1
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
3
|
Vallée A. Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Curr Hypertens Rep 2022; 24:499-507. [PMID: 35727523 DOI: 10.1007/s11906-022-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness (AS) was mainly associated with cardiovascular morbidity and mortality in a hypertensive patient. Some risk factors contribute to the development of AS, such as aging, high blood pressure, vascular calcification, inflammation, and diabetes mellitus. The WNT/β-catenin pathway is implicated in numerous signaling and regulating pathways, including embryogenesis, cell proliferation, migration and polarity, apoptosis, and organogenesis. The activation of the WNT/β-catenin pathway is associated with the development of these risk factors. RECENT FINDINGS Aortic pulse wave velocity (PWV) is measured to determine AS, and in peripheral artery disease patients, PWV is higher than controls. An augmentation in PWV by 1 m/s has been shown to increase the risk of cardiovascular events by 14%. AS measured by PWV is characterized by the deregulation of the WNT/β-catenin pathway by the inactivation of its two inhibitors, i.e., DKK1 and sclerostin. Thus, this review focuses on the role of the WNT/β-catenin pathway which contributes to the development of arterial stiffness.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology - Data - Biostatistics, Delegation of Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
4
|
Sanz FJ, Solana-Manrique C, Lilao-Garzón J, Brito-Casillas Y, Muñoz-Descalzo S, Paricio N. Exploring the link between Parkinson's disease and type 2 diabetes mellitus in Drosophila. FASEB J 2022; 36:e22432. [PMID: 35766235 DOI: 10.1096/fj.202200286r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Diabetes mellitus (DM) is a metabolic disease characterized by high levels of glucose in blood. Recent epidemiological studies have highlighted the link between both diseases; it is even considered that DM might be a risk factor for PD. To further investigate the likely relation of these diseases, we have used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1), and diet-induced Drosophila and mouse type 2 DM (T2DM) models, together with human neuron-like cells. T2DM models were obtained by feeding flies with a high sugar-containing medium, and mice with a high fat diet. Our results showed that both fly models exhibit common phenotypes such as alterations in carbohydrate homeostasis, mitochondrial dysfunction or motor defects, among others. In addition, we demonstrated that T2DM might be a risk factor of developing PD since our diet-induced fly and mouse T2DM models present DA neuron dysfunction, a hallmark of PD. We also confirmed that neurodegeneration is caused by increased glucose levels, which has detrimental effects in human neuron-like cells by triggering apoptosis and leading to cell death. Besides, the observed phenotypes were exacerbated in DJ-1β mutants cultured in the high sugar medium, indicating that DJ-1 might have a role in carbohydrate homeostasis. Finally, we have confirmed that metformin, an antidiabetic drug, is a potential candidate for PD treatment and that it could prevent PD onset in T2DM model flies. This result supports antidiabetic compounds as promising PD therapeutics.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Joaquín Lilao-Garzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| |
Collapse
|
5
|
WNT/β-catenin Pathway: a Possible Link Between Hypertension and Alzheimer's Disease. Curr Hypertens Rep 2022; 24:465-475. [PMID: 35788966 DOI: 10.1007/s11906-022-01209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Recent research has shown that older people with high blood pressure (BP), or hypertension, are more likely to have biomarkers of Alzheimer's disease (AD). Essential hypertension represents the most common cardiovascular disease worldwide and is thought to be responsible for about 13% of all deaths. People with essential hypertension who regularly take prescribed BP medications are half as likely to develop AD as those who do not take them. What then is the connection? RECENT FINDINGS We know that high BP can damage small blood vessels in the brain, affecting those parts that are responsible for memory and thinking. However, the link between AD and hypertension remains unclear. Recent advances in the field of molecular and cellular biology have revealed a downregulation of the canonical WNT/β-catenin pathway in both hypertension and AD. In AD, the glutamate transport function is decreased, a decrease that is associated with a loss of synapse and neuronal death. β-catenin signaling appears to act as a major regulator of glutamate transporters (EAAT and GS) expression and can be harnessed to remove excess glutamate in AD. This review focuses on the possible link between hypertension and AD through the decreased WNT/β-catenin which interacts with the glutamatergic pathway.
Collapse
|
6
|
Zhang JH, Tasaki T, Tsukamoto M, Wang KY, Kubo KY, Azuma K. Deletion of Wnt10a Is Implicated in Hippocampal Neurodegeneration in Mice. Biomedicines 2022; 10:biomedicines10071500. [PMID: 35884806 PMCID: PMC9313158 DOI: 10.3390/biomedicines10071500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus plays an important role in maintaining normal cognitive function and is closely associated with the neuropathogenesis of dementia. Wnt signaling is relevant to neuronal development and maturation, synaptic formation, and plasticity. The role of Wnt10a in hippocampus-associated cognition, however, is largely unclear. Here, we examined the morphological and functional alterations in the hippocampus of Wnt10a-knockout (Wnt10a-/-) mice. Neurobehavioral tests revealed that Wnt10a-/- mice exhibited spatial memory impairment and anxiety-like behavior. Immunostaining and Western blot findings showed that the protein expressions of β-catenin, brain-derived neurotrophic factor, and doublecortin were significantly decreased and that the number of activated microglia increased, accompanied by amyloid-β accumulation, synaptic dysfunction, and microglia-associated neuroinflammation in the hippocampi of Wnt10a-/- mice. Our findings revealed that the deletion of Wnt10a decreased neurogenesis, impaired synaptic function, and induced hippocampal neuroinflammation, eventually leading to hippocampal neurodegeneration and memory deficit, possibly through the β-catenin signaling pathway, providing a novel insight into preventive approaches for hippocampus-dependent cognitive impairment.
Collapse
Affiliation(s)
- Jia-He Zhang
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Takashi Tasaki
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Kanagawa, Japan;
| | - Manabu Tsukamoto
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Kin-ya Kubo
- Faculty of Human Life and Environmental Science, Nagoya Women’s University, 3-40 Shioji-cho, Mizuho-ku, Nagoya 467-8610, Aichi, Japan;
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
- Correspondence: ; Tel.: +81-93-691-7418; Fax: +81-93-691-8544
| |
Collapse
|
7
|
Vallée A. Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 2022; 49:79. [PMID: 35445729 PMCID: PMC9083851 DOI: 10.3892/ijmm.2022.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
8
|
Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23052810. [PMID: 35269952 PMCID: PMC8910888 DOI: 10.3390/ijms23052810] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
9
|
Varadarajan SG, Hunyara JL, Hamilton NR, Kolodkin AL, Huberman AD. Central nervous system regeneration. Cell 2022; 185:77-94. [PMID: 34995518 PMCID: PMC10896592 DOI: 10.1016/j.cell.2021.10.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Neurons of the mammalian central nervous system fail to regenerate. Substantial progress has been made toward identifying the cellular and molecular mechanisms that underlie regenerative failure and how altering those pathways can promote cell survival and/or axon regeneration. Here, we summarize those findings while comparing the regenerative process in the central versus the peripheral nervous system. We also highlight studies that advance our understanding of the mechanisms underlying neural degeneration in response to injury, as many of these mechanisms represent primary targets for restoring functional neural circuits.
