1
|
Świerczyńska M, Tronina A, Smędowski A. Understanding cataract development in axial myopia: The contribution of oxidative stress and related pathways. Redox Biol 2025; 80:103495. [PMID: 39813957 PMCID: PMC11782857 DOI: 10.1016/j.redox.2025.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Myopia is an evolving global health challenge, with estimates suggesting that by 2050 it will affect half of the world's population, becoming the leading cause of irreversible vision loss. Moreover, myopia can lead to various complications, including the earlier onset of cataracts. Given the progressive aging of the population and the increase in life expectancy, this will contribute to a rising demand for cataract surgery, posing an additional challenge for healthcare systems. The pathogenesis of nuclear and posterior subcapsular cataract (PSC) development in axial myopia is complex and primarily involves intensified liquefaction of the vitreous body, excessive production of reactive oxygen species, impaired antioxidant defense, and chronic inflammation in the eyeball. These factors contribute to disruptions in mitochondrial homeostasis, abnormal cell signaling, lipid peroxidation, protein and nucleic acid damage, as well as the induction of adverse epigenetic modifications. Age-related and oxidative processes can cause destabilization of crystallins with subsequent protein accumulation, which finally drives to a lens opacification. Moreover, an altered redox status is one of the major contributors to the pathogenesis of PSC. This review aims to summarize the mechanisms known to be responsible for the accelerated development of cataracts in axial myopia and to enhance understanding of these relationships.
Collapse
Affiliation(s)
- Marta Świerczyńska
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Agnieszka Tronina
- Department of Pediatric Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Pediatric Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smędowski
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland; GlaucoTech Co, Katowice, Poland
| |
Collapse
|
2
|
Li L, Gao J, Gao L, Li L, Zhang H, Zhao W, Xu S. Bilateral Superior Cervical Sympathectomy Activates Signal Transducer and Activator of Transcription 3 Signal to Alleviate Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2022; 9:807298. [PMID: 35433880 PMCID: PMC9010611 DOI: 10.3389/fcvm.2022.807298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is growing evidence about the effect of bilateral superior cervical sympathectomy on myocardial ischemia-reperfusion (I/R) injury. Studies have increasingly found that the signal transducer and activator of transcription 3 (STAT3) plays a protective role in myocardial I/R injury. However, the precise mechanism is unknown. The present study explored the bilateral superior cervical sympathectomy’s effect and potential mechanism in mice myocardial I/R injury. Methods The left heart I/R injury model was created by ligating the anterior descending branch of the coronary artery for 30 min followed by reperfusion. Bilateral superior cervical sympathectomy was performed before myocardial I/R injury. To evaluate the effect of bilateral superior cervical sympathectomy on the myocardium, we examined the myocardial infarct size and cardiac function. Then, myocardial apoptosis, inflammation, and oxidative stress were detected on the myocardium. Furthermore, the expression of STAT3 signal in myocardial tissue was measured by western blotting. To further examine the cardioprotective effect of STAT3 after bilateral superior cervical sympathectomy, the STAT3 inhibitor (static) was utilized to inhibit the phosphorylation of STAT3. Results The results showed that the myocardial I/R injury decreased and the cardiac function recovered in the myocardial I/R injury after cervical sympathectomy. Meanwhile, cervical sympathectomy reduced the myocardial distribution of the sympathetic marker tyrosine hydroxylase (TH) and systemic sympathetic tone. And levels of oxidative stress, inflammatory markers, and apoptosis were reduced in myocardial tissue. We also found that the STAT3 signal was activated in myocardial tissue after cervical sympathectomy. STAT3 inhibitor can partially reverse the myocardial protective effect of cervical sympathectomy. Conclusion Bilateral superior cervical sympathectomy significantly alleviated myocardial I/R injury in mice. And activation of the STAT3 signal may play an essential role in this.
Collapse
|
3
|
Thompson B, Davidson EA, Chen Y, Orlicky DJ, Thompson DC, Vasiliou V. Oxidative stress induces inflammation of lens cells and triggers immune surveillance of ocular tissues. Chem Biol Interact 2022; 355:109804. [PMID: 35123994 PMCID: PMC9136680 DOI: 10.1016/j.cbi.2022.109804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
Recent reports have challenged the notion that the lens is immune-privileged. However, these studies have not fully identified the molecular mechanism(s) that promote immune surveillance of the lens. Using a mouse model of targeted glutathione (GSH) deficiency in ocular surface tissues, we have investigated the role of oxidative stress in upregulating cytokine expression and promoting immune surveillance of the eye. RNA-sequencing of lenses from postnatal day (P) 1-aged Gclcf/f;Le-CreTg/- (KO) and Gclcf/f;Le-Cre-/- control (CON) mice revealed upregulation of many cytokines (e.g., CCL4, GDF15, CSF1) and immune response genes in the lenses of KO mice. The eyes of KO mice had a greater number of cells in the aqueous and vitreous humors at P1, P20 and P50 than age-matched CON and Gclcw/w;Le-CreTg/- (CRE) mice. Histological analyses revealed the presence of innate immune cells (i.e., macrophages, leukocytes) in ocular structures of the KO mice. At P20, the expression of cytokines and ROS content was higher in the lenses of KO mice than in those from age-matched CRE and CON mice, suggesting that oxidative stress may induce cytokine expression. In vitro administration of the oxidant, hydrogen peroxide, and the depletion of GSH (using buthionine sulfoximine (BSO)) in 21EM15 lens epithelial cells induced cytokine expression, an effect that was prevented by co-treatment of the cells with N-acetyl-l-cysteine (NAC), a antioxidant. The in vivo and ex vivo induction of cytokine expression by oxidative stress was associated with the expression of markers of epithelial-to-mesenchymal transition (EMT), α-SMA, in lens cells. Given that EMT of lens epithelial cells causes posterior capsule opacification (PCO), we propose that oxidative stress induces cytokine expression, EMT and the development of PCO in a positive feedback loop. Collectively these data indicate that oxidative stress induces inflammation of lens cells which promotes immune surveillance of ocular structures.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
4
|
Pleiotropic, Unique and Shared Responses Elicited by IL-6 Family Cytokines in Human Vascular Endothelial Cells. Int J Mol Sci 2022; 23:ijms23031448. [PMID: 35163371 PMCID: PMC8836206 DOI: 10.3390/ijms23031448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial cells express glycoprotein 130 (gp130), which is utilized as a signaling receptor by cytokines in the interleukin-6 (IL-6) family. Several IL-6 family cytokines can be found in the circulatory system during physiological or pathological conditions, and may influence endothelial function and response. This study evaluated and compared the cellular and molecular responses induced by IL-6 family cytokines in human endothelial cells. A proteomic analysis showed that IL-6 family cytokines induce the release of a range of proteins from endothelial cells, such as C-C motif chemokine ligand 23, hepatocyte growth factor, and IL-6. Pathway analysis indicated that gp130-signaling in endothelial cells regulates several functions related to angiogenesis and immune cell recruitment. The present investigation also disclosed differences and similarities between different IL-6 family cytokines in their ability to induce protein release and regulate gene expression and intracellular signaling, in regards to which oncostatin M showed the most pronounced effect. Further, this study showed that soluble gp130 preferentially blocks trans-signaling-induced responses, but does not affect responses induced by classic signaling. In conclusion, IL-6 family cytokines induce both specific and overlapping molecular responses in endothelial cells, and regulate genes and proteins involved in angiogenesis and immune cell recruitment.
