1
|
Oe Y, Tanaka T, Takahashi N. The Many Faces of Protease-Activated Receptor 2 in Kidney Injury. Biomedicines 2025; 13:414. [PMID: 40002827 PMCID: PMC11852827 DOI: 10.3390/biomedicines13020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Protease-activated receptor 2 (PAR2) is a seven-transmembrane, G-protein-coupled receptor that is activated by coagulation proteases such as factor VIIa and factor Xa and other serine proteases. It is a potential therapeutic target for kidney injury, as it enhances inflammatory and fibrotic responses via the nuclear factor-kappa B and mitogen-activated protein kinase cascades. The body of knowledge regarding the role of PAR2 in kidney disease is currently growing, and its role in various kidney disease models, such as acute kidney injury, renal fibrosis, diabetic kidney disease, aging, and thrombotic microangiopathy, has been reported. Here, we review the literature to better understand the various aspects of PAR2 in kidney disease.
Collapse
Affiliation(s)
- Yuji Oe
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-0845, Japan
| |
Collapse
|
2
|
Moreton N, Puzio M, McCormack J, O'Connor JJ. The effects of prolyl hydroxylase inhibition during and post, hypoxia, oxygen glucose deprivation and oxidative stress, in isolated rat hippocampal slices. Brain Res Bull 2023; 205:110822. [PMID: 37984622 DOI: 10.1016/j.brainresbull.2023.110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The contributions of hypoxia and oxidative stress to the pathophysiology of acute ischemic stroke are well established and can lead to disruptions in synaptic signaling. Hypoxia and oxidative stress lead to the neurotoxic overproduction of reactive oxygen species (ROS) and the stabilization of hypoxia inducible factors (HIF). Compounds such as prolyl-4-hydroxylase domain enzyme inhibitors (PHDIs) have been shown to have a preconditioning and neuroprotective effect against ischemic insults such as hypoxia, anoxia, oxygen glucose deprivation (OGD) or H2O2. Therefore, this study explored the effects of two PHDIs, JNJ-42041935 (10 µM) and roxadustat (100 µM) on cell viability using organotypic hippocampal slice cultures. We also assessed the effects of these compounds on synaptic transmission during and post hypoxia, OGD and H2O2 application in isolated rat hippocampal slices using field recording electrophysiological techniques and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit trafficking using immunohistochemistry. Our organotypic data demonstrated a protective role for both inhibitors, where slices had significantly less cell death post anoxia and OGD compared to controls. We also report a distinct modulatory role for both JNJ-42041935 and roxadustat on fEPSP slope post hypoxia and OGD but not H2O2. In addition, we report that application of roxadustat impaired long-term potentiation, but only when applied post-hypoxia. This inhibitory effect was not reversed with co-application of the cyclin-dependent kinase 5 (CDK-5) inhibitor, roscovitine (10 µM), suggesting a CDK-5 independent synaptic AMPAR trafficking mechanism. Both hypoxia and OGD induced a reduction in synaptic AMPA GluA2 subunits, the OGD effect being reversed by prior treatment with both JNJ-42041935 and roxadustat. These results suggest an important role for PHDs in synaptic signaling and plasticity during episodes of ischemic stress.
Collapse
Affiliation(s)
- Niamh Moreton
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martina Puzio
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Janet McCormack
- UCD Research Pathology Core, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Wu W, Xia X, Tang L, Luo J, Xiong S, Ma G, Lei H. Phosphoinositide 3-kinase as a therapeutic target in angiogenic disease. Exp Eye Res 2023; 236:109646. [PMID: 37716399 DOI: 10.1016/j.exer.2023.109646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) generate lipids that control multitudinous intracellular cell signaling events which participate in cell survival and proliferation. In addition, PI3K signaling also contributes to metabolism, immunity, angiogenesis and cardiovascular homeostasis, and many diseases. The diverse actions of PI3K stem from the existence of their various isoforms and a variety of protein effectors. Hence, PI3K isoform-specific inhibitors have already achieved a wonderful effect on treating cancer. Herein, we summarize the molecular mechanism of PI3K inhibitors in preventing the permeability of vessels and neovascularization. Additionally, we briefly illustrate how PI3K signaling modulates blood vessel growth and discuss the different roles that PI3K isoforms play in angiogenesis.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Luosheng Tang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siqi Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoen Ma
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
4
|
Navneet S, Brandon C, Simpson K, Rohrer B. Exploring the Therapeutic Potential of Elastase Inhibition in Age-Related Macular Degeneration in Mouse and Human. Cells 2023; 12:1308. [PMID: 37174708 PMCID: PMC10177483 DOI: 10.3390/cells12091308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Abnormal turnover of the extracellular matrix (ECM) protein elastin has been linked to AMD pathology. Elastin is a critical component of Bruch's membrane (BrM), an ECM layer that separates the retinal pigment epithelium (RPE) from the underlying choriocapillaris. Reduced integrity of BrM's elastin layer corresponds to areas of choroidal neovascularization (CNV) in wet AMD. Serum levels of elastin-derived peptides and anti-elastin antibodies are significantly elevated in AMD patients along with the prevalence of polymorphisms of genes regulating elastin turnover. Despite these results indicating significant associations between abnormal elastin turnover and AMD, very little is known about its exact role in AMD pathogenesis. Here we report on results that suggest that elastase enzymes could play a direct role in the pathogenesis of AMD. We found significantly increased elastase activity in the retinas and RPE cells of AMD mouse models, and AMD patient-iPSC-derived RPE cells. A1AT, a protease inhibitor that inactivates elastase, reduced CNV lesion sizes in mouse models. A1AT completely inhibited elastase-induced VEGFA expression and secretion, and restored RPE monolayer integrity in ARPE-19 monolayers. A1AT also mitigated RPE thickening, an early AMD phenotype, in HTRA1 overexpressing mice, HTRA1 being a serine protease with elastase activity. Finally, in an exploratory study, examining archival records from large patient data sets, we identified an association between A1AT use, age and AMD risk. Our results suggest that repurposing A1AT may have therapeutic potential in modifying the progression to AMD.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kit Simpson
- Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Ren G, Peng Q, Emmersen J, Zachar V, Fink T, Porsborg SR. A Comparative Analysis of the Wound Healing-Related Heterogeneity of Adipose-Derived Stem Cells Donors. Pharmaceutics 2022; 14:2126. [PMID: 36297561 PMCID: PMC9608503 DOI: 10.3390/pharmaceutics14102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived Stem cells (ASCs) are on the verge of being available for large clinical trials in wound healing. However, for developing advanced therapy medicinal products (ATMPs), potency assays mimicking the mode of action are required to control the product consistency of the cells. Thus, greater effort should go into the design of product assays. Therefore, we analyzed three ASC-based ATMPs from three different donors with respect to their surface markers, tri-lineage differentiation, proliferation, colony-forming unit capacity, and effect on fibroblast proliferation and migration, endothelial proliferation, migration, and angiogenesis. Furthermore, the transcriptome of all three cell products was analyzed through RNA-sequencing. Even though all products met the criteria by the International Society for Cell and Gene Therapy and the International Federation for Adipose Therapeutics and Science, we found one product to be consistently superior to others when exploring their potency in the wound healing specific assays. Our results indicate that certain regulatory genes associated with extracellular matrix and angiogenesis could be used as markers of a superior ASC donor from which to use ASCs to treat chronic wounds. Having a panel of assays capable of predicting the potency of the product would ensure the patient receives the most potent product for a specific indication, which is paramount for successful patient treatment and acceptance from the healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone R. Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark
| |
Collapse
|
6
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Multiplex Analysis of Adipose-Derived Stem Cell (ASC) Immunophenotype Adaption to In Vitro Expansion. Cells 2021; 10:cells10020218. [PMID: 33499095 PMCID: PMC7911224 DOI: 10.3390/cells10020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
In order to enhance the therapeutic potential, it is important that sufficient knowledge regarding the dynamic changes of adipose-derived stem cell (ASC) immunophenotypical and biological properties during in vitro growth is available. Consequently, we embarked on a study to follow the evolution of highly defined cell subsets from three unrelated donors in the course of eight passages on tissue culture polystyrene. The co-expression patterns were defined by panels encompassing seven and five cell surface markers, including CD34, CD146, CD166, CD200, CD248, CD271, and CD274 and CD29, CD31, CD36, CD201, and Stro-1, respectively. The analysis was performed using multichromatic flow cytometry. We observed a major paradigm shift, where the CD166-CD34+ combination which was found across all cell subsets early in the culture was replaced by the CD166+ phenotype as the population homogeneity increased with time. At all analysis points, the cultures were dominated by a few major clones that were highly prevalent in most of the donors. The selection process resulted in two predominant clones in the larger panel (CD166+CD34-CD146-CD271- CD274-CD248-CD200- and CD166+CD34+ CD146-CD271-CD274-CD248-CD200-) and one clone in the smaller panel (CD29+CD201+CD36- Stro-1- CD31-). The minor subsets, including CD166+CD34-CD146-CD271+CD274-CD248-CD200- and CD166+CD34+CD146+CD271-CD274-CD248-CD200-, and CD29+CD201-CD36-Stro-1-CD31-, CD29+CD201+CD36-Stro-1+CD31-, and CD29+CD201+CD36+Stro-1-CD31-, in the seven and five marker panels, respectively, were, on the other, hand highly fluctuating and donor-dependent. The results demonstrate that only a limited number of phenotypical repertoires are possible in ASC cultures. Marked differences in their relative occurrence between distinct individuals underscore the need for potency standardization of different ASC preparation to improve the clinical outcome.
Collapse
|
8
|
Henriksen JL, Sørensen NB, Fink T, Zachar V, Porsborg SR. Systematic Review of Stem-Cell-Based Therapy of Burn Wounds: Lessons Learned from Animal and Clinical Studies. Cells 2020; 9:E2545. [PMID: 33256038 PMCID: PMC7761075 DOI: 10.3390/cells9122545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment of severe burn wounds presents a daunting medical challenge, and novel approaches promoting healing and reducing scarring are highly desirable. The application of mesenchymal stem/stromal cells (MSCs) has been suggested as a novel treatment. In this paper, we present systematic reviews of pre-clinical and clinical studies of MSC therapy for second- or third-degree thermal burn wounds. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, the PubMed and Embase databases were searched, and interventional studies of MSC therapy using rodent models (21 studies) or human burn patients (three studies) were included in the pre-clinical and clinical reviews, respectively, where both overall outcome and wound-healing-phase-specific methodologies and effects were assessed. The pre-clinical studies demonstrated a promising effect of the application of MSCs on several wound healing phases. The clinical studies also suggested that the MSC treatment was beneficial, particularly in the remodeling phase. However, the limited number of studies, their lack of homogeneity in study design, relatively high risk of bias, lack of reporting on mode of action (MOA), and discontinuity of evidence restrict the strength of these findings. This comprehensive review presents an overview of available methodologies to assess the MOA of MSC treatment for distinct wound healing phases. Furthermore, it includes a set of recommendations for the design of high-quality clinical studies that can determine the efficacy of MSCs as a therapy for burn wounds.
Collapse
Affiliation(s)
- Josefine Lin Henriksen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; (J.L.H.); (N.B.S.)
| | - Nana Brandborg Sørensen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; (J.L.H.); (N.B.S.)
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| | - Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| |
Collapse
|
9
|
Iohara K, Zayed M, Takei Y, Watanabe H, Nakashima M. Treatment of Pulpectomized Teeth With Trypsin Prior to Transplantation of Mobilized Dental Pulp Stem Cells Enhances Pulp Regeneration in Aged Dogs. Front Bioeng Biotechnol 2020; 8:983. [PMID: 32923438 PMCID: PMC7456913 DOI: 10.3389/fbioe.2020.00983] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
There is an age-dependent decline of pulp regeneration, due to the decline of migration, proliferation, and cell survival of resident stem cells. Trypsin is a proteolytic enzyme clinically used for tissue repair. Here, we investigated the effects of trypsin pretreatment of pulpectomized teeth prior to cell transplantation on pulp regeneration in aged dogs. The amount of regenerated pulp was significantly higher in trypsin-pretreated teeth compared to untreated teeth. Trypsin pretreatment increased the number of cells attached to the dentinal wall that differentiated into odontoblast-like cells. The trypsin receptor, PAR2, was higher in vitro expression in the periodontal ligament cells (PDLCs) from aged dogs compared to those from young. The direct effects of trypsin on aged PDLCs were increased expression of genes related to immunomodulation, cell survival, and extracellular matrix degradation. To examine the indirect effects on microenvironment, highly extracted proteins from aged cementum were identified by proteomic analyses. Western blotting demonstrated that significantly increased fibronectin was released by the trypsin treatment of aged cementum compared to young cementum. The aged cementum extract (CE) and dentin extract (DE) by trypsin treatment increased angiogenesis, neurite extension and migration activities as elicited by fibronectin. Furthermore, the DE significantly increased the mRNA expression of immunomodulatory factors and pulp markers in the aged DPSCs. These results demonstrated the effects of trypsin on the microenvironment in addition to the resident cells including PDLCs in the aged teeth. In conclusion, the potential utility of trypsin pretreatment to stimulate pulp regeneration in aged teeth and the underlying mechanisms were demonstrated.
