1
|
Mounika V, P IK, Siluvai S, G K. Carbon Monoxide in Healthcare Monitoring Balancing Potential and Challenges in Public Health Perspective: A Narrative Review. Cureus 2024; 16:e74052. [PMID: 39712838 PMCID: PMC11661877 DOI: 10.7759/cureus.74052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Carbon monoxide (CO) has medicinal potential and harmful qualities. However, excessive exposure to CO can lead to severe organ failure. CO is exogenously and endogenously generated within the human body. Ongoing research aims to uncover the beneficial aspects of CO. It serves as a biomarker for inflammation and other serious illnesses. Preclinical trials exploring CO's application have indicated potential benefits in addressing conditions such as Ischemia, Tendonitis, Neuropathic pain, and even cancer therapy. Cardiovascular disease emerges as a particularly promising target for CO therapy due to its potent vasodilatory effects. While research into CO-based therapeutics has shown promise in experimental and preclinical settings, clinical translation and widespread adoption remain in the early stages. This review will illuminate the advantageous role of CO as a biomarker alongside the obstacles and challenges associated with its implementation.
Collapse
Affiliation(s)
- V Mounika
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Indumathi K P
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Sibyl Siluvai
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Krishnaprakash G
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
2
|
Khir NAM, Noh ASM, Long I, Zakaria R, Ismail CAN. Recent progress on anti-nociceptive effects of carbon monoxide releasing molecule-2 (CORM-2). Mol Cell Biochem 2024; 479:539-552. [PMID: 37106243 DOI: 10.1007/s11010-023-04749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
The role of carbon monoxide (CO) has evolved albeit controversial disputes on its toxicity. This biological gasotransmitter participates in the endogenous regulation of neurotransmitters and neuropeptides released in the nervous system. Exogenous CO gas inhalation at a lower concentration has been the subject of investigations, which have revealed its biological homeostatic mechanisms and protective effects against many pathological conditions. This therapeutic procedure of CO is, however, limited due to its immediate release, which favours haemoglobin at a high affinity with the subsequent generation of toxic carboxyhaemoglobin in tissues. In order to address this problem, carbon monoxide releasing molecule-2 (CORM-2) or also known as tricarbonyldichlororuthenium II dimer is developed to liberate a controlled amount of CO in the biological systems. In this review, we examine several potential mechanisms exerted by this therapeutic compound to produce the anti-nociceptive effect that has been demonstrated in previous studies. This review could shed light on the role of CORM-2 to reduce pain, especially in cases of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Nurul Ajilah Mohamed Khir
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- International Medical School, Management and Science University, 40100, Shah Alam, Selangor, Malaysia
| | - Ain' Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Idris Long
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
3
|
Nielsen VG. Novel Toxicodynamic Model of Subcutaneous Envenomation to Characterize Snake Venom Coagulopathies and Assess the Efficacy of Site-Directed Inorganic Antivenoms. Int J Mol Sci 2023; 24:13939. [PMID: 37762243 PMCID: PMC10530349 DOI: 10.3390/ijms241813939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Venomous snake bite adversely affects millions of people yearly, but few animal models allow for the determination of toxicodynamic timelines with hemotoxic venoms to characterize the onset and severity of coagulopathy or assess novel, site-directed antivenom strategies. Thus, the goals of this investigation were to create a rabbit model of subcutaneous envenomation to assess venom toxicodynamics and efficacy of ruthenium-based antivenom administration. New Zealand White rabbits were sedated with midazolam via the ear vein and had viscoelastic measurements of whole blood and/or plasmatic coagulation kinetics obtained from ear artery samples. Venoms derived from Crotalus scutulatus scutulatus, Bothrops moojeni, or Calloselasma rhodostoma were injected subcutaneously, and changes in coagulation were determined over three hours and compared to samples obtained prior to envenomation. Other rabbits had ruthenium-based antivenoms injected five minutes after venom injection. Viscoelastic analyses demonstrated diverse toxicodynamic patterns of coagulopathy consistent with the molecular composition of the proteomes of the venoms tested. The antivenoms tested attenuated venom-mediated coagulopathy. A novel rabbit model can be used to characterize the onset and severity of envenomation by diverse proteomes and to assess site-directed antivenoms. Future investigation is planned involving other medically important venoms and antivenom development.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Martínez-Serrat M, Martínez-Martel I, Coral-Pérez S, Bai X, Batallé G, Pol O. Hydrogen-Rich Water as a Novel Therapeutic Strategy for the Affective Disorders Linked with Chronic Neuropathic Pain in Mice. Antioxidants (Basel) 2022; 11:antiox11091826. [PMID: 36139900 PMCID: PMC9495356 DOI: 10.3390/antiox11091826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain manifested with allodynia and hyperalgesia usually becomes a chronic condition accompanied with mood disorders. Clinical therapies for neuropathic pain are still unsatisfactory with notable side effects. Recent studies have reported the protective role of molecular hydrogen (H2) in different diseases including neurological disorders, such as Alzheimer's as well as its antidepressant activities in animals with chronic stress. This study explored the effects of treatment with hydrogen-rich water (HRW) in male mice with neuropathic pain induced by the chronic constriction of the sciatic nerve (CCI) and the accompanying affective deficits. The likely pathways implied in the HRW analgesic activity, as well as the interaction between heme oxygenase 1 (HO-1) enzyme and H2 during neuropathic pain were also studied. The results showed: (i) the inhibitory effects of the repetitive treatment with HRW on the allodynia and hyperalgesia provoked by CCI; (ii) the anxiolytic and antidepressant actions of HRW in animals with neuropathic pain; (iii) the contribution of the antioxidant enzymes (HO-1 and NAD(P)H: quinone oxidoreductase 1) and the ATP sensitive potassium channels in the painkiller activities of HRW during neuropathic pain; (iv) a positive interaction between the HO-1 and H2 systems in inhibiting the CCI-induced neuropathy; and (v) the antioxidant, antinociceptive, anti-inflammatory and/or antiapoptotic features of HRW treatment in the dorsal root ganglia and/or amygdala of sciatic nerve-injured mice. This study demonstrates new protective actions of H2 and suggests that treatment with HRW might be an interesting therapeutic strategy for chronic neuropathic pain and its associated mood disorders.
Collapse
Affiliation(s)
- Maria Martínez-Serrat
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Santiago Coral-Pérez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
5
|
Mukai M, Uchida K, Hirosawa N, Murakami K, Inoue G, Miyagi M, Shiga Y, Sekiguchi H, Inage K, Orita S, Suzuki T, Matsuura Y, Takaso M, Ohtori S. Frozen vein wrapping for chronic nerve constriction injury reduces sciatic nerve allodynia in a rat model. BMC Neurosci 2022; 23:37. [PMID: 35725384 PMCID: PMC9208102 DOI: 10.1186/s12868-022-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Autologous vein wrapping (VW) is used in the treatment of recurrent chronic constriction neuropathy and traumatic peripheral nerve injury. However, use of autologous veins is limited by the inability to obtain longer veins of sufficient length for larger sites. Frozen allograft tissue has several advantages, including its availability for large grafts, avoidance of donor-site morbidity, and shorter operation time. Here, we investigated the effect of frozen vein wrapping (FVW) in Wistar rats as a model of sciatic nerve injury. Results The rats were grouped by treatment as (i) untreated after chronic constriction injury surgery (CCI; control group), (ii) treated with vein wrapping using freshly isolated vein (VW), and (iii) treated with vein wrapping using frozen vein (FVW). Mechanical allodynia was assessed with von Frey filaments on postoperative days (PODs) 1, 3, 5, 7, and 14. Gene expression of HO-1 was evaluated by quantitative polymerase chain reaction (qPCR). The response of heme oxygenase-1 gene, Hmox-1, expression to VW and FVW was assessed by RT-PCR. Both VW and FVW significantly increased withdrawal threshold levels compared to the untreated control group on POD 1, 3, and 5. Both VW and FVW also showed increased HO-1 expression compared to the CCI group. Conclusions FVW increased the withdrawal threshold similar to VW in a rat CCI model for short periods. Frozen vein wrapping using vein allograft without donor site morbidity may be an alternative therapeutic option.
Collapse
Affiliation(s)
- Michiaki Mukai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan. .,Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Naoya Hirosawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kenichi Murakami
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kanagawa, 216-8511, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuhiro Shiga
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Hiroyuki Sekiguchi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan.,Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki , Kanagawa, 253-0083, Japan
| | - Kazuhide Inage
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Sumihisa Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
6
|
Lu W, Yang X, Wang B. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochem Pharmacol 2022; 200:115041. [PMID: 35447132 DOI: 10.1016/j.bcp.2022.115041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
The endogenous signaling roles of carbon monoxide (CO) have been firmly established at the pathway level. For CO's molecular mechanism(s) of actions, hemoproteins are generally considered as possible targets. Importantly, soluble guanylyl cyclase (sGC) is among the most widely referenced molecular targets. However, the affinity of CO for sGC (Kd: 240 μM) is much lower than for other highly abundant hemoproteins in the body, such as myoglobin (Kd: 29 nM) and hemoglobin (Kd: 0.7 nM-4.5 μM), which serve as CO reservoirs. Further, most of the mechanistic studies involving sGC activation by CO were based on in-vitro or ex-vivo studies using CO concentrations not readily attenable in vivo and in the absence of hemoglobin as a competitor in binding. As such, whether such in-vitro/ex-vivo results can be directly extrapolated to in-vivo studies is not clear because of the need for CO to be transferred from a high-affinity binder (e.g., hemoglobin) to a low-affinity target if sGC is to be activated in vivo. In this review, we discuss literature findings of sGC activation by CO and the experimental conditions; examine the myths in the disconnect between the low affinity of sGC for CO and the reported activation of sGC by CO; and finally present several possibilities that may lead to additional studies to improve our understanding of this direct CO-sGC axis, which is yet to be convincingly established as playing generally critical roles in CO signaling in vivo.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
7
|
Effects of heme oxygenase 1 in the molecular changes and neuropathy associated with type 2 diabetes in mice. Biochem Pharmacol 2022; 199:114987. [PMID: 35276215 DOI: 10.1016/j.bcp.2022.114987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022]
Abstract
Painful diabetic neuropathy is one of the most common complications of diabetes in humans. The current treatments are not completely effective, and the main mechanisms implicated in the development of diabetic neuropathy are not completely elucidated. Thus, in male db/db mice, a murine model of type 2 diabetes, we investigated the effects of treatment with a heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), on the 1) hyperglycemia and mechanical allodynia associated with type 2 diabetes and 2) molecular changes induced by diabetic neuropathy in the central nervous system (CNS). Thus, we evaluated the effects of CoPP on the protein levels of 4-HNE (oxidative stress), Nrf2, superoxide dismutase 1 (SOD1), NAD(P)H quinone oxidoreductase 1 (NQO1), HO-1, glutathione S-transferase Mu 1 (GSTM1) (antioxidant enzymes), phosphatidylinositol 3-kinase/protein kinase B (nociceptive pathway), CD11b/c (microglial activation), and BAX (apoptosis) in the amygdala and spinal cord of db/db mice. Our results showed the antihyperglycemic and antiallodynic effects of CoPP treatment as well as the potent antioxidant, antinociceptive, anti-inflammatory, and antiapoptotic properties of this HO-1 inducer in the CNS of type 2 diabetic mice. Treatment with CoPP also prevented the downregulation of several antioxidant proteins (Nrf2, SOD-1, and NQO1) and/or enhanced the protein levels of HO-1 and GSTM1 in the spinal cord and/or amygdala of db/db mice. These effects might be implicated in the antiallodynic actions of CoPP. Our findings revealed the modulatory effects of CoPP in the CNS of db/db mice and provide new prospects for novel type 2 diabetes-associated neuropathy therapies.
