1
|
Lacerda-Abreu MA, Meyer-Fernandes JR. Hyperphosphataemia and NADPH Oxidase Regulation in Pathophysiological Processes: Implications for Oxidative Stress and Disease Progression. Antioxidants (Basel) 2025; 14:461. [PMID: 40298783 PMCID: PMC12024410 DOI: 10.3390/antiox14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Hyperphosphataemia is a key contributor to oxidative stress (OS) and cellular dysfunction across various pathological conditions. While numerous studies have associated phosphate overload with redox imbalances, the role of NADPH oxidase (NOX) in this process has received limited attention. NOX enzymes are major enzymatic sources of reactive oxygen species (ROS), and their activation has been implicated in the progression of chronic kidney disease, vascular calcification, metabolic disorders, and cancer development. Under hyperphosphataemic conditions, excessive ROS production exacerbates endothelial dysfunction, promotes vascular smooth muscle cell transdifferentiation, induces chronic inflammation, and facilitates tumour progression. Despite increasing evidence linking phosphate metabolism to NOX activation, the underlying molecular mechanisms remain poorly characterised. This review critically examines the relationship between hyperphosphataemia and NADPH oxidase-mediated OS and explores its impact on disease pathophysiology. By providing an integrated analysis of the current findings, this work aims to highlight the pathological consequences of phosphate-induced OS and identify potential therapeutic strategies to mitigate its effects.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
2
|
Kuganathan A, Leal M, Mehta N, Lu V, Gao B, MacDonald M, Dickhout J, Krepinsky JC. Follistatin lowers blood pressure and improves vascular structure and function in essential and secondary hypertension. Hypertens Res 2024; 47:3158-3172. [PMID: 39300291 DOI: 10.1038/s41440-024-01872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is characterized by resistance artery remodeling driven by oxidative stress and fibrosis. We previously showed that an activin A antagonist, follistatin, inhibited renal oxidative stress and fibrosis in a model of hypertensive chronic kidney disease. Here, we investigate the effects of follistatin on blood pressure and vascular structure and function in models of essential and secondary hypertension. 5/6 nephrectomised mice, a model of secondary hypertension, were treated with either exogenous follistatin or with a follistatin miRNA inhibitor to increase endogenous follistatin for 9 weeks. Blood pressure in mice was measured by tail cuff. Spontaneously hypertensive rats, a model of essential hypertension, were treated with follistatin for 8 weeks. Wistar Kyoto (WKY) rats were used as the normotensive control. Blood pressure in rats was measured by radiotelemetry. Mouse superior mesenteric arteries and rat first branch mesenteric arteries were isolated for structural and functional analyses. In both models, follistatin significantly lowered blood pressure and improved vascular structure, decreasing medial thickness and collagen content. Follistatin also reduced agonist-induced maximum contraction and improved endothelium-dependent relaxation. Increased vessel oxidative stress was attenuated by follistatin in both models. In ex vivo WKY vessels, activin A increased oxidative stress, augmented constriction, and decreased endothelium-dependent relaxation. Inhibition of oxidative stress restored vessel relaxation. This study demonstrates that follistatin lowers blood pressure and improves vascular structure and function in models of essential and secondary hypertension. Effects were likely mediated through its inhibition of activin A and oxidative stress. These data suggest a potential therapeutic role for follistatin as a novel antihypertensive agent. Follistatin, through antagonization of activin A, inhibits oxidative stress and improves vascular structure and function in resistance arteries from models of essential and secondary HTN. FST decreases collagen content and vascular ROS. Functionally, FST improves endothelium-dependent relaxation and decreases maximal vasoconstriction. Improved resistance artery structure and function are correlated with a decrease in BP in both models.
