1
|
Von Eggers JM, Wisnoski NI, Calder JW, Capo E, Groff DV, Krist AC, Shuman B. Environmental filtering governs consistent vertical zonation in sedimentary microbial communities across disconnected mountain lakes. Environ Microbiol 2024; 26:e16607. [PMID: 38477387 DOI: 10.1111/1462-2920.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Subsurface microorganisms make up the majority of Earth's microbial biomass, but ecological processes governing surface communities may not explain community patterns at depth because of burial. Depth constrains dispersal and energy availability, and when combined with geographic isolation across landscapes, may influence community assembly. We sequenced the 16S rRNA gene of bacteria and archaea from 48 sediment cores across 36 lakes in four disconnected mountain ranges in Wyoming, USA and used null models to infer assembly processes across depth, spatial isolation, and varying environments. Although we expected strong dispersal limitations across these isolated settings, community composition was primarily shaped by environmental selection. Communities consistently shifted from domination by organisms that degrade organic matter at the surface to methanogenic, low-energy adapted taxa in deeper zones. Stochastic processes-like dispersal limitation-contributed to differences among lakes, but because these effects weakened with depth, selection processes ultimately governed subsurface microbial biogeography.
Collapse
Affiliation(s)
- Jordan M Von Eggers
- Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology and Evolution, University of Wyoming, Laramie, Wyoming, USA
| | - Nathan I Wisnoski
- Wyoming Geographic Information Science Center, University of Wyoming, Laramie, Wyoming, USA
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - John W Calder
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Eric Capo
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Dulcinea V Groff
- Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming, USA
| | - Amy C Krist
- Program in Ecology and Evolution, University of Wyoming, Laramie, Wyoming, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Bryan Shuman
- Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology and Evolution, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
2
|
Lomakina AV, Bukin SV, Pogodaeva TV, Turchyn AV, Khlystov OM, Khabuev AV, Ivanov VG, Krylov AA, Zemskaya TI. Microbial diversity and authigenic siderite mediation in sediments surrounding the Kedr-1 mud volcano, Lake Baikal. GEOBIOLOGY 2023; 21:770-790. [PMID: 37698260 DOI: 10.1111/gbi.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
The gas hydrate-bearing structure-mud volcano Kedr-1 (Lake Baikal, southern basin)-is located near the coal-bearing sediments of the Tankhoy formation of Oligocene-Miocene age and can be an ideal source of gas-saturated fluid. A significant amount of siderite minerals (FeCO3 ) were collected from sediments at depths ranging from 0.5 to 327 cm below the lake floor (cmblf). An important feature of these carbonate minerals is the extremely strong enrichment in the heavy 13 C isotope, reaching values of +33.3‰ VPDB. The δ13 C of the siderite minerals, as well as their morphology and elemental composition, and the δ13 CDIC of the co-existing pore water, differed across layers of the core, which implies at least two generations of siderite formation. Here, we leverage mineralogical and geochemical data with 16S rRNA data from the microbial communities in sediments surrounding layers containing siderite minerals. Statistical data reveal the formation of three clusters of microbial communities based on taxonomical composition, key taxa among bacteria and archaea, and environmental parameters. Diversity and richness estimators decrease with sediment depth, with several similar prevailing clades located at the bottom of the core. Most of the taxa in the deep sediments could be associated with putative metabolisms involving organotrophic fermentation (Bathyarchaeia, Caldatribacteriota, and Chloroflexota). Various groups of methanogens (Methanoregulaceae, Methanosaetaceae, and Methanomassiliicoccales) and methanotrophic (Methanoperedenaceae) archaea are present in the sediment at variable relative abundances throughout the sampled depth. Based on the physicochemical characteristics of the sediment, carbon isotope analysis of carbonate minerals and DIC, and phylogenetic analysis of individual taxa and their metabolic potential, we present several models for subsurface siderite precipitation in Lake Baikal sediments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aleksey A Krylov
- Limnological Institute, SB RAS, Irkutsk, Russia
- VNIIOkeangeologia, St. Petersburg, Russia
- Institute of Earth Science, St Petersburg State University, St. Petersburg, Russia
| | | |
Collapse
|
3
|
Jaffe AL, Bardot C, Le Jeune AH, Liu J, Colombet J, Perrière F, Billard H, Castelle CJ, Lehours AC, Banfield JF. Variable impact of geochemical gradients on the functional potential of bacteria, archaea, and phages from the permanently stratified Lac Pavin. MICROBIOME 2023; 11:14. [PMID: 36694212 PMCID: PMC9875498 DOI: 10.1186/s40168-022-01416-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined. RESULTS Here, we determine the distribution of microbial lineages along an oxygen gradient in Lac Pavin, a deep, stratified lake in central France, and examine the influence of this gradient on their metabolism. Genome-based analyses revealed an enrichment of distinct C1 and CO2 fixation pathways in the oxic lake interface and anoxic zone/sediments, suggesting that oxygen likely plays a role in structuring metabolic strategies in non-CPR bacteria and archaea. Notably, we find that the oxidation of methane and its byproducts is largely spatially separated from methane production, which is mediated by diverse communities of sediment methanogens that vary on the centimeter scale. In contrast, we detected evidence for RuBisCO throughout the water column and sediments, including form II/III and form III-related enzymes encoded by CPR bacteria in the water column and DPANN archaea in the sediments. On the whole, though, CPR bacteria and phages did not show strong signals of gene content differentiation by depth, despite the fact that distinct species groups populate different lake and sediment compartments. CONCLUSIONS Overall, our analyses suggest that environmental gradients in Lac Pavin select for capacities of CPR bacteria and phages to a lesser extent than for other bacteria and archaea. This may be due to the fact that selection in the former groups is indirect and depends primarily on host characteristics. Video Abstract.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Corinne Bardot
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Anne-Hélène Le Jeune
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jett Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Fanny Perrière
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Hermine Billard
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Cindy J Castelle
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Liu YF, Yang L, Liu ZL, Chen J, Fang B, Zhou L, Liu JF, Yang SZ, Gu JD, Mu BZ. Discovery of the non-cosmopolitan lineages in Candidatus Thermoprofundales. Environ Microbiol 2022; 24:3063-3080. [PMID: 35254697 DOI: 10.1111/1462-2920.15965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
The recently proposed order Candidatus Thermoprofundales, currently containing only one family-level lineage Marine Benthic Group-D (MBG-D), is distributed in global subsurface ecosystems and ecologically important, but its diversity, evolution and metabolism remain largely unknown. Here we described two novel family-level specialized lineages in Ca. Thermoprofundales, JdFR-43 and HyVt, which are restricted to specific biotopes (primarily in marine hydrothermal vents and occasionally in oil reservoirs and hot springs) in contrast to the cosmopolitan lineage MBG-D. The comparative genomics revealed that the specialized lineages have streamlined genomes, higher GC contents, enriched genes associated with nucleotide biosynthesis, ribosome biogenesis and DNA repair and additional thermostable aminopeptidases, enabling them to adapt to high-temperature habitats such as marine hydrothermal vents, deep subsurface oil reservoirs and hot springs. On the contrary, the unique metabolic traits of the cosmopolitan MBG-D, motility, glycolysis, butanoate metabolism, secondary metabolites production and additional genes for specific peptides and carbohydrates degradation potentially enhance its response to environmental change. Substrate preference is found for most MAGs across all lineages with the ability to utilize both polysaccharides (chitin and starch) and proteinaceous substances, whereas JdFR-43 members from oil reservoirs can only utilize proteins. These results expand the diversity of Ca. Thermoprofundales significantly and further improve our understandings of the adaptations of Ca. Thermoprofundales to various environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Liu Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Zhong-Lin Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jing Chen
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Bo Fang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
5
|
Rossi F, Carles L, Donnadieu F, Batisson I, Artigas J. Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126651. [PMID: 34329075 DOI: 10.1016/j.jhazmat.2021.126651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The present study investigates the individual degrading behavior of bacterial strains isolated from glyphosate-degrading stream biofilms. In this aim, biofilms were subjected to enrichment experiments using glyphosate or its metabolite AMPA (aminomethyl phosphonic acid) as the sole phosphorus source. Five bacterial strains were isolated and taxonomically affiliated to Ensifer sp. CNII15, Acidovorax sp. CNI26, Agrobacterium tumefaciens CNI28, Novosphingobium sp. CNI35 and Ochrobactrum pituitosum CNI52. All strains were capable of completely dissipating glyphosate after 125-400 h and AMPA after 30-120 h, except for Ensifer sp. CNII15 that was not able to dissipate glyphosate but entirely dissipated AMPA after 200 h. AMPA dissipation was overall faster than glyphosate dissipation. The five strains degraded AMPA completely since formaldehyde and/or glycine accumulation was observed. During glyphosate degradation, the strain CNI26 used the C-P lyase degradation pathway since sarcosine was quantitatively produced, and C-P lyase gene expression was enhanced 30× compared to the control treatment. However, strains CNI28, CNI35 and CNI52 accumulated both formaldehyde and glycine after glyphosate transformation suggesting that both C-P lyase and/or glyphosate oxidase degradation pathways took place. Our study shows different and complementary glyphosate degradation pathways for bacteria co-existing in stream biofilms.