Collapse
|
8
|
A Journey into the Clinical Relevance of Heme Oxygenase 1 for Human Inflammatory Disease and Viral Clearance: Why Does It Matter on the COVID-19 Scene? Antioxidants (Basel) 2022; 11:antiox11020276. [PMID: 35204159 PMCID: PMC8868141 DOI: 10.3390/antiox11020276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation, is involved in the maintenance of cellular homeostasis, exerting a cytoprotective role by its antioxidative and anti-inflammatory functions. HO-1 and its end products, biliverdin, carbon monoxide and free iron (Fe2+), confer cytoprotection against inflammatory and oxidative injury. Additionally, HO-1 exerts antiviral properties against a diverse range of viral infections by interfering with replication or activating the interferon (IFN) pathway. Severe cases of coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are characterized by systemic hyperinflammation, which, in some cases, leads to severe or fatal symptoms as a consequence of respiratory failure, lung and heart damage, kidney failure, and nervous system complications. This review summarizes the current research on the protective role of HO-1 in inflammatory diseases and against a wide range of viral infections, positioning HO-1 as an attractive target to ameliorate clinical manifestations during COVID-19.
Collapse
|
9
|
Dias-Pedroso D, Ramalho JS, Sardão VA, Jones JG, Romão CC, Oliveira PJ, Vieira HLA. Carbon Monoxide-Neuroglobin Axis Targeting Metabolism Against Inflammation in BV-2 Microglial Cells. Mol Neurobiol 2021; 59:916-931. [PMID: 34797521 DOI: 10.1007/s12035-021-02630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023]
Abstract
Microglia are the immune competent cell of the central nervous system (CNS), promoting brain homeostasis and regulating inflammatory response against infection and injury. Chronic or exacerbated neuroinflammation is a cause of damage in several brain pathologies. Endogenous carbon monoxide (CO), produced from the degradation of heme, is described as anti-apoptotic and anti-inflammatory in several contexts, including in the CNS. Neuroglobin (Ngb) is a haemoglobin-homologous protein, which upregulation triggers antioxidant defence and prevents neuronal apoptosis. Thus, we hypothesised a crosstalk between CO and Ngb, in particular, that the anti-neuroinflammatory role of CO in microglia depends on Ngb. A novel CO-releasing molecule (ALF826) based on molybdenum was used for delivering CO in microglial culture.BV-2 mouse microglial cell line was challenged with lipopolysaccharide (LPS) for triggering inflammation, and after 6 h ALF826 was added. CO exposure limited inflammation by decreasing inducible nitric oxide synthase (iNOS) expression and the production of nitric oxide (NO) and tumour necrosis factor-α (TNF-α), and by increasing interleukine-10 (IL-10) release. CO-induced Ngb upregulation correlated in time with CO's anti-inflammatory effect. Moreover, knocking down Ngb reversed the anti-inflammatory effect of CO, suggesting that dependents on Ngb expression. CO-induced Ngb upregulation was independent on ROS signalling, but partially dependent on the transcriptional factor SP1. Finally, microglial cell metabolism is also involved in the inflammatory response. In fact, LPS treatment decreased oxygen consumption in microglia, indicating a switch to glycolysis, which is associated with a proinflammatory. While CO treatment increased oxygen consumption, reverting LPS effect and indicating a metabolic shift into a more oxidative metabolism. Moreover, in the absence of Ngb, this phenotype was no longer observed, indicating Ngb is needed for CO's modulation of microglial metabolism. Finally, the metabolic shift induced by CO did not depend on alteration of mitochondrial population. In conclusion, neuroglobin emerges for the first time as a key player for CO signalling against exacerbated inflammation in microglia.
Collapse
Affiliation(s)
| | - José S Ramalho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Helena L A Vieira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal. .,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, Faculdade de Ciências e Tecnologia, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
10
|
Godai K, Moriyama T. Heme oxygenase-1 in the spinal cord plays crucial roles in the analgesic effects of pregabalin and gabapentin in a spared nerve-injury mouse model. Neurosci Lett 2021; 767:136310. [PMID: 34736722 DOI: 10.1016/j.neulet.2021.136310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Neuropathic pain remains one of the most intractable types of pain; although calcium channel α2δ ligands, such as pregabalin and gabapentin, are classified as first-line drugs, they have only modest efficacy. Heme oxygenase-1 (HO-1) signaling attenuates glial activation during neuropathic pain. Thus, this study aimed to investigate the effects of the blood-brain barrier (BBB)-permeable HO-1 inhibitor, tin protoporphyrin IX (SnPP), or the BBB-impermeable HO-1 inhibitor, zinc (II) protoporphyrin IX (ZnPP), on the analgesic efficacy of pregabalin and gabapentin. Additionally, we examined the effects of co-administration of SnPP with pregabalin or gabapentin on the expression of glial markers or other genes. METHODS Neuropathic pain was induced by spared nerve injury (SNI) of the sciatic nerve. The mechanical threshold was tested using the von Frey filaments. The expression of spinal glial markers or other genes was examined using reverse transcription polymerase chain reaction. RESULTS Systemic HO-1 inhibition reversed the mechanical antiallodynic effects of pregabalin and gabapentin, although peripheral HO-1 inhibition did not alter the mechanical antiallodynic effects of either pregabalin or gabapentin. Intrathecal injection of SnPP or ZnPP abolished the mechanical antiallodynic effects of pregabalin and gabapentin. Pregabalin and gabapentin increased HO-1, arginase-1, and endogenous opioid precursor preproenkephalin gene expression and decreased the expression of glial markers, interleukin-1β, and inducible nitric oxide synthase. CONCLUSIONS This study suggests that spinal HO-1 plays a crucial role in the analgesic effects of calcium channel α2δ ligands through the attenuation of glial activation and endogenous opioid release.
Collapse
Affiliation(s)
- Kohei Godai
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Takahiro Moriyama
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
11
|
Chu ECP, Wong AYL, Sim P, Krüger F. Exploring scraping therapy: Contemporary views on an ancient healing - A review. J Family Med Prim Care 2021; 10:2757-2762. [PMID: 34660401 PMCID: PMC8483130 DOI: 10.4103/jfmpc.jfmpc_360_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Gua sha is a traditional healing technique that aims to create petechiae on the skin for a believed therapeutic benefit. Natural healings are mostly based on repeated observations and anecdotal information. Hypothetical model for healing does not always fit the modern understanding. Yet, the mechanisms underlying Gua Sha have not been empirically established. Contemporary scientific research can now explain some events of traditional therapies that were once a mystery. It is assumed that Gua Sha therapy can serve as a mechanical signal to enhance the immune surveillance function of the skin during the natural resolving of the petechiae, through which scraping may result in therapeutic benefits. The current review, without judging the past hypothetical model, attempts to interpret the experience of the ancient healings in terms of contemporary views and concepts.
Collapse
Affiliation(s)
- Eric Chun Pu Chu
- New York Chiropractic and Physiotherapy Centre, New York Medical Group, Hong Kong SAR, China
| | - Arnold Yu Lok Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Patrick Sim
- Australian Chiropractic College, Adelaide, South Australia, Australia
| | - Friso Krüger
- Chiropraktische Familienpraxis, Lüneburg, Germany
| |
Collapse
|
12
|
Fu J, Ni C, Ni H, Xu L, He Q, Pan H, Huang D, Sun Y, Luo G, Liu M, Yao M. Spinal Nrf2 translocation may inhibit neuronal NF-κB activation and alleviate allodynia in a rat model of bone cancer pain. J Neurochem 2021; 158:1110-1130. [PMID: 34254317 PMCID: PMC9292887 DOI: 10.1111/jnc.15468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
Bone cancer pain (BCP) is a clinical pathology that urgently needs to be solved, but research on the mechanism of BCP has so far achieved limited success. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) has been shown to be involved in pain, but its involvement in BCP and the specific mechanism have yet to be examined. This study aimed to test the hypothesis that BCP induces the transfer of Nrf2 from the cytoplasm to the nucleus and further promotes nuclear transcription to activate heme oxygenase-1 (HO-1) and inhibit the activation of nuclear factor-kappa B (NF-κB) signalling, ultimately regulating the neuroinflammatory response. Von-Frey was used for behavioural analysis in rats with BCP, whereas western blotting, real-time quantitative PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect molecular expression changes, and immunofluorescence was used to detect cellular localization. We demonstrated that BCP induced increased Nrf2 nuclear protein expression with decreased cytoplasmic protein expression in the spinal cord. Further increases in Nrf2 nuclear protein expression can alleviate hyperalgesia and activate HO-1 to inhibit the expression of NF-κB nuclear protein and inflammatory factors. Strikingly, intrathecal administration of the corresponding siRNA reversed the above effects. In addition, the results of double immune labelling revealed that Nrf2 and NF-κB were coexpressed in spinal cord neurons of rats with BCP. In summary, these findings suggest that the entry of Nrf2 into the nucleus promotes the expression of HO-1, inhibiting activation of the NF-κB signalling pathway, reducing neuroinflammation and ultimately exerting an anti-nociceptive effect.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Hua‐Dong Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Long‐Sheng Xu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Qiu‐Li He
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Huan Pan
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Dong‐Dong Huang
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Yan‐Bao Sun
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ge Luo
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming‐Juan Liu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming Yao
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| |
Collapse
|
13
|
Fu J, Xu M, Xu L, Ni H, Zhao B, Ni C, Huang M, Zhu J, Luo G, Yao M. Sulforaphane alleviates hyperalgesia and enhances analgesic potency of morphine in rats with cancer-induced bone pain. Eur J Pharmacol 2021; 909:174412. [PMID: 34375671 DOI: 10.1016/j.ejphar.2021.174412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 01/15/2023]
Abstract
Due to the efficacy and tolerability of the available drugs, the current treatment for cancer-induced bone pain (CIBP) is not considered ideal, and new drugs are required for better treatment results. This study investigated whether intrathecal injection of sulforaphane (SFN) can modulates the noxious behavior associated with CIBP and enhances the analgesic effects of morphine and the possible mechanisms related to these effects were investigated. Walker256 breast cancer cells were injected into the bone marrow cavity of rats to establish the CIBP model. When CIBP rats began to exhibit painful behavior (CIBP 6 days), SFN was injected intrathecally for 7 days. The results showed that SFN alleviated the painful behavioral hypersensitivity caused by cancer, accompanied by nuclear factor, erythroid 2 like 2 (Nrf2), Haem oxygenase 1 (HO-1) activation, nuclear factor kappa B (NF-κB) inhibition and inflammation-related factors (tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-β), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) reduction. In addition, SFN treatment inhibited the proliferation of Walker 256 cells in a dose-dependent manner, promoted mu-opioid receptor (MOR) expression in SH-SY5Y cells and enhanced the antihyperalgesic effects of morphine on CIBP rats by restoring the downregulation of MOR expression in the spinal cord. Interestingly, the antihyperalgesic effects of SFN were partially blocked by opioid receptor antagonists. This study showed that SFN combined with morphine might be a new way to treat CIBP.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Baoxia Zhao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Mingde Huang
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Jianjun Zhu
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Ge Luo
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China.
