1
|
Takigawa T, Miyahara S, Ishii H, Ogawa M, Fukuda K, Nishimura Y, Saito M. Fibrinolytic treatment using recombinant tissue-type plasminogen activator (rt-PA) for staphylococcal infective endocarditis. Microb Pathog 2024; 197:107013. [PMID: 39406301 DOI: 10.1016/j.micpath.2024.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Infective endocarditis (IE) is a severe illness characterized by vegetation of bacterial thrombosis. We hypothesized that adding recombinant tissue-type plasminogen activator (rt-PA) to antibiotics would contribute to good results in the treatment of IE. As an in vitro study, we injected labeled Staphylococcus aureus (S. aureus) and either rt-PA or PBS + plasminogen into a polydimethylsiloxane flow chamber with fibrin on a coverslip, and then performed immunofluorescent area assessment. As an in vivo experiment, IE model rats that had suffered mechanical damage in the aortic valve by catheter and revealed bacterial vegetation caused by S. aureus injection were treated with either a control, cefazolin (CEZ), rt-PA, or rt-PA + CEZ, for 7 days. Survival was assessed for 14 days after the appearance of vegetation, with daily monitoring of the vegetation by transthoracic echocardiography (TTE). The in vitro investigation showed that perfusion of rt-PA could detach S. aureus significantly more efficiently than PBS could. In the in vivo research, the rt-PA + CEZ group survived significantly longer than the other groups, and rt-PA + CEZ was more effective than CEZ in the dissolution of vegetation, as observed by TTE. In conclusion, adding rt-PA to antibiotic treatment could dissolve the vegetation component synergistically and improve the survival rate.
Collapse
Affiliation(s)
- Tomoya Takigawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan; Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan.
| | - Satoshi Miyahara
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| | - Hiromu Ishii
- Institute for Research on Next-generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi City, Aichi, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| | - Kazumasa Fukuda
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| | - Yosuke Nishimura
- Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| |
Collapse
|
2
|
Meyers S, Lox M, Kraisin S, Liesenborghs L, Martens CP, Frederix L, Van Bruggen S, Crescente M, Missiakas D, Baatsen P, Vanassche T, Verhamme P, Martinod K. Neutrophils Protect Against Staphylococcus aureus Endocarditis Progression Independent of Extracellular Trap Release. Arterioscler Thromb Vasc Biol 2023; 43:267-285. [PMID: 36453281 PMCID: PMC9869964 DOI: 10.1161/atvbaha.122.317800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Infective endocarditis (IE) is characterized by an infected thrombus at the heart valves. How bacteria bypass the immune system and cause these thrombi remains unclear. Neutrophils releasing NETs (neutrophil extracellular traps) lie at this interface between host defense and coagulation. We aimed to determine the role of NETs in IE immunothrombosis. METHODS We used a murine model of Staphylococcus aureus endocarditis in which IE is provoked on inflamed heart valves and characterized IE thrombus content by immunostaining identifying NETs. Antibody-mediated neutrophil depletion and neutrophil-selective PAD4 (peptidylarginine deiminase 4)-knockout mice were used to clarify the role of neutrophils and NETs, respectively. S. aureus mutants deficient in key virulence factors related to immunothrombosis (nucleases or staphylocoagulases) were investigated. RESULTS Neutrophils releasing NETs were present in infected thrombi and within cellular infiltrates in the surrounding vasculature. Neutrophil depletion increased occurrence of IE, whereas neutrophil-selective impairment of NET formation did not alter IE occurrence. Absence of S. aureus nuclease, which degrades NETs, did not affect endocarditis outcome. In contrast, absence of staphylocoagulases (coagulase and von Willebrand factor binding protein) led to improved survival, decreased bacteremia, smaller infiltrates, and decreased tissue destruction. Significantly more NETs were present in these vegetations, which correlated with decreased bacteria and cell death in the adjacent vascular wall. CONCLUSIONS Neutrophils protect against IE independent of NET release. Absence of S. aureus coagulases, but not nucleases, reduced IE severity and increased NET levels. Staphylocoagulase-induced fibrin likely hampers NETs from constraining infection and the resultant tissue damage, a hallmark of valve destruction in IE.
