1
|
Paquin F, Cristescu ME, Blier PU, Lemieux H, Dufresne F. Cumulative effects of mutation accumulation on mitochondrial function and fitness. Mitochondrion 2025; 80:101976. [PMID: 39486563 DOI: 10.1016/j.mito.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The impact of mutations on the mitochondria deserves specific interest due to the crucial role played by these organelles on numerous cellular functions. This study examines the effects of repeated bottlenecks on mitochondrial function and fitness. Daphnia pulex mutation accumulation lines (MA) lines were maintained for over 120 generations under copper and no copper conditions. Following the MA propagation, Daphnia from MA lines were raised under optimal and high temperatures for two generations before assessing mitochondrial and phenotypic traits. Spontaneous mutation accumulation under copper led to a later age at maturity and lowered fecundity in the MA lines. Mitochondrial respiration was found to be 10% lower in all mutation accumulation (MA) lines as compared to the non-MA control. MtDNA copy number was elevated in MA lines compared to the control under optimal temperature suggesting a compensatory mechanism. Three MA lines propagated under low copper had very low mtDNA copy number and fitness, suggesting mutations might have affected genes involved in mtDNA replication or mitochondrial biogenesis. Overall, our study suggests that mutation accumulation had an impact on life history traits, mtDNA copy number, and mitochondrial respiration. Some phenotypic effects were magnified under high temperatures. MtDNA copy number appears to be an important mitigation factor to allow mitochondria to cope with mutation accumulation up to a certain level beyond which it can no longer compensate.
Collapse
Affiliation(s)
- Frédérique Paquin
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Québec H3A 1B1, Canada
| | - Pierre U Blier
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Hélène Lemieux
- Department of Medicine, Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta T6C 4G9, Canada
| | - France Dufresne
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
2
|
Hernandez E, Ross J, Dejean L. Evidence of compensation for mitochondrial reactive oxygen species increase in Caenorhabditis briggsae cytoplasmic-nuclear hybrids. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001319. [PMID: 39381639 PMCID: PMC11459262 DOI: 10.17912/micropub.biology.001319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Hybrid offspring dysfunction in cytoplasmic-nuclear hybrids (cybrids) implies that one parent's mitochondrial genome is incompatible with the nuclear genome of the other parent. In Caenorhabditis briggsae , cybrids exhibit increased mitochondrial reactive oxygen species (ROS). In this study, we measured the specific activity of markers for mitochondrial abundance (citrate synthase) and antioxidant enzyme response (catalase) in four C. briggsae cybrid lines. An increase of catalase expression but not in mitochondrial abundance was found in dysfunctional cybrids. This suggests that organisms might compensate for some genetic incompatibilities by modulating gene expression of key oxidative stress enzymes such as catalase.
Collapse
Affiliation(s)
- Emma Hernandez
- Department of Biology, California State University, Fresno, Fresno, California, United States
| | - Joseph Ross
- Department of Biology, California State University, Fresno, Fresno, California, United States
| | - Laurent Dejean
- Department of Chemistry and Biochemistry, California State University, Fresno
| |
Collapse
|
3
|
Agata A, Nomura T. Thermal Adaptations in Animals: Genes, Development, and Evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:253-265. [PMID: 39289287 DOI: 10.1007/978-981-97-4584-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermal adaptation to environmental temperature is a driving force in animal evolution. This chapter presents thermal adaptation in ectotherms and endotherms from the perspective of developmental biology. In ectotherms, there are known examples of temperature influencing morphological characteristics, such as seasonal color change, melanization, and sex determination. Furthermore, the timing of embryonic development also varies with environmental temperature. This review will introduce the cellular and molecular mechanisms underlying temperature-dependent embryogenesis. The evolution of thermal adaptation in endotherms is also important for survival in cold climates. Recent genome-wide studies have revealed adaptive mutations in the genomes of extant humans as well as extinct species such as woolly mammoths and Neanderthals. These studies have shown that single-nucleotide polymorphisms in physiologically related genes (e.g., CPT1A, LRP5, THATA, PRKG1, and FADS1-3) allow humans to live in cold climates. At the end of this chapter, we present the remaining questions in terms of genetic assimilation, heat shock protein Hsp90, and embryonic development.