| |
Collapse
|
14
|
Chen Z, Zhang H, Zhou J, Stone C, Ding Y, Zhang Y, Ren C, Yin X, Meng R. CORM-2 inhibits intracerebral hemorrhage-mediated inflammation. Neurol Res 2021; 43:846-853. [PMID: 34107862 DOI: 10.1080/01616412.2021.1939484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background and purpose: Low-dose of carbon monoxide delivered by CO-releasing molecule-2 (CORM-2) had been confirmed having anti-inflammatory efficacy in some inflammatory diseases. Herein, we assessed the usefulness of CORM-2 in correcting intracerebral hemorrhage (ICH)-mediated inflammation.Methods: Healthy male Sprague Dawley (SD) rats randomly entered into four groups: sham-ICH, ICH, ICH+CORM-2, and ICH+ inactive carbon monoxide releasing molecule 2 (iCORM-2). ICH was induced by 50 μl of autologous arterial blood injected in situ in the rat brain. Neuro-functions of the ICH rats were evaluated with Garcia 18 scores at the 6th, 24th , 48th hou, and the fifthh day post-ICH. And brain tissues surrounding the hematoma area were collected from all ICH rats and assayed with Western blot and immunofluoresence analysis.Results: Neuro-dysfunctions in ICH rats were very severe than those in ICH +CORM-2 rats. Compared to sham group, the levels of HO-1, IKKβ, NF-κB, and TNF-α in ICH group began to elevate at the 6th hour, and reached to peak at the 48th hour post-ICH, all p < 0.05. While in ICH +CORM-2 group, the expressions of IKKβ, NF-κB, and TNF-α were very weaker than that in ICH group at every time points mentioned above; however, this phenomenon was not reproduced in ICH + iCORM-2 group. HO-1 in ICH+CORM-2 group highlighted in perihematomal area with many activated microglia (Iba-1-positive cells) and co-expressed with TNF-α, all of which were diminished at the fifth day post-ICH.Conclusion: CORM-2 may attenuate ICH-mediated inflammation by inhibiting microglial activation, which may involve the IKK/NF-κB pathway.AbbreviationsICH: intracerebral hemorrhage; CO: carbon monoxide; CORM-2: carbon monoxide releasing molecule-2; iCORM-2: inactive carbon monoxide releasing molecule-2; HO-1: heme oxygenase 1; IKKβ: inhibitor of IκB kinases β; NF-κB: nuclear factor-κB; TNF-α: tumor necrosis factor-α; Iba-1: ionized calcium binding adaptor molecule-1; IκB: inhibitor of NF-κB; iNOS: inducible nitric oxide synthase; Keap1: Kelch-like ECH-associated protein 1; Nrf2: NF-E2-related factor 2; DMSO: dimethylsulfoxide.
Collapse
Affiliation(s)
- Zhiying Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Huiyan Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China.,Department of Neurology, Jingdezhen First People's Hospital, Jingdezhen, China
| | - Jun Zhou
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China.,Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yunzhou Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Changhong Ren
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Khir NAM, Noh ASM, Shafin N, Ismail CAN. Contribution of P2X4 receptor in pain associated with rheumatoid arthritis: a review. Purinergic Signal 2021; 17:201-213. [PMID: 33594635 PMCID: PMC8155137 DOI: 10.1007/s11302-021-09764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pain is the most common symptom reported by patients with rheumatoid arthritis (RA) even after the resolution of chronic joint inflammation. It is believed that RA-associated pain is not solely due to inflammation, but could also be attributed to aberrant modifications to the central nervous system. The P2X4 receptor (P2X4R) is an ATP-activated purinergic receptor that plays a significant role in the transmission of information in the nervous system and pain. The involvement of P2X4R during the pathogenesis of chronic inflammatory pain and neuropathic pain is well-established. The attenuation of this receptor alleviates disease pathogenesis and related symptoms, including hyperalgesia and allodynia. Although some studies have revealed the contribution of P2X4R in promoting joint inflammation in RA, how it implicates pain associated with RA at peripheral and central nervous systems is still lacking. In this review, the possible contributions of P2X4R in the nervous system and how it implicates pain transmission and responses were examined.
Collapse
Affiliation(s)
- Nurul Ajilah Mohamed Khir
- International Medical School, Management and Science University, 40100 Shah Alam, Selangor Malaysia
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Ain’ Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nazlahshaniza Shafin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
16
|
Role of microglia and P2X4 receptors in chronic pain. Pain Rep 2021; 6:e864. [PMID: 33981920 PMCID: PMC8108579 DOI: 10.1097/pr9.0000000000000864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
This study summarizes current understanding of the role of microglia and P2X4 receptor in chronic pain including neuropathic pain and of their therapeutic potential. Pain plays an indispensable role as an alarm system to protect us from dangers or injuries. However, neuropathic pain, a debilitating pain condition caused by damage to the nervous system, persists for a long period even in the absence of dangerous stimuli or after injuries have healed. In this condition, pain becomes a disease itself rather than the alarm system and is often resistant to currently available medications. A growing body of evidence indicates that microglia, a type of macrophages residing in the central nervous system, play a crucial role in the pathogenesis of neuropathic pain. Whenever microglia in the spinal cord detect a damaging signal within the nervous system, they become activated and cause diverse alterations that change neural excitability, leading to the development of neuropathic pain. For over a decade, several lines of molecular and cellular mechanisms that define microglial activation and subsequently altered pain transmission have been proposed. In particular, P2X4 receptors (a subtype of purinergic receptors) expressed by microglia have been investigated as an essential molecule for neuropathic pain. In this review article, we describe our understanding of the mechanisms by which activated microglia cause neuropathic pain through P2X4 receptors, their involvement in several pathological contexts, and recent efforts to develop new drugs targeting microglia and P2X4 receptors.
Collapse
|
17
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1779-1795. [PMID: 32725282 DOI: 10.1007/s00210-020-01935-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, the worldwide interest is growing to use medicinal plants and their active constituents to develop new potent medicines with fewer side effects. Precise dietary compounds have prospective beneficial applications for various neurodegenerative ailments. Rosmarinic acid is a polyphenol and is detectable most primarily in many Lamiaceae families, for instance, Rosmarinus officinalis also called rosemary. This review prepared a broad and updated literature review on rosmarinic acid elucidating its biological activities on some nervous system disorders. Rosmarinic acid has significant antinociceptive, neuroprotective, and neuroregenerative effects. In this regard, we classified and discussed our findings in different nervous system disorders including Alzheimer's disease, epilepsy, depression, Huntington's disease, familial amyotrophic lateral sclerosis, Parkinson's disease, cerebral ischemia/reperfusion injury, spinal cord injury, stress, anxiety, and pain.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Pol O. The role of carbon monoxide, heme oxygenase 1, and the Nrf2 transcription factor in the modulation of chronic pain and their interactions with opioids and cannabinoids. Med Res Rev 2020; 41:136-155. [PMID: 32820550 DOI: 10.1002/med.21726] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain and its associated comorbidities are difficult to treat, even when the most potent analgesic compounds are used. Thus, research on new strategies to effectively relieve nociceptive and/or emotional disorders accompanying chronic pain is essential. Several studies have demonstrated the anti-inflammatory and antinociceptive effects of different carbon monoxide-releasing molecules (CO-RMs), inducible heme oxygenase 1 (HO-1), and nuclear factor-2 erythroid factor-2 (Nrf2) transcription factor activators in several models of acute and chronic pain caused by inflammation, nerve injury or diabetes. More recently, the antidepressant and/or anxiolytic effects of several Nrf2 transcription factor inducers were demonstrated in a model of chronic neuropathic pain. These effects are mainly produced by inhibition of oxidative stress, inflammation, glial activation, mitogen-activated protein kinases and/or phosphoinositide 3-kinase/phospho-protein kinase B phosphorylation in the peripheral and/or central nervous system. Other studies also demonstrated that the analgesic effects of opioids and cannabinoids are improved when these drugs are coadministered with CO-RMs, HO-1 or Nrf2 activators in different preclinical pain models and that these improvements are generally mediated by upregulation or prevention of the downregulation of µ-opioid receptors, δ-opioid receptors and/or cannabinoid 2 receptors in the setting of chronic pain. We reviewed all these studies as well as studies on the mechanisms of action underlying the effects of CO-RMs, HO-1, and Nrf2 activators in chronic pain. In summary, activation of the Nrf2/HO-1/carbon monoxide signaling pathway alone and/or in combination with the administration of specific analgesics is a valid strategy for the treatment of chronic pain and some associated emotional disorders.