Collapse
Affiliation(s)
- Severien Meyers
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Marleen Lox
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Sirima Kraisin
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Laurens Liesenborghs
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Caroline P. Martens
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Liesbeth Frederix
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Marilena Crescente
- Department of Life Sciences, Manchester Metropolitan University, United Kingdom (M.C.)
| | | | - Pieter Baatsen
- Electron Microscopy-Platform of the VIB Bio Imaging Core and VIB Center for Brain and Disease Research (P.B.), KU Leuven, Belgium
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| |
Collapse
|
3
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Meyers S, Crescente M, Verhamme P, Martinod K. Staphylococcus aureus and Neutrophil Extracellular Traps: The Master Manipulator Meets Its Match in Immunothrombosis. Arterioscler Thromb Vasc Biol 2022; 42:261-276. [PMID: 35109674 PMCID: PMC8860219 DOI: 10.1161/atvbaha.121.316930] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.
Collapse
Affiliation(s)
- Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Marilena Crescente
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.).,Department of Life Sciences, Manchester Metropolitan University, United Kingdom (M.C.)
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| |
Collapse
|
5
|
Huang S, Yue Y, Liang M, Feng K, Hou J, Li H, Huang X, Huang L, Chen G, Wu Z. Neutrophil gelatinase-associated lipocalin: a potential predictor of embolic events in endocarditis. Ann Thorac Surg 2021; 113:1215-1222. [PMID: 33961821 DOI: 10.1016/j.athoracsur.2021.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND As the complication of infective endocarditis (IE), embolic events (EE) are associated with increased mortality and morbidity. However, there are no reliable indicators to predict embolism. The aim of this study was to evaluate neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker to identify IE patients at high risk of embolism. METHODS We conducted a prospective observational study of IE patients from January 2018 to December 2020. Plasma NGAL levels were measured in 88 IE patients (37 patients with EE and 51 patients without EE), 91 noninfectious heart valve disease (HVD) patients, and 20 healthy blood donors by ELISA. Native valve tissue was obtained from 16 IE patients and 16 HVD patients. Western blot and immunohistochemical staining were performed to detect NGAL and matrix metalloproteinas-9 (MMP-9). RESULTS Higher levels of NGAL were observed in IE patients than HVD patients (P<0.001) or healthy blood donors (P<0.01). In addition, NGAL levels were higher in IE patients with EE compared to those without EE (P<0.001). Receiver operating characteristic analysis demonstrated that NGAL acted as a potential EE predictor with the cutoff value of 166.78 ng/ml. IE patients with higher NGAL levels were significantly related to more severe native valve morphologic changes. NGAL was co-localized with MMP-9, and their expression in the valves of IE patients was higher than those of HVD patients. CONCLUSIONS NGAL is a potential predictor of EE in IE. This may be attributed to its potency of increasing the proteolytic activity of MMP-9, which leads to valve morphologic impairment.
