1
|
Interplay between Autophagy and Herpes Simplex Virus Type 1: ICP34.5, One of the Main Actors. Int J Mol Sci 2022; 23:ijms232113643. [DOI: 10.3390/ijms232113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that occasionally may spread to the central nervous system (CNS), being the most common cause of sporadic encephalitis. One of the main neurovirulence factors of HSV-1 is the protein ICP34.5, which although it initially seems to be relevant only in neuronal infections, it can also promote viral replication in non-neuronal cells. New ICP34.5 functions have been discovered during recent years, and some of them have been questioned. This review describes the mechanisms of ICP34.5 to control cellular antiviral responses and debates its most controversial functions. One of the most discussed roles of ICP34.5 is autophagy inhibition. Although autophagy is considered a defense mechanism against viral infections, current evidence suggests that this antiviral function is only one side of the coin. Different types of autophagic pathways interact with HSV-1 impairing or enhancing the infection, and both the virus and the host cell modulate these pathways to tip the scales in its favor. In this review, we summarize the recent progress on the interplay between autophagy and HSV-1, focusing on the intricate role of ICP34.5 in the modulation of this pathway to fight the battle against cellular defenses.
Collapse
|
2
|
Klapan K, Simon D, Karaulov A, Gomzikova M, Rizvanov A, Yousefi S, Simon HU. Autophagy and Skin Diseases. Front Pharmacol 2022; 13:844756. [PMID: 35370701 PMCID: PMC8971629 DOI: 10.3389/fphar.2022.844756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a highly conserved lysosomal degradation system that involves the creation of autophagosomes, which eventually fuse with lysosomes and breakdown misfolded proteins and damaged organelles with their enzymes. Autophagy is widely known for its function in cellular homeostasis under physiological and pathological settings. Defects in autophagy have been implicated in the pathophysiology of a variety of human diseases. The new line of evidence suggests that autophagy is inextricably linked to skin disorders. This review summarizes the principles behind autophagy and highlights current findings of autophagy's role in skin disorders and strategies for therapeutic modulation.
Collapse
Affiliation(s)
- Kim Klapan
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Marina Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
3
|
Hait AS, Olagnier D, Sancho-Shimizu V, Skipper KA, Helleberg M, Larsen SM, Bodda C, Moldovan LI, Ren F, Brinck Andersen NS, Thomsen MM, Freytag MR, Darmalinggam S, Parkes I, Kadekar DD, Rahbek SH, van der Horst D, Kristensen LS, Eriksson K, Kjems J, Mostowy S, Christiansen M, Mikkelsen JG, Brandt CT, Paludan SR, Mogensen TH. Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Sci Immunol 2020; 5:eabc2691. [PMID: 33310865 PMCID: PMC7611067 DOI: 10.1126/sciimmunol.abc2691] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/26/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
Recurrent herpesvirus infections can manifest in different forms of disease, including cold sores, genital herpes, and encephalitis. There is an incomplete understanding of the genetic and immunological factors conferring susceptibility to recurrent herpes simplex virus 2 (HSV2) infection in the central nervous system (CNS). Here, we describe two adult patients with recurrent HSV2 lymphocytic Mollaret's meningitis that each carry a rare monoallelic variant in the autophagy proteins ATG4A or LC3B2. HSV2-activated autophagy was abrogated in patient primary fibroblasts, which also exhibited significantly increased viral replication and enhanced cell death. HSV2 antigen was captured in autophagosomes of infected cells, and genetic inhibition of autophagy by disruption of autophagy genes, including ATG4A and LC3B2, led to enhanced viral replication and cell death in primary fibroblasts and a neuroblastoma cell line. Activation of autophagy by HSV2 was sensitive to ultraviolet (UV) irradiation of the virus and inhibited in the presence of acyclovir, but HSV2-induced autophagy was independent of the DNA-activated STING pathway. Reconstitution of wild-type ATG4A and LC3B2 expression using lentiviral gene delivery or electroporation of in vitro transcribed mRNA into patient cells restored virus-induced autophagy and the ability to control HSV2 replication. This study describes a previously unknown link between defective autophagy and an inborn error of immunity that can lead to increased susceptibility to HSV2 infection, suggesting an important role for autophagy in antiviral immunity in the CNS.