Collapse
Affiliation(s)
- Ann Kuganathan
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Marcos Leal
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Vincent Lu
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeffrey Dickhout
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Scholz O, Huß E, Otter S, Herebian D, Hamacher A, Levy LM, Hristeva S, Sanz M, Ajani H, Puentes AR, Hoffmann T, Hogeback J, Unger A, Terheyden S, Reina do Fundo M, Dewidar B, Roden M, Lammert E. Protection of pancreatic islets from oxidative cell death by a peripherally-active morphinan with increased drug safety. Mol Metab 2023:101775. [PMID: 37451343 PMCID: PMC10403733 DOI: 10.1016/j.molmet.2023.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVE Dextromethorphan (DXM) is a commonly used antitussive medication with positive effects in people with type 2 diabetes mellitus, since it increases glucose tolerance and protects pancreatic islets from cell death. However, its use as an antidiabetic medication is limited due to its central nervous side effects and potential use as a recreational drug. Therefore, we recently modified DXM chemically to reduce its blood-brain barrier (BBB) penetration and central side effects. However, our best compound interacted with the cardiac potassium channel hERG (human ether-à-go-go-related gene product) and the μ-opioid receptor (MOR). Thus, the goal of this study was to reduce the interaction of our compound with these targets, while maintaining its beneficial properties. METHODS Receptor and channel binding assays were conducted to evaluate the drug safety of our DXM derivative. Pancreatic islets were used to investigate the effect of the compound on insulin secretion and islet cell survival. Via liquor collection from the brain and a behavioral assay, we analyzed the BBB permeability. By performing intraperitoneal and oral glucose tolerance tests as well as pharmacokinetic analyses, the antidiabetic potential and elimination half-life were investigated, respectively. To analyze the islet cell-protective effect, we used fluorescence microscopy as well as flow cytometric analyses. RESULTS Here, we report the design and synthesis of an optimized, orally available BBB-impermeable DXM derivative with lesser binding to hERG and MOR than previous ones. We also show that the new compound substantially enhances glucose-stimulated insulin secretion (GSIS) from mouse and human islets and glucose tolerance in mice as well as protects pancreatic islets from cell death induced by reactive oxygen species and that it amplifies the effects of tirzepatide on GSIS and islet cell viability. CONCLUSIONS We succeeded to design and synthesize a novel morphinan derivative that is BBB-impermeable, glucose-lowering and islet cell-protective and has good drug safety despite its morphinan and imidazole structures.
Collapse
Affiliation(s)
- Okka Scholz
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Elena Huß
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Silke Otter
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anna Hamacher
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | | | | | - Miguel Sanz
- Taros Chemicals GmbH & Co. KG, D-44227 Dortmund, Germany
| | - Haresh Ajani
- Taros Chemicals GmbH & Co. KG, D-44227 Dortmund, Germany
| | | | | | - Jens Hogeback
- A&M Labor für Analytik und Metabolismusforschung Service GmbH, D-50126 Bergheim, Germany
| | - Anke Unger
- Lead Discovery Center GmbH & Co. KG, D-44227 Dortmund, Germany
| | | | - Michelle Reina do Fundo
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Bedair Dewidar
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany.
| |
Collapse
|
4
|
Cam Nam P, Van Bay M, Vo QV, Mechler A, Minh Thong N. Tautomerism and antioxidant power of sulfur-benzo[h]quinoline: DFT and molecular docking studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Dextromethorphan Reduces Oxidative Stress and Inhibits Uremic Artery Calcification. Int J Mol Sci 2021; 22:ijms222212277. [PMID: 34830159 PMCID: PMC8623041 DOI: 10.3390/ijms222212277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
Medial vascular calcification has emerged as a key factor contributing to cardiovascular mortality in patients with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs) with osteogenic transdifferentiation play a role in vascular calcification. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors reduce reactive oxygen species (ROS) production and calcified-medium-induced calcification of VSMCs. This study investigates the effects of dextromethorphan (DXM), an NADPH oxidase inhibitor, on vascular calcification. We used in vitro and in vivo studies to evaluate the effect of DXM on artery changes in the presence of hyperphosphatemia. The anti-vascular calcification effect of DXM was tested in adenine-fed Wistar rats. High-phosphate medium induced ROS production and calcification of VSMCs. DXM significantly attenuated the increase in ROS production, the decrease in ATP, and mitochondria membrane potential during the calcified-medium-induced VSMC calcification process (p < 0.05). The protective effect of DXM in calcified-medium-induced VSMC calcification was not further increased by NADPH oxidase inhibitors, indicating that NADPH oxidase mediates the effect of DXM. Furthermore, DXM decreased aortic calcification in Wistar rats with CKD. Our results suggest that treatment with DXM can attenuate vascular oxidative stress and ameliorate vascular calcification.
