1
|
Acosta F, Candanedo D, Patel P, Llanes A, Ku JE, Salazar K, Morán M, Sambrano D, Jurado J, Martínez I, Garibaldi L, Delgado M, Solís L, Luque O, Da Silva K, Andrews J, Goodridge A. Endemic transmission of a Mycobacterium tuberculosis L2.2.M3 sublineage of the L2 lineage within Colon, Panama: A prospective study. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 131:105749. [PMID: 40274251 DOI: 10.1016/j.meegid.2025.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Mycobacterium tuberculosis lineage 2 (L2) remains a globally significant lineage associated with increased drug resistance and rapid transmission. The L2 lineage exhibits a hotspot for genetic diversity and evolution in Panama, requiring an in-depth analysis. We conducted a prospective analysis of 274 Mycobacterium tuberculosis L2 isolates from Colon City between January 2021 and October 2023. Drug resistance was determined using GeneXpert and MTBDRplus-Genotype assays, strain lineage was determined by strain-specific PCR (ASO-PCR), and whole-genome sequencing was conducted for phylogenetic analysis. Sequencing data were analyzed using the mtb-call2 pipeline and TB-gen tools to predict drug resistance and sublineage, respectively. Genome-wide single-nucleotide polymorphisms (SNPs) were used for phylogenetic and evolutionary analyses. ASO-PCR results identified all 31.7 % (86/271) isolates as Modern L2.2. WGS analysis of 66 strains confirmed all isolates belonged to the L2.2.1 sublineage. Sixty-four strains were analyzed in depth, with 96.9 % (62/64) classified as pan-susceptible and 3.1 % (2/64) as rifampicin/pyrazinamide-resistant. The sublineage analysis based on SNPs using the TB-gen tool identified a SNP at position 1219683G > A, which genotyped all 64 strains as L2.2.M3 sublineage. Phylogenetic analysis revealed a correlation with geographical distribution compared to other Latin American L2 isolates. Transmission clusters (≤12 SNPs) were identified and used to determine recent transmission events or TB transmission clusters. These analyses also confirmed a relatively low evolutionary rate within Panama L2 isolates and a highly conserved common ancestor shared with L2 isolates from Peru, Colombia, and Guatemala. These findings suggest endemic transmission of the Mycobacterium tuberculosis L2.2.M3 sublineage in Colon, Panama. We recommend combining genomic information with epidemiological data to accurately track and identify the source hotspot for the L2.2.M3 sublineage and focus control measures.
Collapse
Affiliation(s)
- Fermín Acosta
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Daniela Candanedo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá; Universidad Latina de Panamá, Ciudad de Panamá, Panamá
| | - Priya Patel
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Johanna Elizabeth Ku
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Kharla Salazar
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá; Universidad Latina de Panamá, Ciudad de Panamá, Panamá
| | - Mitchelle Morán
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Dilcia Sambrano
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | | | - Isolina Martínez
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panamá
| | | | | | - Laura Solís
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panamá
| | - Odemaris Luque
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panamá
| | - Kesia Da Silva
- Division of Infectious Diseases & Geographic Medicine, Stanford University, California, United States
| | - Jason Andrews
- Division of Infectious Diseases & Geographic Medicine, Stanford University, California, United States
| | - Amador Goodridge
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá.
| |
Collapse
|
2
|
Hurtado-Páez U, Álvarez Zuluaga N, Arango Isaza RE, Contreras-Moreira B, Rouzaud F, Robledo J. Pan-genome association study of Mycobacterium tuberculosis lineage-4 revealed specific genes related to the high and low prevalence of the disease in patients from the North-Eastern area of Medellín, Colombia. Front Microbiol 2023; 13:1076797. [PMID: 36687645 PMCID: PMC9846648 DOI: 10.3389/fmicb.2022.1076797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) lineage 4 is responsible for the highest burden of tuberculosis (TB) worldwide. This lineage has been the most prevalent lineage in Colombia, especially in the North-Eastern (NE) area of Medellin, where it has been shown to have a high prevalence of LAM9 SIT42 and Haarlem1 SIT62 sublineages. There is evidence that regardless of environmental factors and host genetics, differences among sublineages of Mtb strains play an important role in the course of infection and disease. Nevertheless, the genetic basis of the success of a sublineage in a specific geographic area remains uncertain. We used a pan-genome-wide association study (pan-GWAS) of 47 Mtb strains isolated from NE Medellin between 2005 and 2008 to identify the genes responsible for the phenotypic differences among high and low prevalence sublineages. Our results allowed the identification of 12 variants in 11 genes, of which 4 genes showed the strongest association to low prevalence (mmpL12, PPE29, Rv1419, and Rv1762c). The first three have been described as necessary for invasion and intracellular survival. Polymorphisms identified in low prevalence isolates may suggest related to a fitness cost of Mtb, which might reflect a decrease in their capacity to be transmitted or to cause an active infection. These results contribute to understanding the success of some sublineages of lineage-4 in a specific geographical area.
Collapse
Affiliation(s)
- Uriel Hurtado-Páez
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia,*Correspondence: Uriel Hurtado-Páez,
| | | | - Rafael Eduardo Arango Isaza
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia,Facultad de Ciencias, Universidad Nacional de Colombia (UNAL), Medellín, Colombia
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei–Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain,Fundación ARAID, Zaragoza, Spain
| | | | - Jaime Robledo
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia,Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana (UPB), Medellín, Colombia
| |
Collapse
|
3
|
Oostvogels S, Ley SD, Heupink TH, Dippenaar A, Streicher EM, De Vos E, Meehan CJ, Dheda K, Warren R, Van Rie A. Transmission, distribution and drug resistance-conferring mutations of extensively drug-resistant tuberculosis in the Western Cape Province, South Africa. Microb Genom 2022; 8. [PMID: 35471145 PMCID: PMC9453078 DOI: 10.1099/mgen.0.000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Extensively drug-resistant tuberculosis (XDR-TB), defined as resistance to at least isoniazid (INH), rifampicin (RIF), a fluoroquinolone (FQ) and a second-line injectable drug (SLID), is difficult to treat and poses a major threat to TB control. The transmission dynamics and distribution of XDR Mycobacterium tuberculosis (Mtb) strains have not been thoroughly investigated. Using whole genome sequencing data on 461 XDR-Mtb strains, we aimed to investigate the geographical distribution of XDR-Mtb strains in the Western Cape Province of South Africa over a 10 year period (2006–2017) and assess the association between Mtb sub-lineage, age, gender, geographical patient location and membership or size of XDR-TB clusters. First, we identified transmission clusters by excluding drug resistance-conferring mutations and using the 5 SNP cutoff, followed by merging clusters based on their most recent common ancestor. We then consecutively included variants conferring resistance to INH, RIF, ethambutol (EMB), pyrazinamide (PZA), SLIDs and FQs in the cluster definition. Cluster sizes were classified as small (2–4 isolates), medium (5–20 isolates), large (21–100 isolates) or very large (>100 isolates) to reflect the success of individual strains. We found that most XDR-TB strains were clustered and that including variants conferring resistance to INH, RIF, EMB, PZA and SLIDs in the cluster definition did not significantly reduce the proportion of clustered isolates (85.5–82.2 %) but increased the number of patients belonging to small clusters (4.3–12.4 %, P=0.56). Inclusion of FQ resistance-conferring variants had the greatest effect, with 11 clustered isolates reclassified as unique while the number of clusters increased from 17 to 37. Lineage 2 strains (lineage 2.2.1 typical Beijing or lineage 2.2.2 atypical Beijing) showed the large clusters which were spread across all health districts of the Western Cape Province. We identified a significant association between residence in the Cape Town metropole and cluster membership (P=0.016) but no association between gender, age and cluster membership or cluster size (P=0.39). Our data suggest that the XDR-TB epidemic in South Africa probably has its origin in the endemic spread of MDR Mtb and pre-XDR Mtb strains followed by acquisition of FQ resistance, with more limited transmission of XDR Mtb strains. This only became apparent with the inclusion of drug resistance-conferring variants in the definition of a cluster. In addition to the prevention of amplification of resistance, rapid diagnosis of MDR, pre-XDR and XDR-TB and timely initiation of appropriate treatment is needed to reduce transmission of difficult-to-treat TB.
Collapse
Affiliation(s)
- Selien Oostvogels
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- *Correspondence: Selien Oostvogels,
| | - Serej D. Ley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
- Present address: Sefunda AG, Muttenz, Switzerland
| | - Tim H. Heupink
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Anzaan Dippenaar
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Elizabeth M. Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Elise De Vos
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Conor J. Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute, South Africa
- South African MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Rob Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Ryoo S, Kang T, Lee DG, Jung J. The utility of a real-time polymerase chain reaction kit for differentiating between Mycobacterium tuberculosis and the Beijing familythe utility of a real-time polymerase chain reaction kit for differentiating between Mycobacterium tuberculosis and the Beijing family. Int J Mycobacteriol 2022; 11:268-272. [DOI: 10.4103/ijmy.ijmy_99_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. Genes (Basel) 2021; 12:genes12122003. [PMID: 34946952 PMCID: PMC8701281 DOI: 10.3390/genes12122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.
Collapse
|
6
|
Asare P, Asante-Poku A, Osei-Wusu S, Otchere ID, Yeboah-Manu D. The Relevance of Genomic Epidemiology for Control of Tuberculosis in West Africa. Front Public Health 2021; 9:706651. [PMID: 34368069 PMCID: PMC8342769 DOI: 10.3389/fpubh.2021.706651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis complex (MTBC), remains a global health problem. West Africa has a unique epidemiology of TB that is characterized by medium- to high-prevalence. Moreover, the geographical restriction of M. africanum to the sub-region makes West Africa have an extra burden to deal with a two-in-one pathogen. The region is also burdened with low case detection, late reporting, poor treatment adherence leading to development of drug resistance and relapse. Sporadic studies conducted within the subregion report higher burden of drug resistant TB (DRTB) than previously thought. The need for more sensitive and robust tools for routine surveillance as well as to understand the mechanisms of DRTB and transmission dynamics for the design of effective control tools, cannot be overemphasized. The advancement in molecular biology tools including traditional fingerprinting and next generation sequencing (NGS) technologies offer reliable tools for genomic epidemiology. Genomic epidemiology provides in-depth insight of the nature of pathogens, circulating strains and their spread as well as prompt detection of the emergence of new strains. It also offers the opportunity to monitor treatment and evaluate interventions. Furthermore, genomic epidemiology can be used to understand potential emergence and spread of drug resistant strains and resistance mechanisms allowing the design of simple but rapid tools. In this review, we will describe the local epidemiology of MTBC, highlight past and current investigations toward understanding their biology and spread as well as discuss the relevance of genomic epidemiology studies to TB control in West Africa.