Collapse
Affiliation(s)
- Alon Schneider Hait
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Vanessa Sancho-Shimizu
- Faculty of Medicine, Department of Infectious Disease, Section of Pediatric Infectious Disease, Imperial Collage London, London, UK
| | | | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Simon Muller Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Chiranjeevi Bodda
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Liviu Ionut Moldovan
- iNano, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Fanghui Ren
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Nanna-Sophie Brinck Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Michelle M Thomsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mette Ratzer Freytag
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Sathya Darmalinggam
- Faculty of Medicine, Department of Infectious Disease, Section of Pediatric Infectious Disease, Imperial Collage London, London, UK
| | - Isobel Parkes
- Faculty of Medicine, Department of Infectious Disease, Section of Pediatric Infectious Disease, Imperial Collage London, London, UK
| | - Darshana D Kadekar
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Stine Hess Rahbek
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Demi van der Horst
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Lasse Sommer Kristensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- iNano, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jørgen Kjems
- iNano, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mette Christiansen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christian Thomas Brandt
- Department of Infectious Diseases, Institute of Clinical Medicine, North Zealands Hospital, Hillerød, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Banerjee A, Kulkarni S, Mukherjee A. Herpes Simplex Virus: The Hostile Guest That Takes Over Your Home. Front Microbiol 2020; 11:733. [PMID: 32457704 PMCID: PMC7221137 DOI: 10.3389/fmicb.2020.00733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha (α)-herpesviruses (HSV-1 and HSV-2), like other viruses, are obligate intracellular parasites. They hijack the cellular machinery to survive and replicate through evading the defensive responses by the host. The viral genome of herpes simplex viruses (HSVs) contains viral genes, the products of which are destined to exploit the host apparatus for their own existence. Cellular modulations begin from the entry point itself. The two main gateways that the virus has to penetrate are the cell membrane and the nuclear membrane. Changes in the cell membrane are triggered when the glycoproteins of HSV interact with the surface receptors of the host cell, and from here, the components of the cytoskeleton take over. The rearrangement in the cytoskeleton components help the virus to enter as well as transport to the nucleus and back to the cell membrane to spread out to the other cells. The entire carriage process is also mediated by the motor proteins of the kinesin and dynein superfamily and is directed by the viral tegument proteins. Also, the virus captures the cell’s most efficient cargo carrying system, the endoplasmic reticulum (ER)–Golgi vesicular transport machinery for egress to the cell membrane. For these reasons, the host cell has its own checkpoints where the normal functions are halted once a danger is sensed. However, a cell may be prepared for the adversities from an invading virus, and it is simply commendable that the virus has the antidote to these cellular strategies as well. The HSV viral proteins are capable of limiting the use of the transcriptional and translational tools for the cell itself, so that its own transcription and translation pathways remain unhindered. HSV prefers to constrain any self-destruction process of the cell—be it autophagy in the lysosome or apoptosis by the mitochondria, so that it can continue to parasitize the cell for its own survival. This review gives a detailed account of the significance of compartmentalization during HSV pathogenesis. It also highlights the undiscovered areas in the HSV cell biology research which demand attention for devising improved therapeutics against the infection.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Smita Kulkarni
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Anupam Mukherjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| |
Collapse
|
5
|
Ahmad L, Mostowy S, Sancho-Shimizu V. Autophagy-Virus Interplay: From Cell Biology to Human Disease. Front Cell Dev Biol 2018; 6:155. [PMID: 30510929 PMCID: PMC6252315 DOI: 10.3389/fcell.2018.00155] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradation process that targets protein aggregates and damaged organelles. Autophagy is also implicated in numerous viral infections, including human immunodeficiency virus-1 (HIV-1), influenza A (IAV) and herpes simplex virus-1 (HSV-1). Depending on the virus, autophagy can restrict or promote viral replication, and play key roles in modulating inflammation and cell survival. In this review, we consider examples of autophagy-virus interplay, highlighting the protective role of autophagy in human infections. We summarize recent discoveries and emerging themes illuminating autophagy’s role in immunity and inflammation upon viral infection. Finally, we discuss future prospects and therapeutic implications, and potential caveats associated with using autophagy to control viral infections in humans.