Collapse
Affiliation(s)
| | - John L Hunyara
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natalie R Hamilton
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway. Mol Psychiatry 2022; 27:230-248. [PMID: 33837269 DOI: 10.1038/s41380-021-01086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by recurrent and distinctive obsessions and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress, inflammation, and glutamatergic pathways play key roles in the causes of OCD. However, first-line therapies include cognitive-behavioral therapy but only 40% of the patients respond to this first-line therapy. Research for new treatment is mandatory. This review focuses on the potential effects of cannabidiol (CBD), as a potential therapeutic strategy, on OCD and some of the presumed mechanisms by which CBD provides its benefit properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. The activation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway and circadian rhythms dysregulation in OCD. Future prospective clinical trials could focus on CBD and its different and multiple interactions in OCD.
Collapse
|
11
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
12
|
Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021; 13:cancers13215557. [PMID: 34771718 PMCID: PMC8582658 DOI: 10.3390/cancers13215557] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Recent studies have shown that cancer processes are involved under normoxic conditions. These findings completely change the way of approaching the study of the cancer process. In this review, we focus on the fact that, under normoxic conditions, the overstimulation of the WNT/β-catenin pathway leads to modifications in the tumor micro-environment and the activation of the Warburg effect, i.e., aerobic glycolysis, autophagy and glutaminolysis, which in turn participate in tumor growth. Abstract The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR, CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
13
|
Sanz FJ, Solana-Manrique C, Torres J, Masiá E, Vicent MJ, Paricio N. A High-Throughput Chemical Screen in DJ-1β Mutant Flies Identifies Zaprinast as a Potential Parkinson's Disease Treatment. Neurotherapeutics 2021; 18:2565-2578. [PMID: 34697772 PMCID: PMC8804136 DOI: 10.1007/s13311-021-01134-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dopamine replacement represents the standard therapy for Parkinson's disease (PD), a common, chronic, and incurable neurological disorder; however, this approach only treats the symptoms of this devastating disease. In the search for novel disease-modifying therapies that target other relevant molecular and cellular mechanisms, Drosophila has emerged as a valuable tool to study neurodegenerative diseases due to the presence of a complex central nervous system, the blood-brain barrier, and a similar neurotransmitter profile to humans. Human PD-related genes also display conservation in flies; DJ-1β is the fly ortholog of DJ-1, a gene for which mutations prompt early-onset recessive PD. Interestingly, flies mutant for DJ-1β exhibit PD-related phenotypes, including motor defects, high oxidative stress (OS) levels and metabolic alterations. To identify novel therapies for PD, we performed an in vivo high-throughput screening assay using DJ-1β mutant flies and compounds from the Prestwick® chemical library. Drugs that improved motor performance in DJ-1ß mutant flies were validated in DJ-1-deficient human neural-like cells, revealing that zaprinast displayed the most significant ability to suppress OS-induced cell death. Zaprinast inhibits phosphodiesterases and activates GPR35, an orphan G-protein-coupled receptor not previously associated with PD. We found that zaprinast exerts its beneficial effect in both fly and human PD models through several disease-modifying mechanisms, including reduced OS levels, attenuated apoptosis, increased mitochondrial viability, and enhanced glycolysis. Therefore, our results support zaprinast as a potential therapeutic for PD in future clinical trials.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto Universitario de Biotecnología Y Biomedicina (BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto Universitario de Biotecnología Y Biomedicina (BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Josema Torres
- Departamento de Biología Celular, Biología Funcional Y Antropología Física, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
| | - Esther Masiá
- Polymer Therapeutics Lab and Screening Platform, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Lab and Screening Platform, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain.
- Instituto Universitario de Biotecnología Y Biomedicina (BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
14
|
Manne RK, Agrawal Y, Malonia SK, Banday S, Edachery S, Patel A, Kumar A, Shetty P, Santra MK. FBXL20 promotes breast cancer malignancy by inhibiting apoptosis through degradation of PUMA and BAX. J Biol Chem 2021; 297:101253. [PMID: 34587475 PMCID: PMC8507197 DOI: 10.1016/j.jbc.2021.101253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Apoptosis is a programmed cell death that efficiently removes damaged cells to maintain tissue homeostasis. Defect in apoptotic machinery can lead to tumor development, progression, and resistance to chemotherapy. PUMA (p53 upregulated modulator of apoptosis) and BAX (BCL2-associated X protein) are among the most well-known inducers of apoptosis. It has been reported that expression levels of BAX and PUMA are controlled at the posttranslational level by phosphorylation. However, the posttranslational regulation of these proapoptotic proteins remains largely unexplored. In this study, using biochemical, molecular biology, flow cytometric, and immunohistochemistry techniques, we show that PUMA and BAX are the direct target of the F-box protein FBXL20, which restricts their cellular levels. FBXL20 directs the proteasomal degradation of PUMA and BAX in a protein kinase AKT1-dependent manner to promote cancer cell proliferation and tumor growth. Interestingly, inactivation of AKT1 results in activation of another protein kinase GSK3α/β, which facilitates the proteasomal degradation of FBXL20 by another F-box protein, FBXO31. Thus, a switch between two signaling kinases AKT1 and GSK3α/β modulates the functional activity of these proapoptotic regulators, thereby determining cell survival or death. RNAi-mediated ablation of FBXL20 results in increased levels of PUMA as well as BAX, which further enhances the sensitivity of cancer cells to chemotherapeutic drugs. We showed that high level expression of FBXL20 in cancer cells reduces therapeutic drug-induced apoptosis and promotes chemoresistance. Overall, this study highlights the importance of targeting FBXL20 in cancers in conjunction with chemotherapy and may represent a promising anticancer strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Rajesh Kumar Manne
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Pune, Maharashtra, India; Department of Biotechnology, S.P. Pune University, Pune, Maharashtra, India
| | - Yashika Agrawal
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Pune, Maharashtra, India; Department of Biotechnology, S.P. Pune University, Pune, Maharashtra, India
| | - Sunil K Malonia
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sarathkumar Edachery
- Department of Biochemistry, K. S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Asha Patel
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Pune, Maharashtra, India
| | - Avinash Kumar
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Pune, Maharashtra, India
| | - Praveenkumar Shetty
- Department of Biochemistry, K. S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Manas Kumar Santra
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Pune, Maharashtra, India.