Collapse
Affiliation(s)
- Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Zhang DX, Zheng WC, Bai Y, Bai J, Fu L, Wang XP, Zhang LM. CORM-3 improves emotional changes induced by hemorrhagic shock via the inhibition of pyroptosis in the amygdala. Neurochem Int 2020; 139:104784. [PMID: 32652269 DOI: 10.1016/j.neuint.2020.104784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
Hemorrhagic shock and resuscitation (HSR) may lead to long-term neurological dysfunction, such as depression and anxiety. Carbon monoxide (CO) has emerged as an excellent neuroprotective agent against caspase-1-associated pyroptosis, following HSR. We evaluated the effects and determined the mechanism through which CO protects against emotional changes in a model of HSR, in rats. We subjected rats to treatments with an exogenous, CO-releasing compound (CORM-3, 4 mg/kg), in vivo, after HSR. We measured sucrose preference and performed tail suspension and open field tests 7 days after HSR, assessed brain magnetic resonance imaging 12 h after HSR and evaluated pyroptosis, and neuronal and astrocyte death in the amygdala 12 h post-HSR. We also measured changes in behavior and pathology, following an injection of recombinant murine interleukin (IL)-18 into the amygdala. HSR-treated rats displayed increased depression-like and anxiety-like behaviors, increased amygdalar injury, as indicated by T2-weighted magnetic resonance imaging (MRI) and cerebral blood flow with arterial spin labeling (CBFASL), associated with both neuronal and astrocytic death and pyroptosis, and upregulated IL-18 expression was observed in astrocytes. CORM-3 administration after resuscitation, via a femoral vein injection, provided neuroprotection against HSR, and this neuroprotective effect could be partially reversed by the injection of recombinant murine IL-18 into the amygdala. Therefore, CORM-3 alleviated HSR-induced neuronal pyroptosis and emotional changes, through the downregulation of IL-18 in astrocytes.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yang Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
20
|
Zhou L, Ao L, Yan Y, Li C, Li W, Ye A, Liu J, Hu Y, Fang W, Li Y. Levo-corydalmine Attenuates Vincristine-Induced Neuropathic Pain in Mice by Upregulating the Nrf2/HO-1/CO Pathway to Inhibit Connexin 43 Expression. Neurotherapeutics 2020; 17:340-355. [PMID: 31617070 PMCID: PMC7007458 DOI: 10.1007/s13311-019-00784-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antimicrotubulin chemotherapeutic agents, including plant-derived vincaalkaloids such as vincristine, can cause peripheral neuropathic pain. Exogenously activated heme oxygenase 1 (HO-1) is a potential therapy for chemotherapy-induced neuroinflammation. In this study, we investigated a role for Nrf2/HO-1/CO in mediating vincristine-induced neuroinflammation by inhibiting connexin 43 (Cx43) production in the spinal cord following the intrathecal application of the HO-1 inducer protoporphyrin IX cobalt chloride (CoPP) or inhibitor protoporphyrin IX zinc (ZnPP), and we analyzed the underlying mechanisms by which levo-corydalmine (l-CDL, a tetrahydroprotoberberine) attenuates vincristine-induced pain. Treatment with levo-corydalmine or oxycodone hydrochloride (a semisynthetic opioid analgesic, used as a positive control) attenuated vincristine-induced persistent pain hypersensitivity and degeneration of the sciatic nerve. In addition, the increased prevalence of atypical mitochondria induced by vincristine was ameliorated by l-CDL in both A-fibers and C-fibers. Next, we evaluated whether nuclear factor E2-related factor 2 (Nrf2), an upstream activator of HO-1, directly bound to the HO-1 promoter sequence and degraded heme to produce carbon monoxide (CO) following stimulation with vincristine. Notably, l-CDL dose-dependently increased HO-1/CO expression by activating Nrf2 to inhibit Cx43 expression in both the spinal cord and in cultured astrocytes stimulated with TNF-α, corresponding to decreased Cx43-mediated hemichannel. Furthermore, l-CDL had no effect on Cx43 following the silencing of the HO-1 gene. Taken together, our findings reveal a novel mechanism by which Nrf2/HO-1/CO mediates Cx43 expression in vincristine-induced neuropathic pain. In addition, the present findings suggest that l-CDL likely protects against nerve damage and attenuates vincristine-induced neuroinflammation by upregulating Nrf2/HO-1/CO to inhibit Cx43 expression.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Luyao Ao
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yunyi Yan
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Chengyuan Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Wanting Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Anqi Ye
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jihua Liu
- Biotechnology of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yahui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, # 72 GuangZhou Road, Nanjing, 210008, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Analgesic and Antidepressant Effects of Oltipraz on Neuropathic Pain in Mice by Modulating Microglial Activation. J Clin Med 2019; 8:jcm8060890. [PMID: 31234342 PMCID: PMC6616658 DOI: 10.3390/jcm8060890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Nerve injury provokes microglial activation, contributing to the sensory and emotional disorders associated with neuropathic pain that do not completely resolve with treatment. In C57BL/6J mice with neuropathic pain induced by chronic constriction of the sciatic nerve (CCI), we evaluated the effects of oltipraz, an antioxidant and anticancer compound, on (1) allodynia and hyperalgesia, (2) microglial activation and pain signaling pathways, (3) oxidative stress, and (4) depressive-like behaviors. Twenty-eight days after surgery, we assessed the effects of oltipraz on the expression of CD11b/c (a microglial marker), phosphoinositide 3-kinase (PI3K)/ phosphorylated protein kinase B (p-Akt), nuclear factor-κB (NF-κB) transcription factor, and mitogen activated protein kinases (MAPK) in the spinal cord, hippocampus, and prefrontal cortex. Our results show that oltipraz alleviates neuropathic pain by inhibiting microglial activation and PI3K/p-Akt, phosphorylated inhibitor of κBα (p-IκBα), and MAPK overexpression, and by normalizing and/or enhancing the expression of antioxidant proteins, nuclear factor erythroid derived-2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) in the spinal cord. The inhibition of microglial activation and induction of the Nrf2/HO-1/NQO1 signaling pathway in the hippocampus and/or prefrontal cortex may explain the antidepressant effects of oltipraz during neuropathic pain. These data demonstrate the analgesic and antidepressant effects of oltipraz and reveal its protective and antioxidant properties during chronic pain.
Collapse
|
22
|
Moreno P, Cazuza RA, Mendes-Gomes J, Díaz AF, Polo S, Leánez S, Leite-Panissi CRA, Pol O. The Effects of Cobalt Protoporphyrin IX and Tricarbonyldichlororuthenium (II) Dimer Treatments and Its Interaction with Nitric Oxide in the Locus Coeruleus of Mice with Peripheral Inflammation. Int J Mol Sci 2019; 20:ijms20092211. [PMID: 31060340 PMCID: PMC6540196 DOI: 10.3390/ijms20092211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Heme oxygenase 1 (HO-1) and carbon monoxide were shown to normalize oxidative stress and inflammatory reactions induced by neuropathic pain in the central nervous system, but their effects in the locus coeruleus (LC) of animals with peripheral inflammation and their interaction with nitric oxide are unknown. In wild-type (WT) and knockout mice for neuronal (NOS1-KO) or inducible (NOS2-KO) nitric oxide synthases with inflammatory pain induced by complete Freund’s adjuvant (CFA), we assessed: (1) antinociceptive actions of cobalt protoporphyrin IX (CoPP), an HO-1 inducer; (2) effects of CoPP and tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide-liberating compound, on the expression of HO-1, NOS1, NOS2, CD11b/c, GFAP, and mitogen-activated protein kinases (MAPK) in the LC. CoPP reduced inflammatory pain in different time-dependent manners in WT and KO mice. Peripheral inflammation activated astroglia in the LC of all genotypes and increased the levels of NOS1 and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK 1/2) in WT mice. CoPP and CORM-2 enhanced HO-1 and inhibited astroglial activation in all genotypes. Both treatments blocked NOS1 overexpression, and CoPP normalized ERK 1/2 activation. This study reveals an interaction between HO-1 and NOS1/NOS2 during peripheral inflammation and shows that CoPP and CORM-2 improved HO-1 expression and modulated the inflammatory and/or plasticity changes caused by peripheral inflammation in the LC.
Collapse
Affiliation(s)
- Patricia Moreno
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| | - Rafael Alves Cazuza
- Department of Psychology, Faculty of Philosophy, Science and Letters, University of São Paulo, 14040-901, RibeirãoPreto, SP, Brazil.
| | - Joyce Mendes-Gomes
- Department of Psychology, Faculty of Philosophy, Science and Letters, University of São Paulo, 14040-901, RibeirãoPreto, SP, Brazil.
| | - Andrés Felipe Díaz
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| | - Sara Polo
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| | | | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
23
|
Ferreira-Chamorro P, Redondo A, Riego G, Leánez S, Pol O. Sulforaphane Inhibited the Nociceptive Responses, Anxiety- and Depressive-Like Behaviors Associated With Neuropathic Pain and Improved the Anti-allodynic Effects of Morphine in Mice. Front Pharmacol 2018; 9:1332. [PMID: 30542282 PMCID: PMC6277937 DOI: 10.3389/fphar.2018.01332] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic neuropathic pain is associated with anxiety- and depressive-like disorders. Its treatment remains a serious clinical problem due to the lack of efficacy of the available therapeutic modalities. We investigated if the activation of the transcription factor Nrf2 could modulate the nociceptive and emotional disorders associated with persistent neuropathic pain and potentiated the analgesic activity of morphine. The possible mechanisms implicated in these effects have been also evaluated. Therefore, in C57BL/6 mice with neuropathic pain induced by the chronic constriction of the sciatic nerve (CCI), we assessed the antinociceptive, anxiolytic, and anti-depressant effects of the repeated intraperitoneal administration of a Nrf2 inducer, sulforaphane (SFN), and the effects of this treatment on the local antinociceptive actions of morphine. The protein levels of Nrf2, heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase-1 (NQO1), CD11b/c (a microglial activator marker), mitogen-activated protein kinases (MAPK) and μ opioid receptors (MOR) in the spinal cord, prefrontal cortex and hippocampus from mice, at 28 days after CCI, were also evaluated. Our results showed that the repeated administration of SFN besides inhibiting nociceptive responses induced by sciatic nerve injury also diminished the anxiety- and depressive-like behaviors associated with persistent neuropathic pain. Moreover, SFN treatment normalized oxidative stress by inducing Nrf2/HO-1 signaling, reduced microglial activation and JNK, ERK1/2, p-38 phosphorylation induced by sciatic nerve injury in the spinal cord and/or hippocampus and prefrontal cortex. Interestingly, treatment with SFN also potentiated the antiallodynic effects of morphine in sciatic nerve-injured mice by regularizing the down regulation of MOR in the spinal cord and/or hippocampus. This study suggested that treatment with SFN might be an interesting approach for the management of persistent neuropathic pain and comorbidities associated as well as to improve the analgesic actions of morphine.