Collapse
Affiliation(s)
- Liyana Ahmad
- Department of Virology, Division of Medicine, Imperial College London, London, United Kingdom
| | - Serge Mostowy
- MRC Centre of Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vanessa Sancho-Shimizu
- Department of Virology, Division of Medicine, Imperial College London, London, United Kingdom.,Department of Paediatrics, Division of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Hogue IB, Bosse JB, Engel EA, Scherer J, Hu JR, Del Rio T, Enquist LW. Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses 2015; 7:5933-61. [PMID: 26610544 PMCID: PMC4664988 DOI: 10.3390/v7112915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022] Open
Abstract
In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.
Collapse
Affiliation(s)
- Ian B Hogue
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Jens B Bosse
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Esteban A Engel
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Julian Scherer
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Jiun-Ruey Hu
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Tony Del Rio
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Lynn W Enquist
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Yakoub AM, Shukla D. Basal Autophagy Is Required for Herpes simplex Virus-2 Infection. Sci Rep 2015; 5:12985. [PMID: 26248741 PMCID: PMC4528227 DOI: 10.1038/srep12985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a conserved catabolic process of the cell, which plays an important role in regulating plethora of infections. The role of autophagy in Herpes simplex virus-2 (HSV-2) infection is unknown. Here, we found that HSV-2 does not allow induction of an autophagic response to infection, but maintains basal autophagy levels mostly unchanged during productive infection. Thus, we investigated the importance of basal autophagy for HSV-2 infection, using pharmacological autophagy suppression or cells genetically deficient in an autophagy-essential gene (ATG5). Interference with basal autophagy flux in cells significantly reduced viral replication and diminished the infection. These results indicate that basal autophagy plays an indispensable role required for a productive infection. Importantly, this study draws a sharp distinction between induced and basal autophagy, where the former acts as a viral clearance mechanism abrogating infection, while the latter supports infection.
Collapse
Affiliation(s)
- Abraam M Yakoub
- 1] Department of Microbiology and Immunology, University of Illinois, Chicago, IL USA, 60612 [2] Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL USA, 60612
| | - Deepak Shukla
- 1] Department of Microbiology and Immunology, University of Illinois, Chicago, IL USA, 60612 [2] Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL USA, 60612
| |
Collapse
|
8
|
Herpes Simplex Virus-1 Fine-Tunes Host's Autophagic Response to Infection: A Comprehensive Analysis in Productive Infection Models. PLoS One 2015; 10:e0124646. [PMID: 25894397 PMCID: PMC4403807 DOI: 10.1371/journal.pone.0124646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 01/07/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) infection causes severe conditions, with serious complications, including corneal blindness from uncontrolled ocular infections. An important cellular defense mechanism against HSV-1 infection is autophagy. The autophagic response of the host cell was suggested to be regulated by HSV-1. In this study, we performed a detailed analysis of autophagy in multiple HSV-1-targeted cell types, and under various infection conditions that recapitulate a productive infection model. We found that autophagy was slightly inhibited in one cell type, while in other cell types autophagy maintained its basal levels mostly unchanged during productive infection. This study refines the concept of HSV-1-mediated autophagy regulation to imply either inhibition, or prevention of activation, of the innate immune pathway.