Collapse
Affiliation(s)
- Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Le Hang NT, Hijikata M, Maeda S, Miyabayashi A, Wakabayashi K, Seto S, Diem NTK, Yen NTT, Van Duc L, Thuong PH, Van Huan H, Hoang NP, Mitarai S, Keicho N, Kato S. Phenotypic and genotypic features of the Mycobacterium tuberculosis lineage 1 subgroup in central Vietnam. Sci Rep 2021; 11:13609. [PMID: 34193941 PMCID: PMC8245516 DOI: 10.1038/s41598-021-92984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has different features depending on different geographic areas. We collected Mtb strains from patients with smear-positive pulmonary tuberculosis in Da Nang, central Vietnam. Using a whole genome sequencing platform, including genome assembly complemented by long-read-sequencing data, genomic characteristics were studied. Of 181 Mtb isolates, predominant Vietnamese EAI4_VNM and EAI4-like spoligotypes (31.5%), ZERO strains (5.0%), and part of EAI5 (11.1%) were included in a lineage-1 (L1) sublineage, i.e., L1.1.1.1. These strains were found less often in younger people, and they genetically clustered less frequently than other modern strains. Patients infected with ZERO strains demonstrated less lung infiltration. A region in RD2bcg spanning six loci, i.e., PE_PGRS35, cfp21, Rv1985c, Rv1986, Rv1987, and erm(37), was deleted in EAI4_VNM, EAI4-like, and ZERO strains, whereas another 118 bp deletion in furA was specific only to ZERO strains. L1.1.1.1-sublineage-specific deletions in PE_PGRS4 and PE_PGRS22 were also identified. RD900, seen in ancestral lineages, was present in majority of the L1 members. All strains without IS6110 (5.0%) had the ZERO spoligo-pattern. Distinctive features of the ancestral L1 strains provide a basis for investigation of the modern versus ancestral Mtb lineages and allow consideration of countermeasures against this heterogeneous pathogen.
Collapse
Affiliation(s)
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shinji Maeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | | | | | - Le Van Duc
- Da Nang General Hospital, Da Nang, Vietnam
| | | | | | | | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, JATA, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo, 204-8533, Japan. .,National Center for Global Health and Medicine, Tokyo, Japan.
| | - Seiya Kato
- The Research Institute of Tuberculosis, JATA, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo, 204-8533, Japan
| |
Collapse
|
8
|
Rocha DMGC, Magalhães C, Cá B, Ramos A, Carvalho T, Comas I, Guimarães JT, Bastos HN, Saraiva M, Osório NS. Heterogeneous Streptomycin Resistance Level Among Mycobacterium tuberculosis Strains From the Same Transmission Cluster. Front Microbiol 2021; 12:659545. [PMID: 34177837 PMCID: PMC8226182 DOI: 10.3389/fmicb.2021.659545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Widespread and frequent resistance to the second-line tuberculosis (TB) medicine streptomycin, suggests ongoing transmission of low fitness cost streptomycin resistance mutations. To investigate this hypothesis, we studied a cohort of 681 individuals from a TB epidemic in Portugal. Whole-genome sequencing (WGS) analyses were combined with phenotypic growth studies in culture media and in mouse bone marrow derived macrophages. Streptomycin resistance was the most frequent resistance in the cohort accounting for 82.7% (n = 67) of the resistant Mycobacterium tuberculosis isolates. WGS of 149 clinical isolates identified 13 transmission clusters, including three clusters containing only streptomycin resistant isolates. The biggest cluster was formed by eight streptomycin resistant isolates with a maximum of five pairwise single nucleotide polymorphisms of difference. Interestingly, despite their genetic similarity, these isolates displayed different resistance levels to streptomycin, as measured both in culture media and in infected mouse bone marrow derived macrophages. The genetic bases underlying this phenotype are a combination of mutations in gid and other genes. This study suggests that specific streptomycin resistance mutations were transmitted in the cohort, with the resistant isolates evolving at the cluster level to allow low-to-high streptomycin resistance levels without a significative fitness cost. This is relevant not only to better understand transmission of streptomycin resistance in a clinical setting dominated by Lineage 4 M. tuberculosis infections, but mainly because it opens new prospects for the investigation of selection and spread of drug resistance in general.
Collapse
Affiliation(s)
- Deisy M G C Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Baltazar Cá
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Angelica Ramos
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Teresa Carvalho
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Valencia, Spain
| | - João Tiago Guimarães
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal.,Institute of Public Health, University of Porto, Porto, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Helder Novais Bastos
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal.,Serviço de Pneumologia, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
9
|
Devi KR, Pradhan J, Bhutia R, Dadul P, Sarkar A, Gohain N, Narain K. Molecular diversity of Mycobacterium tuberculosis complex in Sikkim, India and prediction of dominant spoligotypes using artificial intelligence. Sci Rep 2021; 11:7365. [PMID: 33795751 PMCID: PMC8016865 DOI: 10.1038/s41598-021-86626-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
In India, tuberculosis is an enormous public health problem. This study provides the first description of molecular diversity of the Mycobacterium tuberculosis complex (MTBC) from Sikkim, India. A total of 399 Acid Fast Bacilli sputum positive samples were cultured on Lőwenstein-Jensen media and genetic characterisation was done by spoligotyping and 24-loci MIRU-VNTR typing. Spoligotyping revealed the occurrence of 58 different spoligotypes. Beijing spoligotype was the most dominant type constituting 62.41% of the total isolates and was associated with Multiple Drug Resistance. Minimum Spanning tree analysis of 249 Beijing strains based on 24-loci MIRU-VNTR analysis identified 12 clonal complexes (Single Locus Variants). The principal component analysis was used to visualise possible grouping of MTBC isolates from Sikkim belonging to major spoligotypes using 24-MIRU VNTR profiles. Artificial intelligence-based machine learning (ML) methods such as Random Forests (RF), Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used to predict dominant spoligotypes of MTBC using MIRU-VNTR data. K-fold cross-validation and validation using unseen testing data set revealed high accuracy of ANN, RF, and SVM for predicting Beijing, CAS1_Delhi, and T1 Spoligotypes (93-99%). However, prediction using the external new validation data set revealed that the RF model was more accurate than SVM and ANN.
Collapse
Affiliation(s)
- Kangjam Rekha Devi
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Jagat Pradhan
- National Tuberculosis Elimination Programme (NTEP), Gangtok, Sikkim India
| | - Rinchenla Bhutia
- National Tuberculosis Elimination Programme (NTEP), Gangtok, Sikkim India
| | - Peggy Dadul
- Department of Health Care, Human Services and Family Welfare, State Tuberculosis Control Society, Gangtok, Sikkim India
| | - Atanu Sarkar
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Nitumoni Gohain
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Kanwar Narain
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| |
Collapse
|
10
|
Tassinari E, Bawn M, Thilliez G, Charity O, Acton L, Kirkwood M, Petrovska L, Dallman T, Burgess CM, Hall N, Duffy G, Kingsley RA. Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone. Microb Genom 2020; 6:mgen000456. [PMID: 33112226 PMCID: PMC7725340 DOI: 10.1099/mgen.0.000456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
Epidemic and pandemic clones of bacterial pathogens with distinct characteristics continually emerge, replacing those previously dominant through mechanisms that remain poorly characterized. Here, whole-genome-sequencing-powered epidemiology linked horizontal transfer of a virulence gene, sopE, to the emergence and clonal expansion of a new epidemic Salmonella enterica serovar Typhimurium (S. Typhimurium) clone. The sopE gene is sporadically distributed within the genus Salmonella and rare in S. enterica Typhimurium lineages, but was acquired multiple times during clonal expansion of the currently dominant pandemic monophasic S. Typhimurium sequence type (ST) 34 clone. Ancestral state reconstruction and time-scaled phylogenetic analysis indicated that sopE was not present in the common ancestor of the epidemic clade, but later acquisition resulted in increased clonal expansion of sopE-containing clones that was temporally associated with emergence of the epidemic, consistent with increased fitness. The sopE gene was mainly associated with a temperate bacteriophage mTmV, but recombination with other bacteriophage and apparent horizontal gene transfer of the sopE gene cassette resulted in distribution among at least four mobile genetic elements within the monophasic S. enterica Typhimurium ST34 epidemic clade. The mTmV prophage lysogenic transfer to other S. enterica serovars in vitro was limited, but included the common pig-associated S. enterica Derby (S. Derby). This may explain mTmV in S. Derby co-circulating on farms with monophasic S. Typhimurium ST34, highlighting the potential for further transfer of the sopE virulence gene in nature. We conclude that whole-genome epidemiology pinpoints potential drivers of evolutionary and epidemiological dynamics during pathogen emergence, and identifies targets for subsequent research in epidemiology and bacterial pathogenesis.
Collapse
Affiliation(s)
- Eleonora Tassinari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Gaetan Thilliez
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Oliver Charity
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Luke Acton
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark Kirkwood
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Timothy Dallman
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, UK
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
11
|
Guernier-Cambert V, Diefenbach-Elstob T, Klotoe BJ, Burgess G, Pelowa D, Dowi R, Gula B, McBryde ES, Refrégier G, Rush C, Sola C, Warner J. Diversity of Mycobacterium tuberculosis in the Middle Fly District of Western Province, Papua New Guinea: microbead-based spoligotyping using DNA from Ziehl-Neelsen-stained microscopy preparations. Sci Rep 2019; 9:15549. [PMID: 31664101 PMCID: PMC6820861 DOI: 10.1038/s41598-019-51892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis remains the world's leading cause of death from an infectious agent, and is a serious health problem in Papua New Guinea (PNG) with an estimated 36,000 new cases each year. This study describes the genetic diversity of Mycobacterium tuberculosis among tuberculosis patients in the Balimo/Bamu region in the Middle Fly District of Western Province in PNG, and investigates rifampicin resistance-associated mutations. Archived Ziehl-Neelsen-stained sputum smears were used to conduct microbead-based spoligotyping and assess genotypic resistance. Among the 162 samples included, 80 (49.4%) generated spoligotyping patterns (n = 23), belonging predominantly to the L2 Lineage (44%) and the L4 Lineage (30%). This is consistent with what has been found in other PNG regions geographically distant from Middle Fly District of Western Province, but is different from neighbouring South-East Asian countries. Rifampicin resistance was identified in 7.8% of the successfully sequenced samples, with all resistant samples belonging to the L2/Beijing Lineage. A high prevalence of mixed L2/L4 profiles was suggestive of polyclonal infection in the region, although this would need to be confirmed. The method described here could be a game-changer in resource-limited countries where large numbers of archived smear slides could be used for retrospective (and prospective) studies of M. tuberculosis genetic epidemiology.