Collapse
|
6
|
Novel Approaches to Restore Pancreatic Beta-Cell Mass and Function. Handb Exp Pharmacol 2021; 274:439-465. [PMID: 34114119 DOI: 10.1007/164_2021_474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Beta-cell dysfunction and beta-cell death are critical events in the development of type 2 diabetes mellitus (T2DM). Therefore, the goals of modern T2DM management have shifted from merely restoring normoglycemia to maintaining or regenerating beta-cell mass and function. In this review we summarize current and novel approaches to achieve these goals, ranging from lifestyle interventions to N-methyl-D-aspartate receptor (NMDAR) antagonism, and discuss the mechanisms underlying their effects on beta-cell physiology and glycemic control. Notably, timely intervention seems critical, but not always strictly required, to maximize the effect of any approach on beta-cell recovery and disease progression. Conventional antidiabetic medications are not disease-modifying in the sense that the disease does not progress or reoccur while on treatment or thereafter. More invasive approaches, such as bariatric surgery, are highly effective in restoring normoglycemia, but are reserved for a rather small proportion of obese individuals and sometimes associated with serious adverse events. Finally, we recapitulate the broad range of effects mediated by peripheral NMDARs and discuss recent evidence on the potential of NMDAR antagonists to be developed as a novel class of antidiabetic drugs. In the future, a more refined assessment of disease risk or disease subtype might enable more targeted therapies to prevent or treat diabetes.
Collapse
|
7
|
Bloxham CJ, Foster SR, Thomas WG. A Bitter Taste in Your Heart. Front Physiol 2020; 11:431. [PMID: 32457649 PMCID: PMC7225360 DOI: 10.3389/fphys.2020.00431] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.
Collapse
Affiliation(s)
- Conor J Bloxham
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Simon R Foster
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Lu RB, Chang YH, Lee SY, Wang TY, Cheng SL, Chen PS, Yang YK, Hong JS, Chen SL. Dextromethorphan Protect the Valproic Acid Induced Downregulation of Neutrophils in Patients with Bipolar Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:145-152. [PMID: 31958915 PMCID: PMC7006988 DOI: 10.9758/cpn.2020.18.1.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022]
Abstract
Objective Valproic acid (VPA) is an anticonvulsant and commonly long term used as a mood stabilizer for patients with mood disorders. However its chronic effects on the hematological changes were noticed and need to be further evaluated. In this study, we evaluated, in Taiwanese Han Chinese patients with bipolar disorders (BD), the chronic effects of VPA or VPA plus dextromethorphan (DM) on the hematological molecules (white blood cell [WBCs], red blood cells [RBCs], hemoglobin, hematocrit, and platelets). Methods In a 12-week, randomized, double-blind study, we randomly assigned BD patients to one of three groups: VPA plus either placebo (VPA+P, n = 57) or DM (30 mg/day, VPA+DM30, n = 56) or 60 mg/day (VPA+DM60, n = 53). The Young Mania Rating Scale and Hamilton Depression Rating Scale were used to evaluate symptom severity, and the hematological molecules were checked. Results Paired t test showed that the WBC, neutrophils, platelets and RBCs were significantly lowered after 12 weeks of VPA+P or VPA+DM30 treatment. VPA+DM60 represented the protective effects in the WBCs, neutrophils, and RBCs but not in the platelets. We further calculated the changes of each hematological molecules after 12 weeks treatment. We found that combination use of DM60 significantly improved the decline in neutrophils induced by the long-term VPA treatment. Conclusion Hematological molecule levels were lower after long-term treatment with VPA. VPA+DM60, which yielded the protective effect in hematological change, especially in the neutrophil counts. Thus, DM might be adjunct therapy for maintaining hematological molecules in VPA treatment.