Collapse
|
9
|
Gantt S, Gachelet E, Carlsson J, Barcy S, Casper C, Lagunoff M. Nelfinavir impairs glycosylation of herpes simplex virus 1 envelope proteins and blocks virus maturation. Adv Virol 2015; 2015:687162. [PMID: 25709648 PMCID: PMC4325974 DOI: 10.1155/2015/687162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/23/2023] Open
Abstract
Nelfinavir (NFV) is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs). Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1) in cultured cells. Selection of HSV-1 resistance to NFV was not achieved despite multiple passages under drug pressure. NFV did not significantly affect the level of expression of late HSV-1 gene products. Normal numbers of viral particles appeared to be produced in NFV-treated cells by electron microscopy but remain within the cytoplasm more often than controls. NFV did not inhibit the activity of the HSV-1 serine protease nor could its antiviral activity be attributed to inhibition of Akt phosphorylation. NFV was found to decrease glycosylation of viral glycoproteins B and C and resulted in aberrant subcellular localization, consistent with induction of endoplasmic reticulum stress and the unfolded protein response by NFV. These results demonstrate that NFV causes alterations in HSV-1 glycoprotein maturation and egress and likely acts on one or more host cell functions that are important for HHV replication.
Collapse
Affiliation(s)
- Soren Gantt
- Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Eliora Gachelet
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Jacquelyn Carlsson
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Serge Barcy
- Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Corey Casper
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Yang H, Fu Q, Liu C, Li T, Wang Y, Zhang H, Lu X, Sang X, Zhong S, Huang J, Mao Y. Hepatitis B virus promotes autophagic degradation but not replication in autophagosome. Biosci Trends 2015; 9:111-6. [DOI: 10.5582/bst.2015.01049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| | - Qining Fu
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| | - Chen Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| | - Yanan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| | - Shouxian Zhong
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| | - Jiefu Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
| |
Collapse
|
11
|
Subgroup J avian leukosis virus infection inhibits autophagy in DF-1 cells. Virol J 2013; 10:196. [PMID: 23773913 PMCID: PMC3720224 DOI: 10.1186/1743-422x-10-196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/12/2013] [Indexed: 01/22/2023] Open
Abstract
Background Subgroup J avian leukosis virus (ALV-J) infection can induce tumor-related diseases in chickens. Previous studies by our laboratory demonstrated that ALV-J infection of DF-1 cells resulted in altered activity and phosphorylation of AKT. However, little is known about the subsequent activation of host DF-1 cells. Results In the current study, autophagy inhibition was observed for ALV-J infected DF-1 cells. Our data showed that the autophagosome protein, microtubule-associated protein 1 light chain 3-II (LC3-II), was reduced considerably in DF-1 cells infected with active ALV-J, while no change was observed for cells infected with inactivated ALV-J. Autophagy inhibition was also confirmed by fluorescence microscopy and transmission electron microscopy. Interestingly, when autophagy was promoted by rapamycin, the titers of ALV-J replication were decreased, and the replication level of ALV-J was significantly enhanced when atg5 (autophagy-related gene 5) was knocked out. Conclusions These results suggested that ALV-J infection could down-regulate autophagy in DF-1 cells during viral replication. This study is the first to report on the relationship between ALV-J infection and autophagy in DF-1 cells.
Collapse
|
12
|
Zhang Y, Hung T, Song J, He J. Electron microscopy: essentials for viral structure, morphogenesis and rapid diagnosis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:421-30. [PMID: 23633074 PMCID: PMC7089233 DOI: 10.1007/s11427-013-4476-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
Electron microscopy (EM) should be used in the front line for detection of agents in emergencies and bioterrorism, on accounts of its speed and accuracy. However, the number of EM diagnostic laboratories has decreased considerably and an increasing number of people encounter difficulties with EM results. Therefore, the research on viral structure and morphologyant in EM diagnostic practice. EM has several technological advantages, and should be a fundamental tool in clinical diagnosis of viruses, particularly when agents are unknown or unsuspected. In this article, we review the historical contribution of EM to virology, and its use in virus differentiation, localization of specific virus antigens, virus-cell interaction, and viral morphogenesis. It is essential that EM investigations are based on clinical and comprehensive pathogenesis data from light or confocal microscopy. Furthermore, avoidance of artifacts or false results is necessary to exploit fully the advantages while minimizing its limitations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Electron Microscopy Laboratory, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | | | | | | |
Collapse
|