Collapse
Affiliation(s)
- Vanina Guernier-Cambert
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, 50010, IA, USA.
| | - Tanya Diefenbach-Elstob
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Bernice J Klotoe
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Orsay, France
| | - Graham Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Daniel Pelowa
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea
| | - Robert Dowi
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea
| | - Bisato Gula
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea
| | - Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Guislaine Refrégier
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Orsay, France
| | - Catherine Rush
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Christophe Sola
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Orsay, France
| | - Jeffrey Warner
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
12
|
Whole genome sequencing, analyses of drug resistance-conferring mutations, and correlation with transmission of Mycobacterium tuberculosis carrying katG-S315T in Hanoi, Vietnam. Sci Rep 2019; 9:15354. [PMID: 31653940 PMCID: PMC6814805 DOI: 10.1038/s41598-019-51812-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is a serious global problem, and pathogen factors involved in the transmission of isoniazid (INH)-resistant TB have not been fully investigated. We performed whole genome sequencing of 332 clinical Mycobacterium tuberculosis (Mtb) isolates collected from patients newly diagnosed with smear-positive pulmonary TB in Hanoi, Vietnam. Using a bacterial genome-wide approach based on linear mixed models, we investigated the associations between 31-bp k-mers and clustered strains harboring katG-S315T, a major INH-resistance mutation in the present cohort and in the second panel previously published in South Africa. Five statistically significant genes, namely, PPE18/19, gid, emrB, Rv1588c, and pncA, were shared by the two panels. We further identified variants of the genes responsible for these k-mers, which are relevant to the spread of INH-resistant strains. Phylogenetic convergence test showed that variants relevant to PPE46/47-like chimeric genes were significantly associated with the same phenotype in Hanoi. The associations were further confirmed after adjustment for the confounders. These findings suggest that genomic variations of the pathogen facilitate the expansion of INH-resistance TB, at least in part, and our study provides a new insight into the mechanisms by which drug-resistant Mtb maintains fitness and spreads in Asia and Africa.
Collapse
|
13
|
Karmakar M, Trauer JM, Ascher DB, Denholm JT. Hyper transmission of Beijing lineage Mycobacterium tuberculosis: Systematic review and meta-analysis. J Infect 2019; 79:572-581. [PMID: 31585190 DOI: 10.1016/j.jinf.2019.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The globally distributed "Beijing" lineage of Mycobacterium tuberculosis has been associated with outbreaks worldwide. Laboratory based studies have suggested that Beijing lineage may have increased fitness; however, it has not been established whether these differences are of epidemiological significance with regards to transmission. Therefore, we undertook a systematic review of epidemiological studies of tuberculosis clustering to compare the transmission dynamics of Beijing lineages versus the non-Beijing lineages. METHODS We systematically searched Embase and MEDLINE before 31st December 2018, for studies which provided information on the transmission dynamics of the different M. tuberculosis lineages. We included articles that conducted population-based cross-sectional or longitudinal molecular epidemiological studies reporting information about extent of transmission of different lineages. The protocol for this systematic review was prospectively registered with PROSPERO (CDR42018088579). RESULTS Of 2855 records identified by the search, 46 were included in the review, containing 42,700 patients from 27 countries. Beijing lineage was the most prevalent and highly clustered strain in 72.4% of the studies and had a higher likelihood of transmission than non-Beijing lineages (OR 1·81 [95% 1·28-2·57], I2 = 94·0%, τ2 = 0·59, p < 0·01). CONCLUSIONS Despite considerable heterogeneity across epidemiological contexts, Beijing lineage appears to be more transmissible than other lineages.
Collapse
Affiliation(s)
- Malancha Karmakar
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Microbiology and Immunology, at the Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - James M Trauer
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - David B Ascher
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | - Justin T Denholm
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; Department of Microbiology and Immunology, at the Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Correa-Macedo W, Cambri G, Schurr E. The Interplay of Human and Mycobacterium Tuberculosis Genomic Variability. Front Genet 2019; 10:865. [PMID: 31620169 PMCID: PMC6759583 DOI: 10.3389/fgene.2019.00865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB), caused by the human pathogens Mycobacterium tuberculosis (Mtb) and Mycobacterium africanum, has plagued humanity for millennia and remains the deadliest infectious disease in the modern world. Mycobacterium tuberculosis and M. africanum can be subdivided phylogenetically into seven lineages exhibiting a low but significant degree of genomic diversity and preferential geographic distributions. Human genetic variability impacts all stages of TB pathogenesis ranging from susceptibility to infection with Mtb, progression of infection to disease, and the development of distinct clinical subtypes. The genetic study of severe childhood TB identified strong inborn single-gene errors revealing crucial pathways of vulnerability to TB. However, the identification of major TB-susceptibility genes on the population level has remained elusive. In particular, the replication of findings from candidate and genome-wide association studies across distinct human populations has proven difficult, thus hampering the characterization of reliable host molecular markers of susceptibility. Among the possible confounding factors of genetic association studies is Mtb genomic variability, which generally was not taken into account by human genetic studies. In support of this possibility, Mtb lineage was found to be a contributing factor to clinical presentation of TB and epidemiological spread of Mtb in exposed populations. The confluence of pathogen and human host genetic variability to TB pathogenesis led to the consideration of a possible coadaptation of Mtb strains and their human hosts, which should reveal itself in significant interaction effects between Mtb strain and TB-susceptibility/resistance alleles. Here, we present some of the most consistent findings of genetic susceptibility factors in human TB and review studies that point to genome-to-genome interaction between humans and Mtb lineages. The limited results available so far suggest that analyses considering joint human–Mtb genomic variability may provide improved power for the discovery of pathogenic drivers of the ongoing TB epidemic.
Collapse
Affiliation(s)
- Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Geison Cambri
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Bainomugisa A, Pandey S, Donnan E, Simpson G, Foster J, Lavu E, Hiasihri S, McBryde ES, Moke R, Vincent S, Sintchenko V, Marais BJ, Coin LJM, Coulter C. Cross-Border Movement of Highly Drug-Resistant Mycobacterium tuberculosis from Papua New Guinea to Australia through Torres Strait Protected Zone, 2010-2015. Emerg Infect Dis 2019; 25:406-415. [PMID: 30789135 DOI: 10.3201/eid2503.181003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this retrospective study, we used whole-genome sequencing (WGS) to delineate transmission dynamics, characterize drug-resistance markers, and identify risk factors of transmission among Papua New Guinea residents of the Torres Strait Protected Zone (TSPZ) who had tuberculosis diagnoses during 2010-2015. Of 117 isolates collected, we could acquire WGS data for 100; 79 were Beijing sublineage 2.2.1.1, which was associated with active transmission (odds ratio 6.190, 95% CI 2.221-18.077). Strains were distributed widely throughout the TSPZ. Clustering occurred more often within than between villages (p = 0.0013). Including 4 multidrug-resistant tuberculosis isolates from Australia citizens epidemiologically linked to the TSPZ into the transmission network analysis revealed 2 probable cross-border transmission events. All multidrug-resistant isolates (33/104) belonged to Beijing sublineage 2.2.1.1 and had high-level isoniazid and ethionamide co-resistance; 2 isolates were extensively drug resistant. Including WGS in regional surveillance could improve tuberculosis transmission tracking and control strategies within the TSPZ.
Collapse
|
16
|
Verma S, Bhatt K, Lovey A, Ribeiro-Rodrigues R, Durbin J, Jones-López EC, Palaci M, Vinhas SA, Alland D, Dietze R, Ellner JJ, Salgame P. Transmission phenotype of Mycobacterium tuberculosis strains is mechanistically linked to induction of distinct pulmonary pathology. PLoS Pathog 2019; 15:e1007613. [PMID: 30840702 PMCID: PMC6422314 DOI: 10.1371/journal.ppat.1007613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/18/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022] Open
Abstract
In a study of household contacts (HHC), households were categorized into High (HT) and Low (LT) transmission groups based on the proportion of HHC with a positive tuberculin skin test. The Mycobacterium tuberculosis (Mtb) strains from HT and LT index cases of the households were designated Mtb-HT and Mtb-LT, respectively. We found that C3HeB/FeJ mice infected with Mtb-LT strains exhibited significantly higher bacterial burden compared to Mtb-HT strains and also developed diffused inflammatory lung pathology. In stark contrast, a significant number of mice infected with Mtb-HT strains developed caseating granulomas, a lesion type with high potential to cavitate. None of the Mtb-HT infected animals developed diffused inflammatory lung pathology. A link was observed between increased in vitro replication of Mtb-LT strains and their ability to induce significantly high lipid droplet formation in macrophages. These results support that distinct early interactions of Mtb-HT and Mtb-LT strains with macrophages and subsequent differential trajectories in pathological disease may be the mechanism underlying their transmission potential.