Collapse
Affiliation(s)
- Florent Rossi
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Louis Carles
- Department of Environmental Toxicology (Utox), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Florence Donnadieu
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Joan Artigas
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
6
|
Lyautey E, Billard E, Tissot N, Jacquet S, Domaizon I. Seasonal Dynamics of Abundance, Structure, and Diversity of Methanogens and Methanotrophs in Lake Sediments. MICROBIAL ECOLOGY 2021; 82:559-571. [PMID: 33538855 DOI: 10.1007/s00248-021-01689-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding temporal and spatial microbial community abundance and diversity variations is necessary to assess the functional roles played by microbial actors in the environment. In this study, we investigated spatial variability and temporal dynamics of two functional microbial sediment communities, methanogenic Archaea and methanotrophic bacteria, in Lake Bourget, France. Microbial communities were studied from 3 sites sampled 4 times over a year, with one core sampled at each site and date, and 5 sediment layers per core were considered. Microbial abundance in the sediment were determined using flow cytometry. Methanogens and methanotrophs community structures, diversity, and abundance were assessed using T-RFLP, sequencing, and real-time PCR targeting mcrA and pmoA genes, respectively. Changes both in structure and abundance were detected mainly at the water-sediment interface in relation to the lake seasonal oxygenation dynamics. Methanogen diversity was dominated by Methanomicrobiales (mainly Methanoregula) members, followed by Methanosarcinales and Methanobacteriales. For methanotrophs, diversity was dominated by Methylobacter in the deeper area and by Methylococcus in the shallow area. Organic matter appeared to be the main environmental parameter controlling methanogens, while oxygen availability influenced both the structure and abundance of the methanotrophic community.
Collapse
Affiliation(s)
- Emilie Lyautey
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France.
| | - Elodie Billard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Nathalie Tissot
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Stéphan Jacquet
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Isabelle Domaizon
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| |
Collapse
|
7
|
Eight metagenome-assembled genomes provide evidence for microbial adaptation in 20,000 to 1,000,000-year-old Siberian permafrost. Appl Environ Microbiol 2021; 87:e0097221. [PMID: 34288700 DOI: 10.1128/aem.00972-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly-cored permafrost from the Siberia Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as Aminicenantes, Atribacteria, Chloroflexi, and Actinobacteria within bacteria and Thermoprofundales within archaea. MAGs from these taxa have previously been obtained from non-permafrost environments and have been suggested to show adaptations to long-term energy-starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had higher proportions of clusters of orthologous genes (COGs) from 'Energy production and conversion' and 'Carbohydrate transport and metabolism' than their non-permafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis and cellulose degradation that were less prevalent in non-permafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high ionic strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA in high enough quality to assemble MAGs from microorganisms with adaptations to subsist long-term freezing in this extreme environment. Importance Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture independent techniques can give a glimpse into how these microorganisms function in these extreme low temperature and energy conditions. This will aid understanding of how they will change with the environment. This study presents genomic data from this unique environment aged ∼20,000 to 1,000,000-years-old.
Collapse
|
8
|
Yuan B, Wu W, Guo M, Zhou X, Xie S. Spatial-temporal dynamics and influencing factors of archaeal communities in the sediments of Lancang River cascade reservoirs (LRCR), China. PLoS One 2021; 16:e0253233. [PMID: 34129622 PMCID: PMC8205147 DOI: 10.1371/journal.pone.0253233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
The spatial and temporal distribution of the archaeal community and its driving factors in the sediments of large-scale regulated rivers, especially in rivers with cascade hydropower development rivers, remain poorly understood. Quantitative PCR (qPCR) and Illumina MiSeq sequencing of the 16S rRNA archaeal gene were used to comprehensively investigate the spatiotemporal diversity and structure of archaeal community in the sediments of the Lancang River cascade reservoirs (LRCR). The archaeal abundance ranged from 5.11×104 to 1.03×106 16S rRNA gene copies per gram dry sediment and presented no temporal variation. The richness, diversity, and community structure of the archaeal community illustrated a drastic spatial change. Thaumarchaeota and Euryyarchaeota were the dominant archaeal phyla in the sediments of the cascade rivers, and Bathyarchaeota was also an advantage in the sediments. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and carbon and nitrogen metabolism in downstream reservoirs, indicating that anthropogenic pollution discharges might act as the dominant selective force to alter the archaeal communities. Nitrate and C/N ratio were found to play important roles in the formation of the archaeal community composition. In addition, the sediment archaeal community structure was also closely related to the age of the cascade reservoir and hydraulic retention time (HRT). This finding indicates that the engineering factors of the reservoir might be the greatest contributor to the archaeal community structure in the LRCR.
Collapse
Affiliation(s)
- Bo Yuan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Wei Wu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Xiaode Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
9
|
Zemskaya TI, Bukin SV, Lomakina AV, Pavlova ON. Microorganisms in the Sediments of Lake Baikal, the Deepest and Oldest Lake in the World. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Misson B, Garnier C, Poulain AJ. Limited influence of marine sediment lyophilization on prokaryotic community structure assessed via amplicon sequencing: an example from environmentally contrasted sediment layers in Toulon harbor (France). PeerJ 2021; 9:e11075. [PMID: 33868808 PMCID: PMC8035903 DOI: 10.7717/peerj.11075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
Sediment lyophilization is a common process that allows for long-term conservation and sharing of marine sediments for multiple downstream analyses. Although it is often used for geochemical studies, the effects of lyophilization on prokaryotic taxonomic diversity assessment remained to be assessed. Here, we tested the effect of lyophilization on microbial diversity assessment using three sediment layers corresponding to various sediment ages and chemical contamination levels sampled from a marine Mediterranean harbor. Duplicate DNA samples were extracted from wet frozen or lyophilized sediments, and 16S rRNA gene amplicon sequence variants were analyzed. We detected changes in community structure over depth linked to both dominant and less abundant taxa whether sediments were lyophilized or not. Data from both wet frozen and lyophilized sediments led us to conclude that historical chemical contamination of the sediment of Toulon Bay did not appear to be the main environmental variable shaping prokaryotic community structure on the vertical dimension, but that sediment diagenesis was. We conclude that sediment lyophilization is compatible with marine biogeochemical and ecotoxicological studies but that caution should be used when discussing small variations among samples.
Collapse
Affiliation(s)
- Benjamin Misson
- Université de Toulon, Aix Marseille University, CNRS, IRD, MIO, Toulon, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille University, CNRS, IRD, MIO, Toulon, France
| | | |
Collapse
|
11
|
Coclet C, Garnier C, D’Onofrio S, Durrieu G, Pasero E, Le Poupon C, Omanović D, Mullot JU, Misson B, Briand JF. Trace Metal Contamination Impacts Predicted Functions More Than Structure of Marine Prokaryotic Biofilm Communities in an Anthropized Coastal Area. Front Microbiol 2021; 12:589948. [PMID: 33679628 PMCID: PMC7933014 DOI: 10.3389/fmicb.2021.589948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022] Open
Abstract
Trace metal (TM) contamination in marine coastal areas is a worldwide threat for aquatic communities. However, little is known about the influence of a multi-chemical contamination on both marine biofilm communities' structure and functioning. To determine how TM contamination potentially impacted microbial biofilms' structure and their functions, polycarbonate (PC) plates were immerged in both surface and bottom of the seawater column, at five sites, along strong TM contamination gradients, in Toulon Bay. The PC plates were incubated during 4 weeks to enable colonization by biofilm-forming microorganisms on artificial surfaces. Biofilms from the PC plates, as well as surrounding seawaters, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe prokaryotic community diversity, structure and functions, and to determine the relationships between bacterioplankton and biofilm communities. Our results showed that prokaryotic biofilm structure was not significantly affected by the measured environmental variables, while the functional profiles of biofilms were significantly impacted by Cu, Mn, Zn, and salinity. Biofilms from the contaminated sites were dominated by tolerant taxa to contaminants and specialized hydrocarbon-degrading microorganisms. Functions related to major xenobiotics biodegradation and metabolism, such as methane metabolism, degradation of aromatic compounds, and benzoate degradation, as well as functions involved in quorum sensing signaling, extracellular polymeric substances (EPS) matrix, and biofilm formation were significantly over-represented in the contaminated site relative to the uncontaminated one. Taken together, our results suggest that biofilms may be able to survive to strong multi-chemical contamination because of the presence of tolerant taxa in biofilms, as well as the functional responses of biofilm communities. Moreover, biofilm communities exhibited significant variations of structure and functional profiles along the seawater column, potentially explained by the contribution of taxa from surrounding sediments. Finally, we found that both structure and functions were significantly distinct between the biofilm and bacterioplankton, highlighting major differences between the both lifestyles, and the divergence of their responses facing to a multi-chemical contamination.