Collapse
|
5
|
Nikolaou PE, Efentakis P, Abu Qourah F, Femminò S, Makridakis M, Kanaki Z, Varela A, Tsoumani M, Davos CH, Dimitriou CA, Tasouli A, Dimitriadis G, Kostomitsopoulos N, Zuurbier CJ, Vlahou A, Klinakis A, Brizzi MF, Iliodromitis EK, Andreadou I. Chronic Empagliflozin Treatment Reduces Myocardial Infarct Size in Nondiabetic Mice Through STAT-3-Mediated Protection on Microvascular Endothelial Cells and Reduction of Oxidative Stress. Antioxid Redox Signal 2021; 34:551-571. [PMID: 32295413 DOI: 10.1089/ars.2019.7923] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: Empagliflozin (EMPA) demonstrates cardioprotective effects on diabetic myocardium but its infarct-sparing effects in normoglycemia remain unspecified. We investigated the acute and chronic effect of EMPA on infarct size after ischemia-reperfusion (I/R) injury and the mechanisms of cardioprotection in nondiabetic mice. Results: Chronic oral administration of EMPA (6 weeks) reduced myocardial infarct size after 30 min/2 h I/R (26.5% ± 3.9% vs 45.8% ± 3.3% in the control group, p < 0.01). Body weight, blood pressure, glucose levels, and cardiac function remained unchanged between groups. Acute administration of EMPA 24 or 4 h before I/R did not affect infarct size. Chronic EMPA treatment led to a significant reduction of oxidative stress biomarkers. STAT-3 (signal transducer and activator of transcription 3) was activated by Y(705) phosphorylation at the 10th minute of R, but it remained unchanged at 2 h of R and in the acute administration protocols. Proteomic analysis was employed to investigate signaling intermediates and revealed that chronic EMPA treatment regulates several pathways at reperfusion, including oxidative stress and integrin-related proteins that were further evaluated. Superoxide dismutase and vascular endothelial growth factor were increased throughout reperfusion. EMPA pretreatment (24 h) increased the viability of human microvascular endothelial cells in normoxia and on 3 h hypoxia/1 h reoxygenation and reduced reactive oxygen species production. In EMPA-treated murine hearts, CD31-/VEGFR2-positive endothelial cells and the pSTAT-3(Y705) signal derived from endothelial cells were boosted at early reperfusion. Innovation: Chronic EMPA administration reduces infarct size in healthy mice via the STAT-3 pathway and increases the survival of endothelial cells. Conclusion: Chronic but not acute administration of EMPA reduces infarct size through STAT-3 activation independently of diabetes mellitus.
Collapse
Affiliation(s)
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Fairouz Abu Qourah
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Aimilia Varela
- Cardiovascular Research Laboratory, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Constantinos A Dimitriou
- Cardiovascular Research Laboratory, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - George Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Athens, Greece
| | - Coert J Zuurbier
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity, Amsterdam, The Netherlands
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Maria F Brizzi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Efstathios K Iliodromitis
- 2nd University Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
7
|
Butturini E, Carcereri de Prati A, Mariotto S. Redox Regulation of STAT1 and STAT3 Signaling. Int J Mol Sci 2020; 21:ijms21197034. [PMID: 32987855 PMCID: PMC7582491 DOI: 10.3390/ijms21197034] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023] Open
Abstract
STAT1 and STAT3 are nuclear transcription factors that regulate genes involved in cell cycle, cell survival and immune response. The cross-talk between these signaling pathways determines how cells integrate the environmental signals received ultimately translating them in transcriptional regulation of specific sets of genes. Despite being activated downstream of common cytokine and growth factors, STAT1 and STAT3 play essentially antagonistic roles and the disruption of their balance directs cells from survival to apoptotic cell death or from inflammatory to anti-inflammatory responses. Different mechanisms are proposed to explain this yin-yang relationship. Considering the redox aspect of STATs proteins, this review attempts to summarize the current knowledge of redox regulation of STAT1 and STAT3 signaling focusing the attention on the post-translational modifications that affect their activity.
Collapse
|
8
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
9
|
Natural Sesquiterpene Lactones Enhance Chemosensitivity of Tumor Cells through Redox Regulation of STAT3 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4568964. [PMID: 31781335 PMCID: PMC6855087 DOI: 10.1155/2019/4568964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
STAT3 is a nuclear transcription factor that regulates genes involved in cell cycle, cell survival, and immune response. Although STAT3 activation drives cells to physiological response, its deregulation is often associated with the development and progression of many solid and hematological tumors as well as with drug resistance. STAT3 is a redox-sensitive protein, and its activation state is related to intracellular GSH levels. Under oxidative conditions, STAT3 activity is regulated by S-glutathionylation, a reversible posttranslational modification of cysteine residues. Compounds able to suppress STAT3 activation and, on the other hand, to modulate intracellular redox homeostasis may potentially improve cancer treatment outcome. Nowadays, about 35% of commercial drugs are natural compounds that derive from plant extracts used in phytotherapy and traditional medicine. Sesquiterpene lactones are an interesting chemical group of plant-derived compounds often employed in traditional medicine against inflammation and cancer. This review focuses on sesquiterpene lactones able to downmodulate STAT3 signaling leading to an antitumor effect and correlates the anti-STAT3 activity with their ability to decrease GSH levels in cancer cells. These properties make them lead compounds for the development of a new therapeutic strategy for cancer treatment.