Collapse
Affiliation(s)
- Suiqing Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yuan Yue
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Mengya Liang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kangni Feng
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Hou
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Huayang Li
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Guangxian Chen
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Martin DR, Witten JC, Tan CD, Rodriguez ER, Blackstone EH, Pettersson GB, Seifert DE, Willard BB, Apte SS. Proteomics identifies a convergent innate response to infective endocarditis and extensive proteolysis in vegetation components. JCI Insight 2020; 5:135317. [PMID: 32544089 DOI: 10.1172/jci.insight.135317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Infective endocarditis is a life-threatening infection of heart valves and adjacent structures characterized by vegetations on valves and other endocardial surfaces, with tissue destruction and risk of embolization. We used high-resolution mass spectrometry to define the proteome of staphylococcal and non-staphylococcal vegetations and Terminal Amine Isotopic Labeling of Substrates (TAILS) to define their proteolytic landscapes. These approaches identified over 2000 human proteins in staphylococcal and non-staphylococcal vegetations. Individual vegetation proteomes demonstrated comparable profiles of quantitatively major constituents that overlapped with serum, platelet, and neutrophil proteomes. Staphylococcal vegetation proteomes resembled one another more than the proteomes of non-staphylococcal vegetations. TAILS demonstrated extensive proteolysis within vegetations, with numerous previously undescribed cleavages. Several proteases and pathogen-specific proteins, including virulence factors, were identified in most vegetations. Proteolytic peptides in fibronectin and complement C3 were identified as potential infective endocarditis biomarkers. Overlap of staphylococcal and non-staphylococcal vegetation proteomes suggests a convergent thrombotic and immune response to endocardial infection by diverse pathogens. However, the differences between staphylococcal and non-staphylococcal vegetations and internal variance within the non-staphylococcal group indicate that additional pathogen- or patient-specific effects exist. Pervasive proteolysis of vegetation components may arise from vegetation-intrinsic proteases and destabilize vegetations, contributing to embolism.
Collapse
Affiliation(s)
- Daniel R Martin
- Department of Biomedical Engineering, Lerner Research Institute
| | - James C Witten
- Department of Thoracic and Cardiovascular Surgery, Miller Family Heart and Vascular Institute
| | - Carmela D Tan
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, and
| | - E Rene Rodriguez
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, and
| | - Eugene H Blackstone
- Department of Thoracic and Cardiovascular Surgery, Miller Family Heart and Vascular Institute
| | - Gosta B Pettersson
- Department of Thoracic and Cardiovascular Surgery, Miller Family Heart and Vascular Institute
| | | | - Belinda B Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute
| |
Collapse
|
7
|
18F-FDG PET/CT in Infective Endocarditis: New Perspectives for Improving Patient Management. J Am Coll Cardiol 2020; 74:1041-1043. [PMID: 31439212 DOI: 10.1016/j.jacc.2019.06.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023]
|
8
|
Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, Thomsen K, Høiby N, Jensen PØ. Biofilms and host response - helpful or harmful. APMIS 2017; 125:320-338. [PMID: 28407429 DOI: 10.1111/apm.12674] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/09/2023]
Abstract
Biofilm infections are one of the modern medical world's greatest challenges. Probably, all non-obligate intracellular bacteria and fungi can establish biofilms. In addition, there are numerous biofilm-related infections, both foreign body-related and non-foreign body-related. Although biofilm infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response for the course of biofilm infections, with special focus on cystic fibrosis, chronic wounds and infective endocarditis.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hannah Trøstrup Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Line
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Sumioka R, Nakata M, Okahashi N, Li Y, Wada S, Yamaguchi M, Sumitomo T, Hayashi M, Kawabata S. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide. PLoS One 2017; 12:e0172223. [PMID: 28222125 PMCID: PMC5319702 DOI: 10.1371/journal.pone.0172223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.