Collapse
Affiliation(s)
- Clément Coclet
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Sébastien D’Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Gaël Durrieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Emilie Pasero
- Microbia Environnement Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruðer Bošković Institute, Zagreb, Croatia
| | | | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | | |
Collapse
|
12
|
Wallenius AJ, Dalcin Martins P, Slomp CP, Jetten MSM. Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments. Front Microbiol 2021; 12:631621. [PMID: 33679659 PMCID: PMC7935538 DOI: 10.3389/fmicb.2021.631621] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/05/2022] Open
Abstract
Large amounts of methane, a potent greenhouse gas, are produced in anoxic sediments by methanogenic archaea. Nonetheless, over 90% of the produced methane is oxidized via sulfate-dependent anaerobic oxidation of methane (S-AOM) in the sulfate-methane transition zone (SMTZ) by consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Coastal systems account for the majority of total marine methane emissions and typically have lower sulfate concentrations, hence S-AOM is less significant. However, alternative electron acceptors such as metal oxides or nitrate could be used for AOM instead of sulfate. The availability of electron acceptors is determined by the redox zonation in the sediment, which may vary due to changes in oxygen availability and the type and rate of organic matter inputs. Additionally, eutrophication and climate change can affect the microbiome, biogeochemical zonation, and methane cycling in coastal sediments. This review summarizes the current knowledge on the processes and microorganisms involved in methane cycling in coastal sediments and the factors influencing methane emissions from these systems. In eutrophic coastal areas, organic matter inputs are a key driver of bottom water hypoxia. Global warming can reduce the solubility of oxygen in surface waters, enhancing water column stratification, increasing primary production, and favoring methanogenesis. ANME are notoriously slow growers and may not be able to effectively oxidize methane upon rapid sedimentation and shoaling of the SMTZ. In such settings, ANME-2d (Methanoperedenaceae) and ANME-2a may couple iron- and/or manganese reduction to AOM, while ANME-2d and NC10 bacteria (Methylomirabilota) could couple AOM to nitrate or nitrite reduction. Ultimately, methane may be oxidized by aerobic methanotrophs in the upper millimeters of the sediment or in the water column. The role of these processes in mitigating methane emissions from eutrophic coastal sediments, including the exact pathways and microorganisms involved, are still underexplored, and factors controlling these processes are unclear. Further studies are needed in order to understand the factors driving methane-cycling pathways and to identify the responsible microorganisms. Integration of the knowledge on microbial pathways and geochemical processes is expected to lead to more accurate predictions of methane emissions from coastal zones in the future.
Collapse
Affiliation(s)
- Anna J. Wallenius
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Paula Dalcin Martins
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Caroline P. Slomp
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
13
|
Euler S, Jeffrey LC, Maher DT, Mackenzie D, Tait DR. Shifts in methanogenic archaea communities and methane dynamics along a subtropical estuarine land use gradient. PLoS One 2020; 15:e0242339. [PMID: 33232349 PMCID: PMC7685437 DOI: 10.1371/journal.pone.0242339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/30/2020] [Indexed: 02/01/2023] Open
Abstract
In coastal aquatic ecosystems, prokaryotic communities play an important role in regulating the cycling of nutrients and greenhouse gases. In the coastal zone, estuaries are complex and delicately balanced systems containing a multitude of specific ecological niches for resident microbes. Anthropogenic influences (i.e. urban, industrial and agricultural land uses) along the estuarine continuum can invoke physical and biochemical changes that impact these niches. In this study, we investigate the relative abundance of methanogenic archaea and other prokaryotic communities, distributed along a land use gradient in the subtropical Burnett River Estuary, situated within the Great Barrier Reef catchment, Australia. Microbiological assemblages were compared to physicochemical, nutrient and greenhouse gas distributions in both pore and surface water. Pore water samples from within the most urbanised site showed a high relative abundance of methanogenic Euryarchaeota (7.8% of all detected prokaryotes), which coincided with elevated methane concentrations in the water column, ranging from 0.51 to 0.68 μM at the urban and sewage treatment plant (STP) sites, respectively. These sites also featured elevated dissolved organic carbon (DOC) concentrations (0.66 to 1.16 mM), potentially fuelling methanogenesis. At the upstream freshwater site, both methane and DOC concentrations were considerably higher (2.68 μM and 1.8 mM respectively) than at the estuarine sites (0.02 to 0.66 μM and 0.39 to 1.16 mM respectively) and corresponded to the highest relative abundance of methanotrophic bacteria. The proportion of sulfate reducing bacteria in the prokaryotic community was elevated within the urban and STP sites (relative abundances of 8.0%– 10.5%), consistent with electron acceptors with higher redox potentials (e.g. O2, NO3-) being scarce. Overall, this study showed that ecological niches in anthropogenically altered environments appear to give an advantage to specialized prokaryotes invoking a potential change in the thermodynamic landscape of the ecosystem and in turn facilitating the generation of methane–a potent greenhouse gas.
Collapse
Affiliation(s)
- Sebastian Euler
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
- * E-mail: ,
| | - Luke C. Jeffrey
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
| | - Damien T. Maher
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Derek Mackenzie
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
| | - Douglas R. Tait
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
14
|
Zamanpour MK, Kaliappan RS, Rockne KJ. Gas ebullition from petroleum hydrocarbons in aquatic sediments: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110997. [PMID: 32778285 DOI: 10.1016/j.jenvman.2020.110997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Gas ebullition in sediment results from biogenic gas production by mixtures of bacteria and archaea. It often occurs in organic-rich sediments that have been impacted by petroleum hydrocarbon (PHC) and other anthropogenic pollution. Ebullition occurs under a relatively narrow set of biological, chemical, and sediment geomechanical conditions. This process occurs in three phases: I) biogenic production of primarily methane and dissolved phase transport of the gases in the pore water to a bubble nucleation site, II) bubble growth and sediment fracture, and III) bubble rise to the surface. The rate of biogenic gas production in phase I and the resistance of the sediment to gas fracture in phase II play the most significant roles in ebullition kinetics. What is less understood is the role that substrate structure plays in the rate of methanogenesis that drives gas ebullition. It is well established that methanogens have a very restricted set of compounds that can serve as substrates, so any complex organic molecule must first be broken down to fermentable compounds. Given that most ebullition-active sediments are completely anaerobic, the well-known difficulty in degrading PHCs under anaerobic conditions suggests potential limitations on PHC-derived gas ebullition. To date, there are no studies that conclusively demonstrate that weathered PHCs can alone drive gas ebullition. This review consists of an overview of the factors affecting gas ebullition and the biochemistry of anaerobic PHC biodegradation and methanogenesis in sediment systems. We next compile results from the scholarly literature on PHCs serving as a source of methanogenesis. We combine these results to assess the potential for PHC-driven gas ebullition using energetics, kinetics, and sediment geomechanics analyses. The results suggest that short chain <C10 alkanes are the only PHC class that alone may have the potential to drive ebullition, and that PHC-derived methanogenesis likely plays a minor part in driving gas ebullition in contaminated sediments compared to natural organic matter.
Collapse
Affiliation(s)
| | - Raja Shankar Kaliappan
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Karl John Rockne
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
15
|
Han X, Schubert CJ, Fiskal A, Dubois N, Lever MA. Eutrophication as a driver of microbial community structure in lake sediments. Environ Microbiol 2020; 22:3446-3462. [PMID: 32510812 DOI: 10.1111/1462-2920.15115] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/27/2022]
Abstract
Lake sediments are globally important carbon sinks. Although the fate of organic carbon in lake sediments depends significantly on microorganisms, only few studies have investigated controls on lake sedimentary microbial communities. Here we investigate the impact of anthropogenic eutrophication, which affects redox chemistry and organic matter (OM) sources in sediments, on microbial communities across five lakes in central Switzerland. Lipid biomarkers and distributions of microbial respiration reactions indicate strong increases in aquatic OM contributions and microbial activity with increasing trophic state. Across all lakes, 16S rRNA genes analyses indicate similar depth-dependent zonations at the phylum- and class-level that follow vertical distributions of OM sources and respiration reactions. Yet, there are notable differences, such as higher abundances of nitrifying Bacteria and Archaea in an oligotrophic lake. Furthermore, analyses at the order-level and below suggest that changes in OM sources due to eutrophication cause permanent changes in bacterial community structure. By contrast, archaeal communities are differentiated according to trophic state in recently deposited layers, but converge in older sediments deposited under different trophic regimes. Our study indicates an important role for trophic state in driving lacustrine sediment microbial communities and reveals fundamental differences in the temporal responses of sediment Bacteria and Archaea to eutrophication.