Collapse
Affiliation(s)
- Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan
| | - Mohammed Zayed
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan.,Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Yoshifumi Takei
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan.,Aeras Bio Inc., Air Water Group, Kobe, Japan
| |
Collapse
|
10
|
Protease-activated receptor 2 contributes to placental development and fetal growth in mice. Thromb Res 2020; 193:173-179. [PMID: 32717642 DOI: 10.1016/j.thromres.2020.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Protease-activated receptor 2 (PAR2) is activated by serine proteases such as coagulation tissue factor/VIIa complex, factor Xa or trypsin and is pro-angiogenic in several disease models. Impaired angiogenesis in placenta causes placental dysfunction and fetal growth restriction. PAR2 is expressed in the placenta trophoblast. However, the role of PAR2 in pregnancy remains unknown. OBJECTIVE The present study aimed to examine the role of PAR2 in placental development and fetal growth using a murine model. METHODS PAR2-/- or PAR2+/+ mice in the ICR background were used. Female PAR2-/- mice were mated with male PAR2-/- mice, and female PAR2+/+ mice were mated with male PAR2+/+ mice to obtain PAR2-/- and PAR2+/+ fetuses, respectively. The day a virginal plug was observed in the morning was determined as 0.5-day post-coitum (dpc). Pregnant mice were sacrificed on 13.5 or 18.5 dpc to collect samples. RESULTS A deficiency of PAR2 significantly reduced the fetal and placental weight and impaired placental labyrinth development in mice on 18.5 dpc. Collagen IV expression in placenta labyrinth was smaller in PAR2 knockout mice compared to that of wild-type mice. A deficiency of PAR2 also reduced the expression levels of genes related to angiogenesis and coagulation in placenta. CONCLUSION Our data suggest that PAR2 is required for fetal growth and angiogenesis in the placenta and is thus important for a normal pregnancy.
Collapse
|
11
|
McQuaig R, Dixit P, Yamauchi A, Van Hout I, Papannarao JB, Bunton R, Parry D, Davis P, Katare R. Combination of Cardiac Progenitor Cells From the Right Atrium and Left Ventricle Exhibits Synergistic Paracrine Effects In Vitro. Cell Transplant 2020; 29:963689720972328. [PMID: 33153286 PMCID: PMC7784587 DOI: 10.1177/0963689720972328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases, such as ischemic heart disease, remain the most common cause of death worldwide. Regenerative medicine with stem cell therapy is a promising tool for cardiac repair. Combination of different cell types has been shown to improve the therapeutic potential, which is thought to be due to synergistic or complimentary reparative effects. We investigated if the combination of cardiac progenitor cells (CPCs) of right atrial appendage (RAA) and left ventricle (LV) that are isolated from the same patient exert synergistic or complimentary paracrine effects for apoptotic cell death and angiogenesis in an in vitro model. Flow cytometry analysis showed that both RAA and LV CPCs expressed the mesenchymal cell markers CD90 and CD105, and were predominantly negative for the hematopoietic cell marker, CD34. Analysis of conditioned media (CM) collected from the CPCs cultured either alone or in combination in serum-deprived hypoxic conditions to simulate ischemia showed marked increase in the level of pro-survival hepatocyte growth factor and pro-angiogenic vascular endothelial growth factor-A in the combined RAA and LV CPC group. Next, to determine the therapeutic potential of CM, AC16 human ventricular cardiomyocytes and human umbilical vein endothelial cells (HUVECs) were treated with CM. Results showed a significant reduction in hypoxia-induced apoptosis of human cardiomyocytes treated with CM collected from combined RAA and LV CPC group. Similarly, matrigel assay showed a significantly increased tube length formed by HUVECs when treated with CM from combined RAA and LV CPC group. Our study provided evidence that the combination of RAA CPCs and LV CPCs may have superior therapeutic effects due to synergistic paracrine effects for cardiac repair. Therefore, in vivo studies are warranted to determine if a combination of different stem cell types have greater therapeutic potential than single-cell therapies.
Collapse
Affiliation(s)
- Ryan McQuaig
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Parul Dixit
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Atsushi Yamauchi
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dominic Parry
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, Raimondi F, Inoue A, Russell RB, Tamayo P, Gutkind JS. Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 2019; 294:11062-11086. [PMID: 31171722 DOI: 10.1074/jbc.rev119.005601] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest gene family of cell membrane-associated molecules mediating signal transmission, and their involvement in key physiological functions is well-established. The ability of GPCRs to regulate a vast array of fundamental biological processes, such as cardiovascular functions, immune responses, hormone and enzyme release from endocrine and exocrine glands, neurotransmission, and sensory perception (e.g. vision, odor, and taste), is largely due to the diversity of these receptors and the layers of their downstream signaling circuits. Dysregulated expression and aberrant functions of GPCRs have been linked to some of the most prevalent human diseases, which renders GPCRs one of the top targets for pharmaceutical drug development. However, the study of the role of GPCRs in tumor biology has only just begun to make headway. Recent studies have shown that GPCRs can contribute to the many facets of tumorigenesis, including proliferation, survival, angiogenesis, invasion, metastasis, therapy resistance, and immune evasion. Indeed, GPCRs are widely dysregulated in cancer and yet are underexploited in oncology. We present here a comprehensive analysis of GPCR gene expression, copy number variation, and mutational signatures in 33 cancer types. We also highlight the emerging role of GPCRs as part of oncocrine networks promoting tumor growth, dissemination, and immune evasion, and we stress the potential benefits of targeting GPCRs and their signaling circuits in the new era of precision medicine and cancer immunotherapies.
Collapse
Affiliation(s)
- Victoria Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Huwate Yeerna
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Nijiro Nohata
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Olivier Harismendy
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093.,Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Francesco Raimondi
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Robert B Russell
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Pablo Tamayo
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| |
Collapse
|
13
|
Protease-activated receptor 2 protects against VEGF inhibitor-induced glomerular endothelial and podocyte injury. Sci Rep 2019; 9:2986. [PMID: 30814628 PMCID: PMC6393426 DOI: 10.1038/s41598-019-39914-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/02/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) inhibitors cause glomerular injury. We have recently shown that activation of protease-activated receptor 2 (PAR2) by factor Xa exacerbated diabetic kidney disease. However, the role of PAR2 in glomerular injury induced by VEGF blockade is not known. Herein, we investigated the effect of the lack of PAR2 on VEGF inhibitor-induced glomerular injury. Although administering an anti-VEGF antibody by itself did not show renal phenotype in wild type mice, its administration to mice lacking endothelial nitric oxide synthase (eNOS) caused glomerular injury. Different from what we expected, administration of an anti-VEGF antibody in mice lacking PAR2 and eNOS exacerbated albuminuria and reduced the expression levels of CD31, pro-angiogenic VEGF, and angiogenesis-related chemokines in their kidneys. Podocyte injury was also evident in this model of mice lacking PAR2. Our results suggest that PAR2 is protective against VEGF inhibitor-induced glomerular endothelial and podocyte injury.