Collapse
|
10
|
|
11
|
Zouein FA, Booz GW, Altara R. STAT3 and Endothelial Cell-Cardiomyocyte Dialog in Cardiac Remodeling. Front Cardiovasc Med 2019; 6:50. [PMID: 31069236 PMCID: PMC6491672 DOI: 10.3389/fcvm.2019.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
This article presents an overview of the central role of STAT3 in the crosstalk between endothelial cells and cardiac myocytes in the heart. Endothelial cell STAT3 has a key role in inflammation that underlies cardiovascular disease and impacts on cardiac structure and function. STAT3 in endothelial cells contributes to adverse cardiomyocyte genetic reprograming, for instance, during peripartum cardiomyopathy. Conversely, cardiomyocyte STAT3 is important for maintaining endothelial cell function and capillary integrity with aging and hypertension. In addition, STAT3 serves as a sentinel for stress in the heart. Recent evidence has revealed that the redox nature of STAT3 is regulated, and STAT3 is responsive to oxidative stress (ischemia-reperfusion) so as to induce protective genes. At the level of the mitochondrion, STAT3 is important in regulating reactive oxygen species (ROS) formation, metabolism, and mitochondrial integrity. STAT3 may also control calcium release from the ER so as to limit its subsequent uptake by mitochondria and the induction of cell death. Under normal conditions, some STAT3 localizes to intercalated discs of cardiomyocytes and serves to transmit pro-fibrotic gene induction signals in the nucleus with increased blood pressure. Further research is needed to understand how the sentinel role of STAT3 in both endothelial cells and cardiomyocytes is integrated in order to coordinate the response of the heart to both physiological and pathological demands.
Collapse
Affiliation(s)
- Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Raffaele Altara
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States.,Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway
| |
Collapse
|
12
|
Kurdi M, Zgheib C, Booz GW. Recent Developments on the Crosstalk Between STAT3 and Inflammation in Heart Function and Disease. Front Immunol 2018; 9:3029. [PMID: 30619368 PMCID: PMC6305745 DOI: 10.3389/fimmu.2018.03029] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
The transcription factor STAT3 has a protective function in the heart. Until recently, the role of STAT3 in hypertension-induced cardiac hypertrophy was unsettled. Earlier studies revealed that global reduction of STAT3 activity reduced cardiac hypertrophy with hypertension, but caused a disruption of myofilaments and increased contractile dysfunction. However, newer studies with cardiomyocyte-specific deletion of STAT3 indicate that STAT3 does not cause cardiac hypertrophy with increased blood pressure. Rather, cardiac STAT3 is important for maintaining metabolic homeostasis, and loss of STAT3 in cardiomyocytes makes the heart more susceptible to chronic pathological insult, for example by disrupting glucose metabolism and protective signaling networks via the upregulation of certain microRNAs. This scenario has implications for understanding peripartum cardiomyopathy as well. In viral myocarditis, STAT3 opposes the initiation of the dilated phenotype by maintaining membrane integrity via the expression of dystrophin. STAT3 signaling was also found to attenuate myocarditis by polarizing macrophages to a less inflammatory phenotype. On the other hand, STAT3 contributes to immune-mediated myocarditis due to IL-6-induced complement component C3 production in the liver, as well as the differentiation of Th17 cells, which play a role in initiation and development of myocarditis. Besides canonical signaling pathways, unphosphorylated STAT3 (U-STAT3) and redox-activated STAT3 have been shown to couple to transcription in the heart. In addition, tissue signaling cytokines such as IL-22 and IL-17 have been proposed to have actions on the heart that involve STAT3, but are not fully defined. Understanding the novel and often protective aspects of STAT3 in the myocardium could lead to new therapeutic approaches to treat heart disease.
Collapse
Affiliation(s)
- Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, and The Laboratory of Experimental and Clinical Pharmacology, Lebanese University, Beirut, Lebanon
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus and Colorado Children's Hospital, Aurora, CO, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
13
|
Wu K, Zhao Q, Li Z, Li N, Xiao Q, Li X, Zhao Q. Bioinformatic screening for key miRNAs and genes associated with myocardial infarction. FEBS Open Bio 2018; 8:897-913. [PMID: 29928570 PMCID: PMC5985982 DOI: 10.1002/2211-5463.12423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/07/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
Despite significant advances in understanding of the causes of and treatment of myocardial infarction (MI) in recent years, morbidity and mortality is still high. The aim of this study was to identify miRNA and genes potentially associated with MI. mRNA and miRNA expression datasets were downloaded from the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). Interactions between miRNA and the expression and function of target genes were analyzed, and a protein–protein interaction network was constructed. The diagnostic value of identified miRNA and genes was assessed. Quantitative RT‐PCR was applied to validate the results of the bioinformatics analysis. MiR‐27a, miR‐31*, miR‐1291, miR‐139‐5p, miR‐204, miR‐375, and target genes including CX3CR1,HSPA6, and TPM3 had potential diagnostic value. The genes TFEB,IRS2,GRB2,FASLG,LIMS1,CX3CR1,HSPA6,TPM3,LAT2,CEBPD,AQP9, and MAPKAPK2 were associated with recovery from MI. In conclusion, the identified miRNA and genes might be associated with the pathology of MI.
