pharmacology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Douglas Pung
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
40
|
Matsuda Y, Sanpei A, Wakai T, Kubota M, Osawa M, Hirose Y, Sakata J, Kobayashi T, Fujimaki S, Takamura M, Yamagiwa S, Yano M, Ohkoshi S, Aoyagi Y. Hepatitis B virus X stimulates redox signaling through activation of ataxia telangiectasia mutated kinase. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2032-2043. [PMID: 24966912 PMCID: PMC4069949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/25/2014] [Indexed: 06/03/2023]
Abstract
Hepatitis B virus X (HBX) protein plays a crucial role in carcinogenesis, but its mechanism is unclear. The involvement of ataxia telangiectasia mutated (ATM) kinase in the enhanced redox system was investigated by examining the phosphorylation level of ATM in HBX gene-transfected cells and in transgenic mice following redox system manipulation by treatment with hydrogen peroxide (H2O2) or antioxidant. Western blotting and immunostaining showed that phospho-ATM was significantly increased by HBX both in vitro (3.2-fold; p<0.05) and in vivo (4-fold; p<0.05), and this effect was abrogated by antioxidant treatment. The level of PKC-δ in HBX-expressing cells was increased 3.5-fold compared to controls. Nuclear localized NF-E2-related factor 2 (Nrf2) was increased in HBX-expressing cells exposed to H2O2, but remained at lower levels after the treatment with rottlerin, KU55933, or caffeine. The levels of anti-oxidant molecules were increased in HBX expressing cells and in transgenic mice, indicating that HBX stimulates the Nrf2-mediated redox system. The levels of intracellular reactive oxygen species (ROS) were significantly increased in HBX-expressing cells treated with hydrogen peroxide in the presence of ATM inhibitor KU55933 or caffeine. Treatment of HBX-expressing cells with KU55933 or caffeine before the exposure to H2O2 increased the ratio of cell apoptosis to 33±4% (p<0.05) and 22±4% (p<0.05), respectively. Collectively, HBX stimulates the ATM-mediated PKC-δ/Nrf2 pathway, and maintains the enhanced activity of the redox system. Therefore, manipulating ATM kinase activity might be a useful strategy for treating HBX-induced carcinogenesis.
Collapse
Affiliation(s)
- Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences2-746 Asahimachi-dori, Chuo-Ku, Niigata 951-8518, Japan
| | - Ayumi Sanpei
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Masayuki Kubota
- Division of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Mami Osawa
- Division of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Shun Fujimaki
- Department of Medical Technology, Niigata University Graduate School of Health Sciences2-746 Asahimachi-dori, Chuo-Ku, Niigata 951-8518, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Masahiko Yano
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Shogo Ohkoshi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| |
Collapse
|
41
|
Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun 2014; 5:3480. [PMID: 24633012 PMCID: PMC3959213 DOI: 10.1038/ncomms4480] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/20/2014] [Indexed: 12/28/2022] Open
Abstract
Haem oxygenase (HO)-1/carbon monoxide (CO) protects cancer cells from oxidative stress, but the gas-responsive signalling mechanisms remain unknown. Here we show using metabolomics that CO-sensitive methylation of PFKFB3, an enzyme producing fructose 2,6-bisphosphate (F-2,6-BP), serves as a switch to activate phosphofructokinase-1, a rate-limiting glycolytic enzyme. In human leukaemia U937 cells, PFKFB3 is asymmetrically di-methylated at R131 and R134 through modification by protein arginine methyltransferase 1. HO-1 induction or CO results in reduced methylation of PFKFB3 in varied cancer cells to suppress F-2,6-BP, shifting glucose utilization from glycolysis toward the pentose phosphate pathway. Loss of PFKFB3 methylation depends on the inhibitory effects of CO on haem-containing cystathionine β-synthase (CBS). CBS modulates remethylation metabolism, and increases NADPH to supply reduced glutathione, protecting cells from oxidative stress and anti-cancer reagents. Once the methylation of PFKFB3 is reduced, the protein undergoes polyubiquitination and is degraded in the proteasome. These results suggest that the CO/CBS-dependent regulation of PFKFB3 methylation determines directional glucose utilization to ensure resistance against oxidative stress for cancer cell survival. Haem oxygenase 1 produces carbon monoxide and this byproduct is known to alter cellular signalling. Here, the authors show that carbon monoxide alters the methylation of PFKFB3 in cancer cells resulting in deregulated cellular metabolism and the shunting of glucose into the pentose phosphate pathway.