Collapse
Affiliation(s)
- Sheetal Verma
- Rutgers University-New Jersey Medical School, Department of Medicine, Centre for Emerging Pathogens, Newark, New Jersey, United States of America
| | - Kamlesh Bhatt
- Rutgers University-New Jersey Medical School, Department of Medicine, Centre for Emerging Pathogens, Newark, New Jersey, United States of America
| | - Arianne Lovey
- Rutgers University-New Jersey Medical School, Department of Medicine, Centre for Emerging Pathogens, Newark, New Jersey, United States of America
| | - Rodrigo Ribeiro-Rodrigues
- Cellular and Molecular Immunology Laboratory, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Joan Durbin
- Rutgers University-New Jersey Medical School, Department of Pathology, Newark, New Jersey, United States of America
| | - Edward C. Jones-López
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Moises Palaci
- Mycobacteriology Laboratory, Núcleo de Doenças de Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Solange A. Vinhas
- Mycobacteriology Laboratory, Núcleo de Doenças de Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - David Alland
- Rutgers University-New Jersey Medical School, Department of Medicine, Centre for Emerging Pathogens, Newark, New Jersey, United States of America
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Jerrold J. Ellner
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Padmini Salgame
- Rutgers University-New Jersey Medical School, Department of Medicine, Centre for Emerging Pathogens, Newark, New Jersey, United States of America
| |
Collapse
|
17
|
Woodman M, Haeusler IL, Grandjean L. Tuberculosis Genetic Epidemiology: A Latin American Perspective. Genes (Basel) 2019; 10:genes10010053. [PMID: 30654542 PMCID: PMC6356704 DOI: 10.3390/genes10010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
There are an estimated 10 million new cases of tuberculosis worldwide annually, with 282,000 new or relapsed cases each year reported from the Americas. With improvements in genome sequencing technology, it is now possible to study the genetic diversity of tuberculosis with much greater resolution. Although tuberculosis bacteria do not engage in horizontal gene transfer, the genome is far more variable than previously thought. The study of genome-wide variation in tuberculosis has improved our understanding of the evolutionary origins of tuberculosis, the arrival of tuberculosis in Latin America, the genetic determinants of drug resistance, and lineage-specific associations with important clinical phenotypes. This article reviews what is known about the arrival of tuberculosis in Latin America, the genetic diversity of tuberculosis in Latin America, and the genotypic determinants of clinical phenotypes.
Collapse
Affiliation(s)
- Marc Woodman
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Ilsa L Haeusler
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Louis Grandjean
- Institute of Child Health, University College London, London WC1N 3JH, UK.
- Department of Medicine, Imperial College London, London W2 1NY, UK.
- Great Ormond Street Hospital, Institute of Child Health, University College London, London WC1N 3JH, UK.
- Laboratorio de Investigacion y Desarollo, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres 15102, Lima, Peru.
| |
Collapse
|
18
|
Ferreira LM, Sáfadi T, Ferreira JL. Wavelet-domain elastic net for clustering on genomes strains. Genet Mol Biol 2018; 41:884-892. [PMID: 30508009 PMCID: PMC6415607 DOI: 10.1590/1678-4685-gmb-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022] Open
Abstract
We propose to evaluate genome similarity by combining discrete non-decimated
wavelet transform (NDWT) and elastic net. The wavelets represent a signal with
levels of detail, that is, hidden components are detected by means of the
decomposition of this signal, where each level provides a different
characteristic. The main feature of the elastic net is the grouping of
correlated variables where the number of predictors is greater than the number
of observations. The combination of these two methodologies applied in the
clustering analysis of the Mycobacterium tuberculosis genome
strains proved very effective, being able to identify clusters at each level of
decomposition.
Collapse
Affiliation(s)
- Leila Maria Ferreira
- Programa de Pós-Graduação em Estatística e Experimentação Agropecuária, Departamento de Estatística, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Thelma Sáfadi
- Departamento de Estatística, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Juliano Lino Ferreira
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Pecuária Sul. Bagé, RS, Brazil
| |
Collapse
|
19
|
Koster KJ, Largen A, Foster JT, Drees KP, Qian L, Desmond E, Wan X, Hou S, Douglas JT. Genomic sequencing is required for identification of tuberculosis transmission in Hawaii. BMC Infect Dis 2018; 18:608. [PMID: 30509214 PMCID: PMC6276198 DOI: 10.1186/s12879-018-3502-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) caused an estimated 1.4 million deaths and 10.4 million new cases globally in 2015. TB rates in the United States continue to steadily decline, yet rates in the State of Hawaii are perennially among the highest in the nation due to a continuous influx of immigrants from the Western Pacific and Asia. TB in Hawaii is composed of a unique distribution of genetic lineages, with the Beijing and Manila families of Mycobacterium tuberculosis (Mtb) comprising over two-thirds of TB cases. Standard fingerprinting methods (spoligotyping plus 24-loci Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats [MIRU-VNTR] fingerprinting) perform poorly when used to identify actual transmission clusters composed of isolates from these two families. Those typing methods typically group isolates from these families into large clusters of non-linked isolates with identical fingerprints. Next-generation whole-genome sequencing (WGS) provides a new tool for molecular epidemiology that can resolve clusters of isolates with identical spoligotyping and MIRU-VNTR fingerprints. METHODS We performed WGS and SNP analysis and evaluated epidemiological data to investigate 19 apparent TB transmission clusters in Hawaii from 2003 to 2017 in order to assess WGS' ability to resolve putative Mtb clusters from the Beijing and Manila families. This project additionally investigated MIRU-VNTR allele prevalence to determine why standard Mtb fingerprinting fails to usefully distinguish actual transmission clusters from these two Mtb families. RESULTS WGS excluded transmission events in seven of these putative clusters, confirmed transmission in eight, and identified both transmission-linked and non-linked isolates in four. For epidemiologically identified clusters, while the sensitivity of MIRU-VNTR fingerprinting for identifying actual transmission clusters was found to be 100%, its specificity was only 28.6% relative to WGS. We identified that the Beijing and Manila families' significantly lower Shannon evenness of MIRU-VNTR allele distributions than lineage 4 was the cause of standard fingerprinting's poor performance when identifying transmission in Beijing and Manila family clusters. CONCLUSIONS This study demonstrated that WGS is necessary for epidemiological investigation of TB in Hawaii and the Pacific.
Collapse
Affiliation(s)
| | | | - Jeffrey T. Foster
- University of New Hampshire, Durham, NH USA
- Present Address: Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ USA
| | | | - Lishi Qian
- University of Hawaii at Manoa, Honolulu, HI USA
| | - Ed Desmond
- California Department of Public Health, Richmond, CA USA
| | - Xuehua Wan
- Advanced Studies in Genomics, Proteomics and Bioinformatics, Honolulu, HI USA
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, Honolulu, HI USA
| | - James T. Douglas
- University of Hawaii at Manoa, Honolulu, HI USA
- Present Address: Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ USA
| |
Collapse
|
20
|
Barreira-Silva P, Torrado E, Nebenzahl-Guimaraes H, Kallenius G, Correia-Neves M. Aetiopathogenesis, immunology and microbiology of tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Shi J, Zheng D, Zhu Y, Ma X, Wang S, Li H, Xing J. Role of MIRU-VNTR and spoligotyping in assessing the genetic diversity of Mycobacterium tuberculosis in Henan Province, China. BMC Infect Dis 2018; 18:447. [PMID: 30176820 PMCID: PMC6122615 DOI: 10.1186/s12879-018-3351-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 08/21/2018] [Indexed: 01/31/2023] Open
Abstract
Background Tuberculosis remains a serious threat to human health as an infectious disease in China. Henan, a most populated province in China, has a high incidence of tuberculosis (TB). Though the genetic diversity of Mycobacterium tuberculosis (MTB) has been investigated in many regions, there have been only a few studies on the molecular characteristics and drug resistance phenotypes in Henan. This is the first study on the genetic profile of MTB from Henan. Methods A total of 668 MTB isolates from various areas were genotyped with spoligotyping and 26-locus MIRU-VNTR (classical 24-locus MIRU-VNTR and 2 other loci). The association between TB spoligotype signatures and drug-resistant profiles was analysed. Results Our data revealed that MTB isolates circulating in Henan had a high degree of genetic variation. The Beijing family was the most predominant genotype (83.53%,n = 558), and the typical Beijing type(ST1) was the major sublineage (81.73%,n = 546). In total,668 isolates were divided into 567 different types, forming 38 clusters (2–15 isolates per cluster), and 529 unique types by 26-locus MIRU-VNTR analysis. There was no correlation between the Beijing family and gender, age at diagnosis or treatment history, whereas the Beijing family was significantly associated with all four first-line drug resistance and multidrug-resistant phenotypes. For these samples, 15 of 26 MIRU-VNTR loci had high or moderate discriminatory power according to the Hunter-Gaston discriminatory index. A combination of the 10 most polymorphic loci had similar discriminatory power as the 26-locus set. Conclusion The Beijing genotype is the most prevalent family. Ten-locus MIRU-VNTR in combination with spoligotyping can efficiently classify the molecular type of MTB in Henan Province. Electronic supplementary material The online version of this article (10.1186/s12879-018-3351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Shi
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China.
| | - Danwei Zheng
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Yankun Zhu
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Xiaoguang Ma
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Shaohua Wang
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Hui Li
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China.
| | - Jin Xing
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| |
Collapse
|
22
|
Palittapongarnpim P, Ajawatanawong P, Viratyosin W, Smittipat N, Disratthakit A, Mahasirimongkol S, Yanai H, Yamada N, Nedsuwan S, Imasanguan W, Kantipong P, Chaiyasirinroje B, Wongyai J, Toyo-Oka L, Phelan J, Parkhill J, Clark TG, Hibberd ML, Ruengchai W, Palittapongarnpim P, Juthayothin T, Tongsima S, Tokunaga K. Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates. Sci Rep 2018; 8:11597. [PMID: 30072734 PMCID: PMC6072702 DOI: 10.1038/s41598-018-29986-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis presents a global health challenge. Mycobacterium tuberculosis is divided into several lineages, each with a different geographical distribution. M. tuberculosis lineage 1 (L1) is common in the high-burden areas in East Africa and Southeast Asia. Although the founder effect contributes significantly to the phylogeographic profile, co-evolution between the host and M. tuberculosis may also play a role. Here, we reported the genomic analysis of 480 L1 isolates from patients in northern Thailand. The studied bacterial population was genetically diverse, allowing the identification of a total of 18 sublineages distributed into three major clades. The majority of isolates belonged to L1.1 followed by L1.2.1 and L1.2.2. Comparison of the single nucleotide variant (SNV) phylogenetic tree and the clades defined by spoligotyping revealed some monophyletic clades representing EAI2_MNL, EAI2_NTM and EAI6_BGD1 spoligotypes. Our work demonstrates that ambiguity in spoligotype assignment could be partially resolved if the entire DR region is investigated. Using the information to map L1 diversity across Southeast Asia highlighted differences in the dominant strain-types in each individual country, despite extensive interactions between populations over time. This finding supported the hypothesis that there is co-evolution between the bacteria and the host, and have implications for tuberculosis disease control.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand.