Collapse
Affiliation(s)
- Ako Agata
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
4
|
Estes S, Dietz ZP, Katju V, Bergthorsson U. Evolutionary codependency: insights into the mitonuclear interaction landscape from experimental and wild Caenorhabditis nematodes. Curr Opin Genet Dev 2023; 81:102081. [PMID: 37421904 PMCID: PMC11684519 DOI: 10.1016/j.gde.2023.102081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Aided by new technologies, the upsurgence of research into mitochondrial genome biology during the past 15 years suggests that we have misunderstood, and perhaps dramatically underestimated, the ongoing biological and evolutionary significance of our long-time symbiotic partner. While we have begun to scratch the surface of several topics, many questions regarding the nature of mutation and selection in the mitochondrial genome, and the nature of its relationship to the nuclear genome, remain unanswered. Although best known for their contributions to studies of developmental and aging biology, Caenorhabditis nematodes are increasingly recognized as excellent model systems to advance understanding in these areas. We review recent discoveries with relevance to mitonuclear coevolution and conflict and offer several fertile areas for future work.
Collapse
Affiliation(s)
- Suzanne Estes
- Portland State University, Department of Biology, Portland, OR, USA.
| | - Zachary P Dietz
- Portland State University, Department of Biology, Portland, OR, USA
| | - Vaishali Katju
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| |
Collapse
|
5
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
6
|
Belli M, Zhang L, Liu X, Donjacour A, Ruggeri E, Palmerini MG, Nottola SA, Macchiarelli G, Rinaudo P. Oxygen concentration alters mitochondrial structure and function in in vitro fertilized preimplantation mouse embryos. Hum Reprod 2020; 34:601-611. [PMID: 30865267 DOI: 10.1093/humrep/dez011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does the oxygen concentration in the culture medium [either physiologic (5%) or atmospheric (20%)] affect mitochondrial ultrastructure and function in preimplantation mouse embryos generated by IVF? SUMMARY ANSWER Embryos cultured in 20% oxygen show increased mitochondrial abnormalities compared to embryos cultured in 5% oxygen. WHAT IS KNOWN ALREADY ART are widely used and have resulted in the birth of more than 8 million children. A variety of media and oxygen concentrations are used to culture embryos. Embryos cultured under physiological O2 tension (5%) reach the blastocyst stage faster and have fewer alterations in gene expression when compared with embryos cultured under atmospheric oxygen conditions (20%). The mechanisms by which oxygen tension affects preimplantation development remain unclear, but mitochondria are believed to play an important role. The aim of this study was to evaluate how mitochondrial ultrastructure and function in IVF embryos were affected by culture under physiologic (5%) or atmospheric (20%) oxygen concentrations. STUDY DESIGN, SIZE, DURATION Zygotes, 2-cell, 4-cell, morula and blastocyst were flushed out of the uterus after natural fertilization and used as controls. IVF was performed in CF1 x B6D2F1 mice and embryos were cultured in Potassium simplex optimized medium (KSOM) with amino acids (KAA) under 5% and 20% O2 until the blastocyst stage. Embryo development with the addition of antioxidants was also tested. PARTICIPANTS/MATERIALS, SETTING, METHODS Mitochondrial function was assessed by measuring mitochondrial membrane potential, reactive oxygen species (ROS) production, ATP levels, and the expression of selected genes involved in mitochondrial function. Mitochondria ultrastructure was evaluated by transmission electron microscopy (TEM). MAIN RESULTS AND THE ROLE OF CHANCE Embryos cultured under 20% O2 had fewer mitochondria and more vacuoles and hooded (abnormal) mitochondria compared to the other groups (P < 0.05). At the blastocyst stage the mitochondria of IVF embryos cultured in 20% O2 had lower mtDNA copy number, a denser matrix and more lamellar cristae than controls. Overall IVF-generated blastocysts had lower mitochondrial membrane potential, higher ROS levels, together with changes in the expression of selected mitochondrial genes (P < 0.05). ATP levels were significantly lower than controls only under 5% O2, with the 20% O2 IVF group having intermediate levels. Unexpectedly, adding antioxidant to the culture medium did not improve development. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Findings in mice embryos might be different from human embryos. WIDER IMPLICATIONS OF THE FINDINGS This study suggests that changes in the mitochondria may be part of the mechanism by which lower oxygen concentration leads to better embryo development and further emphasize the importance of mitochondria as a locus of reprogramming. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by R01 HD 082039 to PFR, the Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy (RIA 2016-2018) and the Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, Italy (University grants 2016-2017). The authors declare no competing interests.