Collapse
|
42
|
Lee SE, Park YS. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J Ginseng Res 2013; 38:34-9. [PMID: 24558308 PMCID: PMC3915333 DOI: 10.1016/j.jgr.2013.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022] Open
Abstract
Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other α,β-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an α,β-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin V-propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
43
|
Heme oxygenase-1 protects regulatory T cells from hypoxia-induced cellular stress in an experimental mouse brain tumor model. J Neuroimmunol 2013; 266:33-42. [PMID: 24268287 DOI: 10.1016/j.jneuroim.2013.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/25/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022]
Abstract
Two characteristic features of malignant gliomas (MG) are the presence of hypoxia and accumulation of regulatory T cells (Tregs). Heme-oxygenase-1 (HO1) is a cytoprotective enzyme expressed in high level by Tregs in glioma. In this study, we show that higher HO1 expression in Tregs is associated with increased survival under hypoxic conditions and that HO1 inhibitor, tin protoporphyrin (SnPP), abrogates the survival benefits. Moreover, SnPP preferentially eliminates Tregs and treatment with SnPP of tumor bearing mice significantly increases survival (23 to 31days (p<0.05)). Thus HO1 inhibition provides another alternative way of therapeutically targeting Tregs in MG.
Collapse
|
44
|
Ryu DS, Yang H, Lee SE, Park CS, Jin YH, Park YS. Crotonaldehyde induces heat shock protein 72 expression that mediates anti-apoptotic effects in human endothelial cells. Toxicol Lett 2013; 223:116-23. [DOI: 10.1016/j.toxlet.2013.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
|
45
|
Hemeoxygenase-1 mediates an adaptive response to spermidine-induced cell death in human endothelial cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:238734. [PMID: 23983896 PMCID: PMC3747394 DOI: 10.1155/2013/238734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
Spermidine (SPD) is a ubiquitous polycation that is commonly distributed in living organisms. Intracellular levels of SPD are tightly regulated, and SPD controls cell proliferation and death. However, SPD undergoes oxidation in the presence of serum, producing aldehydes, hydrogen peroxide, and ammonia, which exert cytotoxic effect on cells. Hemeoxygenase-1 (HO-1) is thought to have a protective effect against oxidative stress. Upregulation of HO-1 in endothelial cells is considered to be beneficial in the cardiovascular disease. In the present study, we demonstrate that the ubiquitous polyamine, SPD, induces HO-1 in human umbilical vein endothelial cells (HUVECs). SPD-induced HO-1 expression was examined by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Involvement of reactive oxygen species, serum amine oxidase, PI3K/Akt signaling pathway, and transcription factor Nrf2 in the induction of HO-1 by SPD was also investigated. Furthermore, small interfering RNA knockdown of Nrf2 or HO-1 and treatment with the specific HO-1 inhibitor ZnPP exhibited a noteworthy increase of death of SPD-stimulated HUVECs. In conclusion, these results suggest that SPD induces PI3K/Akt-Nrf2-mediated HO-1 expression in human endothelial cells, which may have a role in cytoprotection of the cells against oxidative stress-induced death.
Collapse
|
46
|
Lee SE, Park YS. The role of antioxidant enzymes in adaptive responses to environmental toxicants in vascular disease. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0013-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Yang H, Kim GD, Park HR, Park YS. Comparative mRNA and microRNA expression profiling of methylglyoxal-exposed human endothelial cells. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
An integrated analysis of microRNA and mRNA expression in salvianolic acid B-treated human umbilical vein endothelial cells. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0001-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Yang H, Lee SE, Lee S, Cho JJ, Ahn HJ, Park CS, Park YS. Integrated analysis of miRNA and mRNA reveals that acrolein modulates GPI anchor biosynthesis in human primary endothelial cells. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|