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand.
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Wasna Viratyosin
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Nat Smittipat
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Areeya Disratthakit
- Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Nonthaburi, Thailand
| | | | - Hideki Yanai
- TB-HIV Research Foundation, Chiangrai, Thailand
- Fukujuji Hospital, Japan Anti-tuberculosis Association (JATA), Kiyose, Japan
| | - Norio Yamada
- Research Institute of Tuberculosis, JATA, Kiyose, Japan
| | - Supalert Nedsuwan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Worarat Imasanguan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Pacharee Kantipong
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | | | | | - Licht Toyo-Oka
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Taane G Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Wuthiwat Ruengchai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | | | - Tada Juthayothin
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Sissades Tongsima
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Chae H, Shin SJ. Importance of differential identification of Mycobacterium tuberculosis strains for understanding differences in their prevalence, treatment efficacy, and vaccine development. J Microbiol 2018; 56:300-311. [PMID: 29721826 DOI: 10.1007/s12275-018-8041-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/28/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a serious global health problem in the 21st century because of its high mortality. Mtb is an extremely successful human-adapted pathogen that displays a multifactorial ability to control the host immune response and to evade killing by drugs, resulting in the breakdown of BCG vaccine-conferred anti-TB immunity and development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Although genetic components of the genomes of the Mtb complex strains are highly conserved, showing over 99% similarity to other bacterial genera, recently accumulated evidence suggests that the genetic diversity of the Mtb complex strains has implications for treatment outcomes, development of MDR/XDR Mtb, BCG vaccine efficacy, transmissibility, and epidemiological outbreaks. Thus, new insights into the pathophysiological features of the Mtb complex strains are required for development of novel vaccines and for control of MDR/XDR Mtb infection, eventually leading to refinement of treatment regimens and the health care system. Many studies have focused on the differential identification of Mtb complex strains belonging to different lineages because of differences in their virulence and geographical dominance. In this review, we discuss the impact of differing genetic characteristics among Mtb complex strains on vaccine efficacy, treatment outcome, development of MDR/XDR Mtb strains, and epidemiological outbreaks by focusing on the best-adapted human Mtb lineages. We further explore the rationale for differential identification of Mtb strains for more effective control of TB in clinical and laboratory settings by scrutinizing current diagnostic methods.
Collapse
Affiliation(s)
- Hansong Chae
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
24
|
Munro-Rojas D, Fernandez-Morales E, Zarrabal-Meza J, Martínez-Cazares MT, Parissi-Crivelli A, Fuentes-Domínguez J, Séraphin MN, Lauzardo M, González-y-Merchand JA, Rivera-Gutierrez S, Zenteno-Cuevas R. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico. PLoS One 2018; 13:e0193626. [PMID: 29543819 PMCID: PMC5854261 DOI: 10.1371/journal.pone.0193626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/14/2018] [Indexed: 11/25/2022] Open
Abstract
Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion.
Collapse
Affiliation(s)
- Daniela Munro-Rojas
- Instituto de Salud Pública, Universidad Veracruzana, Jalapa, Veracruz, México
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | - Esdras Fernandez-Morales
- Instituto de Salud Pública, Universidad Veracruzana, Jalapa, Veracruz, México
- Programa de Maestría en Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | - José Zarrabal-Meza
- Laboratorio Estatal de Salud Pública, Secretaria de Salud, Veracruz, México
| | | | | | | | - Marie Nancy Séraphin
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | | | - Sandra Rivera-Gutierrez
- Escuela Nacional de Ciencia Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | |
Collapse
|
25
|
Hijikata M, Keicho N, Duc LV, Maeda S, Hang NTL, Matsushita I, Kato S. Spoligotyping and whole-genome sequencing analysis of lineage 1 strains of Mycobacterium tuberculosis in Da Nang, Vietnam. PLoS One 2017; 12:e0186800. [PMID: 29049400 PMCID: PMC5648229 DOI: 10.1371/journal.pone.0186800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022] Open
Abstract
Background Spacer oligonucleotide typing (spoligotyping), a widely used, classical genotyping method for Mycobacterium tuberculosis complex (MTBC), is a PCR-based dot-blot hybridization technique to detect the genetic diversity of the direct repeat (DR) region. Of the seven major MTBC lineages in the world, lineage 1 (Indo-Oceanic) mostly corresponds to the East African–Indian (EAI) spoligotype family in East Africa and Southeast Asia. Objectives We investigated the genomic features of Vietnamese lineage 1 strains, comparing spoligotype patterns using whole-genome sequencing (WGS) data. Methods M. tuberculosis strains isolated in Da Nang, Vietnam were subjected to conventional spoligotyping, followed by WGS analysis using a high-throughput sequencer. Vietnamese lineage 1 strains were further analyzed with other lineage 1 strains obtained from a public database. Results Indicating a major spoligotype in Da Nang, 86 (46.2%) of the 186 isolates belonged to the EAI family or lineage 1. Although typical EAI4-VNM strains are characterized by the deletion of spacers 26 and 27, 65 (75.6%) showed ambiguous signals on spacer 26. De novo assembly of the entire DR region and in silico spoligotyping analysis suggested the absence of spacer 26, and direct sequencing revealed that the 17th spacer sequence not used for conventional typing, was cross-hybridized to the spacer 26 probe. Vietnamese EAI4-VNM, other EAI-like strains, and those showing a non-EAI pattern lacking many spacers formed a monophyletic group separate from other EAI families in the world. Conclusion Information about the alignment of spacers in the entire DR region obtained from WGS data provides a clue for the determination of experimentally ambiguous spoligo patterns. WGS data also helped to analyze the hidden relationships between apparently distinct spoligo patterns.
Collapse
Affiliation(s)
- Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
- * E-mail:
| | | | - Shinji Maeda
- Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Hokkaido, Japan
| | | | - Ikumi Matsushita
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Seiya Kato
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| |
Collapse
|
26
|
Complete Genome Sequences of Three Representative Mycobacterium tuberculosis Beijing Family Strains Belonging to Distinct Genotype Clusters in Hanoi, Vietnam, during 2007 to 2009. GENOME ANNOUNCEMENTS 2017; 5:5/27/e00510-17. [PMID: 28684565 PMCID: PMC5502846 DOI: 10.1128/genomea.00510-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present here three complete genome sequences of Mycobacterium tuberculosis Beijing family strains isolated in Hanoi, Vietnam. These three strains were selected from major genotypic clusters (15-MIRU-VNTR) identified in a previous population-based study. We emphasize their importance and potential as reference strains in this Asian region.
Collapse
|
27
|
Complete Genome Sequence of a Mycobacterium tuberculosis Strain Belonging to the East African-Indian Family in the Indo-Oceanic Lineage, Isolated in Hanoi, Vietnam. GENOME ANNOUNCEMENTS 2017; 5:5/24/e00509-17. [PMID: 28619797 PMCID: PMC5473266 DOI: 10.1128/genomea.00509-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The East African-Indian (EAI) family of Mycobacterium tuberculosis is an endemic group mainly observed in Southeast Asia. Here, we report the complete genome sequence of an M. tuberculosis strain isolated as a member of the EAI family in Hanoi, Vietnam, a country with a high incidence of tuberculosis.
Collapse
|
28
|
Zhou Y, van den Hof S, Wang S, Pang Y, Zhao B, Xia H, Anthony R, Ou X, Li Q, Zheng Y, Song Y, Zhao Y, van Soolingen D. Association between genotype and drug resistance profiles of Mycobacterium tuberculosis strains circulating in China in a national drug resistance survey. PLoS One 2017; 12:e0174197. [PMID: 28333978 PMCID: PMC5363926 DOI: 10.1371/journal.pone.0174197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/06/2017] [Indexed: 11/19/2022] Open
Abstract
We describe the population structure of a representative collection of 3,133 Mycobacterium tuberculosis isolates, collected within the framework of a national resistance survey from 2007 in China. Genotyping data indicate that the epidemic strains in China can be divided into seven major complexes, of which 92% belonged to the East Asian (mainly Beijing strains) or the Euro-American lineage. The epidemic Beijing strains in China are closely related to the Beijing B0/W148 strain earlier described in Russia and a large cluster of these strains has spread national wide. The density of Beijing strains is high in the whole of China (average 70%), but the highest prevalence was found North of the Yellow river. The Euro-American lineage consists of three sublineages (sublineage_1, 2, and 3) and is more prevalent in the South. Beijing lineage showed the highest cluster rate of 48% and a significantly higher level of resistance to rifampicin (14%, p<0.001), ethambutol (9%, p = 0.001), and ofloxacin (5%, p = 0.011). Within the Euro-American Lineage, sublineage_3 revealed the highest cluster rate (28%) and presented a significantly elevated level of resistance to streptomycin (44%, p<0.001). Our findings suggest that standardised treatment in this region may have contributed to the successful spread of certain strains: sublineage_3 in the Euro-American lineage may have thrived when streptomycin was used without rifampicin for treatment, while later under DOTS based treatment, in which rifampicin plays a key role, Beijing lineage appears to be spreading.