Collapse
Affiliation(s)
- Xingguo Han
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, Zurich, 8092, Switzerland
| | - Carsten Johnny Schubert
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Seestrasse 79, Kastanienbaum, 6047, Switzerland
| | - Annika Fiskal
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, Zurich, 8092, Switzerland
| | - Nathalie Dubois
- Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Sonneggstrasse 5, Zurich, 8092, Switzerland.,Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Überlandstrasse 133, Dübendorf, 8600, Switzerland
| | - Mark Alexander Lever
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, Zurich, 8092, Switzerland
| |
Collapse
|
16
|
Yang Y, Chen J, Tong T, Xie S, Liu Y. Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114106. [PMID: 32041086 DOI: 10.1016/j.envpol.2020.114106] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Freshwater lakes, especially eutrophic ones, have become a hotspot of methanogenesis. However, the effects of eutrophication and seasonality on methanogenesis activity and methanogenic microbial community remain unclear. In the current study, for two adjacent lakes at different trophic status, their methanogenesis potential in different seasons was evaluated using incubation experiments. The density, diversity, and community structure of methanogens were analyzed based on the mcrA gene. Correlation analysis and redundancy analysis were carried out to identify the environmental factors driving the variations of methanogenesis potential and methanogen community. The results showed that eutrophication could result in active methanogenesis with relatively high seasonal variance. The methanogenesis variation could be well explained by carbon input in association with algal growth, as well as the change of methanogen population density. With the dominance of Methanomicrobiales in both lakes, the hydrogenotrophic pathway had a major contribution to total methane production. The considerable proportion of Methanomassiliicocales in eutrophic lake implied that methylotrophic methanogenesis might be previously underestimated. These results added new insights towards methanogenesis process in eutrophic freshwater lakes.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Compte-Port S, Fillol M, Gich F, Borrego CM. Metabolic versatility of freshwater sedimentary archaea feeding on different organic carbon sources. PLoS One 2020; 15:e0231238. [PMID: 32267873 PMCID: PMC7141681 DOI: 10.1371/journal.pone.0231238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Members of the phylum Bathyarchaeota and the class Thermoplasmata are widespread in marine and freshwater sediments where they have been recognized as key players in the carbon cycle. Here, we tested the responsiveness of archaeal communities on settled plant debris and sediment from a karstic lake to different organic carbon amendments (amino acids, plant-derived carbohydrates, and aromatics) using a lab-scale microcosm. Changes in the composition and abundance of sediment and biofilm archaeal communities in both DNA and RNA fractions were assessed by 16S rRNA gene amplicon sequencing and qPCR, respectively, after 7 and 30 days of incubation. Archaeal communities showed compositional changes in terms of alpha and beta diversity in relation to the type of carbon source (amino acids vs. plant-derived compounds), the nucleic acid fraction (DNA vs. RNA), and the incubation time (7 vs. 30 days). Distinct groups within the Bathyarchaeota (Bathy-15 and Bathy-6) and the Thermoplasmata (MBG-D) differently reacted to carbon supplements as deduced from the analysis of RNA libraries. Whereas Bathyarchaeota in biofilms showed a long-term positive response to humic acids, their counterparts in the sediment were mainly stimulated by the addition of tryptophan, suggesting the presence of different subpopulations in both habitats. Overall, our work presents an in vitro assessment of the versatility of archaea inhabiting freshwater sediments towards organic carbon and introduces settled leaf litter as a new habitat for the Bathyarchaeota and the Thermoplasmata.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Mireia Fillol
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Frederic Gich
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Carles M. Borrego
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
18
|
Gagliano MC, Sudmalis D, Pei R, Temmink H, Plugge CM. Microbial Community Drivers in Anaerobic Granulation at High Salinity. Front Microbiol 2020; 11:235. [PMID: 32174895 PMCID: PMC7054345 DOI: 10.3389/fmicb.2020.00235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/31/2020] [Indexed: 01/24/2023] Open
Abstract
In the recent years anaerobic sludge granulation at elevated salinities in upflow anaerobic sludge blanket (UASB) reactors has been investigated in few engineering based studies, never addressing the microbial community structural role in driving aggregation and keeping granules stability. In this study, the combination of different techniques was applied in order to follow the microbial community members and their structural dynamics in granules formed at low (5 g/L Na+) and high (20 g/L Na+) salinity conditions. Experiments were carried out in four UASB reactors fed with synthetic wastewater, using two experimental set-ups. By applying 16S rRNA gene analysis, the comparison of granules grown at low and high salinity showed that acetotrophic Methanosaeta harundinacea was the dominant methanogen at both salinities, while the dominant bacteria changed. At 5 g/L Na+, cocci chains of Streptoccoccus were developing, while at 20 g/L Na+ members of the family Defluviitaleaceae formed long filaments. By means of Fluorescence in Situ Hybridization (FISH) and Scanning Electron Microscopy (SEM), it was shown that aggregation of Methanosaeta in compact clusters and the formation of filaments of Streptoccoccus and Defluviitaleaceae during the digestion time were the main drivers for the granulation at low and high salinity. Interestingly, when the complex protein substrate (tryptone) in the synthetic wastewater was substituted with single amino acids (proline, leucine and glutamic acid), granules at high salinity (20 g/L Na+) were not formed. This corresponded to a decrease of Methanosaeta relative abundance and a lack of compact clustering, together with disappearance of Defluviitaleaceae and consequent absence of bacterial filaments within the dispersed biomass. In these conditions, a biofilm was growing on the glass wall of the reactor instead, highlighting that a complex protein substrate such as tryptone can contribute to granules formation at elevated salinity.
Collapse
Affiliation(s)
- Maria Cristina Gagliano
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| | - Dainis Sudmalis
- Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Ruizhe Pei
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| | - Hardy Temmink
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands.,Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| |
Collapse
|
19
|
Rissanen AJ, Peura S, Mpamah PA, Taipale S, Tiirola M, Biasi C, Mäki A, Nykänen H. Vertical stratification of bacteria and archaea in sediments of a small boreal humic lake. FEMS Microbiol Lett 2019; 366:5365400. [PMID: 30806656 PMCID: PMC6476745 DOI: 10.1093/femsle/fnz044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 02/23/2019] [Indexed: 01/22/2023] Open
Abstract
Although sediments of small boreal humic lakes are important carbon stores and greenhouse gas sources, the composition and structuring mechanisms of their microbial communities have remained understudied. We analyzed the vertical profiles of microbial biomass indicators (PLFAs, DNA and RNA) and the bacterial and archaeal community composition (sequencing of 16S rRNA gene amplicons and qPCR of mcrA) in sediment cores collected from a typical small boreal lake. While microbial biomass decreased with sediment depth, viable microbes (RNA and PLFA) were present all through the profiles. The vertical stratification patterns of the bacterial and archaeal communities resembled those in marine sediments with well-characterized groups (e.g. Methanomicrobia, Proteobacteria, Cyanobacteria, Bacteroidetes) dominating in the surface sediment and being replaced by poorly-known groups (e.g. Bathyarchaeota, Aminicenantes and Caldiserica) in the deeper layers. The results also suggested that, similar to marine systems, the deep bacterial and archaeal communities were predominantly assembled by selective survival of taxa able to persist in the low energy conditions. Methanotrophs were rare, further corroborating the role of these methanogen-rich sediments as important methane emitters. Based on their taxonomy, the deep-dwelling groups were putatively organo-heterotrophic, organo-autotrophic and/or acetogenic and thus may contribute to changes in the lake sediment carbon storage.
Collapse
Affiliation(s)
- Antti J Rissanen
- Tampere University, Faculty of Engineering and Natural Sciences, Korkeakoulunkatu 10, FI-33720, Tampere, Finland.,University of Jyväskylä, Department of Biological and Environmental Science, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Sari Peura
- University of Jyväskylä, Department of Biological and Environmental Science, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Promise A Mpamah
- University of Jyväskylä, Department of Biological and Environmental Science, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Sami Taipale
- University of Jyväskylä, Department of Biological and Environmental Science, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Marja Tiirola
- University of Jyväskylä, Department of Biological and Environmental Science, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Christina Biasi
- University of Eastern Finland, Department of Environmental and Biological Sciences, PO Box 1627, FI-70211, Kuopio, Finland
| | - Anita Mäki
- University of Jyväskylä, Department of Biological and Environmental Science, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Hannu Nykänen
- University of Eastern Finland, Department of Environmental and Biological Sciences, PO Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
20
|
Vokou D, Genitsaris S, Karamanoli K, Vareli K, Zachari M, Voggoli D, Monokrousos N, Halley JM, Sainis I. Metagenomic Characterization Reveals Pronounced Seasonality in the Diversity and Structure of the Phyllosphere Bacterial Community in a Mediterranean Ecosystem. Microorganisms 2019; 7:microorganisms7110518. [PMID: 31683878 PMCID: PMC6920919 DOI: 10.3390/microorganisms7110518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/20/2019] [Accepted: 10/29/2019] [Indexed: 01/29/2023] Open
Abstract
We explore how the phyllosphere microbial community responds to a very seasonal environment such as the Mediterranean. For this, we studied the epiphytic bacterial community of a Mediterranean ecosystem in summer and winter, expecting to detect seasonal differences at their maximum. With high-throughput sequencing (HTS), we detected the operational taxonomic units (OTUs) present in the phyllosphere and also in the surrounding air. The epiphytic community is approximately five orders of magnitude denser than the airborne one and is made almost exclusively by habitat specialists. The two communities differ considerably but Proteobacteria and Actinobacteria are dominant in both. Of the five most abundant phyllosphere OTUs, two were closely related to Sphingomonas strains, one to Methylobacterium and the other two to Rhizobiales and Burkholderiales. We found the epiphytic community to become much richer, more distinct, even and diverse, denser and more connected in summer. In contrast, there was no difference in the level of bacterial colonization of the phyllosphere between the two seasons, although there were seasonal differences for individual taxonomic groups: Firmicutes, Gemmatimonadetes and Chlroroflexi had a higher participation in summer, whereas the major Proteobacteria classes presented reverse patterns, with Betaproteobacteria increasing in summer at the expense of the prominent Alphaproteobacteria.
Collapse
Affiliation(s)
- Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Savvas Genitsaris
- School of Economics, Business Administration and Legal Studies, International Hellenic University, 57001 Thermi, Greece.
| | - Katerina Karamanoli
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Katerina Vareli
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| | - Marina Zachari
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| | - Despoina Voggoli
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| | - Nikolaos Monokrousos
- Department of Soil Science of Athens, Hellenic Agricultural Organization-Demeter, Institute of Soil and Water Resources, 14123 Lykovrisi, Greece.
| | - John Maxwell Halley
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| | - Ioannis Sainis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
21
|
Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe. Antonie van Leeuwenhoek 2019; 112:1801-1814. [PMID: 31372944 DOI: 10.1007/s10482-019-01308-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Although arctic and subarctic lakes are important sources of methane, the emission of which will increase due to the melting of permafrost, the processes related to the methane cycle in such environments are far from being comprehensively understood. Here we studied the microbial communities in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe using high-throughput sequencing of the 16S rRNA and methyl coenzyme M reductase subunit A genes. Hydrogenotrophic methanogens of the order Methanomicrobiales were abundant, both in the water column and in sediments, while the share of acetoclastic Methanosaetaceae decreased with the depth of sediments. Members of the Methanomassiliicoccales order were absent in the water but abundant in the deep sediments. Archaea known to perform anaerobic oxidation of methane were not found. The bacterial component of the microbial community in the bottom water layer included oxygenic (Cyanobacteria) and anoxygenic (Chlorobi) phototrophs, aerobic Type I methanotrophs, methylotrophs, syntrophs, and various organotrophs. In deeper sediments the diversity of the microbial community decreased, and it became dominated by methanogenic archaea and the members of the Bathyarchaeota, Chloroflexi and Deltaproteobacteria. This study shows that the sediments of a subarctic meromictic lake contain a taxonomically and metabolically diverse community potentially capable of complete mineralization of organic matter.