Collapse
Affiliation(s)
- Ke Wu
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University Beijing China.,Department of Cardiology Central Hospital of Taian of Shandong Province China
| | - Qiang Zhao
- Department of Cardiology Affiliated Hospital of Taishan Medical University of Shandong Province Taian China
| | - Zhengmei Li
- Department of Radiology Taishan Medical University of Shandong Province Taian China
| | - Nannan Li
- Department of Respiration Medicine Central Hospital of Taian of Shandong Province China
| | - Qiang Xiao
- Department of Cardiology Affiliated Hospital of Taishan Medical University of Shandong Province Taian China
| | - Xiuchang Li
- Department of Cardiology Affiliated Hospital of Taishan Medical University of Shandong Province Taian China
| | - Quanming Zhao
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University Beijing China
| |
Collapse
|
14
|
Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW. Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2017; 8:160. [PMID: 28769873 PMCID: PMC5512012 DOI: 10.3389/fendo.2017.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Raffaele Altara,
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | - Saeed N. Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
15
|
Bianco CL, Toscano JP, Bartberger MD, Fukuto JM. The chemical biology of HNO signaling. Arch Biochem Biophys 2016; 617:129-136. [PMID: 27555493 DOI: 10.1016/j.abb.2016.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022]
Abstract
Nitroxyl (HNO) is a simple molecule with significant potential as a pharmacological agent. For example, its use in the possible treatment of heart failure has received recent attention due to its unique therapeutic properties. Recent progress has been made on the elucidation of the mechanisms associated with its biological signaling. Importantly, the biochemical mechanisms described for HNO bioactivity are consistent with its unique and novel chemical properties/reactivity. To date, much of the biology of HNO can be associated with interactions and modification of important regulatory thiol proteins. Herein will be provided a description of HNO chemistry and how this chemistry translates to some of its reported biological effects.
Collapse
Affiliation(s)
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael D Bartberger
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA.
| |
Collapse
|
16
|
Nitroxyl (HNO) reduces endothelial and monocyte activation and promotes M2 macrophage polarization. Clin Sci (Lond) 2016; 130:1629-40. [DOI: 10.1042/cs20160097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
In the present study, the effect of nitroxyl anion (HNO) donors on factors that precede atherosclerosis was examined. They reduced endothelial cell inflammation and monocyte activation and as such may be an effective treatment for coronary artery disease.
Collapse
|
17
|
Zhou Y, Wu Z, Cao X, Ding L, Wen Z, Bian JS. HNO suppresses LPS-induced inflammation in BV-2 microglial cells via inhibition of NF-κB and p38 MAPK pathways. Pharmacol Res 2016; 111:885-895. [PMID: 27507578 DOI: 10.1016/j.phrs.2016.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 11/26/2022]
Abstract
Both hydrogen sulfide (H2S) and nitric oxide (NO) are important gaseous mediators. We and others previously reported that these two gases react with each other to generate a new mediator, nitroxyl (HNO), and regulate cardiovascular functions. In this study, we demonstrated for the first time that the interaction between the two gases also existed in microglia. The biological functions of HNO in microglial cells were further studied with Angeli's salt (AS), an HNO donor. We found that AS attenuated lipopolysaccharide (LPS)-evoked production of reactive oxygen species (ROS) and pro-inflammatory cytokines (e.g. IL-1β and TNFα) through downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). HNO significantly reduced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of nuclear factor-κB (NF-κB) through suppression of phosphorylation p65 and IκBα. The above effects were abolished by l-cysteine, an HNO scavenger, but were not mimicked by nitrite, another product of AS during generating HNO. A Cys-179-to-Ala mutation in inhibitory κB kinase β (IKKβ) mimicked the effect of HNO on LPS-induced NF-κB activation. Interestingly, AS abolished the inflammation in cells overexpressing WT-IKKβ, but had no significant effect in cells overexpressing C179A-IKKβ. These data suggest that HNO may act on C179 to prevent IKKβ-dependent inflammation. Taken together, our data demonstrated for the first time that H2S interacts with NO to generate HNO in microglial cells. HNO produces anti-inflammatory effects through suppressing the IKKβ dependent NF-κB activation and p38 MAPK pathways.
Collapse
Affiliation(s)
- Yebo Zhou
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - ZhengShun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
18
|
Miao Z, King SB. Recent advances in the chemical biology of nitroxyl (HNO) detection and generation. Nitric Oxide 2016; 57:1-14. [PMID: 27108951 PMCID: PMC4910183 DOI: 10.1016/j.niox.2016.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023]
Abstract
Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems.
Collapse
Affiliation(s)
- Zhengrui Miao
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
19
|
Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin 2016; 37:354-67. [PMID: 26806299 DOI: 10.1038/aps.2015.136] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/20/2015] [Indexed: 11/08/2022]
Abstract
AIM Berberine (BBR), an isoquinoline-derived alkaloid isolated from Rhizoma coptidis, exerts cardioprotective effects. Because endoplasmic reticulum (ER) stress plays a pivotal role in myocardial ischemia/reperfusion (MI/R)-induced apoptosis, it was interesting to examine whether the protective effects of BBR resulted from modulating ER stress levels during MI/R injury, and to define the signaling mechanisms in this process. METHODS Male rats were treated with BBR (200 mg · kg(-1) · d(-1), ig) for 2 weeks, and then subjected to MI/R surgery. Cardiac dimensions and function were assessed using echocardiography. Myocardial infarct size and apoptosis was examined. Total serum LDH levels and CK activities, superoxide production, MDA levels and the antioxidant SOD activities in heart tissue were determined. An in vitro study was performed on cultured rat embryonic myocardium-derived cells H9C2 exposed to simulated ischemia/reperfusion (SIR). The expression of apoptotic, ER stress-related and signaling proteins were assessed using Western blot analyses. RESULTS Pretreatment with BBR significantly reduced MI/R-induced myocardial infarct size, improved cardiac function, and suppressed myocardial apoptosis and oxidative damage. Furthermore, pretreatment with BBR suppressed MI/R-induced ER stress, evidenced by down-regulating the phosphorylation levels of myocardial PERK and eIF2α and the expression of ATF4 and CHOP in heart tissues. Pretreatment with BBR also activated the JAK2/STAT3 signaling pathway in heart tissues, and co-treatment with AG490, a specific JAK2/STAT3 inhibitor, blocked not only the protective effects of BBR, but also the inhibition of BBR on MI/R-induced ER stress. In H9C2 cells, treatment with BBR (50 μmol/L) markedly reduced SIR-induced cell apoptosis, oxidative stress and ER stress, which were abolished by transfection with JAK2 siRNA. CONCLUSION BBR ameliorates MI/R injury in rats by activating the AK2/STAT3 signaling pathway and attenuating ER stress-induced apoptosis.