Collapse
Affiliation(s)
- Yang Zhou
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Susan van den Hof
- KNCV Tuberculosis Foundation, CC The Hague, The Netherlands
- Department of Global Health, Amsterdam Medical Center, Pietersbergweg 17, BM Amsterdam, The Netherlands
| | - Shengfen Wang
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yu Pang
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Bing Zhao
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Hui Xia
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Richard Anthony
- National Institute for Public Health and the Environment, the Netherlands,BA Bilthoven, The Netherlands
| | - Xichao Ou
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Qiang Li
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yang Zheng
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yuanyuan Song
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yanlin Zhao
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, the Netherlands,BA Bilthoven, The Netherlands
| |
Collapse
|
29
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
30
|
Sahebi L, Ansarin K, Hoffner S, Mohajeri P, Mohammadi A. Beijing strains of Mycobacterium tuberculosis in smear-positive tuberculosis patients in North-West and West of Iran. Adv Biomed Res 2016; 5:181. [PMID: 28028521 PMCID: PMC5157006 DOI: 10.4103/2277-9175.190982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/31/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the leading cause of morbidity and mortality among chronic infectious diseases. The goal of this cross-sectional study (2012-2014) was to examine the prevalence of Mycobacterium TB (MTB) Beijing strains in regions near the Iranian border and to identify any epidemiological links. MATERIALS AND METHODS To this end, MTB isolates were harvested, from 64 HIV-negative, pulmonary smear-positive TB patients from the Iranian border provinces of East Azerbaijan (North-West), Kurdistan (West), and Kermanshah (West) (2012-2014). Isolates were subjected to restriction fragment length polymorphism (RFLP) analysis, using the insertion sequence IS6110 as a probe (IS6110 RFLP), and drug susceptibility testing by the proportion method. We gathered demographic and clinical data using a questionnaire and reviewing patient records. Results were analyzed with Gel Compare II 6.6 and SPSS-18. RESULTS The mean age of the patients was 54.4 years and 46.9% were male. The prevalence of Beijing strains among the isolates was 9.4% (17.6% in the Western provinces and 0% in East Azerbaijan). There was a statistically significant relationship between the Beijing strains and drug resistance and also between these strains, and the recurrence of TB in patients that had previously received treatment (P = 0.02 and P = 0.04, respectively). CONCLUSIONS Finally, the prevalence of Beijing strains in Western Iran was greater than expected. Our results therefore indicate that regional and cross-border tracing may be necessary to control spread of this organism.
Collapse
Affiliation(s)
- Leyla Sahebi
- Department of Tuberculosis and Lung Disease, Tuberculosis and Lung Disease Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Tuberculosis and Lung Disease, Tuberculosis and Lung Disease Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sven Hoffner
- Department of Microbiology, Karolinska Institute, The Public Health Agency of Sweden, Stockholm, Sweden
| | - Parviz Mohajeri
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, School of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
31
|
de Keijzer J, Mulder A, de Ru AH, van Soolingen D, van Veelen PA. Parallel reaction monitoring of clinical Mycobacterium tuberculosis lineages reveals pre-existent markers of rifampicin tolerance in the emerging Beijing lineage. J Proteomics 2016; 150:9-17. [PMID: 27576137 DOI: 10.1016/j.jprot.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/05/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022]
Abstract
The spread of multidrug resistant Mycobacterium tuberculosis is one of the major challenges in tuberculosis control. In Eurasia, the spread of multidrug resistant tuberculosis is driven by the M. tuberculosis Beijing genotype. In this study, we examined whether selective advantages are present in the proteome of Beijing isolates that contribute to the emergence of this genotype. To this end, we compared the proteome of M. tuberculosis Beijing to that of M. tuberculosis H37Rv, both in the presence and absence of the first-line antibiotic rifampicin. During rifampicin exposure, both M. tuberculosis genotypes express proteins belonging to the DosR dormancy regulon, which induces a metabolically hypoactive-, drug tolerant phenotype. However, these markers of rifampicin tolerance were already more abundant in the M. tuberculosis Beijing isolate prior to drug exposure. To determine whether the a priori high abundance of specific proteins contribute to the formation of antibiotic resistance in M. tuberculosis Beijing, we quantified the abundance of 33 selected proteins in 27 clinical isolates from the five most common M. tuberculosis lineages using parallel reaction monitoring. The observed pre-existing high abundance of dormancy proteins in Beijing strains provides an evolutionary advantage that allows these strains to persist for prolonged periods during rifampicin treatment. SIGNIFICANCE M. tuberculosis is the leading cause of death by a bacterial infection worldwide. Treatment-regimen to eradicate this pathogen make use of the first-line antibiotic rifampicin, which is considered to be the cornerstone of modern day anti-tuberculosis treatment. Despite the potency of rifampicin, there is an increasing occurrence of rifampicin resistant mutants in a specific cluster of M. tuberculosis, the Beijing genotype. Using both a data dependent acquisition and a targeted proteomic approach we identified markers of rifampicin tolerance to be high abundant in members of the M. tuberculosis Beijing genotype, already prior drug exposure. The identification of this M. tuberculosis Beijing specific trait will contribute to improved diagnostics and treatment of M. tuberculosis.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands.
| | - Arnout Mulder
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, BA, The Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, BA, The Netherlands; Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500, HB, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands
| |
Collapse
|
32
|
de Keijzer J, Mulder A, de Beer J, de Ru AH, van Veelen PA, van Soolingen D. Mechanisms of Phenotypic Rifampicin Tolerance in Mycobacterium tuberculosis Beijing Genotype Strain B0/W148 Revealed by Proteomics. J Proteome Res 2016; 15:1194-204. [PMID: 26930559 DOI: 10.1021/acs.jproteome.5b01073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The "successful" Russian clone B0/W148 of Mycobacterium tuberculosis Beijing is well-known for its capacity to develop antibiotic resistance. During treatment, resistant mutants can occur that have inheritable resistance to specific antibiotics. Next to mutations, M. tuberculosis has several mechanisms that increase their tolerance to a variety of antibiotics. Insights in the phenotypic mechanisms that contribute to drug tolerance will increase our understanding of how antibiotic resistance develops in M. tuberculosis. In this study, we examined the (phospho)proteome dynamics in M. tuberculosis Beijing strain B0/W148 when exposed to a high dose of rifampicin; one of the most potent first-line antibiotics. A total of 2,534 proteins and 191 phosphorylation sites were identified, and revealed the differential regulation of DosR regulon proteins, which are necessary for the development of a dormant phenotype that is less susceptible to antibiotics. By examining independent phenotypic markers of dormancy, we show that persisters of in vitro rifampicin exposure entered a metabolically hypoactive state, which yields rifampicin and other antibiotics largely ineffective. These new insights in the role of protein regulation and post-translational modifications during the initial phase of rifampicin treatment reveal a shortcoming in the antituberculosis regimen that is administered to 8-9 million individuals annually.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Arnout Mulder
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands
| | - Jessica de Beer
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands.,Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Center , Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
33
|
Diverse Molecular Genotypes of Mycobacterium tuberculosis Complex Isolates Circulating in the Free State, South Africa. Int J Microbiol 2016; 2016:6572165. [PMID: 27073397 PMCID: PMC4814679 DOI: 10.1155/2016/6572165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/08/2016] [Accepted: 02/25/2016] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis is a serious public health concern especially in Africa and Asia. Studies describing strain diversity are lacking in the Free State region of South Africa. The aim of the study was to describe the diversity of Mycobacterium tuberculosis (M. tuberculosis) strain families in the Free State province of South Africa. A total of 86 M. tuberculosis isolates were genotyped using spoligotyping. A 12-locus mycobacterial interspersed repetitive units-variable-number tandem repeats (MIRU-VNTRs) typing was used to further characterize the resulting spoligotyping clusters. SITVITWEB identified 49 different patterns with allocation to six lineages including Latin-American-Mediterranean (LAM) (18 isolates), T (14 isolates), Beijing (five isolates), S (six isolates), Haarlem (one isolate), and X (five isolates), while 37 (43.0%) orphans were identified. Eight clusters included 37 isolates with identical spoligotypes (2 to 13/cluster). MIRU-VNTR typing further differentiated three spoligotyping clusters: SIT1/Beijing/MIT17, SIT33/LAM3/MIT213, and confirmed one SIT34/S/MIT311. In addition, SpolDB3/RIM assignment of the orphan strains resulted in a further 10 LAM and 13 T families. In total, LAM (28 isolates) and T (27 isolates) cause 63% of the individual cases of MTB in our study. The Free State has a highly diverse TB population with LAM being predominant. Further studies with inclusion of multidrug-resistant strains with larger sample size are warranted.
Collapse
|
34
|
Devi KR, Bhutia R, Bhowmick S, Mukherjee K, Mahanta J, Narain K. Genetic Diversity of Mycobacterium tuberculosis Isolates from Assam, India: Dominance of Beijing Family and Discovery of Two New Clades Related to CAS1_Delhi and EAI Family Based on Spoligotyping and MIRU-VNTR Typing. PLoS One 2015; 10:e0145860. [PMID: 26701129 PMCID: PMC4689458 DOI: 10.1371/journal.pone.0145860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022] Open
Abstract
Tuberculosis (TB) is one of the major public health concerns in Assam, a remote state located in the northeastern (NE) region of India. The present study was undertaken to explore the circulating genotypes of Mycobacterium tuberculosis complex (MTBC) in this region. A total of 189 MTBC strains were collected from smear positive pulmonary tuberculosis cases from different designated microscopy centres (DMC) from various localities of Assam. All MTBC isolates were cultured on Lowenstein-Jensen (LJ) media and subsequently genotyped using spoligotyping and 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing. Spoligotyping of MTBC isolates revealed 89 distinct spoligo patterns. The most dominant MTBC strain belonged to Beijing lineage and was represented by 35.45% (n = 67) of total isolates, followed by MTBC strains belonging to Central Asian-Delhi (CAS/Delhi) lineage and East African Indian (EAI5) lineage. In addition, in the present study 43 unknown spoligo patterns were detected. The discriminatory power of spoligotyping was found to be 0.8637 based on Hunter Gaston Discriminatory Index (HGDI). On the other hand, 24-loci MIRU-VNTR typing revealed that out of total 189 MTBC isolates from Assam 185 (97.9%) isolates had unique MIRU-VNTR profiles and 4 isolates grouped into 2 clusters. Phylogenetic analysis of 67 Beijing isolates based on 24-loci MIRU-VNTR typing revealed that Beijing isolates from Assam represent two major groups, each comprising of several subgroups. Neighbour-Joining (NJ) phylogenetic tree analysis based on combined spoligotyping and 24-loci MIRU-VNTR data of 78 Non-Beijing isolates was carried out for strain lineage identification as implemented by MIRU-VNTRplus database. The important lineages of MTBC identified were CAS/CAS1_Delhi (41.02%, n = 78) and East-African-Indian (EAI, 33.33%). Interestingly, phylogenetic analysis of orphan (23.28%) MTBC spoligotypes revealed that majority of these orphan isolates from Assam represent two new sub-clades Assam/EAI and Assam/CAS. The prevalence of multidrug resistance (MDR) in Beijing and Non-Beijing strains was found to be 10.44% and 9.01% respectively. In conclusion, the present study has shown the predominance of Beijing isolates in Assam which is a matter of great concern because Beijing strains are considered to be ecologically more fit enabling wider dissemination of M. tuberculosis. Other interesting finding of the present study is the discovery of two new clades of MTBC isolates circulating in Assam. More elaborate longitudinal studies are required to be undertaken in this region to understand the transmission dynamics of MTBC.