| |
Collapse
|
15
|
Li M. The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis 2021; 26:235-247. [PMID: 33783663 PMCID: PMC8197724 DOI: 10.1007/s10495-021-01667-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
P53 up-regulated modulator of apoptosis (PUMA), a pro-apoptotic BCL-2 homology 3 (BH3)-only member of the BCL-2 family, is a direct transcriptional target of P53 that elicits mitochondrial apoptosis under treatment with radiation and chemotherapy. It also induces excessive apoptosis in cardiovascular and/or neurodegenerative diseases. PUMA has been found to play a critical role in ovarian apoptosis. In the present paper, we review the progress of the study in PUMA over the past two decades in terms of its inducement and/or amplification of programmed cell death and describe recent updates to the understanding of both P53-dependent and P53-independent PUMA-mediated apoptotic pathways that are implicated in physiology and pathology, including the development of the ovary and cardiovascular and neurodegenerative diseases. We propose that PUMA may be a key regulator during ovary development, provide a model for PUMA-mediated apoptotic pathways, including intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Mei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
16
|
Vallée A, Lecarpentier Y, Vallée JN. Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classification. Biomedicines 2021; 9:biomedicines9060619. [PMID: 34070746 PMCID: PMC8229353 DOI: 10.3390/biomedicines9060619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Gliomas are the main common primary intraparenchymal brain tumor in the central nervous system (CNS), with approximately 7% of the death caused by cancers. In the WHO 2016 classification, molecular dysregulations are part of the definition of particular brain tumor entities for the first time. Nevertheless, the underlying molecular mechanisms remain unclear. Several studies have shown that 75% to 80% of secondary glioblastoma (GBM) showed IDH1 mutations, whereas only 5% of primary GBM have IDH1 mutations. IDH1 mutations lead to better overall survival in gliomas patients. IDH1 mutations are associated with lower stimulation of the HIF-1α a, aerobic glycolysis and angiogenesis. The stimulation of HIF-1α and the process of angiogenesis appears to be activated only when hypoxia occurs in IDH1-mutated gliomas. In contrast, the observed upregulation of the canonical WNT/β-catenin pathway in gliomas is associated with proliferation, invasion, aggressive-ness and angiogenesis.. Molecular pathways of the malignancy process are involved in early stages of WNT/β-catenin pathway-activated-gliomas, and this even under normoxic conditions. IDH1 mutations lead to decreased activity of the WNT/β-catenin pathway and its enzymatic targets. The opposed interplay between IDH1 mutations and the canonical WNT/β-catenin pathway in gliomas could participate in better understanding of the observed evolution of different tumors and could reinforce the glioma classification.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80000 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
17
|
Demmings MD, Tennyson EC, Petroff GN, Tarnowski-Garner HE, Cregan SP. Activating transcription factor-4 promotes neuronal death induced by Parkinson's disease neurotoxins and α-synuclein aggregates. Cell Death Differ 2021; 28:1627-1643. [PMID: 33277577 PMCID: PMC8167173 DOI: 10.1038/s41418-020-00688-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra resulting in severe and progressive motor impairments. However, the mechanisms underlying this neuronal loss remain largely unknown. Oxidative stress and ER stress have been implicated in PD and these factors are known to activate the integrated stress response (ISR). Activating transcription factor 4 (ATF4), a key mediator of the ISR, and has been reported to induce the expression of genes involved in cellular homeostasis. However, during prolonged activation ATF4 can also induce the expression of pro-death target genes. Therefore, in the present study, we investigated the role of ATF4 in neuronal cell death in models of PD. We demonstrate that PD neurotoxins (MPP+ and 6-OHDA) and α-synuclein aggregation induced by pre-formed human alpha-synuclein fibrils (PFFs) cause sustained upregulation of ATF4 expression in mouse cortical and mesencephalic dopaminergic neurons. Furthermore, we demonstrate that PD neurotoxins induce the expression of the pro-apoptotic factors Chop, Trb3, and Puma in dopaminergic neurons in an ATF4-dependent manner. Importantly, we have determined that PD neurotoxin and α-synuclein PFF induced neuronal death is attenuated in ATF4-deficient dopaminergic neurons. Furthermore, ectopic expression of ATF4 but not transcriptionally defective ATF4ΔRK restores sensitivity of ATF4-deficient neurons to PD neurotoxins. Finally, we demonstrate that the eIF2α kinase inhibitor C16 suppresses MPP+ and 6-OHDA induced ATF4 activation and protects against PD neurotoxin induced dopaminergic neuronal death. Taken together these results indicate that ATF4 promotes dopaminergic cell death induced by PD neurotoxins and pathogenic α-synuclein aggregates and highlight the ISR factor ATF4 as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Elizabeth C Tennyson
- Neuroscience Program, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Gillian N Petroff
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Heather E Tarnowski-Garner
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Sean P Cregan
- Neuroscience Program, University of Western Ontario, London, ON, Canada.
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- University of Western Ontario, London, ON, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
18
|
Lithium and Atypical Antipsychotics: The Possible WNT/β Pathway Target in Glaucoma. Biomedicines 2021; 9:biomedicines9050473. [PMID: 33925885 PMCID: PMC8146329 DOI: 10.3390/biomedicines9050473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease that represents the major cause of irreversible blindness. Recent findings have shown which oxidative stress, inflammation, and glutamatergic pathway have main roles in the causes of glaucoma. Lithium is the major commonly used drug for the therapy of chronic mental illness. Lithium therapeutic mechanisms remain complex, including several pathways and gene expression, such as neurotransmitter and receptors, circadian modulation, ion transport, and signal transduction processes. Recent studies have shown that the benefits of lithium extend beyond just the therapy of mood. Neuroprotection against excitotoxicity or brain damages are other actions of lithium. Moreover, recent findings have investigated the role of lithium in glaucoma. The combination of lithium and atypical antipsychotics (AAPs) has been the main common choice for the treatment of bipolar disorder. Due to the possible side effects gradually introduced in therapy. Currently, no studies have focused on the possible actions of AAPs in glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with the overactivation of the GSK-3β signaling. The WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Lithium is correlated with upregulation the WNT/β-catenin pathway and downregulation of the GSK-3β activity. Thus, this review focuses on the possible actions of lithium and AAPs, as possible therapeutic strategies, on glaucoma and some of the presumed mechanisms by which these drugs provide their possible benefit properties through the WNT/β-catenin pathway.