Collapse
|
14
|
Ando M, Matsumoto T, Kobayashi S, Iguchi M, Taguchi K, Kobayashi T. Impairment of Protease-Activated Receptor 2-Induced Relaxation of Aortas of Aged Spontaneously Hypertensive Rat. Biol Pharm Bull 2018; 41:815-819. [PMID: 29709920 DOI: 10.1248/bpb.b17-00987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension is one of the most prevalent diseases worldwide and can cause harmful complications within the vascular system. Further research on vascular responsiveness to different ligands and diverse receptors in various arteries is required to understand the mechanisms underlying the development of these vascular complications. Here, we investigated the vasorelaxant effect of the protease-activated receptor 2 (PAR2) agonist 2-furoyl-LIGRLO-amide (2-Fly) and two commonest agents, namely endothelium-dependent dilator acetylcholine (ACh) and endothelium-independent dilator sodium nitroprusside (SNP), on the thoracic aorta isolated from aged spontaneously hypertensive rats (SHR) (age, 52±1 weeks). The effects of these agents were compared between aortas isolated from SHR and age-matched normotensive Wistar Kyoto (WKY) rats. Compared with the WKY group, in the SHR group, 2-Fly-induced relaxation was impaired, ACh-induced relaxation was slightly decreased at low concentrations, and SNP-induced relaxation was similar. In addition, 2-Fly-induced aortic relaxation was largely decreased by a PAR2 antagonist (FSLLRY), endothelial denudation, and a nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NNA) but not by an Akt inhibitor. These results suggested that PAR2-induced relaxations of aortas of aged SHR was impaired, and this impaired aortic relaxation may be attributed to decreased NO bioavailability rather than altered NO sensitivity unrelated to the Akt activity.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Shota Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
15
|
Sammarco G, Gadaleta CD, Zuccalà V, Albayrak E, Patruno R, Milella P, Sacco R, Ammendola M, Ranieri G. Tumor-Associated Macrophages and Mast Cells Positive to Tryptase Are Correlated with Angiogenesis in Surgically-Treated Gastric Cancer Patients. Int J Mol Sci 2018; 19:1176. [PMID: 29649166 PMCID: PMC5979483 DOI: 10.3390/ijms19041176] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Mast cells and macrophages can play a role in tumor angiogenesis by stimulating microvascular density (MVD). The density of mast cells positive to tryptase (MCDPT), tumor-associated macrophages (TAMs), and MVD were evaluated in a series of 86 gastric cancer (GC) tissue samples from patients who had undergone potential curative surgery. MCDPT, TAMs, and MVD were assessed in tumor tissue (TT) and in adjacent normal tissue (ANT) by immunohistochemistry and image analysis. Each of the above parameters was correlated with the others and, in particular for TT, with important clinico-pathological features. In TT, a significant correlation between MCDPT, TAMs, and MVD was found by Pearson t-test analysis (p ranged from 0.01 to 0.02). No correlation to the clinico-pathological features was found. A significant difference in terms of mean MCDPT, TAMs, and MVD between TT and ANT was found (p ranged from 0.001 to 0.002). Obtained data suggest MCDPT, TAMs, and MVD increased from ANT to TT. Interestingly, MCDPT and TAMs are linked in the tumor microenvironment and they play a role in GC angiogenesis in a synergistic manner. The assessment of the combination of MCDPT and TAMs could represent a surrogate marker of angiogenesis and could be evaluated as a target of novel anti-angiogenic therapies in GC patients.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Cosmo Damiano Gadaleta
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, Viale Pio X, 88100 Catanzaro, Italy.
| | - Emre Albayrak
- Department of Medical Biochemistry, Gulhane Medical Faculty, Health Science University, Ankara 06010, Turkey.
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Pietro Milella
- Statistic and Epidemiology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
- Surgery Unit, National Cancer Research Centre Istituto Tumori ''Giovanni Paolo II'', 70124 Bari, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| |
Collapse
|
16
|
Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T. Implications of Extracellular Matrix Production by Adipose Tissue-Derived Stem Cells for Development of Wound Healing Therapies. Int J Mol Sci 2017; 18:ijms18061167. [PMID: 28561757 PMCID: PMC5485991 DOI: 10.3390/ijms18061167] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023] Open
Abstract
The synthesis and deposition of extracellular matrix (ECM) plays an important role in the healing of acute and chronic wounds. Consequently, the use of ECM as treatment for chronic wounds has been of special interest—both in terms of inducing ECM production by resident cells and applying ex vivo produced ECM. For these purposes, using adipose tissue-derived stem cells (ASCs) could be of use. ASCs are recognized to promote wound healing of otherwise chronic wounds, possibly through the reduction of inflammation, induction of angiogenesis, and promotion of fibroblast and keratinocyte growth. However, little is known regarding the importance of ASC-produced ECM for wound healing. In this review, we describe the importance of ECM for wound healing, and how ECM production by ASCs may be exploited in developing new therapies for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Kathrine Hyldig
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Simone Riis
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Trine Fink
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
17
|
Ammendola M, Sacco R, Vescio G, Zuccalà V, Luposella M, Patruno R, Zizzo N, Gadaleta C, Marech I, Ruggieri R, Kocak IF, Ozgurtas T, Gadaleta CD, Sammarco G, Ranieri G. Tryptase mast cell density, protease-activated receptor-2 microvascular density, and classical microvascular density evaluation in gastric cancer patients undergoing surgery: possible translational relevance. Therap Adv Gastroenterol 2017; 10:353-360. [PMID: 28491140 PMCID: PMC5405880 DOI: 10.1177/1756283x16673981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mast cells (MCs) can stimulate angiogenesis, releasing several proangiogenic cytokines stored in their cytoplasm. In particular, MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor via protease-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase (MAPK) phosphorylation. Nevertheless, no data are available concerning the relationship among tryptase MC density (TMCD), endothelial cells (ECs) positive to PAR-2 microvascular density (PAR-2-MVD) and classical MVD (C-MVD) in gastric cancer (GC) angiogenesis. METHODS In this study, we analyzed the correlation of TMCD, PAR-2-MVD, C-MVD with each other and with the main clinicopathological features in GC patients who underwent surgery. A series of 77 GC patients with stage T2-3N2-3M0 (classified by the American Joint Committee on Cancer for Gastric Cancer, 7th edition) were selected and then underwent surgery. RESULTS Tumour tissue samples were evaluated by mean of immunohistochemistry and image analysis methods in terms of numbers of TMCD, PAR-2-MVD and C-MVD. A significant correlation between the TMCD, PAR-2-MVD and C-MVD groups with each other was found by Pearson t-test analysis (r ranged from 0.64 to 0.76; p value ranged from 0.02 to 0.03). There was no other significant correlation between the above parameters and clinicopathological features. CONCLUSIONS Our in vivo preliminary data suggest that TMCD and PAR-2-MVD may play a role in GC angiogenesis and they could be further evaluated as a target of antiangiogenic therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Viale Europa – Germaneto, 88100, Catanzaro, Italy
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Giuseppina Vescio
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Valeria Zuccalà
- Health Science Department, Pathology Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Maria Luposella
- Cardiovascular Disease Unit, ‘San Giovanni di Dio’ Hospital, Crotone, Italy
| | - Rosa Patruno
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Nicola Zizzo
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Claudia Gadaleta
- Chair of Pathology, University ‘Aldo Moro’ Veterinary Medical School, Bari, Italy
| | - Ilaria Marech
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Roberta Ruggieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Ibrahim Furkan Kocak
- Department of Biochemistry, Gulhane Military Medical Academy Etlik, Ankara, Turkey
| | - Taner Ozgurtas
- Department of Biochemistry, Gulhane Military Medical Academy Etlik, Ankara, Turkey
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University of Catanzaro ‘Magna Graecia’ Medical School, Catanzaro, Italy
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, ‘Giovanni Paolo II’, Bari, Italy
| |
Collapse
|
18
|
Riis S, Newman R, Ipek H, Andersen JI, Kuninger D, Boucher S, Vemuri MC, Pennisi CP, Zachar V, Fink T. Hypoxia enhances the wound-healing potential of adipose-derived stem cells in a novel human primary keratinocyte-based scratch assay. Int J Mol Med 2017; 39:587-594. [PMID: 28204820 PMCID: PMC5360363 DOI: 10.3892/ijmm.2017.2886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/25/2017] [Indexed: 01/07/2023] Open
Abstract