Collapse
Affiliation(s)
- Kangjam Rekha Devi
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Rinchenla Bhutia
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Shovonlal Bhowmick
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Kaustab Mukherjee
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Kanwar Narain
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
- * E-mail:
| |
Collapse
|
35
|
Kim WS, Kim JS, Cha SB, Han SJ, Kim H, Kwon KW, Kim SJ, Eum SY, Cho SN, Shin SJ. Virulence-Dependent Alterations in the Kinetics of Immune Cells during Pulmonary Infection by Mycobacterium tuberculosis. PLoS One 2015; 10:e0145234. [PMID: 26675186 PMCID: PMC4682951 DOI: 10.1371/journal.pone.0145234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022] Open
Abstract
A better understanding of the kinetics of accumulated immune cells that are involved in pathophysiology during Mycobacterium tuberculosis (Mtb) infection may help to facilitate the development of vaccines and immunological interventions. However, the kinetics of innate and adaptive cells that are associated with pathogenesis during Mtb infection and their relationship to Mtb virulence are not clearly understood. In this study, we used a mouse model to compare the bacterial burden, inflammation and kinetics of immune cells during aerogenic infection in the lung between laboratory-adapted strains (Mtb H37Rv and H37Ra) and Mtb K strain, a hyper-virulent W-Beijing lineage strain. The Mtb K strain multiplied more than 10- and 3.54-fold more rapidly than H37Ra and H37Rv, respectively, during the early stage of infection (at 28 days post-infection) and resulted in exacerbated lung pathology at 56 to 112 days post-infection. Similar numbers of innate immune cells had infiltrated, regardless of the strain, by 14 days post-infection. High, time-dependent frequencies of F4/80-CD11c+CD11b-Siglec-H+PDCA-1+ plasmacytoid DCs and CD11c-CD11b+Gr-1int cells were observed in the lungs of mice that were infected with the Mtb K strain. Regarding adaptive immunity, Th1 and Th17 T cells that express T-bet and RORγt, respectively, significantly increased in the lungs that were infected with the laboratory-adapted strains, and the population of CD4+CD25+Foxp3+ regulatory T cells was remarkably increased at 112 days post-infection in the lungs of mice that were infected with the K strain. Collectively, our findings indicate that the highly virulent Mtb K strain may trigger the accumulation of pDCs and Gr1intCD11b+ cells with the concomitant down-regulation of the Th1 response and the maintenance of an up-regulated Th2 response without inducing a Th17 response during chronic infection. These results will help to determine which immune system components must be considered for the development of tuberculosis (TB) vaccines and immunological interventions.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - HongMin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
36
|
Maeda S, Hang NTL, Lien LT, Thuong PH, Hung NV, Hoang NP, Cuong VC, Hijikata M, Sakurada S, Keicho N. Mycobacterium tuberculosis strains spreading in Hanoi, Vietnam: Beijing sublineages, genotypes, drug susceptibility patterns, and host factors. Tuberculosis (Edinb) 2015; 94:649-56. [PMID: 25459163 DOI: 10.1016/j.tube.2014.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/20/2014] [Accepted: 09/28/2014] [Indexed: 01/13/2023]
Abstract
Beijing genotype strains are divided into two major sublineages, ancient (atypical) and modern (typical) types, but their phenotypic variations remain largely unknown. Mycobacterium tuberculosis (MTB) isolates from Hanoi, Vietnam, were analyzed by single-nucleotide polymorphisms and spoligotyping. Patient information and drug susceptibility patterns were obtained. Genetic clustering was assessed by variable number of tandem repeat (VNTR) locus sets. Multivariate analysis was also performed to investigate factors possibly associated with these sublineages. Of the 465 strains tested, 175 (37.6%) belonged to the ancient Beijing sublineage and 97 (20.9%) were of the modern Beijing sublineage. Patients with the Beijing genotype were significantly younger and more undernourished than those with non-Beijing genotype. The proportion of clustered strains calculated from 15 locus-optimized mycobacterial interspersed repetitive units [optimized-(MIRU)15]-, optimized-MIRU24-, optimized-MIRU28-, Japan Anti-Tuberculosis Association (JATA)15-, and JATA18-VNTRs were 55.7%, 49.2%, 33.8%, 44.5%, and 32.0%, respectively. Ancient and modern Beijing genotype strains were more frequently clustered than non-Beijing genotype strains, even when using VNTR sets with high discriminatory power. Isoniazid and streptomycin resistance tended to be more frequently observed in ancient Beijing strains than in modern Beijing strains and others. Our findings may provide insight into area-dependent differences in Beijing family strain characteristics.
Collapse
|
37
|
Zheng L, Leung E, Lee N, Lui G, To KF, Chan RCY, Ip M. Differential MicroRNA Expression in Human Macrophages with Mycobacterium tuberculosis Infection of Beijing/W and Non-Beijing/W Strain Types. PLoS One 2015; 10:e0126018. [PMID: 26053546 PMCID: PMC4460131 DOI: 10.1371/journal.pone.0126018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Objectives The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls. Results The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05). A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems. Conclusion We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric Leung
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nelson Lee
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Lui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raphael C. Y. Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
38
|
Lee YS, Kang MR, Jung H, Choi SB, Jo KW, Shim TS. Performance of REBA MTB-XDR to detect extensively drug-resistant tuberculosis in an intermediate-burden country. J Infect Chemother 2015; 21:346-51. [PMID: 25634305 DOI: 10.1016/j.jiac.2014.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Extensively drug-resistant tuberculosis (XDR-TB) is a serious worldwide problem. The REBA MTB-XDR (REBA-XDR) was recently developed in Korea to detect resistance to ofloxacin, kanamycin, and streptomycin. The aim of this study is to evaluate the diagnostic accuracy of the REBA-XDR. We prospectively enrolled 104 patients with acid-fast bacilli smear-positive specimens between July 2010 and January 2013. Performance characteristics were compared between REBA-XDR and conventional drug-susceptibility testing. The sensitivity values of REBA-XDR for detecting resistance to ofloxacin, kanamycin, and streptomycin were 66.7%, 90.9%, and 60.0%, and the specificity values were 93.3%, 93.5%, and 85.4%, respectively. The positive predictive values were 62.5%, 62.5%, and 40.9%, and the negative predictive values were 94.3%, 98.9%, and 92.7%, respectively. Accuracy was 89.4%, 93.3%, and 81.7%, respectively. REBA-XDR seems to be a useful kit for "ruling in" XDR-TB in intermediate-burden countries, and especially useful for detecting kanamycin resistance.
Collapse
Affiliation(s)
- Young Seok Lee
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Hoon Jung
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Sang Bong Choi
- Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - Kyung-Wook Jo
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Tae Sun Shim
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
39
|
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014; 26:431-44. [PMID: 25453224 PMCID: PMC4314449 DOI: 10.1016/j.smim.2014.09.012] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.
Collapse
Affiliation(s)
- Mireia Coscolla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
40
|
Morcillo NS, Imperiale BR, Di Giulio Á, Zumárraga MJ, Takiff H, Cataldi ÁA. Fitness of drug resistant Mycobacterium tuberculosis and the impact on the transmission among household contacts. Tuberculosis (Edinb) 2014; 94:672-7. [DOI: 10.1016/j.tube.2014.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/05/2014] [Accepted: 08/06/2014] [Indexed: 11/15/2022]
|
41
|
Temporal dynamics of Mycobacterium tuberculosis genotypes in New South Wales, Australia. BMC Infect Dis 2014; 14:455. [PMID: 25149181 PMCID: PMC4262242 DOI: 10.1186/1471-2334-14-455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/12/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Molecular epidemiology of Mycobacterium tuberculosis, its transmission dynamics and population structure have become important determinants of targeted tuberculosis control programs. Here we describe recent changes in the distribution of M. tuberculosis genotypes in New South Wales (NSW), Australia and compared strain types with drug resistance, site of disease and demographic data. METHODS We evaluated all culture-confirmed newly identified tuberculosis cases in NSW, Australia, from 2010-2012. M. tuberculosis population structure and clustering rates were assessed using 24-loci Mycobacterial interspersed repetitive unit (MIRU) analysis and compared to MIRU data from 2006-2008. RESULTS Of 1177 tuberculosis cases, 1128 (95.8%) were successfully typed. Beijing and East African Indian (EAI) lineage strains were most common (27.6% and 28.5%, respectively) with EAI strains increasing in relative abundance from 11.8% in 2006-2008 to 28.5% in 2010-2012. Few cases of multi-drug resistant tuberculosis were identified (18; 1.7%). Compared to 12-loci, 24-loci MIRU provided improved cluster resolution with 695 (61.6%) and 227 (20.1%) clustered cases identified, respectively. Detailed analysis of the largest cluster identified (an 11 member Beijing cluster) revealed wide geographic diversity in the absence of documented social contact. CONCLUSIONS EAI strains of M. tuberculosis recently overtook Beijing family as a prevalent cause of tuberculosis in NSW, Australia. This lineage appeared to be less commonly related to multi-drug resistant tuberculosis as compared to Beijing strain lineage. The resolution provided by 24-loci MIRU typing was insufficient for reliable assessment of transmissions, especially of Beijing family strains.
Collapse
|
42
|
Abstract
SUMMARY We analysed Mycobacterium tuberculosis strains from children, hospitalized from January 2004 to July 2008 in the largest paediatric hospital complex in Cambodia. Specimens were tested for drug susceptibility and genotypes. From the 260 children, 161 strains were available. The East African-Indian genotype family was the most common (59.0%), increasing in frequency with distance from the Phnom Penh area, while the frequency of the Beijing genotype family strains decreased. The drug resistance pattern showed a similar geographical gradient: lowest in the northwest (4.6%), intermediate in the central (17.1%), and highest in the southeastern (30.8%) parts of the country. Three children (1.9%) had multidrug-resistant tuberculosis. The Beijing genotype and streptomycin resistance were significantly associated (P < 0.001). As tuberculosis in children reflects recent transmission patterns in the community, multidrug resistance levels inform about the current quality of the tuberculosis programme.