Collapse
Affiliation(s)
- Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Yun-Hsuan Chang
- Department of Psychology, Asia University, Taichung, Taiwan, ROC.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Shu-Li Cheng
- Dpartment of Nursing, Mackay Medical College, Taipei, Taiwan, ROC
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Yen-Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Jau-Shyong Hong
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, NC, USA
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC.,Graduate Institute of Medicine & M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan, ROC.,Department of Medical Research, KMU Hospital, Kaohsiung, Taiwan, ROC
| |
Collapse
|
9
|
Costa JDS, Ramos RDS, Costa KDSL, Brasil DDSB, Silva CHTDPD, Ferreira EFB, Borges RDS, Campos JM, Macêdo WJDC, Santos CBRD. An In Silico Study of the Antioxidant Ability for Two Caffeine Analogs Using Molecular Docking and Quantum Chemical Methods. Molecules 2018; 23:molecules23112801. [PMID: 30380600 PMCID: PMC6278550 DOI: 10.3390/molecules23112801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022] Open
Abstract
The antioxidant activity of molecules constitutes an important factor for the regulation of redox homeostasis and reduction of the oxidative stress. Cells affected by oxidative stress can undergo genetic alteration, causing structural changes and promoting the onset of chronic diseases, such as cancer. We have performed an in silico study to evaluate the antioxidant potential of two molecules of the zinc database: ZINC08706191 (Z91) and ZINC08992920 (Z20). Molecular docking, quantum chemical calculations (HF/6-31G**) and Pearson’s correlation have been performed. Molecular docking results of Z91 and Z20 showed both the lower binding affinity (BA) and inhibition constant (Ki) values for the receptor-ligand interactions in the three tested enzymes (cytochrome P450—CP450, myeloperoxidase—MP and NADPH oxidase—NO) than the control molecules (5-fluorouracil—FLU, melatonin—MEL and dextromethorphan—DEX, for each receptor respectively). Molecular descriptors were correlated with Ki and strong correlations were observed for the CP450, MP and NO receptors. These and other results attest the significant antioxidant ability of Z91 and Z20, that may be indicated for further analyses in relation to the control of oxidative stress and as possible antioxidant agents to be used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Josivan da Silva Costa
- Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Pará, Rua Augusto Corrêa, 01, Belém, Pará 66075110, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences, Federal University of Amapá, Rod. Juscelino Kubitschek, Km 02, s/n, Macapá, Amapá 68902-280, Brazil.
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Rua João Pessoa, 121, Capanema, Pará 68700-030, Brazil.
| | - Ryan da Silva Ramos
- Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences, Federal University of Amapá, Rod. Juscelino Kubitschek, Km 02, s/n, Macapá, Amapá 68902-280, Brazil.
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Rua João Pessoa, 121, Capanema, Pará 68700-030, Brazil.
| | - Karina da Silva Lopes Costa
- Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences, Federal University of Amapá, Rod. Juscelino Kubitschek, Km 02, s/n, Macapá, Amapá 68902-280, Brazil.
| | | | | | - Elenilze Figueiredo Batista Ferreira
- Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences, Federal University of Amapá, Rod. Juscelino Kubitschek, Km 02, s/n, Macapá, Amapá 68902-280, Brazil.
| | - Rosivaldo Dos Santos Borges
- Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Pará, Rua Augusto Corrêa, 01, Belém, Pará 66075110, Brazil.
| | - Joaquín María Campos
- Department of Pharmaceutical and Organic Chemistry, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - Williams Jorge da Cruz Macêdo
- Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Pará, Rua Augusto Corrêa, 01, Belém, Pará 66075110, Brazil.