Collapse
Affiliation(s)
- Pablo Ferreira-Chamorro
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Méndez-Lara KA, Santos D, Farré N, Ruiz-Nogales S, Leánez S, Sánchez-Quesada JL, Zapico E, Lerma E, Escolà-Gil JC, Blanco-Vaca F, Martín-Campos JM, Julve J, Pol O. Administration of CORM-2 inhibits diabetic neuropathy but does not reduce dyslipidemia in diabetic mice. PLoS One 2018; 13:e0204841. [PMID: 30286142 PMCID: PMC6171880 DOI: 10.1371/journal.pone.0204841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
The antinociceptive effects of the carbon monoxide-releasing molecule tricarbonyldichlororuthenium (II) dimer (CORM-2) during chronic pain are well documented, but most of its possible side-effects remain poorly understood. In this work, we examine the impact of CORM-2 treatment on the lipoprotein profile and two main atheroprotective functions attributed to high-density lipoprotein (HDL) in a mouse model of type 1 diabetes while analyzing the effect of this drug on diabetic neuropathy. Streptozotocin (Stz)-induced diabetic mice treated with CORM-2 (Stz-CORM-2) or vehicle (Stz-vehicle) were used to evaluate the effect of this drug on the modulation of painful diabetic neuropathy using nociceptive behavioral tests. Plasma and tissue samples were used for chemical and functional analyses, as appropriate. Two main antiatherogenic properties of HDL, i.e., the ability of HDL to protect low-density lipoprotein (LDL) from oxidation and to promote reverse cholesterol transport from macrophages to the liver and feces in vivo (m-RCT), were also assessed. Stz-induced diabetic mice displayed hyperglycemia, dyslipidemia and pain hypersensitivity. The administration of 10 mg/kg CORM-2 during five consecutive days inhibited allodynia and hyperalgesia and significantly ameliorated spinal cord markers (Cybb and Bdkrb1expression) of neuropathic pain in Stz mice, but it did not reduce the combined dyslipidemia shown in Stz-treated mice. Its administration to Stz-treated mice led to a significant increase in the plasma levels of cholesterol (∼ 1.4-fold vs. Ctrl, ∼ 1.3- fold vs. Stz-vehicle; p < 0.05) and was attributed to significant elevations in both non-HDL (∼ 1.8-fold vs. Ctrl; ∼ 1.6-fold vs. Stz-vehicle; p < 0.05) and HDL cholesterol (∼ 1.3-fold vs. Ctrl, ∼ 1.2-fold vs. Stz-vehicle; p < 0.05). The increased HDL in plasma was not accompanied by a commensurate elevation in m-RCT in Stz-CORM-2 compared to Stz-vehicle mice; instead, it was worsened as revealed by decreased [3H]-tracer trafficking into the feces in vivo. Furthermore, the HDL-mediated protection against LDL oxidation ex vivo shown by the HDL isolated from Stz-CORM-2 mice did not differ from that obtained in Stz-vehicle mice. In conclusion, the antinociceptive effects produced by a high dose of CORM-2 were accompanied by antioxidative effects but were without favorable effects on the dyslipidemia manifested in diabetic mice.
Collapse
Affiliation(s)
- Karen Alejandra Méndez-Lara
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Santos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Núria Farré
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sheila Ruiz-Nogales
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Luis Sánchez-Quesada
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
- Grup de Bioquímica Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Edgar Zapico
- Departament de Bioquímica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Enrique Lerma
- Departament de Patologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Jesús María Martín-Campos
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Josep Julve
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
- * E-mail: (JJ); (OP)
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (JJ); (OP)
| |
Collapse
|
25
|
Heme oxygenase-1 inducer and carbon monoxide-releasing molecule enhance the effects of gabapentinoids by modulating glial activation during neuropathic pain in mice. Pain Rep 2018; 3:e677. [PMID: 30534628 PMCID: PMC6181470 DOI: 10.1097/pr9.0000000000000677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022] Open
Abstract
Introduction Neuropathic pain is one of the most difficult-to-treat symptoms. Although gabapentinoids are classified as first-line drugs, they have only modest efficacy. Objectives The aim of this study was to investigate whether treatment with the heme oxygenase-1 (HO-1) inducer cobalt protoporphyrin IX (CoPP) or the carbon monoxide-releasing molecule tricarbonyldichlororuthenium (II) dimer (CORM-2) can enhance the antinociceptive effects produced by gabapentinoids in mice with neuropathic pain. Methods Neuropathic pain was induced by spared nerve injury (SNI) of the sciatic nerve. The mechanical threshold was tested using von Frey filaments. The expression of spinal HO-1, HO-2, the Ca2+ channel α2δ1 subunit, microglial markers, and M1 or M2 microglial markers was examined using reverse transcription polymerase chain reaction. Results Treatment with CoPP or CORM-2 alleviated mechanical allodynia induced by SNI. CoPP or CORM-2 enhanced the antiallodynic effects of gabapentinoids (pregabalin or gabapentin) during SNI-induced mechanical allodynia. HO-1 inhibitor tin protoporphyrin IX (SnPP) prevented the antiallodynic effects of gabapentinoids (pregabalin or gabapentin) during SNI-induced mechanical allodynia. CoPP or CORM-2 increased HO-1 and Ca2+ channel α2δ1 subunit gene expression and the decreased gene expression of microglial markers, M1 microglial marker, or tumor necrosis factor in the ipsilateral spinal dorsal horn of mice with SNI. SnPP prevented HO-1 induction and glial inhibition, which were produced by gabapentinoids during SNI-induced mechanical allodynia. Conclusions This study suggests that HO-1 plays crucial roles in the antiallodynic effects of gabapentinoids. Gabapentinoids attenuate the glial activation induced by SNI and some of these effects are mediated by HO-1.
Collapse
|
26
|
Guo J, Wang H, Li L, Yuan Y, Shi X, Hou S. Treatment with IL-19 improves locomotor functional recovery after contusion trauma to the spinal cord. Br J Pharmacol 2018; 175:2611-2621. [PMID: 29500933 DOI: 10.1111/bph.14193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE IL-19 skews the immune response towards a Th2 type and appears to stimulate angiogenesis. In the current study, we tested if IL-19 treatment could reduce secondary injury and improve functional recovery after contusion spinal cord injury (SCI). EXPERIMENTAL APPROACH Firstly, mice were given a moderate-severe thoracic SCI at the T9-10 level and expression of IL-19 and its receptor was measured in the injured spinal cord. Then SCI mice were treated with mouse recombinant IL-19 and its blocking antibody to investigate the therapeutic effect of IL-19. KEY RESULTS Protein expression of IL-19 and its receptor IL-20R1 and IL-20R2 was up-regulated in the injured spinal cord of mice. IL-19 treatment promoted the recovery of locomotor function dose-dependently and reduced loss of motor neurons and microglial and glial activation following SCI. Treatment of SCI mice with IL-19 attenuated macrophage accumulation, reduced protein levels of TNF-α and CCL2 and promoted Th2 response and M2 macrophage activation in the injured region. Treatment of SCI mice with IL-19 promoted angiogenesis through up-regulating VEGF in the injured region. Treatment of SCI mice with IL-19 up-regulated HO-1 expression and decreased oxidative stress in the injured region. The beneficial effect of IL-19 was abolished by coadministration of the blocking antibody. Additionally, IL-19 deficiency in mice delayed the recovery of locomotor function following SCI. CONCLUSIONS AND IMPLICATIONS IL-19 treatment reduced secondary injuries and improved locomotor functional recovery after contusion SCI, through diverse mechanisms including immune cell polarization, angiogenesis and anti-oxidative responses.
Collapse
Affiliation(s)
- Jidong Guo
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Huadong Wang
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Li Li
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Yanli Yuan
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Xiuxiu Shi
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Shuxun Hou
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Differential behavioral and glial responses induced by dopaminergic mechanisms in the iNOS knockout mice. Behav Brain Res 2018; 350:44-53. [PMID: 29751018 DOI: 10.1016/j.bbr.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/05/2018] [Accepted: 05/03/2018] [Indexed: 11/23/2022]
Abstract
The interaction between distinctive nitric oxide synthase (NOS) isoforms and the dopamine system provides new avenues to the development of pharmacological tools for the pathophysiological conditions of the dopaminergic system. Our aim was to investigate the influences of dopamine-induced effects in inducible NOS knockout (iNOS KO) mice. In order to characterize iNOS KO mice phenotype, the animals were submitted to the basal analyses of motor, sensorimotor and sensorial abilities. Pharmacological challenging of the dopaminergic system included the investigation of amphetamine-induced prepulse inhibition (PPI) disruption, haloperidol-induced catalepsy, reserpine-induced oral involuntary movements and hyperlocomotion induced by amphetamine in reserpine treated mice. The iNOS KO mice showed significant reduction of spontaneous motor activity, but there was no significant difference in sensorimotor or sensorial responses of iNOS KO mice compared to wild type (WT). Regarding the dopaminergic system, iNOS KO mice showed a significant increase of haloperidol-induced catalepsy. This effect was confirmed through an iNOS pharmacological inhibitor (1400 W) in WT mice. In addition, iNOS KO reserpine treated mice showed reduced oral involuntary movements and amphetamine-induced hyperlocomotion. Knowing that iNOS is mainly expressed in glial cells we analyzed the immunoreactivity (ir) for GFAP (astrocyte marker) and IBA-1 (microglial marker) in the striatum, an area enrolled in motor planning among other functions. iNOS KO presented reduced GFAP-ir and IBA-1-ir compared with WT. Reserpine treatment increased GFAP-ir in both WT and iNOS KO. However, these effects were slighter in iNOS KO. Activated state of microglia was increased by reserpine only in WT mice. Our results further demonstrated that the absence of iNOS interfered with dopamine-mediated behavioral and molecular responses. These results increase the understanding of the dopamine and NO system interaction, which is useful for the management of the dopamine-related pathologies.
Collapse
|
28
|
Hirosawa N, Uchida K, Kuniyoshi K, Murakami K, Inoue G, Miyagi M, Matsuura Y, Orita S, Inage K, Suzuki T, Takaso M, Ohtori S. Vein wrapping facilitates basic fibroblast growth factor-induced heme oxygenase-1 expression following chronic nerve constriction injury. J Orthop Res 2018; 36:898-905. [PMID: 28776762 DOI: 10.1002/jor.23674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/29/2017] [Indexed: 02/04/2023]
Abstract
The clinical efficacy of autologous vein wrapping for recurrent compressive neuropathy has been demonstrated; however, the underlying mechanisms of this technique remain unclear. Rats were divided into chronic constriction injury (CCI) and CCI + vein wrapping (CCI + VW) groups. Mechanical allodynia was evaluated using von Frey filaments. To identify the neuroprotective factors released from veins, basic fibroblast growth factor (bFGF) mRNA expression in veins was compared to that in the sciatic nerve. The response of heme oxygenase-1 (HO-1) expression to vein wrapping was evaluated by RT-PCR and enzyme-linked immunosorbent assays. The effects of exogenous bFGF on HO-1 expression were evaluated using a sciatic nerve cell culture. Vein wrapping significantly increased the withdraw threshold levels compared to the untreated CCI group. bFGF mRNA expression in veins was higher than that in untreated sciatic nerves. HO-1 mRNA expression was induced at higher levels in sciatic nerve cells in the presence of exogenous bFGF compared to untreated control cells. HO-1 mRNA and protein expression in the sciatic nerve were also higher in the CCI + VW group compared with the CCI group. Our results suggest that vein-derived bFGF contributes to the therapeutic benefit of vein wrapping through the induction of HO-1 in the sciatic nerve. Vein wrapping is a useful technique for reducing neuropathic pain. Further understanding of the neurotrophic factors released from veins may help to optimize current procedures for treating recurrent compressive neuropathy and traumatic peripheral nerve injury, and lead to the development of new therapeutic methods using recombinant neurotrophic factors. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:898-905, 2018.