Collapse
|
20
|
Heiss EH, Liu R, Waltenberger B, Khan S, Schachner D, Kollmann P, Zimmermann K, Cabaravdic M, Uhrin P, Stuppner H, Breuss JM, Atanasov AG, Dirsch VM. Plumericin inhibits proliferation of vascular smooth muscle cells by blocking STAT3 signaling via S-glutathionylation. Sci Rep 2016; 6:20771. [PMID: 26858089 PMCID: PMC4746734 DOI: 10.1038/srep20771] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/12/2016] [Indexed: 01/21/2023] Open
Abstract
The etiology of atherosclerosis and restenosis involves aberrant inflammation and proliferation, rendering compounds with both anti-inflammatory and anti-mitogenic properties as promising candidates for combatting vascular diseases. A recent study identified the iridoid plumericin as a new scaffold inhibitor of the pro-inflammatory NF-κB pathway in endothelial cells. We here examined the impact of plumericin on the proliferation of primary vascular smooth muscle cells (VSMC). Plumericin inhibited serum-stimulated proliferation of rat VSMC. It arrested VSMC in the G1/G0-phase of the cell cycle accompanied by abrogated cyclin D1 expression and hindered Ser 807/811-phosphorylation of retinoblastoma protein. Transient depletion of glutathione by the electrophilic plumericin led to S-glutathionylation as well as hampered Tyr705-phosphorylation and activation of the transcription factor signal transducer and activator of transcription 3 (Stat3). Exogenous addition of glutathione markedly prevented this inhibitory effect of plumericin on Stat3. It also overcame downregulation of cyclin D1 expression and the reduction of biomass increase upon serum exposure. This study revealed an anti-proliferative property of plumericin towards VSMC which depends on plumericin's thiol reactivity and S-glutathionylation of Stat3. Hence, plumericin, by targeting at least two culprits of vascular dysfunction -inflammation and smooth muscle cell proliferation -might become a promising electrophilic lead compound for vascular disease therapy.
Collapse
Affiliation(s)
- Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Rongxia Liu
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy (Pharmacognosy) and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Shafaat Khan
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria.,Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Daniel Schachner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Paul Kollmann
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Kristin Zimmermann
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Muris Cabaravdic
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy (Pharmacognosy) and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
21
|
Zouein FA, Altara R, Chen Q, Lesnefsky EJ, Kurdi M, Booz GW. Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues. Front Cardiovasc Med 2015; 2:36. [PMID: 26664907 PMCID: PMC4671345 DOI: 10.3389/fcvm.2015.00036] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022] Open
Abstract
The transcription factor, signal transducer and activator of transcription 3 (STAT3), has been implicated in protecting the heart from acute ischemic injury under both basal conditions and as a crucial component of pre- and post-conditioning protocols. A number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 via canonical means involving phosphorylation on Y705 and S727, although other incompletely defined posttranslational modifications are involved. In addition, STAT3 is now known to be present in cardiac mitochondria and to exert actions that regulate the electron transport chain, reactive oxygen species production, and mitochondrial permeability transition pore opening. These non-canonical actions of STAT3 are enhanced by S727 phosphorylation. The molecular basis for the mitochondrial actions of STAT3 is poorly understood, but STAT3 is known to interact with a critical subunit of complex I and to regulate complex I function. Dysfunctional complex I has been implicated in ischemic injury, heart failure, and the aging process. Evidence also indicates that STAT3 is protective to the heart under chronic stress conditions, including hypertension, pregnancy, and advanced age. Paradoxically, the accumulation of unphosphorylated STAT3 (U-STAT3) in the nucleus has been suggested to drive pathological cardiac hypertrophy and inflammation via non-canonical gene expression, perhaps involving a distinct acetylation profile. U-STAT3 may also regulate chromatin stability. Our understanding of how the non-canonical genomic and mitochondrial actions of STAT3 in the heart are regulated and coordinated with the canonical actions of STAT3 is rudimentary. Here, we present an overview of what is currently known about the pleotropic actions of STAT3 in the heart in order to highlight controversies and unresolved issues.
Collapse
Affiliation(s)
- Fouad A Zouein
- American University of Beirut Faculty of Medicine , Beirut , Lebanon
| | - Raffaele Altara
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; McGuire Department of Veterans Affairs Medical Center , Richmond, VA , USA
| | - Mazen Kurdi
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA ; Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University , Hadath , Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| |
Collapse
|
22
|
Chu SC, Chen PN, Hsieh YS, Yu CH, Lin MH, Lin YH, Kuo DY. Involvement of hypothalamic PI3K-STAT3 signalling in regulating appetite suppression mediated by amphetamine. Br J Pharmacol 2015; 171:3223-33. [PMID: 24597972 DOI: 10.1111/bph.12667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Appetite suppression induced by amphetamine has been attributed to its inhibition of neuropeptide Y (NPY) neurons and activation of pro-opiomelanocortin (POMC) neurons in the hypothalamus. This study examined whether STAT3 was involved in these actions of amphetamine. EXPERIMENTAL APPROACH Rats were given amphetamine daily for 4 days. Changes in the expression of NPY, POMC, melanocortin MC3 receptors, PI3K and STAT3 in the hypothalamus were assessed by RT-PCR and Western blotting. Antisense oligonucleotides to STAT3 were also used. KEY RESULTS Expression of NPY decreased with a maximum effect day 2 of amphetamine treatment. Expression of POMC, MC3 receptors, PI3K and STAT3 increased with a maximum response on day 2. Moreover, phosphorylation of STAT3 and its DNA binding activity increased and was expressed in a similar pattern. Infusion (i.c.v.) of STAT3 antisense at 60 min before amphetamine treatment, partly blocked amphetamine-induced anorexia and modulated expression of NPY, POMC, MC3 receptors and PI3K, indicating the involvement of STAT3 in amphetamine-treated rats. CONCLUSIONS AND IMPLICATIONS Hypothalamic PI3K-STAT3 signalling participated in the regulation of NPY- and POMC-mediated appetite suppression. These findings may contribute to a better understanding of anorectic drugs.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang MQ, Tu JF, Chen H, Shen Y, Pang LX, Yang XH, Sun RH, Zheng YL. Janus kinase/signal transducer and activator of transcription inhibitors enhance the protective effect mediated by tanshinone IIA from hypoxic/ischemic injury in cardiac myocytes. Mol Med Rep 2014; 11:3115-21. [PMID: 25502794 DOI: 10.3892/mmr.2014.3063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 10/31/2014] [Indexed: 11/05/2022] Open
Abstract
Tanshinone IIA is a lipophilic abietane diterpene compound, which exhibits protective effects against ischaemia/reperfusion injury; however, the pathways responsible for the myocardial protective activities of tanshinone IIA remain to be elucidated. The aim of the present study was to investigate the effect of tanshinone IIA on the Janus‑activated kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, which is associated with cardiac dysfunction during ischemia/reperfusion. The results demonstrated that tanshinone IIA protected myocardial cells from hypoxia/ischemia‑induced injury in vitro and recovered decreased cell viability due to activation of the JAK2/STAT3 pathway, with 10 µM tanshinone IIA exhibiting the most potent protective effects. Flow cytometric analysis revealed that tanshinone IIA reversed the apoptotic aggravation induced by JAK2/STAT3 inhibitors following hypoxic ischemia. However, JAK2 inhibitors promoted the myocardial protective effect of tanshinone IIA from hypoxic‑ischemic injury. Furthermore, tanshinone IIA and JAK2/STAT3 inhibitors in combination augmented the protection of myocardial cells from apoptosis induced by ischemia/reperfusion preconditioning in vivo. In conclusion, the results of the present study indicated that JAK2/STAT3 inhibitors may enhance the protective effect of tanshinone IIA on cardiac myocytes from hypoxic ischemia-induced injury, therefore suggesting that JAK2/STAT3 inhibitors may have a potential application in combination therapies with tanshinone IIA.