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Rua João Pessoa, 121, Capanema, Pará 68700-030, Brazil.
| | - Cleydson Breno Rodrigues Dos Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences, Federal University of Amapá, Rod. Juscelino Kubitschek, Km 02, s/n, Macapá, Amapá 68902-280, Brazil.
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Rua João Pessoa, 121, Capanema, Pará 68700-030, Brazil.
- Department of Pharmaceutical and Organic Chemistry, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| |
Collapse
|
10
|
Welters A, Klüppel C, Mrugala J, Wörmeyer L, Meissner T, Mayatepek E, Heiss C, Eberhard D, Lammert E. NMDAR antagonists for the treatment of diabetes mellitus-Current status and future directions. Diabetes Obes Metab 2017; 19 Suppl 1:95-106. [PMID: 28880473 DOI: 10.1111/dom.13017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is characterized by chronically elevated blood glucose levels accelerated by a progressive decline of insulin-producing β-cells in the pancreatic islets. Although medications are available to transiently adjust blood glucose to normal levels, the effects of current drugs are limited when it comes to preservation of a critical mass of functional β-cells to sustainably maintain normoglycemia. In this review, we recapitulate recent evidence on the role of pancreatic N-methyl-D-aspartate receptors (NMDARs) in β-cell physiology, and summarize effects of morphinan-based NMDAR antagonists that are beneficial for insulin secretion, glucose tolerance and islet cell survival. We further discuss NMDAR-mediated molecular pathways relevant for neuronal cell survival, which may also be important for the preservation of β-cell function and mass. Finally, we summarize the literature for evidence on the role of NMDARs in the development of diabetic long-term complications, and highlight beneficial pharmacologic aspects of NMDAR antagonists in diabetic nephropathy, retinopathy as well as neuropathy.
Collapse
Affiliation(s)
- Alena Welters
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Carina Klüppel
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Jessica Mrugala
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Düsseldorf, Germany
| | - Laura Wörmeyer
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Düsseldorf, Germany
| |
Collapse
|
11
|
Macías Pérez ME, Hernández Rodríguez M, Cabrera Pérez LC, Fragoso-Vázquez MJ, Correa-Basurto J, Padilla-Martínez II, Méndez Luna D, Mera Jiménez E, Flores Sandoval C, Tamay Cach F, Rosales-Hernández MC. Aromatic Regions Govern the Recognition of NADPH Oxidase Inhibitors as Diapocynin and its Analogues. Arch Pharm (Weinheim) 2017; 350. [PMID: 28833480 DOI: 10.1002/ardp.201700041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/04/2023]
Abstract
Oxidative stress is related to the pathogenesis and progress of several human diseases. NADPH oxidase (NOX), and mainly the NOX2 isoform, produces superoxide anions (O2•- ). To date, it is known that NOX2 can be inhibited by preventing the assembly of its subunits, p47phox and p22phox. In this work, we analyzed the binding to NOX2 of the apocynin dimer, diapocynin (C1), a known NOX2 inhibitor, and of 18 designed compounds (C2-C19) which have chemical relationships to C1, by in silico methods employing a p47phox structure from the Protein Data Bank (PDB code: 1WLP). C1 and six of the designed compounds were recognized in the region where p22phox binds to p47phox and makes π-π interactions principally with W193, W263, and Y279, which form an aromatic-rich region. C8 was chosen as the best compound according to the in silico studies and was synthesized and evaluated in vitro. C8 was able to prevent the production of reactive oxygen species (ROS) similar to C1. In conclusion, targeting the aromatic region of p47phox through π-interactions is important for inhibiting NOX activity.