Collapse
|
22
|
Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y, Gu JD, Li M. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME JOURNAL 2018; 13:885-901. [PMID: 30514872 PMCID: PMC6461988 DOI: 10.1038/s41396-018-0321-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/07/2018] [Accepted: 11/04/2018] [Indexed: 01/06/2023]
Abstract
Marine Benthic Group D (MBG-D) archaea, discovered by 16S rRNA gene survey decades ago, are ecologically important, yet understudied and uncultured sedimentary archaea. In this study, a comprehensive meta-analysis based on the 16S rRNA genes of MBG-D archaea showed that MBG-D archaea are one of the most frequently found archaeal lineages in global sediment with widespread distribution and high abundance, including 16 subgroups in total. Interestingly, some subgroups show significant segregations toward salinity and methane seeps. Co-occurrence analyses indicate significant non-random association of MBG-D archaea with Lokiarchaeota (in both saline and freshwater sediments) and Hadesarchaea, suggesting potential interactions among these archaeal groups. Meanwhile, based on four nearly complete metagenome-assembled genomes (MAGs) and corresponding metatranscriptomes reconstructed from mangrove and intertidal mudflat sediments, we provide insights on metabolic potentials and ecological functions of MBG-D archaea. MBG-D archaea appear to be capable of transporting and assimilating peptides and generating acetate and ethanol through fermentation. Metatranscriptomic analysis suggests high expression of genes for acetate and amino acid utilization and for peptidases, especially the M09B-type extracellular peptidase (collagenase) showing high expression levels in all four mangrove MAGs. Beyond heterotrophic central carbon metabolism, the MBG-D genomes include genes that might encode two autotrophic pathways: Wood–Ljundahl (WL) pathways using both H4MPT and H4folate as C1 carriers, and an incomplete dicarboxylate/4-hydroxybutyrate cycle with alternative bypasses from pyruvate to malate/oxaloacetate during dicarboxylation. These findings reveal MBG-D archaea as an important ubiquitous benthic sedimentary archaeal group with specific mixotrophic metabolisms, so we proposed the name Thermoprofundales as a new Order within the Class Thermoplasmata. Globally, Thermoprofundales and other benthic archaea might synergistically transform benthic organic matter, possibly playing a vital role in sedimentary carbon cycle.
Collapse
Affiliation(s)
- Zhichao Zhou
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, People's Republic of China.,Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China.
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, People's Republic of China.
| |
Collapse
|
23
|
Bendia AG, Araujo GG, Pulschen AA, Contro B, Duarte RTD, Rodrigues F, Galante D, Pellizari VH. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles 2018; 22:917-929. [PMID: 30109444 DOI: 10.1007/s00792-018-1048-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Polar volcanoes harbor unique conditions of extreme temperature gradients capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located at Maritime Antarctica that is notable for its pronounced temperature gradients over very short distances, reaching values up to 100 °C in the fumaroles, and subzero temperatures next to the glaciers. Due to these characteristics, Deception can be considered an interesting analogue of extraterrestrial environments. Our main goal in this study was to isolate thermophilic and psychrophilic bacteria from sediments associated with fumaroles and glaciers from two geothermal sites in Deception Island, comprising temperatures between 0 and 98 °C, and to evaluate their survivability to desiccation and UV-C radiation. Our results revealed that culturable thermophiles and psychrophiles were recovered among the extreme temperature gradient in Deception volcano, which indicates that these extremophiles remain alive even when the conditions do not comprise their growth range. The viability of culturable psychrophiles in hyperthermophilic environments is still poorly understood and our work showed the importance of future studies about their survival strategies in high temperatures. Finally, the spore-forming thermophilic isolates which we found have displayed good survival to desiccation and UV-C irradiation, which suggests their potential to be further explored in astrobiological studies.
Collapse
Affiliation(s)
- Amanda G Bendia
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil.
| | - Gabriel G Araujo
- Interunities Graduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil
| | - André A Pulschen
- Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Contro
- Undergraduate Program in Biology, Universidade Estadual Paulista "Julio de Mesquisa Filho", São Paulo, Brazil
| | - Rubens T D Duarte
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil
| | - Fábio Rodrigues
- Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Vivian H Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
24
|
Gagliano MC, Neu TR, Kuhlicke U, Sudmalis D, Temmink H, Plugge CM. EPS Glycoconjugate Profiles Shift as Adaptive Response in Anaerobic Microbial Granulation at High Salinity. Front Microbiol 2018; 9:1423. [PMID: 30013532 PMCID: PMC6036115 DOI: 10.3389/fmicb.2018.01423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022] Open
Abstract
Anaerobic granulation at elevated salinities has been discussed in several analytical and engineering based studies. They report either enhanced or decreased efficiencies in relation to different Na+ levels. To evaluate this discrepancy, we focused on the microbial and structural dynamics of granules formed in two upflow anaerobic sludge blanket (UASB) reactors treating synthetic wastewater at low (5 g/L Na+) and high (20 g/L Na+) salinity conditions. Granules were successfully formed in both conditions, but at high salinity, the start-up inoculum quickly formed larger granules having a thicker gel layer in comparison to granules developed at low salinity. Granules retained high concentrations of sodium without any negative effect on biomass activity and structure. 16S rRNA gene analysis and Fluorescence in Situ Hybridization (FISH) identified the acetotrophic Methanosaeta harundinacea as the dominant microorganism at both salinities. Fluorescence lectin bar coding (FLBC) screening highlighted a significant shift in the glycoconjugate pattern between granules grown at 5 and 20 g/L of Na+, and the presence of different extracellular domains. The excretion of a Mannose-rich cloud-like glycoconjugate matrix, which seems to form a protective layer for some methanogenic cells clusters, was found to be the main distinctive feature of the microbial community grown at high salinity conditions.
Collapse
Affiliation(s)
- Maria C Gagliano
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Thomas R Neu
- Helmholtz Centre for Environmental Research, Magdeburg, Germany
| | - Ute Kuhlicke
- Helmholtz Centre for Environmental Research, Magdeburg, Germany
| | - Dainis Sudmalis
- Sub-department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Hardy Temmink
- Sub-department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Compte-Port S, Borrego CM, Moussard H, Jeanbille M, Restrepo-Ortiz CX, de Diego A, Rodriguez-Iruretagoiena A, Gredilla A, Fdez-Ortiz de Vallejuelo S, Galand PE, Kalenitchenko D, Rols JL, Pokrovsky OS, Gonzalez AG, Camarero L, Muñiz S, Navarro-Navarro E, Auguet JC. Metal contaminations impact archaeal community composition, abundance and function in remote alpine lakes. Environ Microbiol 2018; 20:2422-2437. [PMID: 29687572 DOI: 10.1111/1462-2920.14252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022]
Abstract
Using the 16S rRNA and mcrA genes, we investigated the composition, abundance and activity of sediment archaeal communities within 18 high-mountain lakes under contrasted metal levels from different origins (bedrock erosion, past-mining activities and atmospheric depositions). Bathyarchaeota, Euryarchaeota and Woesearchaeota were the major phyla found at the meta-community scale, representing 48%, 18.3% and 15.2% of the archaeal community respectively. Metals were equally important as physicochemical variables in explaining the assemblage of archaeal communities and their abundance. Methanogenesis appeared as a process of central importance in the carbon cycle within sediments of alpine lakes as indicated by the absolute abundance of methanogen 16S rRNA and mcrA gene transcripts (105 to 109 copies g-1 ). We showed that methanogen abundance and activity were significantly reduced with increasing concentrations of Pb and Cd, two indicators of airborne metal contaminations. Considering the ecological importance of methanogenesis in sediment habitats, these metal contaminations may have system wide implications even in remote area such as alpine lakes. Overall, this work was pioneer in integrating the effect of long-range atmospheric depositions on archaeal communities and indicated that metal contamination might significantly compromise the contribution of Archaea to the carbon cycling of the mountain lake sediments.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Group of Quality and Microbial Diversity, Catalan Institute for Water research (ICRA), Girona, Spain
| | - Carles M Borrego
- Group of Quality and Microbial Diversity, Catalan Institute for Water research (ICRA), Girona, Spain.,Group of Molecular Microbial Ecology (gEMM), Institute of Aquatic Ecology, University of Girona (UdG), Girona, Spain
| | - Hélène Moussard
- Equipe Environnement et Microbiologie (IPREM-EEM), UMR CNRS 5254, Université de Pau et des Pays de l'Adour, Pau, France
| | - Mathilde Jeanbille
- Department of plant pathology and forest mycology Swedish University of Agricultural Sciences, Box 7026, Uppsala, Sweden
| | | | - Alberto de Diego
- Department of analytical chemistry, Faculty of science and technology, University of Basque Country, Bilbao, Spain
| | | | - Ainara Gredilla
- Department of analytical chemistry, Faculty of science and technology, University of Basque Country, Bilbao, Spain
| | | | - Pierre E Galand
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls/Mer, F-66650, France
| | - Dimitri Kalenitchenko
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls/Mer, F-66650, France
| | - Jean-Luc Rols
- EcoLab, UMR CNRS 5245, Observatory of Midi-Pyrénées, University Paul Sabatier, Toulouse, France
| | - Oleg S Pokrovsky
- Geosciences and Environment Toulouse, UMR 5563 CNRS, 14 Avenue Edouard Belin 31400, Toulouse, France.,BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | - Aridane G Gonzalez
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Lluis Camarero
- Group of integrative freshwater ecology, Department of continental ecology, Center of advanced studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Selene Muñiz
- Pyrenean institute of ecology (IPE-CSIC), Zaragoza, Spain
| | | | | |
Collapse
|
26
|
Rissanen AJ, Karvinen A, Nykänen H, Peura S, Tiirola M, Mäki A, Kankaala P. Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two shallow boreal lakes. FEMS Microbiol Ecol 2017. [PMID: 28637304 DOI: 10.1093/femsec/fix078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of anaerobic CH4 oxidation in controlling lake sediment CH4 emissions remains unclear. Therefore, we tested how relevant EAs (SO42-, NO3-, Fe3+, Mn4+, O2) affect CH4 production and oxidation in the sediments of two shallow boreal lakes. The changes induced to microbial communities by the addition of Fe3+ and Mn4+ were studied using next-generation sequencing targeting the 16S rRNA and methyl-coenzyme M reductase (mcrA) genes and mcrA transcripts. Putative anaerobic CH4-oxidizing archaea (ANME-2D) and bacteria (NC 10) were scarce (up to 3.4% and 0.5% of archaeal and bacterial 16S rRNA genes, respectively), likely due to the low environmental stability associated with shallow depths. Consequently, the potential anaerobic CH4 oxidation (0-2.1 nmol g-1dry weight (DW)d-1) was not enhanced by the addition of EAs, nor important in consuming the produced CH4 (0.6-82.5 nmol g-1DWd-1). Instead, the increased EA availability suppressed CH4 production via the outcompetition of methanogens by anaerobically respiring bacteria and via the increased protection of organic matter from microbial degradation induced by Fe3+ and Mn4+. Future studies could particularly assess whether anaerobic CH4 oxidation has any ecological relevance in reducing CH4 emissions from the numerous CH4-emitting shallow lakes in boreal and tundra landscapes.