Collapse
Affiliation(s)
- Manuel Belli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zhang
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA.,Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaowei Liu
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Donjacour
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Elena Ruggeri
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefania Annarita Nottola
- Deparment of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Wagner JT, Howe DK, Estes S, Denver DR. Mitochondrial DNA Variation and Selfish Propagation Following Experimental Bottlenecking in Two Distantly Related Caenorhabditis briggsae Isolates. Genes (Basel) 2020; 11:genes11010077. [PMID: 31936803 PMCID: PMC7016712 DOI: 10.3390/genes11010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding mitochondrial DNA (mtDNA) evolution and inheritance has broad implications for animal speciation and human disease models. However, few natural models exist that can simultaneously represent mtDNA transmission bias, mutation, and copy number variation. Certain isolates of the nematode Caenorhabditis briggsae harbor large, naturally-occurring mtDNA deletions of several hundred basepairs affecting the NADH dehydrogenase subunit 5 (nduo-5) gene that can be functionally detrimental. These deletion variants can behave as selfish DNA elements under genetic drift conditions, but whether all of these large deletion variants are transmitted in the same preferential manner remains unclear. In addition, the degree to which transgenerational mtDNA evolution profiles are shared between isolates that differ in their propensity to accumulate the nduo-5 deletion is also unclear. We address these knowledge gaps by experimentally bottlenecking two isolates of C. briggsae with different nduo-5 deletion frequencies for up to 50 generations and performing total DNA sequencing to identify mtDNA variation. We observed multiple mutation profile differences and similarities between C. briggsae isolates, a potentially species-specific pattern of copy number dysregulation, and some evidence for genetic hitchhiking in the deletion-bearing isolate. Our results further support C. briggsae as a practical model for characterizing naturally-occurring mtgenome variation and contribute to the understanding of how mtgenome variation persists in animal populations and how it presents in mitochondrial disease states.
Collapse
Affiliation(s)
- Josiah T. Wagner
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence:
| | - Dana K. Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; (D.K.H.); (D.R.D.)
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR 97201, USA;
| | - Dee R. Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; (D.K.H.); (D.R.D.)
| |
Collapse
|
8
|
Sullins JA, Coleman-Hulbert AL, Gallegos A, Howe DK, Denver DR, Estes S. Complex Transmission Patterns and Age-Related Dynamics of a Selfish mtDNA Deletion. Integr Comp Biol 2019; 59:983-993. [PMID: 31318034 PMCID: PMC6797909 DOI: 10.1093/icb/icz128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite wide-ranging implications of selfish mitochondrial DNA (mtDNA) elements for human disease and topics in evolutionary biology (e.g., speciation), the forces controlling their formation, age-related accumulation, and offspring transmission remain largely unknown. Selfish mtDNA poses a significant challenge to genome integrity, mitochondrial function, and organismal fitness. For instance, numerous human diseases are associated with mtDNA mutations; however, few genetic systems can simultaneously represent pathogenic mitochondrial genome evolution and inheritance. The nematode Caenorhabditis briggsae is one such system. Natural C. briggsae isolates harbor varying levels of a large-scale deletion affecting the mitochondrial nduo-5 gene, termed nad5Δ. A subset of these isolates contains putative compensatory mutations that may reduce the risk of deletion formation. We studied the dynamics of nad5Δ heteroplasmy levels during animal development and transmission from mothers to offspring in genetically diverse C. briggsae natural isolates. Results support previous work demonstrating that nad5Δ is a selfish element and that heteroplasmy levels of this deletion can be quite plastic, exhibiting high degrees of inter-family variability and divergence between generations. The latter is consistent with a mitochondrial bottleneck effect, and contrasts with previous findings from a laboratory-derived model uaDf5 mtDNA deletion in C. elegans. However, we also found evidence for among-isolate differences in the ability to limit nad5Δ accumulation, the pattern of which suggested that forces other than the compensatory mutations are important in protecting individuals and populations from rampant mtDNA deletion expansion over short time scales.
Collapse
Affiliation(s)
- Jennifer A Sullins
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | | | - Alexandra Gallegos
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR 97201, USA
| |
Collapse
|
9
|
Abstract
Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. Despite billions of years of cooperative coevolution - in what is arguably the most important mutualism in the history of life - the persistence of mitochondrial genomes also creates conditions for genetic conflict with the nucleus. Because mitochondrial genomes are present in numerous copies per cell, they are subject to both within- and among-organism levels of selection. Accordingly, 'selfish' genotypes that increase their own proliferation can rise to high frequencies even if they decrease organismal fitness. It has been argued that uniparental (often maternal) inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing within-individual variation and, hence, within-individual selection. However, uniparental inheritance creates conditions for cytonuclear conflict over sex determination and sex ratio, as well as conditions for sexual antagonism when mitochondrial variants increase transmission by enhancing maternal fitness but have the side-effect of being harmful to males (i.e., 'mother's curse'). Here, we review recent advances in understanding selfish replication and sexual antagonism in the evolution of mitochondrial genomes and the mechanisms that suppress selfish interactions, drawing parallels and contrasts with other organelles (plastids) and bacterial endosymbionts that arose more recently. Although cytonuclear conflict is widespread across eukaryotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, reflecting the diverse biology of eukaryotes and the varying architectures of their cytoplasmic genomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA.