Collapse
Affiliation(s)
- Martha E Macías Pérez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Maricarmen Hernández Rodríguez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Modelado Molecular y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Laura C Cabrera Pérez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - M Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Modelado Molecular y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Itzia I Padilla-Martínez
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - David Méndez Luna
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular de la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - César Flores Sandoval
- Gerencia de Desarrollo de Materiales y Productos Químicos, Instituto Mexicano del Petróleo, Eje Central (Lázaro Cárdenas), Ciudad de México, México
| | - Feliciano Tamay Cach
- Laboratorio de Investigación de Bioquímica, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Martha C Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
12
|
Kuo HC. Preventing coronary artery lesions in Kawasaki disease. Biomed J 2017; 40:141-146. [PMID: 28651735 PMCID: PMC6136281 DOI: 10.1016/j.bj.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
A form of systemic vasculitis that affects mostly small and medium-sized vessels, Kawasaki disease (KD) is most commonly found in children under the age of 5 years old. Though its etiology is unknown, KD has been the most frequent acquired heart disease in developing countries. Its incidence has increased over recent decades in many centuries, including Japan, Korea, and China. The most severe complications of KD are coronary artery lesions (CAL), including dilation, fistula, aneurysm, arterial remodeling, stenosis, and occlusion. Aneurysm formation has been observed in 20–25% of KD patients that do not receive intravenous immunoglobulin (IVIG) treatment, and in 3–5% that do receive it. Coronary artery dilation has been found in about 30% of KD patients in the acute stage, although mostly in the transient form. Diminishing the occurrence and regression of CAL is a vital part of treating KD. In this review article, I demonstrate the clinical method to prevent CAL formation used at the Kawasaki Disease Center in Taiwan.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Yin WH, Chen P, Yeh HI, Wang KY, Hung YJ, Tseng WK, Wen MS, Wu TC, Wu CC, Cheng SM, Chen JW. Combination With Low-dose Dextromethorphan Improves the Effect of Amlodipine Monotherapy in Clinical Hypertension: A First-in-human, Concept-proven, Prospective, Dose-escalation, Multicenter Study. Medicine (Baltimore) 2016; 95:e3234. [PMID: 27015224 PMCID: PMC4998419 DOI: 10.1097/md.0000000000003234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The combination of low rather than high dose of dextromethorphan (DXM) with amlodipine (AM) could improve blood pressure (BP) reduction in hypertensive animals. The study aimed to evaluate the feasibility of different doses of DXM combined with standard AM treatment in clinical hypertension.This was a prospective, 14-week, dose-escalation, multicenter study. After 2-week run-in period with AM 5 mg/day, hypertensive patients who got the BP goal of 140/90 mmHg kept receiving AM monotherapy for another 12 weeks. The nonresponders, while kept on AM 5 mg/day, received additional DXM treatment for 3 sequential dose-titrated periods with initially 2.5 mg/day, followed by 7.5 mg/day, and finally 30 mg/day. Each period was for 4 weeks. The patients at BP goal after each treatment period were defined as the responders and kept on the same combination till the end of the study. The responder rate of each treatment period was recorded. The changes of BP and serum antioxidant/endothelial markers between week 14 and week 2 were evaluated.Of the 103 patients initially enrolled, 89 entered the treatment period. In the 78 patients completing the study, 31 (40%) at BP goal after 2-week AM run-in kept on AM monotherapy (DXM0). The addition of 2.5 (DXM2.5) and 7.5 mg/day (DXM7.5) of DXM enabled BP goal achievement in 22 (47%) nonresponders to AM monotherapy including 16 (29%) with DXM2.5 and 6 (18%) with DXM7.5. Only 4 patients (16%) reached BP goal with the combination of DXM 30 mg/day (DXM30). Overall, 73% of the 78 patients reached BP goal at the end of the 14-week study. Mean systolic BP was reduced by 7.9% ± 7.0% with DXM2.5 (P < 0.001) and by 5.4% ± 2.4% with DXM7.5 (P = 0.003) respectively at week 14 from that at week 2, which was unchanged in either DXM0 or DXM30 group. Besides, the effects of combination treatment were particularly significant in the patients with impaired endothelial function suggested by reduced serum NOx level at baseline.Accordingly, the combination with low dose of DXM was feasible to improve BP control in patients who failed to achieve the BP goal by standard AM monotherapy. The benefit effects might be significant especially in patients with impaired endothelial function.