Collapse
Affiliation(s)
- Antti J Rissanen
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, FI-33101 Tampere, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Anu Karvinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Hannu Nykänen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Sari Peura
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Science for Life Laboratories, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Marja Tiirola
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Anita Mäki
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Paula Kankaala
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| |
Collapse
|
27
|
Compte-Port S, Subirats J, Fillol M, Sànchez-Melsió A, Marcé R, Rivas-Ruiz P, Rosell-Melé A, Borrego CM. Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula. MICROBIAL ECOLOGY 2017; 74:776-787. [PMID: 28508926 DOI: 10.1007/s00248-017-0989-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Jèssica Subirats
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Mireia Fillol
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Rafael Marcé
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Pedro Rivas-Ruiz
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antoni Rosell-Melé
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain.
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Spain.
| |
Collapse
|
28
|
Laskar F, Das Purkayastha S, Sen A, Bhattacharya MK, Misra BB. Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems. J Basic Microbiol 2017; 58:101-119. [PMID: 29083035 DOI: 10.1002/jobm.201700341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
About half of the global methane (CH4 ) emission is contributed by the methanogenic archaeal communities leading to a significant increase in global warming. This unprecedented situation has increased the ever growing necessity of evaluating the control measures for limiting CH4 emission to the atmosphere. Unfortunately, research endeavors on the diversity and functional interactions of methanogens are not extensive till date. We anticipate that the study of the diversity of methanogenic community is paramount for understanding the metabolic processes in freshwater lake ecosystems. Although there are several disadvantages of conventional culture-based methods for determining the diversity of methanogenic archaeal communities, in order to understand their ecological roles in natural environments it is required to culture the microbes. Recently different molecular techniques have been developed for determining the structure of methanogenic archaeal communities thriving in freshwater lake ecosystem. The two gene based cloning techniques required for this purpose are 16S rRNA and methyl coenzyme M reductase (mcrA) in addition to the recently developed metagenomics approaches and high throughput next generation sequencing efforts. This review discusses the various methods of culture-dependent and -independent measures of determining the diversity of methanogen communities in lake sediments in lieu of the different molecular approaches and inter-relationships of diversity of methanogenic archaea.
Collapse
Affiliation(s)
- Folguni Laskar
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Aniruddha Sen
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Biswapriya B Misra
- Department of Genetics, Texas Biomedical Research Institute, San Antonio 78227, Texas, USA
| |
Collapse
|
29
|
Wurzbacher C, Fuchs A, Attermeyer K, Frindte K, Grossart HP, Hupfer M, Casper P, Monaghan MT. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment. MICROBIOME 2017; 5:41. [PMID: 28388930 PMCID: PMC5385010 DOI: 10.1186/s40168-017-0255-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/15/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. METHODS We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. RESULTS Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. CONCLUSIONS By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.
Collapse
Affiliation(s)
- Christian Wurzbacher
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587 Germany
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195 Germany
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 100, Göteborg, Sweden
| | - Andrea Fuchs
- Carl-von-Ossietzky University Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg, 26129 Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
| | - Katrin Attermeyer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18d, Uppsala, 75236 Sweden
| | - Katharina Frindte
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, Nussallee 13, Bonn, 53115 Germany
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
- Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam, 14469 Germany
| | - Michael Hupfer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587 Germany
| | - Peter Casper
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
| | - Michael T. Monaghan
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587 Germany
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195 Germany
| |
Collapse
|
30
|
Narrowe AB, Angle JC, Daly RA, Stefanik KC, Wrighton KC, Miller CS. High-resolution sequencing reveals unexplored archaeal diversity in freshwater wetland soils. Environ Microbiol 2017; 19:2192-2209. [DOI: 10.1111/1462-2920.13703] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Adrienne B. Narrowe
- Department of Integrative Biology; University of Colorado Denver; Denver CO USA
| | - Jordan C. Angle
- Department of Microbiology; The Ohio State University; Columbus OH USA
| | - Rebecca A. Daly
- Department of Microbiology; The Ohio State University; Columbus OH USA
| | - Kay C. Stefanik
- School of Environment and Natural Resources; The Ohio State University; Columbus OH USA
| | - Kelly C. Wrighton
- Department of Microbiology; The Ohio State University; Columbus OH USA
| | | |
Collapse
|
31
|
Nkamga VD, Henrissat B, Drancourt M. Archaea: Essential inhabitants of the human digestive microbiota. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2016.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
The rapid degradation of bisphenol A induced by the response of indigenous bacterial communities in sediment. Appl Microbiol Biotechnol 2017; 101:3919-3928. [DOI: 10.1007/s00253-017-8154-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 01/30/2023]
|
33
|
Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter. Sci Rep 2016; 6:38785. [PMID: 27941955 PMCID: PMC5150234 DOI: 10.1038/srep38785] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m-3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]-1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5.
Collapse
|
34
|
Spatiotemporal variation of bacterial and archaeal communities in sediments of a drinking reservoir, Beijing, China. Appl Microbiol Biotechnol 2016; 101:3379-3391. [PMID: 27942905 DOI: 10.1007/s00253-016-8019-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Bacterial and archaeal assemblages are one of the most important contributors to the recycling of nutrients and the decomposition of organic matter in aquatic sediments. However, their spatiotemporal variation and its driving factors remain unclear, especially for drinking reservoirs, which are strongly affected by human consumption. Using quantitative PCR and Illumina MiSeq sequencing, we investigated the bacterial and archaeal communities in the sediments of a drinking reservoir, the Miyun Reservoir, one of the most important drinking sources for Beijing City. The abundance of bacteria and archaea presented no spatiotemporal variation. With respect to community diversity, visible spatial and temporal differences were observed in archaea, whereas the bacterial community showed minor variation. The bacterial communities in the reservoir sediment mainly included Proteobacteria, Bacteroidetes, Nitrospirae, Acidobacteria, and Verrucomicrobia. The bacterial community structure showed obvious spatial variation. The composition of the bacterial operational taxonomic units (OTUs) and main phyla were dam-specific; the composition of samples in front of the dam were significantly different from the composition of the other samples. The archaeal communities were mainly represented by Woesearchaeota and Euryarchaeota. Distinctly spatial and seasonal variation was observed in the archaeal community structure. The sediment NH4+-N, pH, and water depth were identified as the key driving factors of changes in the composition of the bacterial and archaeal communities. Water depth might have the greatest influence on the microbial community structure. The dam-specific community structure may be related to the greater water depth in front of the dam. This finding indicates that water depth might be the greatest contributor to the microbial community structure in the Miyun Reservoir.
Collapse
|
35
|
Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 2016; 1:16170. [PMID: 27694807 DOI: 10.1038/nmicrobiol.2016.170] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/12/2016] [Indexed: 11/09/2022]
Abstract
Methanogenesis is the primary biogenic source of methane in the atmosphere and a key contributor to climate change. The long-standing dogma that methanogenesis originated within the Euryarchaeota was recently challenged by the discovery of putative methane-metabolizing genes in members of the Bathyarchaeota, suggesting that methanogenesis may be more phylogenetically widespread than currently appreciated. Here, we present the discovery of divergent methyl-coenzyme M reductase genes in population genomes recovered from anoxic environments with high methane flux that belong to a new archaeal phylum, the Verstraetearchaeota. These archaea encode the genes required for methylotrophic methanogenesis, and may conserve energy using a mechanism similar to that proposed for the obligate H2-dependent methylotrophic Methanomassiliicoccales and recently described Candidatus 'Methanofastidiosa'. Our findings indicate that we are only beginning to understand methanogen diversity and support an ancient origin for methane metabolism in the Archaea, which is changing our understanding of the global carbon cycle.