Collapse
|
19
|
Vallée A, Vallée JN, Lecarpentier Y. Potential role of cannabidiol in Parkinson's disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging (Albany NY) 2021; 13:10796-10813. [PMID: 33848261 PMCID: PMC8064164 DOI: 10.18632/aging.202951] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 04/11/2023]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease (ND), presenting a progressive degeneration of the nervous system characterized by a loss of dopamine in the substantia nigra pars compacta. Recent findings have shown that oxidative stress and inflammation play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is of the utmost importance. This review focuses on the potential effects of using cannabidiol (CBD) as a potential therapeutic strategy for the treatment of PD and on some of the presumed mechanisms by which CBD provides its beneficial properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. Activation of the WNT/β-catenin could be associated with the control of oxidative stress and inflammation. Future prospective clinical trials should focus on CBD and its multiple interactions in the treatment of PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, Suresnes 92150, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens 80054, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers 86000, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), Meaux 77100, France
| |
Collapse
|
20
|
Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021; 12:666693. [PMID: 33927728 PMCID: PMC8076593 DOI: 10.3389/fimmu.2021.666693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Cytokine profiles observed in COVID-19 patients have revealed increased levels of IL-1β, IL-2, IL-6, and TNF-α and increased NF-κB pathway activity. Recent evidence has shown that the upregulation of the WNT/β-catenin pathway is associated with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome) and especially in COVID-19 patients. Several studies have shown that the WNT/β-catenin pathway interacts with PPARγ in an opposing interplay in numerous diseases. Furthermore, recent studies have highlighted the interesting role of PPARγ agonists as modulators of inflammatory and immunomodulatory drugs through the targeting of the cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/β-catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the expression of ACE2. Evidence has highlighted the fact that PPARγ agonists can increase ACE2 expression, suggesting a possible role for PPARγ agonists in the treatment of COVID-19. This review therefore focuses on the opposing interplay between the canonical WNT/β-catenin pathway and PPARγ in SARS-CoV2 infection and the potential beneficial role of PPARγ agonists in this context.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Jean-Noël Vallée
- University Hospital Center (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
| |
Collapse
|
21
|
Vallée A, Lecarpentier Y, Vallée JN. Cannabidiol and the Canonical WNT/β-Catenin Pathway in Glaucoma. Int J Mol Sci 2021; 22:ijms22073798. [PMID: 33917605 PMCID: PMC8038773 DOI: 10.3390/ijms22073798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease which constitutes the main frequent cause of irreversible blindness. Recent findings have shown that oxidative stress, inflammation and glutamatergic pathway play key roles in the causes of glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with overactivation of the GSK-3β signaling. WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa plant which possesses many therapeutic properties across a range of neuropsychiatric disorders. Since few years, CBD presents an increased interest as a possible drug in anxiolytic disorders. CBD administration is associated with increase of the WNT/β-catenin pathway and decrease of the GSK-3β activity. CBD has a lower affinity for CB1 but can act through other signaling in glaucoma, including the WNT/β-catenin pathway. CBD downregulates GSK3-β activity, an inhibitor of WNT/β-catenin pathway. Moreover, CBD was reported to suppress pro-inflammatory signaling and neuroinflammation, oxidative stress and glutamatergic pathway. Thus, this review focuses on the potential effects of cannabidiol, as a potential therapeutic strategy, on glaucoma and some of the presumed mechanisms by which this phytocannabinoid provides its possible benefit properties through the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
22
|
Vallée A, Vallée JN, Lecarpentier Y. Parkinson's Disease: Potential Actions of Lithium by Targeting the WNT/β-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway. Cells 2021; 10:230. [PMID: 33503974 PMCID: PMC7911116 DOI: 10.3390/cells10020230] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the major neurodegenerative diseases (ND) which presents a progressive neurodegeneration characterized by loss of dopamine in the substantia nigra pars compacta. It is well known that oxidative stress, inflammation and glutamatergic pathway play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is mandatory. This review focuses on the potential effects of lithium, as a potential therapeutic strategy, on PD and some of the presumed mechanisms by which lithium provides its benefit properties. Lithium medication downregulates GSK-3beta, the main inhibitor of the WNT/β-catenin pathway. The stimulation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway. Future prospective clinical trials could focus on lithium and its different and multiple interactions in PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| |
Collapse
|
23
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
24
|
Bunk EC, König HG, Prehn JHM, Kirby BP. p53 upregulated mediator of apoptosis (Puma) deficiency increases survival of adult neural stem cells generated physiologically in the hippocampus, but does not protect stem cells generated in surplus after an excitotoxic lesion. J Basic Clin Physiol Pharmacol 2020; 32:57-66. [PMID: 33155994 DOI: 10.1515/jbcpp-2020-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/09/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Neurogenesis occurs in the mammalian brain throughout adulthood and increases in response to metabolic, toxic or traumatic insults. To remove potentially superfluous or unwanted neural stem cells/neuronal progenitors, their rate of proliferation and differentiation is fine-tuned against their rate of apoptosis. Apoptosis requires the transcriptional and posttranslational activation of Bcl-2-homolgy domain 3 (BH3)-only proteins. Previously, we demonstrated that the BH3-only protein p53-upregulated mediator of apoptosis (Puma) controls the physiological rate of apoptosis of neural precursor cells in the adult mouse hippocampus. Puma's role in controlling a lesion-induced increase in neural stem cells is currently not known. METHODS We employed a model of local, N-methyl-D-asparte (NMDA)-induced excitotoxic injury to the CA1 hippocampal subfield and immunofluorescence labelling to produce increased neural stem cell proliferation/ neurogenesis in the dentate gyrus at two survival times following the excitotoxic lesion. RESULTS Deletion of puma failed to rescue any NMDA-induced increase in adult born cells as assessed by BrdU or Doublecortin labelling in the long-term. No difference in the proportion of BrdU/NeuN-positive cells comparing the different genotypes and treatments suggested that the phenotypic fate of the cells was preserved regardless of the genotype and the treatment. CONCLUSIONS While neurogenesis is up-regulated in puma-deficient animals following NMDA-induced excitotoxicity to the hippocampal CA1 subfield, puma deficiency could not protect this surplus of newly generated cells from apoptotic cell death.
Collapse
Affiliation(s)
- Eva C Bunk
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.,Klinik für Neurochirurgie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Hans-Georg König
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.,Future-Neuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Brian P Kirby
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| |
Collapse
|
25
|
Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins. Cell Death Differ 2020; 28:108-122. [PMID: 33162554 PMCID: PMC7852532 DOI: 10.1038/s41418-020-00654-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Axonal degeneration and neuronal cell death are fundamental processes in development and contribute to the pathology of neurological disease in adults. Both processes are regulated by BCL-2 family proteins which orchestrate the permeabilization of the mitochondrial outer membrane (MOM). MOM permeabilization (MOMP) results in the activation of pro-apoptotic molecules that commit neurons to either die or degenerate. With the success of small-molecule inhibitors targeting anti-apoptotic BCL-2 proteins for the treatment of lymphoma, we can now envision the use of inhibitors of apoptosis with exquisite selectivity for BCL-2 family protein regulation of neuronal apoptosis in the treatment of nervous system disease. Critical to this development is deciphering which subset of proteins is required for neuronal apoptosis and axon degeneration, and how these two different outcomes are separately regulated. Moreover, noncanonical BCL-2 family protein functions unrelated to the regulation of MOMP, including impacting necroptosis and other modes of cell death may reveal additional potential targets and/or confounders. This review highlights our current understanding of BCL-2 family mediated neuronal cell death and axon degeneration, while identifying future research questions to be resolved to enable regulating neuronal survival pharmacologically.
Collapse
|
26
|
The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death. J Neurosci 2020; 40:8652-8668. [PMID: 33060174 DOI: 10.1523/jneurosci.1636-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.