Collapse
Affiliation(s)
- Wei-Hsian Yin
- From the Heart Center, Cheng-Hsin General Hospital (W-HY); Faculty of Medicine, National Yang-Ming University (W-HY); Institute of Pharmacology, National Yang-Ming University (J-WC); TSH Biopharm Corporation Ltd (PC); Department of Medicine, Mackay Memorial Hospital, Taipei (H-IY); Division of Cardiology, Taichung Veterans General Hospital (K-YW); Department of Internal Medicine, Chung San Medical University, Taichung (K-YW); Division of Endocrinology and Metabolism (Y-JH); Division of Cardiology, Tri-Service General Hospital, Taipei (S-MC); Department of Cardiology, E-DA Medical University Hospital, Kaohsiung (W-KT); Department of Cardiology, Chang Gung Memorial Hospital Linkou, Taoyuan (M-SW); Division of Cardiology, Taipei Veterans General Hospital (T-CW, J-WC); Department of Internal Medicine, National Taiwan University Hospital (C-CW); and Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC (J-WC)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan. Mol Neurobiol 2016; 53:3494-3502. [DOI: 10.1007/s12035-016-9786-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/31/2016] [Indexed: 11/25/2022]
|
15
|
Upadhyaya JD, Singh N, Sikarwar AS, Chakraborty R, Pydi SP, Bhullar RP, Dakshinamurti S, Chelikani P. Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction. PLoS One 2014; 9:e110373. [PMID: 25340739 PMCID: PMC4207743 DOI: 10.1371/journal.pone.0110373] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/11/2014] [Indexed: 12/14/2022] Open
Abstract
Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways.
Collapse
Affiliation(s)
| | - Nisha Singh
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Anurag S. Sikarwar
- Departments of Pediatrics, Physiology, University of Manitoba, Winnipeg, MB, Canada
| | - Raja Chakraborty
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Sai P. Pydi
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Shyamala Dakshinamurti
- Departments of Pediatrics, Physiology, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
- * E-mail:
| |
Collapse
|
16
|
New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin Sci (Lond) 2013; 126:111-21. [PMID: 24059588 DOI: 10.1042/cs20120651] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated production of prostanoids from the constitutive (COX-1) or inducible (COX-2) cyclo-oxygenases has been involved in the alterations in vascular function, structure and mechanical properties observed in cardiovascular diseases, including hypertension. In addition, it is well known that production of ROS (reactive oxygen species) plays an important role in the impaired contractile and vasodilator responses, vascular remodelling and altered vascular mechanics of hypertension. Of particular interest is the cross-talk between NADPH oxidase and mitochondria, the main ROS sources in hypertension, which may represent a vicious feed-forward cycle of ROS production. In recent years, there is experimental evidence showing a relationship between ROS and COX-derived products. Thus ROS can activate COX and the COX/PG (prostaglandin) synthase pathways can induce ROS production through effects on different ROS generating enzymes. Additionally, recent evidence suggests that the COX-ROS axis might constitute a vicious circle of self-perpetuating vasoactive products that have a pathophysiological role in altered vascular contractile and dilator responses and hypertension development. The present review discusses the current knowledge on the role of oxidative stress and COX-derived prostanoids in the vascular alterations observed in hypertension, highlighting new findings indicating that these two pathways act in concert to induce vascular dysfunction.