Collapse
Affiliation(s)
- Mei-Qi Zhang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jian-Feng Tu
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Huan Chen
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Ye Shen
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Ling-Xiao Pang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiang-Hong Yang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Ren-Hua Sun
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yue-Liang Zheng
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
24
|
Butturini E, Darra E, Chiavegato G, Cellini B, Cozzolino F, Monti M, Pucci P, Dell’Orco D, Mariotto S. S-Glutathionylation at Cys328 and Cys542 impairs STAT3 phosphorylation. ACS Chem Biol 2014; 9:1885-93. [PMID: 24941337 DOI: 10.1021/cb500407d] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
STAT3 is a latent transcription factor that promotes cell survival and proliferation and is often constitutively active in cancers. Although many reports provide evidence that STAT3 is a direct target of oxidative stress, its redox regulation is poorly understood. Under oxidative conditions STAT3 activity can be modulated by S-glutathionylation, a reversible redox modification of cysteine residues. This suggests the possible cross-talk between phosphorylation and glutathionylation and points out that STAT3 is susceptible to redox regulation. Recently, we reported that decreasing the GSH content in different cell lines induces inhibition of STAT3 activity through the reversible oxidation of thiol groups. In the present work, we demonstrate that GSH/diamide treatment induces S-glutathionylation of STAT3 in the recombinant purified form. This effect was completely reversed by treatment with the reducing agent dithiothreitol, indicating that S-glutathionylation of STAT3 was related to formation of protein-mixed disulfides. Moreover, addition of the bulky negatively charged GSH moiety impairs JAK2-mediated STAT3 phosphorylation, very likely interfering with tyrosine accessibility and thus affecting protein structure and function. Mass mapping analysis identifies two glutathionylated cysteine residues, Cys328 and Cys542, within the DNA-binding domain and the linker domain, respectively. Site direct mutagenesis and in vitro kinase assay confirm the importance of both cysteine residues in the complex redox regulatory mechanism of STAT3. Cells expressing mutant were resistant in this regard. The data presented herein confirmed the occurrence of a redox-dependent regulation of STAT3, identified the more redox-sensitive cysteines within STAT3 structure, and may have important implications for development of new drugs.
Collapse
Affiliation(s)
- Elena Butturini
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona 37134, Italy
| | - Elena Darra
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona 37134, Italy
| | - Giulia Chiavegato
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona 37134, Italy
| | - Barbara Cellini
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona 37134, Italy
| | - Flora Cozzolino
- CEINGE Biotecnologie Avanzate and Department of Chemical Science, University of Naples “Federico II”, Naples 80138, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate and Department of Chemical Science, University of Naples “Federico II”, Naples 80138, Italy
| | - Piero Pucci
- CEINGE Biotecnologie Avanzate and Department of Chemical Science, University of Naples “Federico II”, Naples 80138, Italy
| | - Daniele Dell’Orco
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona 37134, Italy
| | - Sofia Mariotto
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona 37134, Italy
| |
Collapse
|
25
|
Ng IHW, Yeap YYC, Ong LSR, Jans DA, Bogoyevitch MA. Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:483-94. [PMID: 24286865 DOI: 10.1016/j.bbamcr.2013.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 12/30/2022]
Abstract
Although cytokine-driven STAT3 phosphorylation and activation are often transient, persistent activation of STAT3 is a hallmark of a range of pathologies and underpins altered transcriptional responses. As triggers in disease frequently include combined increases in inflammatory cytokine and reactive oxygen species levels, we report here how oxidative stress impacts on cytokine-driven STAT3 signal transduction events. In the model system of murine embryonic fibroblasts (MEFs), combined treatment with the interleukin-6 family cytokine Leukemia Inhibitory Factor (LIF) and hydrogen peroxide (H2O2) drove persistent STAT3 phosphorylation whereas STAT3 phosphorylation increased only transiently in response to LIF alone and was not increased by H2O2 alone. Surprisingly, increases in transcript levels of the direct STAT3 gene target SOCS3 were delayed during the combined LIF + H2O2 treatment, leading us to probe the impact of oxidative stress on STAT3 regulatory events. Indeed, LIF + H2O2 prolonged JAK activation, delayed STAT3 nuclear localisation, and caused relocalisation of nuclear STAT3 phosphatase TC-PTP (TC45) to the cytoplasm. In exploring the nuclear import/ export pathways, we observed disruption of nuclear/cytoplasmic distributions of Ran and importin-alpha3 in cells exposed to H2O2 and the resultant reduced nuclear trafficking of Classical importin-alpha/3-dependent protein cargoes. CRM1-mediated nuclear export persisted despite the oxidative stress insult, with sustained STAT3 Y705 phosphorylation enhancing STAT3 nuclear residency. Our studies thus reveal for the first time the striking impact of oxidative stress to sustain STAT3 phosphorylation and nuclear retention following disruption of multiple regulatory events, with significant implications for STAT3 function.