Collapse
|
27
|
Wanderoy S, Hees JT, Klesse R, Edlich F, Harbauer AB. Kill one or kill the many: interplay between mitophagy and apoptosis. Biol Chem 2020; 402:73-88. [PMID: 33544491 DOI: 10.1515/hsz-2020-0231] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson's disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of pro-apoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system.
Collapse
Affiliation(s)
- Simone Wanderoy
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - J Tabitha Hees
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - Ramona Klesse
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Angelika B Harbauer
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
28
|
Wang N, Yang Y, Pang M, Du C, Chen Y, Li S, Tian Z, Feng F, Wang Y, Chen Z, Liu B, Rong L. MicroRNA-135a-5p Promotes the Functional Recovery of Spinal Cord Injury by Targeting SP1 and ROCK. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1063-1077. [PMID: 33294293 PMCID: PMC7691148 DOI: 10.1016/j.omtn.2020.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 01/18/2023]
Abstract
Emerging evidence indicates that microRNAs play a pivotal role in neural remodeling after spinal cord injury (SCI). This study aimed to investigate the mechanisms of miR-135a-5p in regulating the functional recovery of SCI by impacting its target genes and downstream signaling. The gene transfection assay and luciferase reporter assay confirmed the target relationship between miR-135a-5p and its target genes (specificity protein 1 [SP1] and Rho-associated kinase [ROCK]1/2). By establishing the H2O2-induced injury model, miR-135a-5p transfection was found to inhibit the apoptosis of PC12 cells by downregulating the SP1 gene, which subsequently induced downregulation of pro-apoptotic proteins (Bax, cleaved caspase-3) and upregulation of anti-apoptotic protein Bcl-2. By measuring the neurite lengths of PC12 cells, miR-135a-5p transfection was found to promote axon outgrowth by downregulating the ROCK1/2 gene, which subsequently caused upregulation of phosphate protein kinase B (AKT) and phosphate glycogen synthase kinase 3β (GSK3β). Use of the rat SCI models showed that miR-135a-5p could increase the Basso, Beattie, and Bresnahan (BBB) scores, indicating neurological function recovery. In conclusion, the miR-135a-5p-SP1-Bax/Bcl-2/caspase-3 and miR-135a-5p-ROCK-AKT/GSK3β axes are involved in functional recovery of SCI by regulating neural apoptosis and axon regeneration, respectively, and thus can be promising effective therapeutic strategies in SCI.
Collapse
Affiliation(s)
- Nanxiang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Cong Du
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yuyong Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Simin Li
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhenxiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
29
|
Sabirzhanov B, Makarevich O, Barrett JP, Jackson IL, Glaser EP, Faden AI, Stoica BA. Irradiation-Induced Upregulation of miR-711 Inhibits DNA Repair and Promotes Neurodegeneration Pathways. Int J Mol Sci 2020; 21:ijms21155239. [PMID: 32718090 PMCID: PMC7432239 DOI: 10.3390/ijms21155239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy for brain tumors induces neuronal DNA damage and may lead to neurodegeneration and cognitive deficits. We investigated the mechanisms of radiation-induced neuronal cell death and the role of miR-711 in the regulation of these pathways. We used in vitro and in vivo models of radiation-induced neuronal cell death. We showed that X-ray exposure in primary cortical neurons induced activation of p53-mediated mechanisms including intrinsic apoptotic pathways with sequential upregulation of BH3-only molecules, mitochondrial release of cytochrome c and AIF-1, as well as senescence pathways including upregulation of p21WAF1/Cip1. These pathways of irradiation-induced neuronal apoptosis may involve miR-711-dependent downregulation of pro-survival genes Akt and Ang-1. Accordingly, we demonstrated that inhibition of miR-711 attenuated degradation of Akt and Ang-1 mRNAs and reduced intrinsic apoptosis after neuronal irradiation; likewise, administration of Ang-1 was neuroprotective. Importantly, irradiation also downregulated two novel miR-711 targets, DNA-repair genes Rad50 and Rad54l2, which may impair DNA damage responses, amplifying the stimulation of apoptotic and senescence pathways and contributing to neurodegeneration. Inhibition of miR-711 rescued Rad50 and Rad54l2 expression after neuronal irradiation, enhancing DNA repair and reducing p53-dependent apoptotic and senescence pathways. Significantly, we showed that brain irradiation in vivo persistently elevated miR-711, downregulated its targets, including pro-survival and DNA-repair molecules, and is associated with markers of neurodegeneration, not only across the cortex and hippocampus but also specifically in neurons isolated from the irradiated brain. Our data suggest that irradiation-induced miR-711 negatively modulates multiple pro-survival and DNA-repair mechanisms that converge to activate neuronal intrinsic apoptosis and senescence. Using miR-711 inhibitors to block the development of these regulated neurodegenerative pathways, thus increasing neuronal survival, may be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
- Correspondence: (B.S.); (B.A.S.)
| | - Oleg Makarevich
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - James P. Barrett
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF 700-B, Baltimore, MD 21201, USA;
| | - Ethan P. Glaser
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Alan I. Faden
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Bogdan A. Stoica
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Correspondence: (B.S.); (B.A.S.)
| |
Collapse
|
30
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Riluzole: a therapeutic strategy in Alzheimer's disease by targeting the WNT/β-catenin pathway. Aging (Albany NY) 2020; 12:3095-3113. [PMID: 32035419 PMCID: PMC7041777 DOI: 10.18632/aging.102830] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, where the etiology remains unclear. AD is characterized by amyloid-(Aβ) protein aggregation and neurofibrillary plaques deposits. Oxidative stress and chronic inflammation have been suggested as causes of AD. Glutamatergic pathway dysregulation is also mainly associated with AD process. In AD, the canonical WNT/β-catenin pathway is downregulated. Downregulation of WNT/β-catenin, by activation of GSK-3β-induced Aβ, and inactivation of PI3K/Akt pathway involve oxidative stress in AD. The downregulation of the WNT/β-catenin pathway decreases the activity of EAAT2, the glutamate receptors, and leads to neuronal death. In AD, oxidative stress, neuroinflammation and glutamatergic pathway operate in a vicious circle driven by the dysregulation of the WNT/β-catenin pathway. Riluzole is a glutamate modulator and used as treatment in amyotrophic lateral sclerosis. Recent findings have highlighted its use in AD and its potential increase power on the WNT pathway. Nevertheless, the mechanism by which Riluzole can operate in AD remains unclear and should be better determine. The focus of our review is to highlight the potential action of Riluzole in AD by targeting the canonical WNT/β-catenin pathway to modulate glutamatergic pathway, oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), University of Poitiers, Poitiers, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
31
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21030820. [PMID: 32012797 PMCID: PMC7037737 DOI: 10.3390/ijms21030820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is considered as the main worldwide cause of blindness in elderly adults. Exudative AMD type represents 10 to 15% of macular degeneration cases, but is the main cause of vision loss and blindness. Circadian rhythm changes are associated with aging and could further accelerate it. However, the link between circadian rhythms and exudative AMD is not fully understood. Some evidence suggests that dysregulation of circadian functions could be manifestations of diseases or could be risk factors for the development of disease in elderly adults. Biological rhythms are complex systems interacting with the environment and control several physiological pathways. Recent findings have shown that the dysregulation of circadian rhythms is correlated with exudative AMD. One of the main pathways involved in exudative AMD is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving the circadian expression of genes involved in physiological and metabolic functions. In exudative AMD, the increase of the canonical WNT/β-catenin pathway is enhanced by the dysregulation of circadian rhythms. Exudative AMD progression is associated with major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, of aerobic glycolysis. This review focuses on the interest of circadian rhythm dysregulation in exudative AMD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France
| | - Rodolphe Vallée
- University Hospital Group of Paris-Seine-Saint-Denis, APHP, University of Paris-13 Sorbonne Paris-Cité, 93000 Paris, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, 86021 Poitiers, France
| |
Collapse
|
32
|
Meyer M, Kruse MS, Garay L, Lima A, Roig P, Hunt H, Belanoff J, de Kloet ER, Deniselle MCG, De Nicola AF. Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Res 2019; 1727:146551. [PMID: 31726042 DOI: 10.1016/j.brainres.2019.146551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura Garay
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Analia Lima
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Hazel Hunt
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - Joseph Belanoff
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - E Ronald de Kloet
- Division of Endocrinology, Dept. of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maria Claudia Gonzalez Deniselle
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina.