Collapse
Affiliation(s)
- Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.,Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul N Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul D Jensen
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ben J Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
36
|
Functional and structural characterization of two Bacillus megaterium nitroreductases biotransforming the herbicide mesotrione. Biochem J 2016; 473:1443-53. [DOI: 10.1042/bj20151366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/22/2016] [Indexed: 01/23/2023]
Abstract
Mesotrione is a selective herbicide belonging to the triketone family, commonly used on maize cultures since 2003. A mesotrione-transforming Bacillus megaterium Mes11 strain isolated from an agricultural soil was used as a model to identify the key enzymes initiating the biotransformation of this herbicide. Two enzymes (called NfrA1 and NfrA2/YcnD) were identified, and functionally and structurally characterized. Both belong to the NfsA FRP family of the nitro-FMN reductase superfamily (type I oxygen-insensitive nitroreductase) and show optimal pH and temperature of 6–6.5 and 23–25°C, respectively. Both undergo a Ping Pong Bi Bi mechanism, with NADPH and NADPH/NADH as cofactors for NfrA1 and NfrA2/YcnD, respectively. It is interesting that both can also reduce various nitro compounds including pesticides, antibiotics, one prodrug and 4-methylsulfonyl-2-nitrobenzoic acid, one of the mesotrione metabolites retrieved from the environment. The present study constitutes the first identification of mesotrione-transforming enzymes. These enzymes (or their corresponding genes) could be used as biomarkers to predict the capacity of ecosystems to transform mesotrione and assess their contamination by both the parent molecule and/or the metabolites.
Collapse
|
37
|
Yang Y, Dai Y, Wu Z, Xie S, Liu Y. Temporal and Spatial Dynamics of Archaeal Communities in Two Freshwater Lakes at Different Trophic Status. Front Microbiol 2016; 7:451. [PMID: 27065997 PMCID: PMC4814500 DOI: 10.3389/fmicb.2016.00451] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
In either eutrophic Dianchi Lake or mesotrophic Erhai Lake, the abundance, diversity, and structure of archaeaplankton communities in spring were different from those in summer. In summer, archaeaplankton abundance generally decreased in Dianchi Lake but increased in Erhai Lake, while archaeaplankton diversity increased in both lakes. These two lakes had distinct archaeaplankton community structure. Archaeaplankton abundance was influenced by organic content, while trophic status determined archaeaplankton diversity and structure. Moreover, in summer, lake sediment archaeal abundance considerably decreased. Sediment archaeal abundance showed a remarkable spatial change in spring but only a slight one in summer. The evident spatial change of sediment archaeal diversity occurred in both seasons. In Dianchi Lake, sediment archaeal community structure in summer was remarkably different from that in spring. Compared to Erhai Lake, Dianchi Lake had relatively high sediment archaeal abundance but low diversity. These two lakes differed remarkably in sediment archaeal community structure. Trophic status determined sediment archaeal abundance, diversity and structure. Archaeal diversity in sediment was much higher than that in water. Water and sediment habitats differed greatly in archaeal community structure. Euryarchaeota predominated in water column, but showed much lower proportion in sediment. Bathyarchaeota was an important component of sediment archaeal community.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University Beijing, China
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University Beijing, China
| | - Zhen Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University Beijing, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University Beijing, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University Beijing, China
| |
Collapse
|
38
|
Archaeal and bacterial communities across a chronosequence of drained lake basins in Arctic Alaska. Sci Rep 2015; 5:18165. [PMID: 26681584 PMCID: PMC4683534 DOI: 10.1038/srep18165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/13/2015] [Indexed: 11/21/2022] Open
Abstract
We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the active layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.
Collapse
|
39
|
Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME JOURNAL 2015; 10:665-77. [PMID: 26284443 DOI: 10.1038/ismej.2015.143] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 11/08/2022]
Abstract
Members of the archaeal Miscellaneous Crenarchaeotic Group (MCG) are among the most successful microorganisms on the planet. During its evolutionary diversification, this very diverse group has managed to cross the saline-freshwater boundary, one of the most important evolutionary barriers structuring microbial communities. However, the current understanding on the ecological significance of MCG in freshwater habitats is scarce and the evolutionary relationships between freshwater and saline MCG remains poorly known. Here, we carried out molecular phylogenies using publicly available 16S rRNA gene sequences from various geographic locations to investigate the distribution of MCG in freshwater and saline sediments and to evaluate the implications of saline-freshwater transitions during the diversification events. Our approach provided a robust ecological framework in which MCG archaea appeared as a core generalist group in the sediment realm. However, the analysis of the complex intragroup phylogeny of the 21 subgroups currently forming the MCG lineage revealed that distinct evolutionary MCG subgroups have arisen in marine and freshwater sediments suggesting the occurrence of adaptive evolution specific to each habitat. The ancestral state reconstruction analysis indicated that this segregation was mainly due to the occurrence of a few saline-freshwater transition events during the MCG diversification. In addition, a network analysis showed that both saline and freshwater MCG recurrently co-occur with archaea of the class Thermoplasmata in sediment ecosystems, suggesting a potentially relevant trophic connection between the two clades.
Collapse
|
40
|
Lever MA, Torti A, Eickenbusch P, Michaud AB, Šantl-Temkiv T, Jørgensen BB. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front Microbiol 2015; 6:476. [PMID: 26042110 PMCID: PMC4436928 DOI: 10.3389/fmicb.2015.00476] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals.
Collapse
Affiliation(s)
- Mark A Lever
- Department of Bioscience, Center for Geomicrobiology, Aarhus University Aarhus, Denmark
| | - Andrea Torti
- Department of Bioscience, Center for Geomicrobiology, Aarhus University Aarhus, Denmark
| | | | - Alexander B Michaud
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Tina Šantl-Temkiv
- Microbiology Section, Department of Bioscience, Aarhus University Aarhus, Denmark ; Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University Aarhus, Denmark
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University Aarhus, Denmark
| |
Collapse
|
41
|
Fillol M, Sànchez-Melsió A, Gich F, M. Borrego C. Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats. FEMS Microbiol Ecol 2015; 91:fiv020. [DOI: 10.1093/femsec/fiv020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
|
42
|
Meador TB, Bowles M, Lazar CS, Zhu C, Teske A, Hinrichs KU. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. Environ Microbiol 2015; 17:2441-58. [PMID: 25403417 DOI: 10.1111/1462-2920.12716] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/08/2014] [Indexed: 11/27/2022]
Abstract
The anoxic sediments of the White Oak River estuary comprise a distinctive sulfate-methane transition zone (SMTZ) and natural enrichment of the archaea affiliated with the Miscellaneous Crenarchaeotal Group (MCG). Archaeal biphytanes were generally depleted in (13) C, with δ(13) C values being less than -35‰, indicative of production by active sedimentary archaeal populations. Multivariate analysis of the downcore distributions of 63 lipid biomarkers identified three major groups of lipids that were enriched in the surface, SMTZ or subsurface depths. Intact polar lipids with phosphatidylglycerol headgroups and glycerol dibiphytanyl glycerol tetraethers containing one, two or three cyclopentane rings were enriched at the base of the SMTZ and likely represent the accumulated product of a small but active ANME-1 community. The recently identified butanetriol dibiphytanyl glycerol tetraethers (BDGT), which increased relatively to other lipids with depth, were correlated with the relative abundance of MCG in archaeal 16S rRNA clone libraries, and were (13) C depleted throughout the depth profile, suggesting BDGT lipids as putative biomarkers of an MCG community that may either be autotrophic or feeding on (13) C-depleted organic substrates transported by porewater.
Collapse
Affiliation(s)
- Travis B Meador
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Marshall Bowles
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Cassandre S Lazar
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany.,Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chun Zhu
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| |
Collapse
|
43
|
Zhang J, Yang Y, Zhao L, Li Y, Xie S, Liu Y. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl Microbiol Biotechnol 2014; 99:3291-302. [PMID: 25432677 DOI: 10.1007/s00253-014-6262-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 11/30/2022]
Abstract
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.
Collapse
Affiliation(s)
- Jingxu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | | | |
Collapse
|
44
|
Cheng TW, Lin LH, Lin YT, Song SR, Wang PL. Temperature-dependent variations in sulfate-reducing communities associated with a terrestrial hydrocarbon seep. Microbes Environ 2014; 29:377-87. [PMID: 25273230 PMCID: PMC4262361 DOI: 10.1264/jsme2.me14086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Terrestrial hydrocarbon seeps are an important source of naturally emitted methane over geological time. The exact community compositions responsible for carbon cycling beneath these surface features remain obscure. As sulfate reduction represents an essential process for anoxic organic mineralization, this study collected muddy fluids from a high-temperature hydrocarbon seep in Taiwan and analyzed community structures of sulfate-supplemented sediment slurries incubated anoxically at elevated temperatures. The results obtained demonstrated that sulfate consumption occurred between 40°C and 80°C. Dominant potential sulfate reducers included Desulfovibrio spp., Desulfonatronum spp., Desulforhabdus spp., and Desulfotomaculum spp. at 40°C, Thermodesulfovibrio spp. at 50°C, Thermodesulfovibrio spp. and Thermacetogenium spp. at 60°C, Thermacetogenium spp. and Archaeoglobus spp. at 70°C, and Archaeoglobus spp. at 80°C. None of these potential sulfate reducers exceeded 7% of the community in the untreated sample. Since no exogenous electron donor was provided during incubation, these sulfate reducers appeared to rely on the degradation of organic matter inherited from porewater and sediments. Aqueous chemistry indicated that fluids discharged in the region represented a mixture of saline formation water and low-salinity surface water; therefore, these lines of evidence suggest that deeply-sourced, thermophilic and surface-input, mesophilic sulfate-reducing populations entrapped along the subsurface fluid transport could respond rapidly once the ambient temperature is adjusted to a range close to their individual optima.