Collapse
|
26
|
Targeting oxidative stress in the hypothalamus: the effect of transcription factor STAT3 knockdown on endogenous antioxidants-mediated appetite control. Arch Toxicol 2014; 89:87-100. [DOI: 10.1007/s00204-014-1252-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/15/2014] [Indexed: 12/18/2022]
|
27
|
Don-Doncow N, Escobar Z, Johansson M, Kjellström S, Garcia V, Munoz E, Sterner O, Bjartell A, Hellsten R. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells. J Biol Chem 2014; 289:15969-78. [PMID: 24755219 DOI: 10.1074/jbc.m114.564252] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factor STAT3 is constitutively active in several malignancies including castration-resistant prostate cancer and has been identified as a promising therapeutic target. The fungal metabolite galiellalactone, a STAT3 signaling inhibitor, inhibits the growth, both in vitro and in vivo, of prostate cancer cells expressing active STAT3 and induces apoptosis of prostate cancer stem cell-like cells expressing phosphorylated STAT3 (pSTAT3). However, the molecular mechanism of this STAT3-inhibiting effect by galiellalactone has not been clarified. A biotinylated analogue of galiellalactone (GL-biot) was synthesized to be used for identification of galiellalactone target proteins. By adding streptavidin-Sepharose beads to GL-biot-treated DU145 cell lysates, STAT3 was isolated and identified as a target protein. Confocal microscopy revealed GL-biot in both the cytoplasm and the nucleus of DU145 cells treated with GL-biot, appearing to co-localize with STAT3 in the nucleus. Galiellalactone inhibited STAT3 binding to DNA in DU145 cell lysates without affecting phosphorylation status of STAT3. Mass spectrometry analysis of recombinant STAT3 protein pretreated with galiellalactone revealed three modified cysteines (Cys-367, Cys-468, and Cys-542). Here we demonstrate with chemical and molecular pharmacological methods that galiellalactone is a cysteine reactive inhibitor that covalently binds to one or more cysteines in STAT3 and that this leads to inhibition of STAT3 binding to DNA and thus blocks STAT3 signaling without affecting phosphorylation. This further validates galiellalactone as a promising direct STAT3 inhibitor for treatment of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Nicholas Don-Doncow
- From the Division of Urological Cancers, Lund University, SE-205 02 Malmö, Sweden
| | - Zilma Escobar
- the Division of Organic Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Martin Johansson
- From the Division of Urological Cancers, Lund University, SE-205 02 Malmö, Sweden
| | - Sven Kjellström
- the Department of Biochemistry and Structural Biology, Lund University, SE-221 00 Lund, Sweden, and
| | - Victor Garcia
- the Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Eduardo Munoz
- the Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Olov Sterner
- the Division of Organic Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Anders Bjartell
- From the Division of Urological Cancers, Lund University, SE-205 02 Malmö, Sweden
| | - Rebecka Hellsten
- From the Division of Urological Cancers, Lund University, SE-205 02 Malmö, Sweden,
| |
Collapse
|
28
|
Meier JA, Larner AC. Toward a new STATe: the role of STATs in mitochondrial function. Semin Immunol 2014; 26:20-8. [PMID: 24434063 PMCID: PMC4321820 DOI: 10.1016/j.smim.2013.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
Abstract
Signal Transducers and Activators of Transcription (STATs) have been studied extensively and have been associated with virtually every biochemical pathway. Until recently, however, they were thought to exert these effects solely as a nuclear transcription factor. The finding that STAT3 localizes to the mitochondria and modulates respiration has opened up a new avenue through which STATs may regulate the cell. Recently, other members of the STAT family (STAT1, STAT2, STAT5, and STAT6) have also been shown to be present in the mitochondria. Coordinate regulation at the nucleus and mitochondria by these proteins places them in a unique position to drive cellular processes to achieve a specific response. This review summarizes recent findings that have led to our current understanding of how STATs influence mitochondrial function in health and disease.
Collapse
Affiliation(s)
- Jeremy A. Meier
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA,Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew C. Larner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA,Corresponding author at: Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA. Tel.: +1 804 828 2903; fax: +1 804 827 1657. (A.C. Larner)
| |
Collapse
|
29
|
Mitroka S, Shoman ME, DuMond JF, Bellavia L, Aly OM, Abdel-Aziz M, Kim-Shapiro DB, King SB. Direct and nitroxyl (HNO)-mediated reactions of acyloxy nitroso compounds with the thiol-containing proteins glyceraldehyde 3-phosphate dehydrogenase and alkyl hydroperoxide reductase subunit C. J Med Chem 2013; 56:6583-92. [PMID: 23895568 DOI: 10.1021/jm400057r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitroxyl (HNO) reacts with thiols, and this reactivity requires the use of donors with 1-nitrosocyclohexyl acetate, pivalate, and trifluoroacetate, forming a new group. These acyloxy nitroso compounds inhibit glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by forming a reduction reversible active site disulfide and a reduction irreversible sulfinic acid or sulfinamide modification at Cys244. Addition of these acyloxy nitroso compounds to AhpC C165S yields a sulfinic acid and sulfinamide modification. A potential mechanism for these transformations includes nucleophilic addition of the protein thiol to a nitroso compound to yield an N-hydroxysulfenamide, which reacts with thiol to give disulfide or rearranges to sulfinamides. Known HNO donors produce the unsubstituted protein sulfinamide as the major product, while the acetate and pivalate give substituted sulfinamides that hydrolyze to sulfinic acids. These results suggest that nitroso compounds form a general class of thiol-modifying compounds, allowing their further exploration.