| |
Collapse
|
33
|
Sabirzhanov B, Matyas J, Coll-Miro M, Yu LL, Faden AI, Stoica BA, Wu J. Inhibition of microRNA-711 limits angiopoietin-1 and Akt changes, tissue damage, and motor dysfunction after contusive spinal cord injury in mice. Cell Death Dis 2019; 10:839. [PMID: 31685802 PMCID: PMC6828685 DOI: 10.1038/s41419-019-2079-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes neuronal cell death and vascular damage, which contribute to neurological dysfunction. Given that many biochemical changes contribute to such secondary injury, treatment approaches have increasingly focused on combined therapies or use of multi-functional drugs. MicroRNAs (miRs) are small (20-23 nucleotide), non-protein-coding RNAs and can negatively regulate target gene expression at the post-transcriptional level. As individual miRs can potentially modulate expression of multiple relevant proteins after injury, they are attractive candidates as upstream regulators of the secondary SCI progression. In the present study we examined the role of miR-711 modulation after SCI. Levels of miR-711 were increased in injured spinal cord early after SCI, accompanied by rapid downregulation of its target angiopoietin-1 (Ang-1), an endothelial growth factor. Changes of miR-711 were also associated with downregulation of the pro-survival protein Akt (protein kinase B), another target of miR-711, with sequential activation of glycogen synthase kinase 3 and the pro-apoptotic BH3-only molecule PUMA. Central administration of a miR-711 hairpin inhibitor after SCI limited decreases of Ang-1/Akt expression and attenuated apoptotic pathways. Such treatment also reduced neuronal/axonal damage, protected microvasculature and improved motor dysfunction following SCI. In vitro, miR-711 levels were rapidly elevated by neuronal insults, but not by activated microglia and astrocytes. Together, our data suggest that post-traumatic miR-711 elevation contributes to neuronal cell death after SCI, in part by inhibiting Ang-1 and Akt pathways, and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Jessica Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Marina Coll-Miro
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Laina Lijia Yu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA. .,University of Maryland Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
34
|
Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res 2019; 38:323. [PMID: 31331376 PMCID: PMC6647277 DOI: 10.1186/s13046-019-1320-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have presented that curcumin could have a positive effect in the prevention of cancer and then in tumor therapy. Several hypotheses have highlighted that curcumin could decreases tumor growth and invasion by acting on both chronic inflammation and oxidative stress. This review focuses on the interest of use curcumin in cancer therapy by acting on the WNT/β-catenin pathway to repress chronic inflammation and oxidative stress. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. Curcumin administration participates to the downregulation of the WNT/β-catenin pathway and thus, through this action, in tumor growth control. Curcumin act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in an opposed manner. Chronic inflammation, oxidative stress and circadian clock disruption are common and co-substantial pathological processes accompanying and promoting cancers. Circadian clock disruption related to the upregulation of the WNT/β-catenin pathway is involved in cancers. By stimulating PPARγ expression, curcumin can control circadian clocks through the regulation of many key circadian genes. The administration of curcumin in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 1 place du Parvis de Notre-Dame, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| |
Collapse
|
35
|
Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019; 8:cells8070726. [PMID: 31311204 PMCID: PMC6679009 DOI: 10.3390/cells8070726] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and oxidative stress are common and co-substantial pathological processes accompanying and contributing to cancers. Numerous epidemiological studies have indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely associated with both chronic inflammation and oxidative stress in cancers. The administration of NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration. In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression, NSAIDs can control CRs through the regulation of many key circadian genes. The administration of NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 75004 Paris, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
36
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
37
|
Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res 2019; 73:100769. [PMID: 31301400 DOI: 10.1016/j.preteyeres.2019.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
Axonal degeneration is an active, highly controlled process that contributes to beneficial processes, such as developmental pruning, but also to neurodegeneration. In glaucoma, ocular hypertension leads to vision loss by killing the output neurons of the retina, the retinal ganglion cells (RGCs). Multiple processes have been proposed to contribute to and/or mediate axonal injury in glaucoma, including: neuroinflammation, loss of neurotrophic factors, dysregulation of the neurovascular unit, and disruption of the axonal cytoskeleton. While the inciting injury to RGCs in glaucoma is complex and potentially heterogeneous, axonal injury is ultimately thought to be the key insult that drives glaucomatous neurodegeneration. Glaucomatous neurodegeneration is a complex process, with multiple molecular signals contributing to RGC somal loss and axonal degeneration. Furthermore, the propagation of the axonal injury signal is complex, with injury triggering programs of degeneration in both the somal and axonal compartment. Further complicating this process is the involvement of multiple cell types that are known to participate in the process of axonal and neuronal degeneration after glaucomatous injury. Here, we review the axonal signaling that occurs after injury and the molecular signaling programs currently known to be important for somal and axonal degeneration after glaucoma-relevant axonal injuries.