Collapse
|
43
|
de Keijzer J, de Haas PE, de Ru AH, van Veelen PA, van Soolingen D. Disclosure of selective advantages in the "modern" sublineage of the Mycobacterium tuberculosis Beijing genotype family by quantitative proteomics. Mol Cell Proteomics 2014; 13:2632-45. [PMID: 25022876 DOI: 10.1074/mcp.m114.038380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mycobacterium tuberculosis Beijing genotype, consisting of the more ancient (atypical) and modern (typical) emerging sublineage, is one of the most prevalent and genetically conserved genotype families and has often been associated with multidrug resistance. In this study, we employed a 2D-LC-FTICR MS approach, combined with dimethylation of tryptic peptides, to systematically compare protein abundance levels of ancient and modern Beijing strains and identify differences that could be associated with successful spread of the modern sublineage. The data is available via ProteomeXchange using the identifier PXD000931. Despite the highly uniform protein abundance ratios in both sublineages, we identified four proteins as differentially regulated between both sublineages, which could explain the apparent increased adaptation of the modern Beijing strains. These proteins are; Rv0450c/MmpL4, Rv1269c, Rv3137, and Rv3283/sseA. Transcriptional and functional analysis of these proteins in a large cohort of 29 Beijing strains showed that the mRNA levels of Rv0450c/MmpL4 are significantly higher in modern Beijing strains, whereas we also provide evidence that Rv3283/sseA is less abundant in the modern Beijing sublineage. Our findings provide a possible explanation for the increased virulence and success of the modern Beijing sublineage. In addition, in the established dataset of 1817 proteins, we demonstrate the pre-existence of several, possibly unique, antibiotic efflux pumps in the proteome of the Beijing strains. This may reflect an increased ability of Beijing strains to escape exposure to antituberculosis drugs.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- From the ‡Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC), Leiden, 2300 RC, The Netherlands;
| | - Petra E de Haas
- §Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720 BA, The Netherlands
| | - Arnoud H de Ru
- From the ‡Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC), Leiden, 2300 RC, The Netherlands
| | - Peter A van Veelen
- From the ‡Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC), Leiden, 2300 RC, The Netherlands
| | - Dick van Soolingen
- §Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720 BA, The Netherlands; ¶Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
44
|
Hung NV, Ando H, Thuy TTB, Kuwahara T, Hang NTL, Sakurada S, Thuong PH, Lien LT, Keicho N. Clonal expansion of Mycobacterium tuberculosis isolates and coexisting drug resistance in patients newly diagnosed with pulmonary tuberculosis in Hanoi, Vietnam. BMC Res Notes 2013; 6:444. [PMID: 24188178 PMCID: PMC4228276 DOI: 10.1186/1756-0500-6-444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/29/2013] [Indexed: 11/15/2022] Open
Abstract
Background Newly diagnosed patients without anti-tuberculosis (TB) treatment histories have not often undergone drug susceptibility testing (DST), but have received the standard treatment regimen without information about their DST profiles in many countries with inadequate resources. Methods We collected 346 clinical isolates from previously untreated patients with smear-positive active TB in Hanoi, the capital of Vietnam. Of these, 339 were tested for susceptibility to four first-line anti-TB drugs, including isoniazid (INH), rifampicin (RMP), streptomycin (SM), and ethambutol (EMB), using the proportion method. A pyrazinamidase (PZase) test was used to assess pyrazinamide (PZA) resistance. Results of the culture-based drug susceptibility tests were confirmed by those from reverse hybridization-based line probe assays (LiPAs) that detected mutations associated with RMP, INH, PZA, and fluoroquinolone (FQ) resistance. To investigate a diversity of these strains, IS6110-probed restriction fragment length polymorphisms (RFLPs) were analyzed. Nucleotide sequences for furA-katG and fabG1-inhA operons, transcription units responsible for INH resistance, were also determined. Results Of the isolates tested, 127 (37.5%) were resistant to at least one of the four drugs, which included 93 (27.4%) isolates that were resistant to INH. RFLP analysis identified four clusters defined by similarity of the band patterns, which accounted for 46.1% of the tested isolates. Among the clustered isolates, 37.7% were resistant to INH, most of which (85.4%) carried a g944c mutation, which causes an S315T amino acid substitution, in the katG gene. Conclusions Our results suggest that drug-resistant strains, particularly those with INH resistance characterized by a single mutation, S315T, are spreading in Hanoi, Vietnam. When RMP resistance is combined with this setting, patients are not easily cured by conventional short-term treatment. We will need to carefully monitor these trends and search for the origins and transmission routes of these strains.
Collapse
Affiliation(s)
- Nguyen Van Hung
- Department of Microbiology, National Lung Hospital, 463 Hoang Hoa Tham, Hanoi, Vietnam.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hang NTL, Maeda S, Lien LT, Thuong PH, Hung NV, Thuy TB, Nanri A, Mizoue T, Hoang NP, Cuong VC, Ngoc KTT, Sakurada S, Endo H, Keicho N. Primary drug-resistant tuberculosis in Hanoi, Viet Nam: present status and risk factors. PLoS One 2013; 8:e71867. [PMID: 23967255 PMCID: PMC3742467 DOI: 10.1371/journal.pone.0071867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Resistance of Mycobacterium tuberculosis (MTB) to anti-tuberculosis (TB) drugs presents a serious challenge to TB control worldwide. We investigated the status of drug resistance, including multidrug-resistant (MDR) TB, and possible risk factors among newly diagnosed TB patients in Hanoi, the capital of Viet Nam. METHODS Clinical and epidemiological information was collected from 506 newly diagnosed patients with sputum smear- and culture-positive TB, and 489 (96.6%) MTB isolates were subjected to conventional drug susceptibility testing, spoligotyping, and 15-locus variable numbers of tandem repeats typing. Adjusted odds ratios (aORs) were calculated to analyze the risk factors for primary drug resistance. RESULTS Of 489 isolates, 298 (60.9%) were sensitive to all drugs tested. Resistance to isoniazid, rifampicin, streptomycin, ethambutol, and MDR accounted for 28.2%, 4.9%, 28.2%, 2.9%, and 4.5%, respectively. Of 24 isolates with rifampicin resistance, 22 (91.7%) were MDR and also resistant to streptomycin, except one case. Factors associated with isoniazid resistance included living in old urban areas, presence of the Beijing genotype, and clustered strains [aOR = 2.23, 95% confidence interval (CI) 1.15-4.35; 1.91, 1.18-3.10; and 1.69, 1.06-2.69, respectively). The Beijing genotype was also associated with streptomycin resistance (aOR = 2.10, 95% CI 1.29-3.40). Human immunodeficiency virus (HIV) coinfection was associated with rifampicin resistance and MDR (aOR = 5.42, 95% CI 2.07-14.14; 6.23, 2.34-16.58, respectively). CONCLUSION Isoniazid and streptomycin resistance was observed in more than a quarter of TB patients without treatment history in Hanoi. Transmission of isoniazid-resistant TB among younger people should be carefully monitored in urban areas, where Beijing strains and HIV coinfection are prevalent. Choosing an optimal treatment regimen on the basis of the results of drug susceptibility tests and monitoring of treatment adherence would minimize further development of drug resistance strains.
Collapse
Affiliation(s)
| | - Shinji Maeda
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis JATA, Tokyo, Japan
| | | | | | - Nguyen Van Hung
- Department of Microbiology, National Lung Hospital, Hanoi, Viet Nam
| | - Tran Bich Thuy
- Department of Microbiology, National Lung Hospital, Hanoi, Viet Nam
| | - Akiko Nanri
- Department of Epidemiology and Prevention, Clinical Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Clinical Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | - Shinsaku Sakurada
- Bureau of International Medical Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyoshi Endo
- Department of International Affairs and Tropical Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Naoto Keicho
- Department of Pathophysiology and Host Defense, Research Institute of Tuberculosis JATA, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
46
|
Huyen MNT, Cobelens FGJ, Buu TN, Lan NTN, Dung NH, Kremer K, Tiemersma EW, van Soolingen D. Epidemiology of isoniazid resistance mutations and their effect on tuberculosis treatment outcomes. Antimicrob Agents Chemother 2013; 57:3620-7. [PMID: 23689727 PMCID: PMC3719713 DOI: 10.1128/aac.00077-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/10/2013] [Indexed: 11/20/2022] Open
Abstract
Isoniazid resistance is highly prevalent in Vietnam. We investigated the molecular and epidemiological characteristics and the association with first-line treatment outcomes of the main isoniazid resistance mutations in Mycobacterium tuberculosis in codon 315 of the katG and in the promoter region of the inhA gene. Mycobacterium tuberculosis strains with phenotypic resistance to isoniazid from consecutively diagnosed smear-positive tuberculosis patients in rural Vietnam were subjected to Genotype MTBDRplus testing to identify katG and inhA mutations. Treatment failure and relapse were determined by sputum culture. In total, 227 of 251 isoniazid-resistant strains (90.4%) had detectable mutations: 75.3% in katG codon 315 (katG315) and 28.2% in the inhA promoter region. katG315 mutations were significantly associated with pretreatment resistance to streptomycin, rifampin, and ethambutol but not with the Beijing genotype and predicted both unfavorable treatment outcome (treatment failure or death) and relapse; inhA promoter region mutations were only associated with resistance to streptomycin and relapse. In tuberculosis patients, M. tuberculosis katG315 mutations but not inhA mutations are associated with unfavorable treatment outcome. inhA mutations do, however, increase the risk of relapse, at least with treatment regimens that contain only isoniazid and ethambutol in the continuation phase.
Collapse
Affiliation(s)
| | | | - Tran N. Buu
- Pham Ngoc Thach Hospital, Ho Chi Minh City, Vietnam
| | | | | | - Kristin Kremer
- World Health Organization, Regional Office for Europe, Copenhagen, Denmark
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Dick van Soolingen
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|