Collapse
Affiliation(s)
- Naoya Hirosawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kazuki Kuniyoshi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kenichi Murakami
- Teikyo University Chiba Medical Center, 3426-3 Anesaki, Chiba, 299-0111, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Sumihisa Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kazuhide Inage
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Takane Suzuki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
29
|
Mechanism implicated in the anti-allodynic and anti-hyperalgesic effects induced by the activation of heme oxygenase 1/carbon monoxide signaling pathway in the central nervous system of mice with neuropathic pain. Biochem Pharmacol 2018; 148:52-63. [DOI: 10.1016/j.bcp.2017.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 02/01/2023]
|
30
|
Enhanced expression of heme oxygenase-1 in the locus coeruleus can be associated with anxiolytic-like effects. Behav Brain Res 2018; 336:204-210. [DOI: 10.1016/j.bbr.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 01/23/2023]
|
31
|
Redondo A, Chamorro PAF, Riego G, Leánez S, Pol O. Treatment with Sulforaphane Produces Antinociception and Improves Morphine Effects during Inflammatory Pain in Mice. J Pharmacol Exp Ther 2017; 363:293-302. [PMID: 28947488 DOI: 10.1124/jpet.117.244376] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 03/08/2025] Open
Abstract
The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts potent antioxidative and anti-inflammatory effects; however, its participation in the modulation of chronic inflammatory pain and on the antinociceptive effects of μ-opioid receptor (MOR) agonists has not been evaluated. We investigated whether the induction of Nrf2 could alleviate chronic inflammatory pain and augment the analgesic effects of morphine and mechanisms implicated. In male C57BL/6 mice with inflammatory pain induced by complete Freund's adjuvant (CFA) subplantarly administered, we assessed: 1) antinociceptive actions of the administration of 5 and 10 mg/kg of a Nrf2 activator, sulforaphane (SFN); and 2) effects of SFN on the antinociceptive actions of morphine and on protein levels of Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) enzymes, microglial activation and inducible nitric oxide synthase (NOS2) overexpression, as well as on mitogen-activated protein kinase (MAPK) and MOR expression in the spinal cord and paw of animals with inflammatory pain. Results showed that treatment with SFN inhibited allodynia and hyperalgesia induced by CFA and increased the local antinociceptive actions of morphine. This treatment also augmented the expression of Nrf2, HO-1, NQO1, and MOR, and inhibited NOS2 and CD11b/c overexpression and MAPK phosphorylation induced by inflammation. Thus, this study shows that the induction of Nrf2 might inhibit inflammatory pain and enhance the analgesic effects of morphine by inhibiting oxidative stress and inflammatory responses induced by peripheral inflammation. This study suggests the administration of SFN alone and in combination with morphine are potential new ways of treating chronic inflammatory pain.
Collapse
Affiliation(s)
- Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Aníbal Ferreira Chamorro
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
The Inhibitory Effects of Cobalt Protoporphyrin IX and Cannabinoid 2 Receptor Agonists in Type 2 Diabetic Mice. Int J Mol Sci 2017; 18:ijms18112268. [PMID: 29143802 PMCID: PMC5713238 DOI: 10.3390/ijms18112268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/19/2023] Open
Abstract
The activation of the transcription factor Nrf2 inhibits neuropathy and modulates the activity of delta-opioid receptors (DOR) in type 2 diabetic mice but the impact of Nrf2/HO-1 pathway on the antinociceptive actions of cannabinoid 2 receptors (CB2R) has not been assessed. Using male mice BKS.Cg-m+/+Leprdb/J (db/db) we investigated if treatment with cobalt protoporphyrin IX (CoPP), an HO-1 inductor, inhibited mechanical allodynia, hyperglycemia and obesity associated to type 2 diabetes. The antinociceptive effects of JWH-015 and JWH-133 (CB2R agonists) administered with and without CoPP or sulforaphane (SFN), a Nrf2 transcription factor activator, have been also evaluated. The expression of Nrf2, HO-1, NAD(P)H: quinone oxidoreductase 1 (NQO1) and c-Jun N-terminal kinase (JNK) in sciatic nerve and that of the CB2R on the dorsal root ganglia from animals treated with CoPP and/or SFN were assessed. CoPP treatment inhibited allodynia, hyperglycemia and body weight gain in db/db mice by enhancing HO-1/NQO1 levels and reducing JNK phosphorylation. Both CoPP and SFN improved the antiallodynic effects of JWH-015 and JWH-133 and expression of CB2R in db/db mice. Therefore, we concluded that the activation of antioxidant Nrf2/HO-1 pathway potentiate the effects of CB2R agonists and might be suitable for the treatment of painful neuropathy linked to type 2 diabetes.
Collapse
|
33
|
McDonnell C, Leánez S, Pol O. The induction of the transcription factor Nrf2 enhances the antinociceptive effects of delta-opioid receptors in diabetic mice. PLoS One 2017; 12:e0180998. [PMID: 28700700 PMCID: PMC5507309 DOI: 10.1371/journal.pone.0180998] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
The involvement of heme oxygenase 1 (HO-1) in the modulation of the antinociceptive effects of opioids in type 1 diabetes has been demonstrated but the role played by the transcription factor Nrf2 in the regulation of painful neuropathy and in the effects and expression of δ-opioid receptors (DOR) in type 2 diabetes, has not been studied. In male BKS.Cg-m+/+Leprdb/J (db/db) mice, the anti-allodynic effects produced by a Nrf2 transcription factor activator, sulforaphane (SFN) administered alone and combined with two DOR agonists, [d-Pen(2),d-Pen(5)]-Enkephalin (DPDPE) and (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N diethylbenzamide (SNC-80), were evaluated. The effects of SFN on glucose levels and body weight as well as on the proteins levels of Nrf2, HO-1, NAD(P)H: quinone oxidoreductase 1 (NQO1), MAPKs (JNK) and DOR in sciatic nerve from db/db mice were also assessed. This study showed that the administration of SFN dose dependently reversed mechanical allodynia, reduced hyperglycemia and body weight gain associated to type 2 diabetes and significantly increased the anti-allodynic effects of DPDPE and SNC-80 in db/db mice. This treatment normalized the down regulation of Nrf2 and NQO1 and enhanced the protein levels of HO-1 in db/db mice. Moreover, the administration of SFN also inhibited the JNK phosphorylation and DOR down-regulation in the sciatic nerve of diabetic mice. Our data indicated that SFN treatment is effective in reversing mechanical allodynia and enhancing DOR antinociceptive effects in db/db mice which effects might be mediated by activating Nrf2 signaling, reducing hyperglycemia, inhibiting JNK phosphorylation and avoiding DOR down-regulation in the sciatic nerve of these animals. These results propose SFN, alone and/or combined with DOR agonists, as interesting approaches for the treatment of painful diabetic neuropathy associated to type 2 diabetes in mice.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Blotting, Western
- Body Weight/drug effects
- Body Weight/genetics
- Body Weight/physiology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Neuropathies/metabolism
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Hyperalgesia/metabolism
- Isothiocyanates/pharmacology
- Male
- Mice
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Piperazines/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Sulfoxides
Collapse
Affiliation(s)
- Christina McDonnell
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Qiao L, Zhang N, Huang JL, Yang XQ. Carbon monoxide as a promising molecule to promote nerve regeneration after traumatic brain injury. Med Gas Res 2017; 7:45-47. [PMID: 28480031 PMCID: PMC5402346 DOI: 10.4103/2045-9912.202909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbon monoxide (CO) is known as a toxic gas. Although there have been many studies on both toxic and protective effects of CO, most of these studies lack novelty, except for Eng H Lo team's study on the therapeutic effect of CO on brain injuries. In this commentary, we summarize the potential application value of CO in the treatment of some clinical diseases, especially its protective effect and nerve regeneration in brain injuries, hoping that our interest in CO could promote related clinical application studies.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Anatomy, Center of Regenerative Medicine, the Second Military Medical University, Shanghai, China
| | - Ning Zhang
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Jun-Long Huang
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Xiang-Qun Yang
- Department of Anatomy, Center of Regenerative Medicine, the Second Military Medical University, Shanghai, China
| |
Collapse
|
35
|
Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 2017; 86:441-449. [PMID: 28012923 DOI: 10.1016/j.biopha.2016.12.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/27/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rosemary, Rosmarinus (R.) officinalis L. is a well-known plant with several useful properties such as analgesic, anti-inflammatory and anti-neurodegenerative. It has been used in folk medicine to alleviate rheumatic pain, stomachache and dysmenorrhea. Rosemary has several constituents such as rosmarinic acid which can be responsible for therapeutic properties been noted with rosemary. The aim of this study was to investigate the potential anti-inflammatory effects of R. officinalis and rosmarinic acid in a rat model of sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain to verify usage of rosemary in folk medicine. METHODS Rats underwent CCI, were treated with either normal saline, ethanolic extract of aerial parts of R. officinalis (400mg/kg, i.p.) or rosmarinic acid (40mg/kg, i.p.) from the day of surgery (day 0) for 14days. The anti-inflammatory effects of R. officinalis extract and rosmarinic acid were evaluated by assessing the levels of some spinal inflammatory markers including cyclooxygenase-2 (COX2), prostaglandin E2 (PGE-2), interleukin 1 beta (IL-1β), matrix metallopeptidase 2 (MMP2) through western blotting and nitric oxide (NO) production via Griess reaction on days 7 and 14 post-surgery. RESULTS CCI rats exhibited a marked expression in the levels of inflammatory markers (COX2, PGE-2, IL-1β, MMP2 and NO) on both days 7 (p<0.001) and 14 (p<0.001). Rosmarinic acid and ethanolic extract of R. officinalis were able to decrease amounts of mentioned inflammatory markers on both days 7 (p<0.001) and 14 (p<0.001). CONCLUSION Our data support the traditional use of R. officinalis as an effective remedy for pain relief and inflammatory disorders. It also suggests that the ethanolic extract of R. officinalis and rosmarinic acid through modulating neuro-inflammation might be potential candidates in treating neuropathic pain and different neurological disorders associated with inflammation.