Collapse
Affiliation(s)
- Susan Mitroka
- Department of Chemistry and ‡Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu M, Wilson NO, Hibbert JM, Stiles JK. STAT3 regulates MMP3 in heme-induced endothelial cell apoptosis. PLoS One 2013; 8:e71366. [PMID: 23967200 PMCID: PMC3742773 DOI: 10.1371/journal.pone.0071366] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 06/30/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We have previously reported that free Heme generated during experimental cerebral malaria (ECM) in mice, is central to the pathogenesis of fatal ECM. Heme-induced up-regulation of STAT3 and CXCL10 promotes whereas up-regulation of HO-1 prevents brain tissue damage in ECM. We have previously demonstrated that Heme is involved in the induction of apoptosis in vascular endothelial cells. In the present study, we further tested the hypothesis that Heme reduces blood-brain barrier integrity during ECM by induction of apoptosis of brain vascular endothelial cells through STAT3 and its target gene matrix metalloproteinase three (MMP3) signaling. METHODS Genes associated with the JAK/STAT3 signaling pathway induced upon stimulation by Heme treatment, were assessed using real time RT(2) Profile PCR arrays. A human MMP3 promoter was cloned into a luciferase reporter plasmid, pMMP3, and its activity was examined following exposure to Heme treatment by a luciferase reporter gene assay. In order to determine whether activated nuclear protein STAT3 binds to the MMP3 promoter and regulates MMP3 gene, we conducted a ChIP analysis using Heme-treated and untreated human brain microvascular endothelial cells (HBVEC), and determined mRNA and protein expression levels of MMP3 using qRT-PCR and Western blot. Apoptosis in HBVEC treated with Heme was evaluated by MTT and TUNEL assay. RESULTS The results show that (1) Heme activates a variety of JAK/STAT3 downstream pathways in HBVEC. STAT3 targeted genes such as MMP3 and C/EBPb (Apoptosis-related genes), are up regulated in HBVEC treated with Heme. (2) Heme-induced HBVEC apoptosis via activation of STAT3 as well as its downstream signaling molecule MMP3 and upregulation of CXCL10 and HO-1 expressions. (3) Phosphorylated STAT3 binds to the MMP3 promoter in HBVEC cells, STAT3 transcribed MMP3 and induced MMP3 protein expression in HBVEC cells. CONCLUSIONS Activated STAT3 binds to the MMP3 promoter region and regulates MMP3 in Heme-induced endothelial cell apoptosis.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (ML); (JKS)
| | - Nana O. Wilson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jacqueline M. Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (ML); (JKS)
| |
Collapse
|
31
|
Zouein FA, Kurdi M, Booz GW. Dancing rhinos in stilettos: The amazing saga of the genomic and nongenomic actions of STAT3 in the heart. JAKSTAT 2013; 2:e24352. [PMID: 24069556 PMCID: PMC3772108 DOI: 10.4161/jkst.24352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 01/15/2023] Open
Abstract
A substantial body of evidence has shown that signal transducer and activator of transcription 3 (STAT3) has an important role in the heart in protecting the myocardium from ischemia and oxidative stress. These actions are attributed to STAT3 functioning as a transcription factor in upregulating cardioprotective genes. Loss of STAT3 has been implicated as well in the pathogenesis of heart failure and, in that context and in addition to the loss of a cardioprotective gene program, nuclear STAT3 has been identified as a transcriptional repressor important for the normal functioning of the ubiquitin-proteasome system for protein degradation. The later finding establishes a genomic role for STAT3 in controlling cellular homeostasis in cardiac myocytes independent of stress. Surprisingly, although a well-studied area, very few downstream gene targets of STAT3 in the heart have been definitively identified. In addition, STAT3 is now known to induce gene expression by noncanonical means that are not well characterized in the heart. On the other hand, recent evidence has shown that STAT3 has important nongenomic actions in cardiac myocytes that affect microtubule stability, mitochondrial respiration, and autophagy. These extranuclear actions of STAT3 involve protein–protein interactions that are incompletely understood, as is their regulation in both the healthy and injured heart. Moreover, how the diverse genomic and nongenomic actions of STAT3 crosstalk with each other is unchartered territory. Here we present an overview of what is and is not known about both the genomic and nongenomic actions of STAT3 in the heart from a structure-function perspective that focuses on the impact of posttranslational modifications and oxidative stress in regulating the actions and interactions of STAT3. Even though we have learnt a great deal about the role played by STAT3 in the heart, much more awaits to be discovered.
Collapse
Affiliation(s)
- Fouad A Zouein
- Department of Pharmacology and Toxicology; School of Medicine; and The Jackson Center for Heart Research at UMMC; The Cardiovascular-Renal Research Center; The University of Mississippi Medical Center; Jackson, MS USA
| | | | | |
Collapse
|
32
|
Donzelli S, Fischer G, King BS, Niemann C, DuMond JF, Heeren J, Wieboldt H, Baldus S, Gerloff C, Eschenhagen T, Carrier L, Böger RH, Espey MG. Pharmacological characterization of 1-nitrosocyclohexyl acetate, a long-acting nitroxyl donor that shows vasorelaxant and antiaggregatory effects. J Pharmacol Exp Ther 2013; 344:339-47. [PMID: 23211362 PMCID: PMC3558825 DOI: 10.1124/jpet.112.199836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022] Open
Abstract
Nitroxyl (HNO) donors have potential benefit in the treatment of heart failure and other cardiovascular diseases. 1-Nitrosocyclohexyl acetate (NCA), a new HNO donor, in contrast to the classic HNO donors Angeli's salt and isopropylamine NONOate, predominantly releases HNO and has a longer half-life. This study investigated the vasodilatative properties of NCA in isolated aortic rings and human platelets and its mechanism of action. NCA was applied on aortic rings isolated from wild-type mice and apolipoprotein E-deficient mice and in endothelial-denuded aortae. The mechanism of action of HNO was examined by applying NCA in the absence and presence of the HNO scavenger glutathione (GSH) and inhibitors of soluble guanylyl cyclase (sGC), adenylyl cyclase (AC), calcitonin gene-related peptide receptor (CGRP), and K(+) channels. NCA induced a concentration-dependent relaxation (EC(50), 4.4 µM). This response did not differ between all groups, indicating an endothelium-independent relaxation effect. The concentration-response was markedly decreased in the presence of excess GSH; the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide had no effect. Inhibitors of sGC, CGRP, and voltage-dependent K(+) channels each significantly impaired the vasodilator response to NCA. In contrast, inhibitors of AC, ATP-sensitive K(+) channels, or high-conductance Ca(2+)-activated K(+) channels did not change the effects of NCA. NCA significantly reduced contractile response and platelet aggregation mediated by the thromboxane A(2) mimetic 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F(2)(α) in a cGMP-dependent manner. In summary, NCA shows vasoprotective effects and may have a promising profile as a therapeutic agent in vascular dysfunction, warranting further evaluation.
Collapse
Affiliation(s)
- Sonia Donzelli
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf., Martinistr. 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|