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
10
|
Christy SF, Wernick RI, Lue MJ, Velasco G, Howe DK, Denver DR, Estes S. Adaptive Evolution under Extreme Genetic Drift in Oxidatively Stressed Caenorhabditis elegans. Genome Biol Evol 2018; 9:3008-3022. [PMID: 29069345 PMCID: PMC5714194 DOI: 10.1093/gbe/evx222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/30/2022] Open
Abstract
A mutation-accumulation (MA) experiment with Caenorhabditis elegans nematodes was conducted in which replicate, independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain mutant, gas-1. The original intent of the study was to assess the effect of electron transport chain dysfunction involving elevated reactive oxygen species production on patterns of spontaneous germline mutation. In contrast to results of standard MA experiments, gas-1 MA lines evolved slightly higher mean fitness alongside reduced among-line genetic variance compared with their ancestor. Likewise, the gas-1 MA lines experienced partial recovery to wildtype reactive oxygen species levels. Whole-genome sequencing and analysis revealed that the molecular spectrum but not the overall rate of nuclear DNA mutation differed from wildtype patterns. Further analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome, and could be classified into a small number of functional-genomic categories. Characterization of a backcrossed four-mutation set isolated from one gas-1 MA line revealed this combination to be beneficial on both gas-1 mutant and wildtype genetic backgrounds. Our combined results suggest that selection favoring beneficial mutations can be powerful even under unfavorable population genetic conditions, and agree with fitness landscape theory predicting an inverse relationship between population fitness and the likelihood of adaptation.
Collapse
Affiliation(s)
| | | | | | | | - Dana K Howe
- Department of Integrative Biology, Oregon State University
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University
| | | |
Collapse
|
11
|
Sanchez T, Wang T, Pedro MV, Zhang M, Esencan E, Sakkas D, Needleman D, Seli E. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes. Fertil Steril 2018; 110:1387-1397. [PMID: 30446247 DOI: 10.1016/j.fertnstert.2018.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) identifies metabolic differences between normal oocytes and those with metabolic dysfunction. DESIGN Experimental study. SETTING Academic research laboratories. PATIENT(S) None. INTERVENTION(S) Oocytes from mice with global knockout of Clpp (caseinolytic peptidase P; n = 52) were compared with wild-type (WT) oocytes (n = 55) as a model of severe oocyte dysfunction. Oocytes from old mice (1 year old; n = 29) were compared with oocytes from young mice (12 weeks old; n = 35) as a model of mild oocyte dysfunction. MAIN OUTCOME MEASURE(S) FLIM was used to measure the naturally occurring nicotinamide adenine dinucleotide dehydrogenase (NADH) and flavin adenine dinucleotide (FAD) autofluorescence in individual oocytes. Eight metabolic parameters were obtained from each measurement (4 per fluorophore): short (τ1) and long (τ2) fluorescence lifetime, fluorescence intensity (I), and fraction of the molecule engaged with enzyme (F). Reactive oxygen species (ROS) levels and blastocyst development rates were measured to assess illumination safety. RESULT(S) In Clpp-knockout oocytes compared with WT, FAD τ1 and τ2 were longer and I was higher, NADH τ2 was longer, and F was lower. In old oocytes compared with young ones, FAD τ1 was longer and I was lower, NADH τ1 and τ2 were shorter, and I and F were lower. FLIM did not affect ROS levels or blastocyst development rates. CONCLUSION(S) FLIM parameters exhibit strong differentiation between Clpp-knockout versus WT, and old versus young oocytes. FLIM could potentially be used as a noninvasive tool to assess mitochondrial function in oocytes.
Collapse
Affiliation(s)
- Tim Sanchez
- Departments of Applied Physics and Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Tianren Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, Connecticut
| | - Marta Venturas Pedro
- Departments of Applied Physics and Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Man Zhang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, Connecticut
| | - Ecem Esencan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, Connecticut
| | | | - Dan Needleman
- Departments of Applied Physics and Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, Connecticut.