Collapse
Affiliation(s)
- Ryuichi Sumioka
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
- * E-mail:
| | - Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Yixuan Li
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Satoshi Wada
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| |
Collapse
|
10
|
Activated human valvular interstitial cells sustain interleukin-17 production to recruit neutrophils in infective endocarditis. Infect Immun 2015; 83:2202-12. [PMID: 25776751 DOI: 10.1128/iai.02965-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/05/2015] [Indexed: 12/07/2022] Open
Abstract
The mechanisms that underlie valvular inflammation in streptococcus-induced infective endocarditis (IE) remain unclear. We previously demonstrated that streptococcal glucosyltransferases (GTFs) can activate human heart valvular interstitial cells (VIC) to secrete interleukin-6 (IL-6), a cytokine involved in T helper 17 (Th17) cell differentiation. Here, we tested the hypothesis that activated VIC can enhance neutrophil infiltration through sustained IL-17 production, leading to valvular damage. To monitor cytokine and chemokine production, leukocyte recruitment, and the induction or expansion of CD4(+) CD45RA(-) CD25(-) CCR6(+) Th17 cells, primary human VIC were cultured in vitro and activated by GTFs. Serum cytokine levels were measured using an enzyme-linked immunosorbent assay (ELISA), and neutrophils and Th17 cells were detected by immunohistochemistry in infected valves from patients with IE. The expression of IL-21, IL-23, IL-17, and retinoic acid receptor-related orphan receptor C (Rorc) was upregulated in GTF-activated VIC, which may enhance the proliferation of memory Th17 cells in an IL-6-dependent manner. Many chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), were upregulated in GTF-activated VIC, which might recruit neutrophils and CD4(+) T cells. Moreover, CXCL1 production in VIC was induced in a dose-dependent manner by IL-17 to enhance neutrophil chemotaxis. CXCL1-expressing VIC and infiltrating neutrophils could be detected in infected valves, and serum concentrations of IL-17, IL-21, and IL-23 were increased in patients with IE compared to healthy donors. Furthermore, elevated serum IL-21 levels have been significantly associated with severe valvular damage, including rupture of chordae tendineae, in IE patients. Our findings suggest that VIC are activated by bacterial modulins to recruit neutrophils and that such activities might be further enhanced by the production of Th17-associated cytokines. Together, these factors can amplify the release of neutrophilic contents in situ, which might lead to severe valvular damage.
Collapse
|
11
|
Jung CJ, Yeh CY, Hsu RB, Lee CM, Shun CT, Chia JS. Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets. Circulation 2014; 131:571-81. [PMID: 25527699 DOI: 10.1161/circulationaha.114.011432] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Endocarditis-inducing streptococci form multilayered biofilms in complex with aggregated platelets on injured heart valves, but the host factors that interconnect and entrap these bacteria-platelet aggregates to promote vegetation formation were unclear. METHODS AND RESULTS In a Streptococcus mutans endocarditis rat model, we identified layers of neutrophil extracellular traps interconnecting and entrapping bacteria-platelet aggregates inside vegetation that could be reduced significantly in size along with diminished colonizing bacteria by prophylaxis with intravascular DNase I alone. The combination of activated platelets and specific immunoglobulin G-adsorbed bacteria are required to induce the formation of neutrophil extracellular traps through multiple activation pathways. Bacteria play key roles in coordinating the signaling through spleen tyrosine kinase, Src family kinases, phosphatidylinositol-3-kinase, and p38 mitogen-activated protein kinase pathways to upregulate the expression of P-selectin in platelets, while inducing reactive oxygen species-dependent citrullination in the arm of neutrophils. Neutrophil extracellular traps in turn serve as the scaffold to further enhance and entrap bacteria-platelet aggregate formation and expansion. CONCLUSIONS Neutrophil extracellular traps promote and expand vegetation formation through enhancing and entrapping bacteria-platelet aggregates on the injured heart valves.
Collapse
Affiliation(s)
- Chiau-Jing Jung
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Chiou-Yueh Yeh
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Ron-Bin Hsu
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Chii-Ming Lee
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Chia-Tung Shun
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Jean-San Chia
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.).
| |
Collapse
|
12
|
Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity. PLoS One 2014; 9:e103125. [PMID: 25084357 PMCID: PMC4118848 DOI: 10.1371/journal.pone.0103125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg2+ and Ca2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.