Preclinical studies have suggested that paracrine factors from adipose-derived stem cells (ASCs) promote the healing of chronic wounds, and that the exposure of ASCs to hypoxia enhances their wound healing effect. To aid the translation of these findings into clinical use, robust wound models are necessary to explore each aspect of wound healing. The aspect of re-epithelization is often studied in a scratch assay based on transformed keratinocytes. However, there are concerns regarding the validity of this model, since these cell lines differ from normal keratinocytes, both in terms of proliferative capacity and differentiation, and sensitivity to environmental cues. In this study, the main challenge of using primary keratinocytes to examine the effects of ASCs was identified to be their different requirements for calcium in the culture media. We confirmed that a high calcium content led to morphological and cytoskeletal changes in primary keratinocytes, and demonstrated that a low calcium content compromised the growth of ASCs. We found that it is possible to perform the wound healing assay with primary keratinocytes, if the conditioned media from the ASCs is dialyzed to reduce the calcium concentration. Additionally, using this model of re-epithelization, conditioned media from normoxic ASCs was shown to markedly increase the rate of wound closure by primary keratinocytes, and this effect was significantly enhanced with media from the hypoxia-exposed ASCs. These findings, which are in line with the observations from previous in vivo studies, highlight the validity of this modified assay to investigate the wound healing properties of ASCs in vitro.
Collapse
Affiliation(s)
- Simone Riis
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Hilal Ipek
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jens I Andersen
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | | | | - Cristian P Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Trine Fink
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Indrakusuma I, Romacho T, Eckel J. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Front Pharmacol 2017; 7:497. [PMID: 28101054 PMCID: PMC5209375 DOI: 10.3389/fphar.2016.00497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022] Open
Abstract
Background: Obesity is associated with impaired vascular function. In the cardiovascular system, protease-activated receptor 2 (PAR2) exerts multiple functions such as the control of the vascular tone. In pathological conditions, PAR2 is related to vascular inflammation. However, little is known about the impact of obesity on PAR2 in the vasculature. Therefore, we explored the role of PAR2 as a potential link between obesity and cardiovascular diseases. Methods: C57BL/6 mice were fed with either a chow or a 60% high fat diet for 24 weeks prior to isolation of aortas. Furthermore, human coronary artery endothelial cells (HCAEC) and human coronary smooth muscle cells (HCSMC) were treated with conditioned medium obtained from in vitro differentiated primary human adipocytes. To investigate receptor interaction vascular endothelial growth factor receptor 2 (VEGFR2) was blocked by exposure to calcium dobesilate and a VEGFR2 neutralization antibody, before treatment with PAR2 activating peptide. Student's t-test or one-way were used to determine statistical significance. Results: Both, high fat diet and exposure to conditioned medium increased PAR2 expression in aortas and human vascular cells, respectively. In HCSMC, conditioned medium elicited proliferation as well as cyclooxygenase 2 induction, which was suppressed by the PAR2 antagonist GB83. Specific activation of PAR2 by the PAR2 activating peptide induced proliferation and cyclooxygenase 2 expression which were abolished by blocking the VEGFR2. Additionally, treatment of HCSMC with the PAR2 activating peptide triggered VEGFR2 phosphorylation. Conclusion: Under obesogenic conditions, where circulating levels of pro-inflammatory adipokines are elevated, PAR2 arises as an important player linking obesity-related adipose tissue inflammation to atherogenesis. We show for the first time that the underlying mechanisms of these pro-atherogenic effects involve a potential transactivation of the VEGFR2 by PAR2.
Collapse
Affiliation(s)
- Ira Indrakusuma
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center Düsseldorf, Germany
| | - Tania Romacho
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes CenterDüsseldorf, Germany; German Center for Diabetes Research (DZD e.V.)Düsseldorf, Germany
| |
Collapse
|
20
|
Nielsen FM, Riis SE, Andersen JI, Lesage R, Fink T, Pennisi CP, Zachar V. Discrete adipose-derived stem cell subpopulations may display differential functionality after in vitro expansion despite convergence to a common phenotype distribution. Stem Cell Res Ther 2016; 7:177. [PMID: 27906060 PMCID: PMC5134234 DOI: 10.1186/s13287-016-0435-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/14/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023] Open
Abstract
Background Complex immunophenotypic repertoires defining discrete adipose-derived stem cell (ASC) subpopulations may hold a key toward identifying predictors of clinical utility. To this end, we sorted out of the freshly established ASCs four subpopulations (SPs) according to a specific pattern of co-expression of six surface markers, the CD34, CD73, CD90, CD105, CD146, and CD271, using polychromatic flow cytometry. Method Using flow cytometry-associated cell sorting and analysis, gating parameters were set to select for a CD73+CD90+CD105+ phenotype plus one of the four following combinations, CD34−CD146−CD271− (SP1), CD34−CD146+CD271− (SP2), CD34+CD146+CD271− (SP3), and CD34−CD146+CD271+ (SP4). The SPs were expanded 700- to 1000-fold, and their surface repertoire, trilineage differentiation, and clonogenic potential, and the capacity to support wound healing were assayed. Results Upon culturing, the co-expression of major epitopes, the CD73, CD90, and CD105 was maintained, while regarding the minor markers, all SPs reverted to resemble the pre-sorted population with CD34−CD146−CD271− and CD34−CD146+CD271− representing the most prevalent combinations, followed by less frequent CD34+CD146−CD271− and CD34+CD146+CD271− variants. There was no difference in the efficiency of adipo-, osteo-, or chondrogenesis by cytochemistry and real-time RT-PCR or the CFU capacity between the individual SPs, however, the SP2CD73+90+105+34-146+271- outperformed others in terms of wound healing. Conclusions Our study shows that ASCs upon culturing inherently maintain a stable distribution of immunophenotype variants, which may potentially disguise specific functional properties of particular downstream lines. Furthermore, the outlined approach suggests a paradigm whereby discrete subpopulations could be identified to provide for a therapeutically most relevant cell product. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0435-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frederik Mølgaard Nielsen
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Simone Elkjær Riis
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jens Isak Andersen
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Raphaëlle Lesage
- Department of Bioengineering, Polytech Nice-Sophia Engineering School, Nice, France
| | - Trine Fink
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Ammendola M, Sacco R, Zuccalà V, Luposella M, Patruno R, Gadaleta P, Zizzo N, Gadaleta CD, De Sarro G, Sammarco G, Oltean M, Ranieri G. Mast Cells Density Positive to Tryptase Correlate with Microvascular Density in both Primary Gastric Cancer Tissue and Loco-Regional Lymph Node Metastases from Patients That Have Undergone Radical Surgery. Int J Mol Sci 2016; 17:1905. [PMID: 27854307 PMCID: PMC5133903 DOI: 10.3390/ijms17111905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/05/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022] Open
Abstract
Mast Cells (MCs) play a role in immune responses and more recently MCs have been involved in tumoral angiogenesis. In particular MCs can release tryptase, a potent in vivo and in vitro pro-angiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase (MAPK) phosphorylation. MCs can release tryptase following c-Kit receptor activation. Nevertheless, no data are available concerning the relationship among MCs Density Positive to Tryptase (MCDPT) and Microvascular Density (MVD) in both primary gastric cancer tissue and loco-regional lymph node metastases. A series of 75 GC patients with stage T2-3N2-3M₀ (by AJCC for Gastric Cancer Seventh Edition) undergone to radical surgery were selected for the study. MCDPT and MVD were evaluated by immunohistochemistry and by image analysis system and results were correlated each to other in primary tumor tissue and in metastatic lymph nodes harvested. Furthermore, tissue parameters were correlated with important clinico-pathological features. A significant correlation between MCDPT and MVD was found in primary gastric cancer tissue and lymph node metastases. Pearson t-test analysis (r ranged from 0.74 to 0.79; p-value ranged from 0.001 to 0.003). These preliminary data suggest that MCDPT play a role in angiogenesis in both primary tumor and in lymph node metastases from GC. We suggest that MCs and tryptase could be further evaluated as novel targets for anti-angiogenic therapies.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
- Surgery Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, Viale Pio X, 88100 Catanzaro, Italy.