Collapse
Affiliation(s)
- Stephanie B Syc-Mazurek
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA; The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
38
|
Wang RR, Li CF, Wang DZ, Zhang CW, Liu GX. c-Jun N-terminal kinase 3 deficiency protects axotomized retinal ganglion cells via affecting mitochondria involved apoptosis pathway. Int J Ophthalmol 2019; 12:30-37. [PMID: 30662837 PMCID: PMC6326936 DOI: 10.18240/ijo.2019.01.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To illustrate the isoform-specific role and mechanism of c-Jun N-terminal kinases (JNKs) in mouse optic nerve axotomy induced neurotrauma. METHODS We firstly investigated the expression of JNK1, JNK2, and JNK3 in the retinal ganglion cells (RGCs) by double-immunofluorescent staining. Then we created optic nerve axotomy model in wild type as well as JNK1, JNK2, JNK3, isoform specific gene deficiency mice. With that, we checked the protein expression profile of JNKs and its active form, and quantified the survival RGCs number by immunofluorescence staining. We further explored the molecules underlying isoform specific protective effect by real-time polymerase chain reaction (PCR) and Western blotting assay. RESULTS We found that all the three isoforms of JNKs were expressed in the RGCs. Deficiency of JNK3, but not JNK1 or JNK2, significantly alleviated optic nerve axotomy induced RGCs apoptosis. We further established that expression of Noxa, a pro-apoptotic member of BH3 family, was significantly suppressed only in JNK3 gene deficiency mice. But tumor necrosis factor receptor 1 (TNFR1) and Fas, two key modulators of death receptor mediated apoptosis pathway, did not display obvious change in the expression. CONCLUSION It is suggested that mitochondria mediated apoptosis, but not death receptor mediated apoptosis got involved in the JNK3 gene deficiency induced RGCs protection. Our study provides a novel insight into the isoform-specific role of JNKs in neurotrauma and indicates some cues for its therapeutics.
Collapse
Affiliation(s)
- Rong-Rong Wang
- Qingdao University, Qingdao 266000, Shandong Province, China
- Department of Ophthalmology, Jimo Traditional Chinese Medicine Hospital, Qingdao 266200, Shandong Province, China
| | - Cheng-Fang Li
- Department of Ophthalmology, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - De-Zu Wang
- Department of Ophthalmology, Jimo Traditional Chinese Medicine Hospital, Qingdao 266200, Shandong Province, China
| | - Cheng-Wu Zhang
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 211800, Jiangsu Province, China
| | - Gui-Xiang Liu
- Department of Ophthalmology, Affiliated Hospital of the Medical College of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
39
|
Chen JY, Chu LW, Cheng KI, Hsieh SL, Juan YS, Wu BN. Valproate reduces neuroinflammation and neuronal death in a rat chronic constriction injury model. Sci Rep 2018; 8:16457. [PMID: 30405207 PMCID: PMC6220313 DOI: 10.1038/s41598-018-34915-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Valproate (VPA) is a well-known drug for treating epilepsy and mania, but its action in neuropathic pain is unclear. We used a chronic constriction injury (CCI) model to explore whether VPA prevents neuropathic pain-mediated inflammation and neuronal death. Rats were treated with or without VPA. CCI + VPA rats were intraperitoneally injected with VPA (300 mg/kg/day) from postoperative day (POD) 1 to 14. We measured paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) 1 day before surgery and 1, 3, 7, 14 days after CCI and harvested the sciatic nerves (SN), spinal cord (SC) and dorsal root ganglia (DRG) on POD 3, 7, and 14. PWL and PWT were reduced in CCI rats, but increased in CCI + VPA rats on POD 7 and POD 14. VPA lowered CCI-induced inflammatory proteins (pNFκB, iNOS and COX-2), pro-apoptotic proteins (pAKT/AKT and pGSK-3β/GSK-3β), proinflammatory cytokines (TNF-α and IL-1β) and nuclear pNFκB activation in the SN, DRG and SC in CCI rats. COX-2 and pGSK-3 proteins were decreased by VPA on immunofluorescence analysis. VPA attenuated CCI-induced thermal and mechanical pain behaviors in rats in correlation with anti-neuroinflammation action involving reduction of pNFκB/iNOS/COX-2 activation and inhibition of pAKT/pGSK-3β-mediated neuronal death from injury to peripheral nerves.
Collapse
Affiliation(s)
- Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan.,School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Li-Wen Chu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
40
|
Vallée A, Guillevin R, Vallée JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci 2018; 29:71-91. [PMID: 28822229 DOI: 10.1515/revneuro-2017-0032] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by inhibiting HIF-1α prolyl hydroxylation and preventing HIF labeling by the von Hippel-Lindau protein. Increased lactate with acid environment and HIF-1α overexpression induce the vascular endothelial growth factor (VEGF) pathway of vasculogenesis and angiogenesis under normoxic conditions. Hypoxia and acidic pH have no synergistic effect on VEGF transcription.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, 11 Boulevard Marie et Pierre Curie, F-86000 Poitiers, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, F-86000 Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, F-86000 Poitiers, France
| |
Collapse
|
41
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington's disease. Rev Neurosci 2018; 29:547-555. [PMID: 29303786 DOI: 10.1515/revneuro-2017-0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Neurodegenerative cells are the sites of numerous metabolic and energetic abnormalities with abnormalities in energy production. Energy is the primary determinant of neuronal viability. In neurodegenerative cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), WNT/β-catenin pathway is upregulated. We focused this review on the hypothesis of aerobic glycolysis stimulated by the upregulation of WNT/β-catenin pathway in ALS and HD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1 (PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A), and inactivation of pyruvate dehydrogenase complex (PDH). Aerobic glycolysis consists of a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production compared with oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism promotes cell death and disease progression in ALD and HD. Aerobic glycolysis regulation is an attractive mechanism for developing therapeutic interventions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratoire de Mathématiques et Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.,CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
42
|
Pinzón-Daza ML, Cuellar Y, Ondo A, Matheus L, Del Riesgo L, Castillo F, Garzón R. Hypoxia-inducible factor HIF-1α modulates drugs resistance in colon cancer cells. REVISTA DE LA FACULTAD DE MEDICINA 2018. [DOI: 10.15446/revfacmed.v66n4.55149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction: Drug resistance mechanisms may be associated with decreased cell death and its induction may depend on the response to oxidative stress caused by hypoxia. The correlation between hypoxia-inducible factor HIF-1α, the number of reactive oxygen species and their effect on cell survival has not yet been evaluated.Objective: The purpose of this study was to evaluate the effect of HIF-1α activity and reactive oxygen species (ROS) accumulation in apoptosis of colon cancer cells.Materials and methods: HT29 colon cancer cells were treated with CoCl2 or doxorubicin and the activity of HIF-1α was determined by ELISA assay. ROS were determined using fluorescence probe carboxy-H2DFFDA. Apoptosis was assessed by caspase-3 activation analysis, and PUMA and BAX mRNA levels by qRT-PCR. The reduction of the antiapoptotic effect due to hypoxia was attenuated by use of the endonuclease APE-1 (E3330) inhibitor. The endonuclease E3330 APE-1 inhibitor allowed evaluating the effect of ROS generated by doxorubicin and CoCl2 on apoptosis.Results: Chemical hypoxia in combination with doxorubicin is an oxidative stressor in HT29 cells and induces a reduction in the apoptotic process in a time-dependent manner.Conclusion: Resistance to hypoxia and doxorubicin-mediated cell death could be controlled by a mechanism related to the activity of HIF-1α and the amount of reactive oxygen species generated.