Collapse
|
13
|
Mahr A, Batteux F, Tubiana S, Goulvestre C, Wolff M, Papo T, Vrtovsnik F, Klein I, Iung B, Duval X. Brief report: prevalence of antineutrophil cytoplasmic antibodies in infective endocarditis. Arthritis Rheumatol 2014; 66:1672-7. [PMID: 24497495 DOI: 10.1002/art.38389] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/28/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Infective endocarditis (IE) mimics primary systemic vasculitis, and there are sporadic reports of positivity for antineutrophil cytoplasmic antibodies (ANCAs) among patients with IE. Because the frequency of ANCAs in IE is unknown, this study was undertaken to assess the seroprevalence of ANCAs in a large number of patients with IE. METHODS The study was conducted in the framework of a single-center prospective cohort study of incident IE cases. Demographic, clinical, laboratory, and microbiologic data were collected, and magnetic resonance imaging of the brain was performed at diagnosis. For those patients whose serum had been stored at diagnosis, ANCAs were assessed by indirect immunofluorescence assay in ethanol-, formalin-, and methanol-fixed neutrophils. In addition, ANCA specificity for proteinase 3 (PR3) and myeloperoxidase (MPO) was assessed by enzyme-linked immunosorbent assay. Rheumatoid factor (RF), antinuclear antibodies (ANAs), anticardiolipin antibodies (aCL), and serum Ig levels were also measured. Comparisons between groups were made using Wilcoxon's rank sum and chi-square or Fisher's exact tests. RESULTS Among 109 patients with IE, 18% had cytoplasmic ANCAs (cANCA) and/or perinuclear ANCAs (pANCA) and 8% had PR3-ANCAs or MPO-ANCAs, some with very high titers. Positivity for both cANCA or pANCA and PR3-ANCAs or MPO-ANCAs was found in 6% of patients, and RF, ANAs, and aCL were detected in 35%, 16%, and 23% of samples, respectively. No consistent clinical pattern of IE was observed in the anti-PR3/anti-MPO-positive IE patients, whereas positivity for cANCA/pANCA was associated with younger age (P = 0.022), more frequent occurrence of echocardiographic vegetations (P = 0.043), and above-normal serum IgG levels (P = 0.017). CONCLUSION ANCAs, including PR3- and MPO-ANCAs, occur in a substantial proportion of patients with IE. The link between cANCA/pANCA and specific features of IE requires further study.
Collapse
Affiliation(s)
- Alfred Mahr
- Hôpital St. Louis, AP-HP, and Université Paris Diderot, Paris 7, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Predominant role of host proteases in myocardial damage associated with infectious endocarditis induced by Enterococcus faecalis in a rat model. Infect Immun 2013; 81:1721-9. [PMID: 23478315 DOI: 10.1128/iai.00775-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infective endocarditis (IE) remains a life-threatening infectious disease with high morbidity and mortality. The objectives of the present study are to assess the host proteolytic activities of the vegetations and their cytotoxic potential in a rat model of experimental IE. Rats were infected with a strain of Enterococcus faecalis of particularly low virulence and weak protease expression. We tested the presence of proteases released by infiltrated leukocytes (matrix metalloproteinases and elastase) or produced in situ within the septic vegetation, such as those linked to the fibrinolytic system (plasmin and plasminogen activators). We also assessed the tissue damage induced by the infective thrombus in vitro and ex vivo. The model of IE was characterized by larger and more extensive vegetations in infected than in nonseptic rats and by an intense neutrophil infiltrate interfacing with the injured underlying tissue. Neutrophil extracellular DNA was shown to trap bacteria and to produce increased levels of cell-free DNA in plasma. Matrix metalloproteinase-9, elastase, and plasminogen activators were increased in septic versus nonseptic vegetations (as shown by zymography and immunohistology). Finally, proteolysis of the extracellular matrix and apoptosis were shown to be associated with host proteases. Bacteria exhibited no detectable proteolytic activity or direct cytotoxic effects. Bacterial membranes/dead bacteria were sufficient to induce leukocyte recruitment and activation that could promote vegetation formation and growth. Our results suggest that, despite the lack of bacterial proteases, the continuous attractant signals coming from bacterial colonies may lead to a chronic and deleterious aggression toward myocardial/valvular tissues by host proteases.
Collapse
|