| |
Collapse
|
12
|
Daniele JR, Heydari K, Dillin A. Mitochondrial Subtype Identification and Characterization. CURRENT PROTOCOLS IN CYTOMETRY 2018; 85:e41. [PMID: 29944197 PMCID: PMC6039279 DOI: 10.1002/cpcy.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Healthy, functional mitochondria are central to many cellular and physiological phenomena, including aging, metabolism, and stress resistance. A key feature of healthy mitochondria is a high membrane potential (Δψ) or charge differential (i.e., proton gradient) between the matrix and inner mitochondrial membrane. Mitochondrial Δψ has been extensively characterized via flow cytometry of intact cells, which measures the average membrane potential within a cell. However, the characteristics of individual mitochondria differ dramatically even within a single cell, and thus interrogation of mitochondrial features at the organelle level is necessary to better understand and accurately measure heterogeneity. Here we describe a new flow cytometric methodology that enables the quantification and classification of mitochondrial subtypes (via their Δψ, size, and substructure) using the small animal model C. elegans. Future application of this methodology should allow research to discern the bioenergetic and mitochondrial component in a number of human disease and aging models, including, C. elegans, cultured cells, small animal models, and human biopsy samples. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Joseph R. Daniele
- Department of Molecular & Cellular Biology, University of
California, Berkeley, Berkeley, CA 94720
| | - Kartoosh Heydari
- LKS Flow Cytometry Core, Cancer Research Laboratory, University of
California, Berkeley, Berkeley, CA 94720
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of
California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
13
|
Constitutive MAP-kinase activation suppresses germline apoptosis in NTH-1 DNA glycosylase deficient C. elegans. DNA Repair (Amst) 2017; 61:46-55. [PMID: 29202295 DOI: 10.1016/j.dnarep.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022]
Abstract
Oxidation of DNA bases, an inevitable consequence of oxidative stress, requires the base excision repair (BER) pathway for repair. Caenorhabditis elegans is a well-established model to study phenotypic consequences and cellular responses to oxidative stress. To better understand how BER affects phenotypes associated with oxidative stress, we characterised the C. elegans nth-1 mutant, which lack the only DNA glycosylase dedicated to repair of oxidative DNA base damage, the NTH-1 DNA glycosylase. We show that nth-1 mutants have mitochondrial dysfunction characterised by lower mitochondrial DNA copy number, reduced mitochondrial membrane potential, and increased steady-state levels of reactive oxygen species. Consistently, nth-1 mutants express markers of chronic oxidative stress with high basal phosphorylation of MAP-kinases (MAPK) but further activation of MAPK in response to the superoxide generator paraquat is attenuated. Surprisingly, nth-1 mutants also failed to induce apoptosis in response to paraquat. The ability to induce apoptosis in response to paraquat was regained when basal MAPK activation was restored to wild type levels. In conclusion, the failure of nth-1 mutants to induce apoptosis in response to paraquat is not a direct effect of the DNA repair deficiency but an indirect consequence of the compensatory cellular stress response that includes MAPK activation.
Collapse
|
14
|
Daniele JR, Esping DJ, Garcia G, Parsons LS, Arriaga EA, Dillin A. "High-Throughput Characterization of Region-Specific Mitochondrial Function and Morphology". Sci Rep 2017; 7:6749. [PMID: 28751733 PMCID: PMC5532364 DOI: 10.1038/s41598-017-05152-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
The tissue-specific etiology of aging and stress has been elusive due to limitations in data processing of current techniques. Despite that many techniques are high-throughput, they usually use singular features of the data (e.g. whole fluorescence). One technology at the nexus of fluorescence-based screens is large particle flow cytometry ("biosorter"), capable of recording positional fluorescence and object granularity information from many individual live animals. Current processing of biosorter data, however, do not integrate positional information into their analysis and data visualization. Here, we present a bioanalytical platform for the quantification of positional information ("longitudinal profiling") of C. elegans, which we posit embodies the benefits of both high-throughput screening and high-resolution microscopy. We show the use of these techniques in (1) characterizing distinct responses of a transcriptional reporter to various stresses in defined anatomical regions, (2) identifying regions of high mitochondrial membrane potential in live animals, (3) monitoring regional mitochondrial activity in aging models and during development, and (4) screening for regulators of muscle mitochondrial dynamics in a high-throughput format. This platform offers a significant improvement in the quality of high-throughput biosorter data analysis and visualization, opening new options for region-specific phenotypic screening of complex physiological phenomena and mitochondrial biology.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Daniel J Esping
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gilbert Garcia
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Lee S Parsons
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Edgar A Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| |
Collapse
|
15
|
Cytoplasmic-Nuclear Incompatibility Between Wild Isolates of Caenorhabditis nouraguensis. G3-GENES GENOMES GENETICS 2017; 7:823-834. [PMID: 28064190 PMCID: PMC5345712 DOI: 10.1534/g3.116.037101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How species arise is a fundamental question in biology. Species can be defined as populations of interbreeding individuals that are reproductively isolated from other such populations. Therefore, understanding how reproductive barriers evolve between populations is essential for understanding the process of speciation. Hybrid incompatibility (for example, hybrid sterility or lethality) is a common and strong reproductive barrier in nature. Here we report a lethal incompatibility between two wild isolates of the nematode Caenorhabditis nouraguensis Hybrid inviability results from the incompatibility between a maternally inherited cytoplasmic factor from each strain and a recessive nuclear locus from the other. We have excluded the possibility that maternally inherited endosymbiotic bacteria cause the incompatibility by treating both strains with tetracycline and show that hybrid death is unaffected. Furthermore, cytoplasmic-nuclear incompatibility commonly occurs between other wild isolates, indicating that this is a significant reproductive barrier within C. nouraguensis We hypothesize that the maternally inherited cytoplasmic factor is the mitochondrial genome and that mitochondrial dysfunction underlies hybrid death. This system has the potential to shed light on the dynamics of divergent mitochondrial-nuclear coevolution and its role in promoting speciation.