Collapse
Affiliation(s)
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Mirnajafi-Zadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, PO Box: 14115-331, Tehran, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Mortada Y, Khojasteh K, Zarei M, Mansouri A, Jorjani M. How Nitric Oxide Increases in Diabetic Morphine Tolerated Male Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:630-639. [PMID: 28979316 PMCID: PMC5603871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuropathic pain is a complication of inflammation, infection or some diseases such as diabetes. Opioids are used as a salvage therapy for neuropathic pain but tolerance restricts their use. In our previous study, we have observed an increase of Nitric Oxide in diabetes and in morphine tolerance. This study was performed to clarify the role of inducible nitric oxide synthase, iNOS, and cationic amino acid transporter-2, CAT-2, in these conditions. Thus male rats were divided into four groups: control, diabetic, morphine tolerated, and diabetic morphine tolerated. For evaluating tolerance Hot-Plate test was achieved. Molecular study was performed by real time PCR and Western blotting techniques to compare gene and protein expressions. Our findings showed that in diabetic animals, morphine tolerance occurred prior to non-diabetic rats. In molecular study, the expression of iNOS was increased in the spinal cord whereas the CAT-2 did not change in diabetic morphine tolerated rats. It seems that the nitric oxide elevation in diabetic morphine tolerated state is mostly due to the increase of iNOS in male rats.
Collapse
Affiliation(s)
- Yassar Mortada
- Department of Pharmacology, Schoolof Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Khojasteh Khojasteh
- Department of Pharmacology, Schoolof Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Corresponding author: E-mail:
| | - Malek Zarei
- Department of Pharmacology, Schoolof Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ardalan Mansouri
- Cellular and Molecular Biology Research Center & Department of Pharmacology, school of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Jorjani
- Department of Pharmacology, Schoolof Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Castany S, Carcolé M, Leánez S, Pol O. The role of carbon monoxide on the anti-nociceptive effects and expression of cannabinoid 2 receptors during painful diabetic neuropathy in mice. Psychopharmacology (Berl) 2016; 233:2209-2219. [PMID: 27020787 DOI: 10.1007/s00213-016-4271-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE The activation of cannabinoid 2 receptors (CB2R) attenuates chronic pain, but the role played by carbon monoxide synthesized by the inducible heme oxygenase 1 (HO-1) on the anti-nociceptive effects produced by a selective CB2R agonist, JWH-015, during painful diabetic neuropathy remains unknown. OBJECTIVES AND METHODS In streptozotocin (STZ)-induced diabetic mice, the anti-allodynic and anti-hyperalgesic effects of the subcutaneous administration of JWH-015 alone or combined with the intraperitoneal administration of a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer (CORM-2)) or an HO-1 inducer compound (cobalt protoporphyrin IX (CoPP)) at 10 mg/kg were evaluated. Reversion of JWH-015 anti-nociceptive effects by the administration of an HO-1 inhibitor (tin protoporphyrin IX (SnPP)) and a CB2R antagonist (AM630) was also evaluated. Furthermore, the protein levels of HO-1, neuronal nitric oxide synthase (NOS1), and CB2R in diabetic mice treated with CORM-2 and CoPP alone or combined with JWH-015 were also assessed. RESULTS The administration of JWH-015 dose dependently inhibited hypersensitivity induced by diabetes. The effects of JWH-015 were enhanced by their coadministration with CORM-2 or CoPP and reversed by SnPP or AM630. The increased protein levels of HO-1 induced by CORM-2 and CoPP treatments were further enhanced in JWH-015-treated mice. All treatments similarly enhanced the peripheral expression of CB2R and avoided the spinal cord over-expression of NOS1 induced by diabetes. CONCLUSIONS The activation of HO-1 enhanced the anti-nociceptive effects of JWH-015 in diabetic mice, suggesting that coadministration of JWH-015 with CORM-2 or CoPP might be an interesting approach for the treatment of painful diabetic neuropathy in mice.
Collapse
Affiliation(s)
- Sílvia Castany
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau and Institut de Neurociències. Facultat de Medicina, Edifici M2-115, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Mireia Carcolé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau and Institut de Neurociències. Facultat de Medicina, Edifici M2-115, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau and Institut de Neurociències. Facultat de Medicina, Edifici M2-115, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau and Institut de Neurociències. Facultat de Medicina, Edifici M2-115, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
38
|
Nguyen D, Adnan NNM, Oliver S, Boyer C. The Interaction of CORM‐2 with Block Copolymers Containing Poly(4‐vinylpyridine): Macromolecular Scaffolds for Carbon Monoxide Delivery in Biological Systems. Macromol Rapid Commun 2016; 37:739-44. [DOI: 10.1002/marc.201500755] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/04/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Diep Nguyen
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering University of New South WalesSydney NSW 2052 Australia
| | - Nik Nik M. Adnan
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering University of New South WalesSydney NSW 2052 Australia
| | - Susan Oliver
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering University of New South WalesSydney NSW 2052 Australia
- Australian Centre for Nanomedicine (ACN) University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering University of New South WalesSydney NSW 2052 Australia
- Australian Centre for Nanomedicine (ACN) University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
39
|
van den Born JC, Hammes HP, Greffrath W, van Goor H, Hillebrands JL. Gasotransmitters in Vascular Complications of Diabetes. Diabetes 2016; 65:331-45. [PMID: 26798119 DOI: 10.2337/db15-1003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the past decades three gaseous signaling molecules-so-called gasotransmitters-have been identified: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). These gasotransmitters are endogenously produced by different enzymes in various cell types and play an important role in physiology and disease. Despite their specific functions, all gasotransmitters share the capacity to reduce oxidative stress, induce angiogenesis, and promote vasorelaxation. In patients with diabetes, a lower bioavailability of the different gasotransmitters is observed when compared with healthy individuals. As yet, it is unknown whether this reduction precedes or results from diabetes. The increased risk for vascular disease in patients with diabetes, in combination with the extensive clinical, financial, and societal burden, calls for action to either prevent or improve the treatment of vascular complications. In this Perspective, we present a concise overview of the current data on the bioavailability of gasotransmitters in diabetes and their potential role in the development and progression of diabetes-associated microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular (cerebrovascular, coronary artery, and peripheral arterial diseases) complications. Gasotransmitters appear to have both inhibitory and stimulatory effects in the course of vascular disease development. This Perspective concludes with a discussion on gasotransmitter-based interventions as a therapeutic option.
Collapse
Affiliation(s)
- Joost C van den Born
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | |
Collapse
|
40
|
Castany S, Carcolé M, Leánez S, Pol O. The Induction of Heme Oxygenase 1 Decreases Painful Diabetic Neuropathy and Enhances the Antinociceptive Effects of Morphine in Diabetic Mice. PLoS One 2016; 11:e0146427. [PMID: 26730587 PMCID: PMC4701188 DOI: 10.1371/journal.pone.0146427] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or combined with morphine as an interesting therapeutic approach for the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Sílvia Castany
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Carcolé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
41
|
Kaneta M, Ochiai W, Nagae M, Suto W, Hanagata M, Suzuki H, Kitaoka S, Hatogai J, Ikarashi N, Sugiyama K. Mechanism for Increased Expression of UGT2B in the Liver of Mice with Neuropathic Pain. Biol Pharm Bull 2016; 39:1809-1814. [DOI: 10.1248/bpb.b16-00341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Marina Nagae
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Wataru Suto
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Mika Hanagata
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Haruka Suzuki
- Department of Clinical Pharmacokinetics, Hoshi University
| | | | - Jo Hatogai
- Department of Clinical Pharmacokinetics, Hoshi University
| | | | | |
Collapse
|
42
|
Negi G, Nakkina V, Kamble P, Sharma SS. Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy. Pharmacol Res 2015; 102:158-67. [PMID: 26432957 DOI: 10.1016/j.phrs.2015.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 01/07/2023]
Abstract
Diabetic neuropathy is a complex disorder induced by long standing diabetes. Many signaling pathways and transcription factors have been proposed to be involved in the development and progression of related processes. Years of research points to critical role of oxidative stress, neuroinflammation and apoptosis in the pathogenesis of neuropathy in diabetes. Heme oxygenase-1 (HO-1) is heat-shock protein induced under conditions of different kinds of stress and has been implicated in cellular defense against oxidative stress. HO-1 degrades heme to biliverdin, carbon monoxide (CO) and free iron. Biliverdin and CO are gaining particular interest because these two have been found to mediate most of anti-inflammatory, antioxidant and anti-apoptotic effects of HO-1. Although extensively studied in different kinds of cancers and cardiovascular conditions, role of HO-1 in diabetic neuropathy is still under investigation. In this paper, we review the unique therapeutic potential of HO-1 and its role in mitigating various pathological processes that lead to diabetic neuropathy. This review also highlights the therapeutic approaches such as pharmacological and natural inducers of HO-1, gene delivery of HO-1 or its reaction products that in future, could lead to progression of HO-1 activators through the preclinical stages of drug development to clinical trials.
Collapse
Affiliation(s)
- Geeta Negi
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Vanaja Nakkina
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Pallavi Kamble
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India.
| |
Collapse
|
43
|
Involvement of the Heme-Oxygenase Pathway in the Antiallodynic and Antihyperalgesic Activity of Harpagophytum procumbens in Rats. Molecules 2015; 20:16758-69. [PMID: 26389871 PMCID: PMC6331854 DOI: 10.3390/molecules200916758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022] Open
Abstract
Harpagophytum procumbens (H. procumbens), also known as Devil’s Claw, has been used to treat a wide range of pathological conditions, including pain, arthritis and inflammation. Inflammatory mediators, released at the site of injury, can sensitize nociceptive terminals and are responsible for allodynia and hyperalgesia. Carbon monoxide (CO), produced in a reaction catalyzed by the enzyme heme oxygenase (HO), may play a role in nociceptive processing and has also been recognized to act as a neurotransmitter or neuromodulator in the nervous system. This study was designed to investigate whether the HO/CO pathway is involved in the analgesic response of H. procumbens in carrageenan-induced hyperalgesia in rats. Mechanical allodynia and thermal hyperalgesia were evaluated by using von Frey filaments and the plantar test, respectively. The results of our experiments showed that pretreatment with the HO inhibitor ZnPP IX significantly decreased the antihyperalgesic effect produced by H. procumbens (800 mg/kg, i.p.) in carrageenan-injected rats. Consistently, the pretreatment with hemin, a HO-1 substrate, or CORM-3, a CO releasing molecule, before a low dose of H. procumbens (300 mg/kg, i.p.) induced a clear antiallodynic response in carrageenan injected rats. These results suggest the involvement of HO-1/CO system in the antiallodynic and antihyperalgesic effect of H. procumbens in carrageenan-induced inflammatory pain.