| | - Maria Luposella
- Cardiovascular Disease Unit, "San Giovanni di Dio" Hospital, 88900 Crotone, Italy.
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Pietro Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Nicola Zizzo
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, 70010 Bari, Italy.
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Giovambattista De Sarro
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy.
| | - Mihai Oltean
- The Institute for Clinical Sciences, Department of Transplantation, University Hospital, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, 70124 Bari, Italy.
| |
Collapse
|
22
|
Ammendola M, Sacco R, Sammarco G, Piardi T, Zuccalà V, Patruno R, Zullo A, Zizzo N, Nardo B, Marech I, Crovace A, Gadaleta CD, Pessaux P, Ranieri G. Mast cells positive to tryptase, endothelial cells positive to protease-activated receptor-2, and microvascular density correlate among themselves in hepatocellular carcinoma patients who have undergone surgery. Onco Targets Ther 2016; 9:4465-4471. [PMID: 27499640 PMCID: PMC4959580 DOI: 10.2147/ott.s105368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mast cells (MCs) can stimulate angiogenesis, releasing several proangiogenic cytokines stored in their cytoplasm. In particular MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase phosphorylation. Nevertheless, no data are available concerning the relationship between MC density positive to tryptase (MCDPT), endothelial cells positive to PAR-2 forming microvascular density (PAR-2-MVD), and classical MVD (C-MVD) in hepatocellular carcinoma (HCC) angiogenesis. This study analyzed the correlation between MCDPT, PAR-2-MVD, and C-MVD, each correlated to the others and to the main clinicopathological features, in early HCC patients who underwent surgery. METHODS A series of 53 HCC patients with early stage (stage 0 according to the Barcelona Clinic Liver Cancer Staging Classification) were selected and then underwent surgery. Tumor tissue samples were evaluated by means of immunohistochemistry and image analysis methods in terms of number of MCDPT, PAR-2-MVD, and C-MVD. RESULTS A significant correlation between MCDPT, PAR-2-MVD, and C-MVD groups, each correlated to the others, was found by Pearson t-test analysis (r ranged from 0.67 to 0.81; P-value ranged from 0.01 to 0.03). No other significant correlation was found. CONCLUSION Our in vivo pilot data suggest that MCDPT and PAR-2-MVD may play a role in HCC angiogenesis and could be further evaluated as a target of antiangiogenic therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, General Surgery Unit, University of Catanzaro "Magna Graecia" Medical School, Catanzaro, Italy
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, General Surgery Unit, University of Catanzaro "Magna Graecia" Medical School, Catanzaro, Italy
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, General Surgery Unit, University of Catanzaro "Magna Graecia" Medical School, Catanzaro, Italy
| | - Tullio Piardi
- Department of General, Digestive and Endocrine Surgery, Hopital Robert Debre, Centre Hospitalier Universitaire de Reims, Universite de Reims Champagne-Ardenne, Reims, France
| | - Valeria Zuccalà
- Department of Health Science, Pathology Unit, University of Catanzaro "Magna Graecia" Medical School, Catanzaro
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro", Bari
| | - Alessandra Zullo
- Department of Medical and Surgical Sciences, General Surgery Unit, University of Catanzaro "Magna Graecia" Medical School, Catanzaro, Italy
| | - Nicola Zizzo
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro", Bari
| | - Bruno Nardo
- Department of Medical and Surgery Sciences, S Orsola Hospital, University of Bologna, Bologna
| | - Ilaria Marech
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, "Giovanni Paolo II"
| | - Alberto Crovace
- Department of Emergency and Organ Transplantation (DETO), Veterinary Medical School, University "Aldo Moro", Bari, Italy
| | - Cosmo Damiano Gadaleta
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, "Giovanni Paolo II"
| | - Patrick Pessaux
- Hepato-Biliary and Pancreatic Surgical Unit, General, Digestive and Endocrine Surgery, IRCAD, IHU Mix-Surg, Institute for Minimally Invasive Image-Guided Surgery, University of Strasbourg, Strasbourg, France
| | - Girolamo Ranieri
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, "Giovanni Paolo II"
| |
Collapse
|
23
|
Riis S, Stensballe A, Emmersen J, Pennisi CP, Birkelund S, Zachar V, Fink T. Mass spectrometry analysis of adipose-derived stem cells reveals a significant effect of hypoxia on pathways regulating extracellular matrix. Stem Cell Res Ther 2016; 7:52. [PMID: 27075204 PMCID: PMC4831147 DOI: 10.1186/s13287-016-0310-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Background Adipose-derived stem cells (ASCs) are being increasingly recognized for their potential to promote tissue regeneration and wound healing. These effects appear to be partly mediated by paracrine signaling pathways, and are enhanced during hypoxia. Mass spectrometry (MS) is a valuable tool for proteomic profiling of cultured ASCs, which may help to reveal the identity of the factors secreted by the cells under different conditions. However, serum starvation which is essentially required to obtain samples compatible with secretome analysis by MS can have a significant influence on ASCs. Here, we present a novel and optimized culturing approach based on the use of a clinically relevant serum-free formulation, which was used to assess the effects of hypoxia on the ASC proteomic profile. Methods Human ASCs from three human donors were expanded in StemPro® MSC SFM XenoFree medium. Cells were cultured for 24 h in serum- and albumin-free supplements in either normoxic (20 %) or hypoxic (1 %) atmospheres, after which the cells and conditioned medium were collected, subfractionated, and analyzed using MS. Prior to analysis, the secreted proteins were further subdivided into a secretome (>30 kDa) and a peptidome (3–30 kDa) fraction. Results MS analysis revealed the presence of 342, 98, and 3228 proteins in the normoxic ASC secretome, peptidome, and proteome, respectively. A relatively small fraction of the proteome (9.6 %) was significantly affected by hypoxia, and the most regulated proteins were those involved in extracellular matrix (ECM) synthesis and cell metabolism. No proteins were found to be significantly modulated by hypoxic treatment across all cultures for the secretome and peptidome samples. Conclusions This study highlights ECM remodeling as a significant mechanism contributing to the ASC regenerative effect after hypoxic preconditioning, and further underscores considerable inter-individual differences in ASC response to hypoxia. The novel culture paradigm provides a basis for future proteomic studies under conditions that do not induce a stress response, so that the best responders can be accurately identified for prospective therapeutic use. Data are available via ProteomeXchange with identifier PXD003550. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0310-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Riis
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Laboratory for Medical Mass Spectrometry, Aalborg University, Aalborg, Denmark
| | - Jeppe Emmersen
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Cristian Pablo Pennisi
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Laboratory for Medical Mass Spectrometry, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Trine Fink
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark.