Collapse
|
45
|
Cabassi J, Tassi F, Mapelli F, Borin S, Calabrese S, Rouwet D, Chiodini G, Marasco R, Chouaia B, Avino R, Vaselli O, Pecoraino G, Capecchiacci F, Bicocchi G, Caliro S, Ramirez C, Mora-Amador R. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica). PLoS One 2014; 9:e102456. [PMID: 25058537 PMCID: PMC4109938 DOI: 10.1371/journal.pone.0102456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022] Open
Abstract
Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).
Collapse
Affiliation(s)
- Jacopo Cabassi
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
| | - Franco Tassi
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
- CNR – Istituto di Geoscienze e Georisorse, Florence, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sergio Calabrese
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Dmitri Rouwet
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
| | - Giovanni Chiodini
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Ramona Marasco
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Bessem Chouaia
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Rosario Avino
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Orlando Vaselli
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
- CNR – Istituto di Geoscienze e Georisorse, Florence, Italy
| | | | - Francesco Capecchiacci
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
- CNR – Istituto di Geoscienze e Georisorse, Florence, Italy
| | - Gabriele Bicocchi
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
| | - Stefano Caliro
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Carlos Ramirez
- Centro de Investigaciones en Ciencias Geológicas, Escuela Centroamericana de Geología, Red Sismológica Nacional, Universidad de Costa Rica, San Jose, Costa Rica
| | - Raul Mora-Amador
- Centro de Investigaciones en Ciencias Geológicas, Escuela Centroamericana de Geología, Red Sismológica Nacional, Universidad de Costa Rica, San Jose, Costa Rica
| |
Collapse
|
46
|
Das R, Kazy SK. Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7369-89. [PMID: 24682711 DOI: 10.1007/s11356-014-2640-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/10/2014] [Indexed: 05/20/2023]
Abstract
Microbial community composition and metabolic potential have been explored in petroleum-hydrocarbon-contaminated sludge of an oil storage facility. Culture-independent clone library-based 16S rRNA gene analyses revealed that the bacterial community within the sludge was dominated by the members of β-Proteobacteria (35%), followed by Firmicutes (13%), δ-Proteobacteria (11%), Bacteroidetes (10%), Acidobacteria (6%), α-Proteobacteria (3%), Lentisphaerae (2%), Spirochaetes (2%), and unclassified bacteria (5%), whereas the archaeal community was composed of Thermoprotei (54%), Methanocellales (33%), Methanosarcinales/Methanosaeta (8%) and Methanoculleus (1%) members. Methyl coenzyme M reductase A (mcrA) gene (a functional biomarker) analyses also revealed predominance of hydrogenotrophic, methanogenic Archaea (Methanocellales, Methanobacteriales and Methanoculleus members) over acetoclastic methanogens (Methanosarcinales members). In order to explore the cultivable bacterial population, a total of 28 resident strains were identified and characterized in terms of their physiological and metabolic capabilities. Most of these could be taxonomically affiliated to the members of the genera Bacillus, Paenibacillus, Micrococcus, Brachybacterium, Aerococcus, and Zimmermannella, while two strains were identified as Pseudomonas and Pseudoxanthomonas. Metabolic profiling exhibited that majority of these isolates were capable of growing in presence of a variety of petroleum hydrocarbons as sole source of carbon, tolerating different heavy metals at higher concentrations (≥1 mM) and producing biosurfactant during growth. Many strains could grow under a wide range of pH, temperature, or salinity as well as under anaerobic conditions in the presence of different electron acceptors and donors in the growth medium. Correlation between the isolates and their metabolic properties was estimated by the unweighted pair group method with arithmetic mean (UPGMA) analysis. Overall observation indicated the presence of diverse groups of microorganisms including hydrocarbonoclastic, nitrate reducing, sulphate reducing, fermentative, syntrophic, methanogenic and methane-oxidizing bacteria and Archaea within the sludge community, which can be exploited for in situ bioremediation of the oily sludge.
Collapse
Affiliation(s)
- Ranjit Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur, 713 209, West Bengal, India
| | | |
Collapse
|
47
|
Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Appl Environ Microbiol 2014; 80:3518-30. [PMID: 24682300 DOI: 10.1128/aem.00205-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub, Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.
Collapse
|
48
|
Stoeva MK, Aris-Brosou S, Chételat J, Hintelmann H, Pelletier P, Poulain AJ. Microbial community structure in lake and wetland sediments from a high Arctic polar desert revealed by targeted transcriptomics. PLoS One 2014; 9:e89531. [PMID: 24594936 PMCID: PMC3940601 DOI: 10.1371/journal.pone.0089531] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake.
Collapse
Affiliation(s)
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - John Chételat
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Holger Hintelmann
- Department of Chemistry, Trent University, Peterborough, Ontario, Canada
| | - Philip Pelletier
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
49
|
Chiaramonte JB, Roberto MDC, Pagioro TA. Large scale distribution of bacterial communities in the upper Paraná River floodplain. Braz J Microbiol 2014; 45:1187-97. [PMID: 25763022 PMCID: PMC4323291 DOI: 10.1590/s1517-83822014000400009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/17/2014] [Indexed: 11/21/2022] Open
Abstract
A bacterial community has a central role in nutrient cycle in aquatic habitats. Therefore, it is important to analyze how this community is distributed throughout different locations. Thirty-six different sites in the upper Paraná River floodplain were surveyed to determine the influence of environmental variable in bacterial community composition. The sites are classified as rivers, channels, and floodplain lakes connected or unconnected to the main river channel. The bacterial community structure was analyzed by fluorescent in situ hybridization (FISH) technique, based on frequency of the main domains Bacteria and Archaea, and subdivisions of the phylum Proteobacteria (Alpha-proteobacteria, Beta-proteobacteria, Gamma-proteobacteria) and the Cytophaga-Flavobacterium cluster. It has been demonstrated that the bacterial community differed in density and frequency of the studied groups. And these differences responded to distinct characteristics of the three main rivers of the floodplain as well as to the classification of the environments found in this floodplain. We conclude that dissimilarities in the bacterial community structure are related to environmental heterogeneity, and the limnological variables that most predicted bacterial communities in the upper Paraná River floodplain was total and ammoniacal nitrogen, orthophosphate and chlorophyll-a.
Collapse
Affiliation(s)
- Josiane Barros Chiaramonte
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais Universidade Estadual de Maringá MaringáPR Brazil Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Maria do Carmo Roberto
- Programa de Pós Graduação em Ecologia de Ambientes Aquáticos Continentais Departamento de Biologia, Núcleo de Pesquisa em Limnologia Ictiologia e Aquicultura Universidade Estadual de Maringá MaringáPR Brazil Programa de Pós Graduação em Ecologia de Ambientes Aquáticos Continentais, Departamento de Biologia, Núcleo de Pesquisa em Limnologia Ictiologia e Aquicultura, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Thomaz Aurélio Pagioro
- Departamento Acadêmico de Química e Biologia Universidade Tecnológica Federal do Paraná CuritibaPR Brazil Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
50
|
Restrepo-Ortiz CX, Casamayor EO. Environmental distribution of two widespread uncultured freshwater Euryarchaeota clades unveiled by specific primers and quantitative PCR. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:861-867. [PMID: 24249295 DOI: 10.1111/1758-2229.12088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
Quantitative environmental distribution of two widely distributed uncultured freshwater Euryarchaeota with unknown functional role was explored by newly designed quantitative PCR primers targeting the 16S rRNA gene of clades Miscellaneous Euryarchaeota Group (MEG, containing the groups pMC2A384 and VALII/Eury4) and Deep-Sea Euryarchaeotal Groups (DSEG, targeting the cluster named VALIII containing the DHVE-3/DSEG, BC07-2A-27/DSEG-3 and DSEG-2 groups), respectively. The summer surface plankton of 28 lakes was analysed, and one additional dimictic deep alpine lake, Lake Redon, was temporally and vertically surveyed covering seasonal limnological variability. A trophic range between 0.2 and 5.2 μg l(-1) Chl a, and pH span from 3.8 to 9.5 was explored at altitudes between 632 and 2590 m above sea level. The primers showed to be highly selective with c. 85% coverage and 100% specificity. Only pH significantly explained the changes observed in gene abundances and environment. In Lake Redon, DSEG bloomed in deep stratified waters both in summer and early spring, and MEG at intermediate depths during the ice-cover period. Overall, MEG and DSEG showed a differential ecological distribution although correlational analyses indicated lack of coupling of both Euryarchaeota with phytoplankton (chlorophyll a). However, an intriguing positive and significant relationship was found between DSEG and putative ammonia oxidizing thaumarchaeota.
Collapse
Affiliation(s)
- Claudia X Restrepo-Ortiz
- Limnological Observatory of the Pyrenees (LOOP)-Biogeodynamics & Biodiversity Interactions Group, Centro de Estudios Avanzados de Blanes, CEAB-CSIC, Accés Cala Sant Francesc, 14, Blanes, Girona, 17300, Spain
| | | |
Collapse
|