Collapse
|
16
|
Ross JA, Howe DK, Coleman-Hulbert A, Denver DR, Estes S. Paternal Mitochondrial Transmission in Intra-Species Caenorhabditis briggsae Hybrids. Mol Biol Evol 2016; 33:3158-3160. [PMID: 27613821 PMCID: PMC5100050 DOI: 10.1093/molbev/msw192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To study mitochondrial–nuclear genetic interactions in the nematode Caenorhabditis briggsae, our three laboratories independently created 38 intra-species cytoplasmic–nuclear hybrid (cybrid) lines. Although the cross design combines maternal mitotypes with paternal nuclear genotypes, eight lines (21%) unexpectedly contained paternal mitotypes. All eight share in common ancestry of one of two genetically related strains. This unexpected parallel observation of paternal mitochondrial transmission, undesirable given our intent of creating cybrids, provides a serendipitous experimental model and framework to study the molecular and evolutionary basis of uniparental mitochondrial inheritance.
Collapse
Affiliation(s)
- Joseph A Ross
- Department of Biology, California State University, Fresno, CA
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR
| | - Anna Coleman-Hulbert
- Department of Biology, Portland State University, Portland, OR.,Institute of Ecology and Evolution, University of Oregon, Eugene, OR
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR
| |
Collapse
|
17
|
Gitschlag BL, Kirby CS, Samuels DC, Gangula RD, Mallal SA, Patel MR. Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans. Cell Metab 2016; 24:91-103. [PMID: 27411011 PMCID: PMC5287496 DOI: 10.1016/j.cmet.2016.06.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/27/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023]
Abstract
Mutant mitochondrial genomes (mtDNA) can be viewed as selfish genetic elements that persist in a state of heteroplasmy despite having potentially deleterious metabolic consequences. We sought to study regulation of selfish mtDNA dynamics. We establish that the large 3.1-kb deletion-bearing mtDNA variant uaDf5 is a selfish genome in Caenorhabditis elegans. Next, we show that uaDf5 mutant mtDNA replicates in addition to, not at the expense of, wild-type mtDNA. These data suggest the existence of a homeostatic copy-number control that is exploited by uaDf5 to "hitchhike" to high frequency. We also observe activation of the mitochondrial unfolded protein response (UPR(mt)) in uaDf5 animals. Loss of UPR(mt) causes a decrease in uaDf5 frequency, whereas its constitutive activation increases uaDf5 levels. UPR(mt) activation protects uaDf5 from mitophagy. Taken together, we propose that mtDNA copy-number control and UPR(mt) represent two homeostatic response mechanisms that play important roles in regulating selfish mitochondrial genome dynamics.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Interdisciplinary Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Cait S Kirby
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Biological Sciences Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rama D Gangula
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Simon A Mallal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Daniele JR, Heydari K, Arriaga EA, Dillin A. Identification and Characterization of Mitochondrial Subtypes in Caenorhabditis elegans via Analysis of Individual Mitochondria by Flow Cytometry. Anal Chem 2016; 88:6309-16. [PMID: 27210103 DOI: 10.1021/acs.analchem.6b00542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondrial bioenergetics has been implicated in a number of vital cellular and physiological phenomena, including aging, metabolism, and stress resistance. Heterogeneity of the mitochondrial membrane potential (Δψ), which is central to organismal bioenergetics, has been successfully measured via flow cytometry in whole cells but rarely in isolated mitochondria from large animal models. Similar studies in small animal models, such as Caenorhabditis elegans (C. elegans), are critical to our understanding of human health and disease but lack analytical methodologies. Here we report on new methodological developments that make it possible to investigate the heterogeneity of Δψ in C. elegans during development and in tissue-specific studies. The flow cytometry methodology described here required an improved collagenase-3-based mitochondrial isolation procedure and labeling of mitochondria with the ratiometric fluorescent probe JC-9. To demonstrate feasibility of tissue-specific studies, we used C. elegans strains expressing blue-fluorescent muscle-specific proteins, which enabled identification of muscle mitochondria among mitochondria from other tissues. This methodology made it possible to observe, for the first time, critical changes in Δψ during C. elegans larval development and provided direct evidence of the elevated bioenergetic status of muscle mitochondria relative to their counterparts in the rest of the organism. Further application of these methodologies can help tease apart bioenergetics and other biological complexities in C. elegans and other small animal models used to investigate human disease and aging.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular and Cellular Biology, University of California, Berkeley , Berkeley, California 94720, United States