| |
Collapse
|
24
|
Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes, and Metabolic Syndrome: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3130496. [PMID: 27006943 PMCID: PMC4781943 DOI: 10.1155/2016/3130496] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
Proteinase-activated receptor 2 (PAR2) is a cell surface receptor activated by serine proteinases or specific synthetic compounds. Interest in PAR2 as a pharmaceutical target for various diseases is increasing. Here we asked two questions relevant to endothelial dysfunction and diabetes: How is PAR2 function affected in blood vessels? What role does PAR2 have in promoting obesity, diabetes, and/or metabolic syndrome, specifically via the endothelium and adipose tissues? We conducted a systematic review of the published literature in PubMed and Scopus (July 2015; search terms: par2, par-2, f2lr1, adipose, obesity, diabetes, and metabolic syndrome). Seven studies focused on PAR2 and vascular function. The obesity, diabetes, or metabolic syndrome animal models differed amongst studies, but each reported that PAR2-mediated vasodilator actions were preserved in the face of endothelial dysfunction. The remaining studies focused on nonvascular functions and provided evidence supporting the concept that PAR2 activation promoted obesity. Key studies showed that PAR2 activation regulated cellular metabolism, and PAR2 antagonists inhibited adipose gain and metabolic dysfunction in rats. We conclude that PAR2 antagonists for treatment of obesity indeed show early promise as a therapeutic strategy; however, endothelial-specific PAR2 functions, which may offset mechanisms that produce vascular dysfunction in diabetes, warrant additional study.
Collapse
|
25
|
Riis S, Nielsen FM, Pennisi CP, Zachar V, Fink T. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells. Stem Cells Transl Med 2016; 5:314-24. [PMID: 26838270 DOI: 10.5966/sctm.2015-0148] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are being tested in clinical trials related to cell-based regenerative therapies. Although most of the current expansion protocols for ASCs use fetal calf serum (FCS), xenogeneic-free medium supplements are greatly desired. This study aims to compare the effect of FCS, human platelet lysate (hPL), and a fully defined medium on the initiation and maintenance of ASC cultures. ASCs obtained from five donors were cultured in five different media: StemPro, Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% hPL, or α-minimum essential medium (A-MEM) supplemented with 5% hPL, 10% hPL, or 10% FCS. The effect of media on proliferation, colony-forming units (CFUs), attachment, and morphology was assessed along with cell size, granularity, and immunophenotype. StemPro greatly compromised the initiation of ASC cultures, which could not survive more than a few passages. Cells cultured in A-MEM proliferated at a faster rate than in DMEM, and hPL significantly enhanced cell size, granularity, and proliferation compared with FCS. All media except StemPro supported CFUs equally well. Analysis of surface markers revealed higher levels of CD73 and CD105 in FCS-cultured ASCs, whereas increased levels of CD146 were found in hPL-cultured cells. Multiparametric flow cytometric analysis performed after seven passages revealed the existence of four distinct ASC subpopulations, all positive for CD73, CD90, and CD105, which mainly differed by their expression of CD146 and CD271. Analysis of the different subpopulations might represent an important biological measure when assessing different medium formulations for a particular clinical application.
Collapse
Affiliation(s)
- Simone Riis
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Frederik Mølgaard Nielsen
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Trine Fink
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
26
|
Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A, Roudkenar MH. Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones 2014; 19:657-66. [PMID: 24464492 PMCID: PMC4147073 DOI: 10.1007/s12192-014-0491-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/01/2014] [Indexed: 12/18/2022] Open
Abstract
Due to the limitations in the clinical application of embryonic stem cells (ESC) and induced pluripotent stem cells, mesenchymal stem cells (MSCs) are now much more interesting for cell-based therapy. Although MSCs have several advantages, they are not capable of differentiating to all three embryonic layers (three germ layers) without cultivation under specific induction media. Hence, improvement of MSCs for cell therapy purposes is under intensive study now. In this study, we isolated MSCs from umbilical cord tissue at the single-cell level, by treatment with trypsin, followed by cultivation under suspension conditions to form a colony. These colonies were trypsin resistant, capable of self-renewal differentiation to the three germ layers without any induction, and they were somewhat similar to ESC colonies. The cells were able to grow in both adherent and suspension culture conditions, expressed both the MSCs markers, especially CD105, and the multipotency markers, i.e., SSEA-3, and had a limited lifespan. The cells were expanded under simple culture conditions at the single-cell level and were homogenous. Further and complementary studies are required to understand how trypsin-tolerant mesenchymal stem cells are established. However, our study suggested non-embryonic resources for future cell-based therapy.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Raheleh Halabian
- />Applied Microbiology Research Center, Medical Science of Baqiyatallah University, Tehran, Iran
| | - Morteza Salimian
- />Department of Medical Laboratory, Kashan University of Medical Sciences and Health, Kashan, Iran
| | | | - Masoud Soleimani
- />Department of Hematology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology and Bioinformatics Research Center, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
27
|
Wang Z, Chen D, Zhang Z, Zhang R, An S, Yu L. Protease-activated receptor 4 activation increases the expression of calcitonin gene-related peptide mRNA and protein in dorsal root ganglion neurons. J Neurosci Res 2013; 91:1551-62. [PMID: 24105611 DOI: 10.1002/jnr.23280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022]
Abstract
Accumulating evidence demonstrates that nociceptor activation evokes a rapid change in mRNA and protein levels of calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons. Although the colocalization of CGRP and protease-activated receptor-4 (PAR4), a potent modulator of pain processing and inflammation, was detected in DRG neurons, the role of PAR4 activation in the expression of CGRP has not been investigated. In the present study, the expression of CGRP and activation (phosphorylation) of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in rat DRG neurons were measured by immunofluorescence, real-time PCR, and Western blotting after AYPGKF-NH2 (selective PAR4-activating peptide; PAR4-AP) intraplantar injection or treatment of cultured DRG neurons. The expression of CGRP in cultured DRG neurons was also assessed after treatment with AYPGKF-NH2 with preaddition of PD98059 (an inhibitor for ERK1/2 pathway). Results showed that PAR4-AP intraplantar injection or treatment of cultured DRG neurons evoked significant increases in DRG cells displaying CGRP immunoreactivity and cytoplasmic and nuclear staining for phospho-ERK1/2 (p-ERK1/2). Percentages of total DRG neurons expressing both CGRP and PAR4 or p-ERK1/2 also increased significantly at 2 hr after PAR4-AP treatment. Real-time PCR and Western blotting showed that PAR4-AP treatment significantly increased expression of CGRP mRNA and protein levels in DRG neurons. The PAR4 activation-evoked CGRP expression both at mRNA and at protein levels was significantly inhibited after p-ERK1/2 was inhibited by PD98059. These results provide evidence that activation of PAR4 upregulates the expression of CGRP mRNA and protein levels in DRG neurons via the p-ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Zhaojin Wang