Collapse
|
44
|
Huang SH, Wu SH, Lee SS, Chang KP, Chai CY, Yeh JL, Lin SD, Kwan AL, David Wang HM, Lai CS. Fat Grafting in Burn Scar Alleviates Neuropathic Pain via Anti-Inflammation Effect in Scar and Spinal Cord. PLoS One 2015; 10:e0137563. [PMID: 26368011 PMCID: PMC4569053 DOI: 10.1371/journal.pone.0137563] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022] Open
Abstract
Burn-induced neuropathic pain is complex, and fat grafting has reportedly improved neuropathic pain. However, the mechanism of fat grafting in improving neuropathic pain is unclear. Previous investigations have found that neuroinflammation causes neuropathic pain, and anti-inflammatory targeting may provide potential therapeutic opportunities in neuropathic pain. We hypothesized that fat grafting in burn scars improves the neuropathic pain through anti-inflammation. Burn-induced scar pain was confirmed using a mechanical response test 4 weeks after burn injuries, and autologous fat grafting in the scar area was performed simultaneously. After 4 weeks, the animals were sacrificed, and specimens were collected for the inflammation test, including COX-2, iNOS, and nNOS in the injured skin and spinal cord dorsal horns through immunohistochemistry and Western assays. Furthermore, pro-inflammatory cytokines (IL-1 β and TNF-α) in the spinal cord were collected. Double immunofluorescent staining images for measuring p-IκB, p-NFκB, p-JNK, and TUNEL as well as Western blots of AKT, Bax/Bcl-2 for the inflammatory process, and apoptosis were analyzed. Fat grafting significantly reduced COX2, nNOS, and iNOS in the skin and spinal cord dorsal horns, as well as IL-1β and TNF-α, compared with the burn group. Moreover, regarding the anti-inflammatory effect, the apoptosis cells in the spinal cord significantly decreased after the fat grafting in the burn injury group. Fat grafting was effective in treating burn-induced neuropathic pain through the alleviation of neuroinflammation and ameliorated spinal neuronal apoptosis.
Collapse
Affiliation(s)
- Shu-Hung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Sheng-Hua Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Anesthesia, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Su-Shin Lee
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kao-Ping Chang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Sin-Daw Lin
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Min David Wang
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- * E-mail: (H-MDW); (C-SL)
| | - Chung-Sheng Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- * E-mail: (H-MDW); (C-SL)
| |
Collapse
|
45
|
Liu X, Zhang Z, Cheng Z, Zhang J, Xu S, Liu H, Jia H, Jin Y. Spinal Heme Oxygenase-1 (HO-1) Exerts Antinociceptive Effects Against Neuropathic Pain in a Mouse Model of L5 Spinal Nerve Ligation. PAIN MEDICINE 2015; 17:220-9. [PMID: 26361083 DOI: 10.1111/pme.12906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoming Liu
- Department of Anesthesiology, Pain Management Center; Nanjing Jinling Hospital; Nanjing 210003 China
| | - Zhijun Zhang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration; Nantong University; Nantong 226001 China
| | - Zhuqiang Cheng
- Department of Anesthesiology, Pain Management Center; Nanjing Jinling Hospital; Nanjing 210003 China
| | - Jie Zhang
- Department of Anesthesiology, Pain Management Center; Nanjing Jinling Hospital; Nanjing 210003 China
| | - Shuangshuang Xu
- Department of Anesthesiology, Pain Management Center; Nanjing Jinling Hospital; Nanjing 210003 China
| | - Hongjun Liu
- Department of Anesthesiology, Pain Management Center; Nanjing Jinling Hospital; Nanjing 210003 China
| | - Hongbin Jia
- Department of Anesthesiology, Pain Management Center; Nanjing Jinling Hospital; Nanjing 210003 China
| | - Yi Jin
- Department of Anesthesiology, Pain Management Center; Nanjing Jinling Hospital; Nanjing 210003 China
| |
Collapse
|
46
|
Lin HY, Tsai CH, Lin C, Yeh WL, Tsai CF, Chang PC, Wu LH, Lu DY. Cobalt Protoporphyrin Upregulates Cyclooxygenase-2 Expression Through a Heme Oxygenase-Independent Mechanism. Mol Neurobiol 2015; 53:4497-508. [PMID: 26255181 DOI: 10.1007/s12035-015-9376-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022]
Abstract
Cobalt protoporphyrin (CoPP) is a potent HO-1 inducer and generally known to be an antioxidant in various cell types. Little is known about the CoPP-induced cyclooxygenase-2 (COX-2) expression and its downstream signaling in microglial cells. In current study, CoPP caused concentration- and time-dependent increases in COX-2 expression in microglial cells. Furthermore, activation of apoptosis signal-regulating kinase (ASK) 1/MAP kinase involved in CoPP-induced COX-2 expression in microglia. CoPP also induced P2X7 receptor activation, and treatment of P2X7 inhibitors effectively reduced CoPP-induced COX-2 expression. Protein inhibitor of activated STAT (PIAS) 1 is reported to be involved in modulating anti-inflammatory response through negative regulation of transcription factors. Interestingly, treatment with CoPP markedly induced PIAS1 degradation which is regulated by PI3K, Akt, and glycogen synthase kinase 3α/β (GSK3α/β) signaling pathways. These results suggest that CoPP induces COX-2 expression through activating P2X7 receptors and ASK1/MAP kinases as well as PIAS1 degradation signaling pathways. Our study provides a new insight into the regulatory effect of CoPP on neuroinflammation in microglial cells.
Collapse
Affiliation(s)
- Hsiao-Yun Lin
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Chon-Haw Tsai
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Ling-Hsuan Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
47
|
Schmidtko A. Nitric oxide-mediated pain processing in the spinal cord. Handb Exp Pharmacol 2015; 227:103-17. [PMID: 25846616 DOI: 10.1007/978-3-662-46450-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A large body of evidence indicates that nitric oxide (NO) plays an important role in the processing of persistent inflammatory and neuropathic pain in the spinal cord. Several animal studies revealed that inhibition or knockout of NO synthesis ameliorates persistent pain. However, spinal delivery of NO donors caused dual pronociceptive and antinociceptive effects, pointing to multiple downstream signaling mechanisms of NO. This review summarizes the localization and function of NO-dependent signaling mechanisms in the spinal cord, taking account of the recent progress made in this field.
Collapse
Affiliation(s)
- Achim Schmidtko
- Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, ZBAF, Stockumer Str. 10, 58453, Witten, Germany,
| |
Collapse
|
48
|
Oliveira SR, Vieira HLA, Duarte CB. Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR. Nitric Oxide 2015. [PMID: 26196856 DOI: 10.1016/j.niox.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used technique to characterize changes in gene expression in complex cellular and tissue processes, such as cytoprotection or inflammation. The accurate assessment of changes in gene expression depends on the selection of adequate internal reference gene(s). Carbon monoxide (CO) affects several metabolic pathways and de novo protein synthesis is crucial in the cellular responses to this gasotransmitter. Herein a selection of commonly used reference genes was analyzed to identify the most suitable internal control genes to evaluate the effect of CO on gene expression in cultured cerebrocortical astrocytes. The cells were exposed to CO by treatment with CORM-A1 (CO releasing molecule A1) and four different algorithms (geNorm, NormFinder, Delta Ct and BestKeeper) were applied to evaluate the stability of eight putative reference genes. Our results indicate that Gapdh (glyceraldehyde-3-phosphate dehydrogenase) together with Ppia (peptidylpropyl isomerase A) is the most suitable gene pair for normalization of qRT-PCR results under the experimental conditions used. Pgk1 (phosphoglycerate kinase 1), Hprt1 (hypoxanthine guanine phosphoribosyl transferase I), Sdha (Succinate Dehydrogenase Complex, Subunit A), Tbp (TATA box binding protein), Actg1 (actin gamma 1) and Rn18s (18S rRNA) genes presented less stable expression profiles in cultured cortical astrocytes exposed to CORM-A1 for up to 60 min. For validation, we analyzed the effect of CO on the expression of Bdnf and bcl-2. Different results were obtained, depending on the reference genes used. A significant increase in the expression of both genes was found when the results were normalized with Gapdh and Ppia, in contrast with the results obtained when the other genes were used as reference. These findings highlight the need for a proper and accurate selection of the reference genes used in the quantification of qRT-PCR results in studies on the effect of CO in gene expression.
Collapse
Affiliation(s)
- Sara R Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
49
|
Shen Y, Zhang ZJ, Zhu MD, Jiang BC, Yang T, Gao YJ. Exogenous induction of HO-1 alleviates vincristine-induced neuropathic pain by reducing spinal glial activation in mice. Neurobiol Dis 2015; 79:100-10. [DOI: 10.1016/j.nbd.2015.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/15/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022] Open
|
50
|
Stoicea N, Russell D, Weidner G, Durda M, Joseph NC, Yu J, Bergese SD. Opioid-induced hyperalgesia in chronic pain patients and the mitigating effects of gabapentin. Front Pharmacol 2015; 6:104. [PMID: 26074817 PMCID: PMC4444749 DOI: 10.3389/fphar.2015.00104] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
Chronic pain patients receiving opioid drugs are at risk for opioid-induced hyperalgesia (OIH), wherein opioid pain medication leads to a paradoxical pain state. OIH involves central sensitization of primary and secondary afferent neurons in the dorsal horn and dorsal root ganglion, similar to neuropathic pain. Gabapentin, a gamma-aminobutyric acid (GABA) analog anticonvulsant used to treat neuropathic pain, has been shown in animal models to reduce fentanyl hyperalgesia without compromising analgesic effect. Chronic pain patients have also exhibited lower opioid consumption and improved pain response when given gabapentin. However, few human studies investigating gabapentin use in OIH have been performed in recent years. In this review, we discuss the potential mechanisms that underlie OIH and provide a critical overview of interventional therapeutic strategies, especially the clinically-successful drug gabapentin, which may reduce OIH.
Collapse
Affiliation(s)
- Nicoleta Stoicea
- Department of Anesthesiology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Daric Russell
- Department of Anesthesiology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Greg Weidner
- Department of Anesthesiology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Michael Durda
- Department of Anesthesiology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Nicholas C Joseph
- Department of Neuroscience, The Ohio State University Columbus, OH, USA
| | - Jeffrey Yu
- Medical School, The Ohio State University College of Medicine Columbus, OH, USA
| | - Sergio D Bergese
- Department of Anesthesiology, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Department of Neurological Surgery, The Ohio State University Wexner Medical Center Columbus, OH, USA
| |
Collapse
|