| | - Kartoosh Heydari
- LKS Flow Cytometry Core, Cancer Research Laboratory, University of California, Berkeley , Berkeley, California 94720, United States
| | - Edgar A Arriaga
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrew Dillin
- Department of Molecular and Cellular Biology, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
19
|
Chang CC, Rodriguez J, Ross J. Mitochondrial-Nuclear Epistasis Impacts Fitness and Mitochondrial Physiology of Interpopulation Caenorhabditis briggsae Hybrids. G3 (BETHESDA, MD.) 2015; 6:209-19. [PMID: 26585825 PMCID: PMC4704720 DOI: 10.1534/g3.115.022970] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
In order to identify the earliest genetic changes that precipitate species formation, it is useful to study genetic incompatibilities that cause only mild dysfunction when incompatible alleles are combined in an interpopulation hybrid. Such hybridization within the nematode species Caenorhabditis briggsae has been suggested to result in selection against certain combinations of nuclear and mitochondrial alleles, raising the possibility that mitochondrial-nuclear (mitonuclear) epistasis reduces hybrid fitness. To test this hypothesis, cytoplasmic-nuclear hybrids (cybrids) were created to purposefully disrupt any epistatic interactions. Experimental analysis of the cybrids suggests that mitonuclear discord can result in decreased fecundity, increased lipid content, and increased mitochondrial reactive oxygen species levels. Many of these effects were asymmetric with respect to cross direction, as expected if cytoplasmic-nuclear Dobzhansky-Muller incompatibilities exist. One such effect is consistent with the interpretation that disrupting coevolved mitochondrial and nuclear loci impacts mitochondrial function and organismal fitness. These findings enhance efforts to study the genesis, identity, and maintenance of genetic incompatibilities that precipitate the speciation process.
Collapse
Affiliation(s)
- Chih-Chiun Chang
- Department of Biology, California State University, Fresno, California, 93740
| | - Joel Rodriguez
- Department of Biology, California State University, Fresno, California, 93740
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California, 93740
| |
Collapse
|
20
|
Mitochondrial divergence between slow- and fast-aging garter snakes. Exp Gerontol 2015; 71:135-46. [PMID: 26403677 DOI: 10.1016/j.exger.2015.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023]
Abstract
Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences).
Collapse
|
21
|
Phillips WS, Coleman-Hulbert AL, Weiss ES, Howe DK, Ping S, Wernick RI, Estes S, Denver DR. Selfish Mitochondrial DNA Proliferates and Diversifies in Small, but not Large, Experimental Populations of Caenorhabditis briggsae. Genome Biol Evol 2015; 7:2023-37. [PMID: 26108490 PMCID: PMC4524483 DOI: 10.1093/gbe/evv116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Evolutionary interactions across levels of biological organization contribute to a variety of fundamental processes including genome evolution, reproductive mode transitions, species diversification, and extinction. Evolutionary theory predicts that so-called “selfish” genetic elements will proliferate when the host effective population size (Ne) is small, but direct tests of this prediction remain few. We analyzed the evolutionary dynamics of deletion-containing mitochondrial DNA (ΔmtDNA) molecules, previously characterized as selfish elements, in six different natural strains of the nematode Caenorhabditis briggsae allowed to undergo experimental evolution in a range of population sizes (N = 1, 10, 100, and 1,000) for a maximum of 50 generations. Mitochondrial DNA (mtDNA) was analyzed for replicate lineages at each five-generation time point. Ten different ΔmtDNA molecule types were observed and characterized across generations in the experimental populations. Consistent with predictions from evolutionary theory, lab lines evolved in small-population sizes (e.g., nematode N = 1) were more susceptible to accumulation of high levels of preexisting ΔmtDNA compared with those evolved in larger populations. New ΔmtDNA elements were observed to increase in frequency and persist across time points, but almost exclusively at small population sizes. In some cases, ΔmtDNA levels decreased across generations when population size was large (nematode N = 1,000). Different natural strains of C. briggsae varied in their susceptibilities to ΔmtDNA accumulation, owing in part to preexisting compensatory mtDNA alleles in some strains that prevent deletion formation. This analysis directly demonstrates that the evolutionary trajectories of ΔmtDNA elements depend upon the population-genetic environments and molecular-genetic features of their hosts.