- Department of Anatomy, Taishan Medical University, Shandong Province, Taian, China
| | | | | | | | | | | |
Collapse
|
28
|
Shao Z, Friedlander M, Hurst CG, Cui Z, Pei DT, Evans LP, Juan AM, Tahir H, Duhamel F, Chen J, Sapieha P, Chemtob S, Joyal JS, Smith LEH. Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS One 2013; 8:e69552. [PMID: 23922736 PMCID: PMC3724908 DOI: 10.1371/journal.pone.0069552] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis of the microvasculature is central to the etiology of many diseases including proliferative retinopathy, age-related macular degeneration and cancer. A mouse model of microvascular angiogenesis would be very valuable and enable access to a wide range of genetically manipulated tissues that closely approximate small blood vessel growth in vivo. Vascular endothelial cells cultured in vitro are widely used, however, isolating pure vascular murine endothelial cells is technically challenging. A microvascular mouse explant model that is robust, quantitative and can be reproduced without difficulty would overcome these limitations. Here we characterized and optimized for reproducibility an organotypic microvascular angiogenesis mouse and rat model from the choroid, a microvascular bed in the posterior of eye. The choroidal tissues from C57BL/6J and 129S6/SvEvTac mice and Sprague Dawley rats were isolated and incubated in Matrigel. Vascular sprouting was comparable between choroid samples obtained from different animals of the same genetic background. The sprouting area, normalized to controls, was highly reproducible between independent experiments. We developed a semi-automated macro in ImageJ software to allow for more efficient quantification of sprouting area. Isolated choroid explants responded to manipulation of the external environment while maintaining the local interactions of endothelial cells with neighboring cells, including pericytes and macrophages as evidenced by immunohistochemistry and fluorescence-activated cell sorting (FACS) analysis. This reproducible ex vivo angiogenesis assay can be used to evaluate angiogenic potential of pharmacologic compounds on microvessels and can take advantage of genetically manipulated mouse tissue for microvascular disease research.
Collapse
Affiliation(s)
- Zhuo Shao
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mollie Friedlander
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian G. Hurst
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhenghao Cui
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dorothy T. Pei
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lucy P. Evans
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aimee M. Juan
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Houda Tahir
- Departments of Pediatrics Ophthalmology and Pharmacology, Research Centers of CHU Sainte-Justine, Montreal, Quebec, Canada
| | - François Duhamel
- Department of Ophthalmology, Research Centers of Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
- Departments of Pediatrics Ophthalmology and Pharmacology, Research Centers of CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Research Centers of Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Research Centers of Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
- Departments of Pediatrics Ophthalmology and Pharmacology, Research Centers of CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jean-Sébastien Joyal
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
van den Hengel LG, Hellingman AA, Nossent AY, van Oeveren-Rietdijk AM, de Vries MR, Spek CA, van Zonneveld AJ, Reitsma PH, Hamming JF, de Boer HC, Versteeg HH, Quax PHA. Protease-activated receptor (PAR)2, but not PAR1, is involved in collateral formation and anti-inflammatory monocyte polarization in a mouse hind limb ischemia model. PLoS One 2013; 8:e61923. [PMID: 23637930 PMCID: PMC3630144 DOI: 10.1371/journal.pone.0061923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/14/2013] [Indexed: 12/14/2022] Open
Abstract
AIMS In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model. METHODS AND RESULTS PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered. CONCLUSION PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients.
Collapse
Affiliation(s)
- Lisa G. van den Hengel
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Alwine A. Hellingman
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Yael Nossent
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie M. van Oeveren-Rietdijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margreet R. de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - C. Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap F. Hamming
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty C. de Boer
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Michael ES, Kuliopulos A, Covic L, Steer ML, Perides G. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G516-26. [PMID: 23275617 PMCID: PMC3602677 DOI: 10.1152/ajpgi.00296.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2(-/-) mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca(2+) concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP.
Collapse
Affiliation(s)
- E. S. Michael
- 1Department of Surgery, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts; and
| | - A. Kuliopulos
- 2Molecular Oncology Research Institute, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | - L. Covic
- 2Molecular Oncology Research Institute, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | - M. L. Steer
- 1Department of Surgery, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts; and
| | - G. Perides
- 1Department of Surgery, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts; and
| |
Collapse
|
31
|
Rasmussen JG, Frøbert O, Holst-Hansen C, Kastrup J, Baandrup U, Zachar V, Fink T, Simonsen U. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. Cell Transplant 2012; 23:195-206. [PMID: 23211469 DOI: 10.3727/096368912x659871] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Treatment of myocardial infarction (MI) with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal MI models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of MI using a fully grown non-immune-compromised rat model. Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were randomized to receive intramyocardial injections of adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, or phosphate-buffered saline 1 week following induction of MI. After 4 weeks, left ventricular ejection fraction (LVEF) was improved in the adipose-derived stem cell group, and scar wall thickness was greater compared with the saline group. Adipose-derived as well as bone marrow-derived mesenchymal stem cells prevented left ventricular end diastolic dilation. Neither of the cell groups displayed increased angiogenesis in the myocardium compared with the saline group. Adipose-derived stem cells from a human ischemic patient preserved cardiac function following MI, whereas this could not be demonstrated for bone marrow-derived mesenchymal stem cells, with only adipose-derived stem cells leading to an improvement in LVEF. Neither of the stem cell types induced myocardial angiogenesis, raising the question whether donor age and health have an effect on the efficacy of stem cells used in the treatment of MI.
Collapse
Affiliation(s)
- Jeppe Grøndahl Rasmussen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|