Collapse
|
17
|
Horrigan LA, Holohan CA, Lawless GA, Murtagh MA, Williams CT, Webster CM. Blueberry juice causes potent relaxation of rat aortic rings via the activation of potassium channels and the H₂S pathway. Food Funct 2013; 4:392-400. [PMID: 23175156 DOI: 10.1039/c2fo30205e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of this study was to investigate the in vitro effects of blueberry juice on healthy rat aortic rings, and to explore the roles of potassium channels and of the hydrogen sulphide (H(2)S) pathway in mediating the effects of blueberry juice. Firstly, the antioxidant capacity of blueberry juice was compared to other popular juice drinks using the Folin-Ciocalteu and the DPPH assays. Blueberry juice had significantly higher total polyphenol content than any of the other drinks studied (p < 0.01). The effect of blueberry juice on noradrenaline-contracted aortic rings was then observed, and the juice caused significant inhibition of noradrenaline-induced contractions (p < 0.01). Voltage-gated potassium channel (Kv) blockers 4-aminopyridine (1 mM) and 3,4-diaminopyridine (1 mM), as well as the cystathionine γ-lysase (CSE) inhibitor d,l-propargylglycine (2 mM) were then utilised to elucidate the role of Kv channels and the CSE/H(2)S pathway. Kv channel blocker 3,4-diaminopyridine caused significant blockade at 1/100 and 1/50 dilutions of juice (p < 0.01), whilst 4-aminopyridine caused significant blockade of the 1/100 dilution of blueberry juice (p < 0.05). In addition, d,l-propargylglycine potently inhibited the effect of 1/100 and 1/50 dilutions of blueberry juice (p < 0.01). This study indicates that blueberry juice has potent vasorelaxing properties, and thus may be a useful dietary agent for the prevention and treatment of hypertension. This study also provides strong evidence that Kv channels and the CSE/H(2)S pathway may be responsible, at least in part, for mediating the effects of blueberry juice.
Collapse
Affiliation(s)
- Louise A Horrigan
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
18
|
Dextromethorphan inhibits activations and functions in dendritic cells. Clin Dev Immunol 2013; 2013:125643. [PMID: 23781253 PMCID: PMC3679715 DOI: 10.1155/2013/125643] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/25/2013] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.
Collapse
|
19
|
DNA damage and augmented oxidative stress in bone marrow mononuclear cells from Angiotensin-dependent hypertensive mice. Int J Hypertens 2013; 2013:305202. [PMID: 23476745 PMCID: PMC3586517 DOI: 10.1155/2013/305202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/16/2013] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage.
Collapse
|
20
|
Pharmacological inhibition of inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, convalesce behavior and biochemistry of hypertension induced vascular dementia in rats. Pharmacol Biochem Behav 2012. [PMID: 23201648 DOI: 10.1016/j.pbb.2012.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cognitive disorders are likely to increase over the coming years (5-10). Vascular dementia (VaD) has heterogeneous pathology and is a challenge for clinicians. Current Alzheimer's disease drugs have had limited clinical efficacy in treating VaD and none have been approved by major regulatory authorities specifically for this disease. Role of iNOS and NADPH-oxidase has been reported in various pathological conditions but there role in hypertension (Hypt) induced VaD is still unclear. This research work investigates the salutiferous effect of aminoguanidine (AG), an iNOS inhibitor and 4'-hydroxy-3'-methoxyacetophenone (HMAP), a NADPH oxidase inhibitor in Hypt induced VaD in rats. Deoxycorticosterone acetate-salt (DOCA-S) hypertension has been used for development of VaD in rats. Morris water-maze was used for testing learning and memory. Vascular system assessment was done by testing endothelial function. Mean arterial blood pressure (MABP), oxidative stress [aortic superoxide anion, serum and brain thiobarbituric acid reactive species (TBARS) and brain glutathione (GSH)], nitric oxide levels (serum nitrite/nitrate) and cholinergic activity (brain acetyl cholinesterase activity-AChE) were also measured. DOCA-S treated rats have shown increased MABP with impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate & brain GSH levels along with increase in serum & brain TBARS, and brain AChE activity. AG as well as HMAP significantly convalesce Hypt induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that AG, an iNOS inhibitor and HMAP, a NADPH-oxidase inhibitor may be considered as potential agents for the management of Hypt induced VaD.
Collapse
|