Collapse
Affiliation(s)
| | | | - Emily S Weiss
- Department of Integrative Biology, Oregon State University
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University
| | - Sita Ping
- Department of Integrative Biology, Oregon State University
| | | | | | - Dee R Denver
- Department of Integrative Biology, Oregon State University
| |
Collapse
|
22
|
Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Limits of C. elegans and C. briggsae. Cell Rep 2015; 10:647-653. [DOI: 10.1016/j.celrep.2015.01.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 12/29/2014] [Indexed: 01/08/2023] Open
|
23
|
Smith SW, Latta LC, Denver DR, Estes S. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs. BMC Evol Biol 2014; 14:161. [PMID: 25056725 PMCID: PMC4222818 DOI: 10.1186/s12862-014-0161-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. RESULTS Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. CONCLUSIONS Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.
Collapse
Affiliation(s)
- Samson W Smith
- Department of Biology, Portland State University, Portland, 97201, OR, USA
- Current address: Department of Biology and Microbiology, South Dakota State University, Brookings, 57007, SD, USA
| | - Leigh C Latta
- Biology Department, Reed College, Portland, 97202, OR, USA
| | - Dee R Denver
- Department of Zoology, Oregon State University, Corvallis, 97331, OR, USA
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, 97201, OR, USA
| |
Collapse
|
24
|
Ilie I, Ilie R, Mocan T, Tabaran F, Iancu C, Mocan L. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway. Int J Nanomedicine 2013; 8:3345-53. [PMID: 24039418 PMCID: PMC3770514 DOI: 10.2147/ijn.s48223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent data in the literature support the role of nicotinamide (NA) as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs) functionalized with nicotinamide (NA-MWCNTs) leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L). Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L) we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Ioana Ilie
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Razvan Ilie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Mocan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- Third Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornel Iancu
- Third Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Mocan
- Third Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Joyner-Matos J, Hicks KA, Cousins D, Keller M, Denver DR, Baer CF, Estes S. Evolution of a higher intracellular oxidizing environment in Caenorhabditis elegans under relaxed selection. PLoS One 2013; 8:e65604. [PMID: 23776511 PMCID: PMC3679170 DOI: 10.1371/journal.pone.0065604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/29/2013] [Indexed: 01/22/2023] Open
Abstract
We explored the relationship between relaxed selection, oxidative stress, and spontaneous mutation in a set of mutation-accumulation (MA) lines of the nematode Caenorhabditis elegans and in their common ancestor. We measured steady-state levels of free radicals and oxidatively damaged guanosine nucleosides in the somatic tissues of five MA lines for which nuclear genome base substitution and GC-TA transversion frequencies are known. The two markers of oxidative stress are highly correlated and are elevated in the MA lines relative to the ancestor; point estimates of the per-generation rate of mutational decay (ΔM) of these measures of oxidative stress are similar to those reported for fitness-related traits. Conversely, there is no significant relationship between either marker of oxidative stress and the per-generation frequencies of base substitution or GC-TA transversion. Although these results provide no direct evidence for a causative relationship between oxidative damage and base substitution mutations, to the extent that oxidative damage may be weakly mutagenic in the germline, the case for condition-dependent mutation is advanced.
Collapse
Affiliation(s)
- Joanna Joyner-Matos
- Department of Biology, Eastern Washington University, Cheney, Washington, United States of America.
| | | | | | | | | | | | | |
Collapse
|
26
|
Hicks KA, Denver DR, Estes S. Natural variation in Caenorhabditis briggsae mitochondrial form and function suggests a novel model of organelle dynamics. Mitochondrion 2012; 13:44-51. [PMID: 23269324 DOI: 10.1016/j.mito.2012.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 01/28/2023]
Abstract
Mitochondrial functioning and morphology are known to be connected through cycles of organelle fusion and fission that depend upon the mitochondrial membrane potential (ΔΨM); however, we lack an understanding of the features and dynamics of natural mitochondrial populations. Using data from our recent study of univariate mitochondrial phenotypic variation in Caenorhabditis briggsae nematodes, we analyzed patterns of phenotypic correlation for 24 mitochondrial traits. Our findings support a role for ΔΨM in shaping mitochondrial dynamics, but no role for mitochondrial ROS. Further, our study suggests a novel model of mitochondrial population dynamics dependent upon cellular environmental context and with implications for mitochondrial genome integrity.
Collapse
Affiliation(s)
- Kiley A Hicks
- Biology Department, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA.
| | | | | |
Collapse
|