Collapse
|
43
|
Sabirzhanov B, Faden AI, Aubrecht T, Henry R, Glaser E, Stoica BA. MicroRNA-711-Induced Downregulation of Angiopoietin-1 Mediates Neuronal Cell Death. J Neurotrauma 2018; 35:2462-2481. [PMID: 29774773 DOI: 10.1089/neu.2017.5572] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-1 (Ang-1) is a well-known endothelial growth factor, but its effects on neurons have yet to be elucidated. We show that Ang-1 is rapidly downregulated in the injured brain after controlled cortical impact (CCI), a mouse experimental traumatic brain injury (TBI) model and in etoposide-induced neuronal apoptosis in vitro. Ang-1 treatment inhibits etoposide-induced upregulation of proapoptotic B-cell lymphoma 2 (Bcl-2) family members Noxa, p53 upregulated modulator of apoptosis (Puma), Bcl-2 interacting mediator of cell death (Bim), and Bcl-2-associated X protein (Bax); reduces markers of caspase-dependent (cytochrome c release/caspase activation) and caspase-independent (apoptosis-inducing factor release) pathways; and limits neuronal cell death. Ang-1 treatment phosphorylates receptors Tunica interna endothelial cell kinase 2 (Tie2), and β1-integrin and limits the etoposide-induced decrease in protein kinase B (Akt) activity. Blocking Tie2 and β1-integrin signaling reduces Ang-1 neuroprotective effects. After both TBI and etoposide treatment microRNA (miR)-711 are upregulated, consistent with its putative role as a negative regulator of Ang-1. We show that miR-711 directly targets the Ang-1 messenger RNA (mRNA), decreasing Ang-1 expression. Increased levels of miR-711 and Ang-1 mRNA are found in the RNA-induced silencing complex complex site of miR-mediated degradation of target mRNAs after etoposide treatment and the miR-711mimic downregulates Ang-1. Administration of miR-711 inhibitor elevates Ang-1 after TBI whereas Ang-1 administration increases Akt activation; reduces Puma, Noxa, Bim, and Bax levels; and attenuates caspase-dependent and -independent neuronal apoptosis 24 h after TBI. Ang-1 also attenuates neuronal degeneration, increases gene expression of molecules that maintain blood-brain barrier integrity, and reduces post-traumatic lesion volume/edema 24 h after TBI. Although we only observed short-term neuroprotective effects after Ang-1 administration, miR-711-dependent downregulation of Ang-1, followed by Akt pathway inhibition, may play a role in neuronal cell death after neuronal injury in vitro and after experimental TBI.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Taryn Aubrecht
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Rebecca Henry
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Ethan Glaser
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018; 34:573-588. [PMID: 29582250 PMCID: PMC5960455 DOI: 10.1007/s12264-018-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France.
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
45
|
Zhang DD, Shi N, Fang H, Ma L, Wu WP, Zhang YZ, Tian JL, Tian LB, Kang K, Chen S. Vildagliptin, a DPP4 inhibitor, alleviates diabetes-associated cognitive deficits by decreasing the levels of apoptosis-related proteins in the rat hippocampus. Exp Ther Med 2018. [PMID: 29805536 DOI: 10.3892/etm.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Cognitive impairment is a prevalent but underestimated complication of diabetes, which can cause spatial memory and learning deficits. In the present study, a streptozotocin-induced type 2 diabetic rat model was employed to investigate the effects of vildagliptin, a new oral hypoglycemic agent that acts by inhibiting dipeptidyl peptidase-4, on diabetes-associated cognitive impairments, as well as the molecular mechanisms involved. The present findings demonstrated that vildagliptin treatment prevented memory impairment and decreased the apoptosis of hippocampal neurons. It also attenuated the abnormal expression of caspase-3, B cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein in the diabetic model. Vildagliptin treatment also reversed diabetes-induced decreases in phosphorylated (p)-protein kinase B (Akt) and p-glycogen synthase kinase 3β (GSK3β), brain-derived neurotrophic factor and nerve growth factor expression levels. The results indicated that the administration of vildagliptin exerts a protective effect against cognitive deficits by decreasing the expression of apoptosis-related proteins in the hippocampus and that this protective effect was mediated via the Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Nan Shi
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hui Fang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Liang Ma
- Department of Endocrinology, Tangshan Union Medical College Hospital, Tangshan, Hebei 063000, P.R. China
| | - Wei-Ping Wu
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ya-Zhong Zhang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jin-Li Tian
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Luo-Bing Tian
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Kang Kang
- Department of Dermatology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Si Chen
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
46
|
Schubert F, Rapp J, Brauns-Schubert P, Schlicher L, Stock K, Wissler M, Weiß M, Charvet C, Borner C, Maurer U. Requirement of GSK-3 for PUMA induction upon loss of pro-survival PI3K signaling. Cell Death Dis 2018; 9:470. [PMID: 29686375 PMCID: PMC5913275 DOI: 10.1038/s41419-018-0502-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Growth factor withdrawal induces rapid apoptosis via mitochondrial outer membrane permeabilization. We had previously observed that cell death of IL-3-dependent Ba/F3 cells, induced by removal of the growth factor, required the activity of the kinase GSK-3. Employing CRISPR/Cas9-mediated gene knockout, we aimed to identify pro-apoptotic GSK-3 regulated factors in this process. Knockout of either Puma or Bim demonstrated that the induction of Puma, but not Bim, was crucial for apoptosis induced by IL-3 deprivation. Thus, we aimed at identifying the GSK-3-dependent PUMA regulator. Loss of FOXO3A reduced the induction of Puma, while additional loss of p53 completely repressed induction upon growth factor withdrawal. A constitutively active mutant of FOXO3A, which cannot be controlled by AKT directly, still required active GSK-3 for the full transcriptional induction of Puma and cell death upon IL-3 withdrawal. Thus, the suppression of GSK-3 is the key function of PI3K signaling in order to prevent the induction of Puma by FOXO3A and p53 and thereby apoptosis upon growth factor withdrawal.
Collapse
Affiliation(s)
- Florian Schubert
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Juliane Rapp
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Prisca Brauns-Schubert
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104, Freiburg, Germany
| | - Lisa Schlicher
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104, Freiburg, Germany
| | - Kerstin Stock
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Manuela Wissler
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martina Weiß
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Céline Charvet
- Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104, Freiburg, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany. .,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104, Freiburg, Germany.
| |
Collapse
|
47
|
Zhang DD, Shi N, Fang H, Ma L, Wu WP, Zhang YZ, Tian JL, Tian LB, Kang K, Chen S. Vildagliptin, a DPP4 inhibitor, alleviates diabetes-associated cognitive deficits by decreasing the levels of apoptosis-related proteins in the rat hippocampus. Exp Ther Med 2018; 15:5100-5106. [PMID: 29805536 DOI: 10.3892/etm.2018.6016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Cognitive impairment is a prevalent but underestimated complication of diabetes, which can cause spatial memory and learning deficits. In the present study, a streptozotocin-induced type 2 diabetic rat model was employed to investigate the effects of vildagliptin, a new oral hypoglycemic agent that acts by inhibiting dipeptidyl peptidase-4, on diabetes-associated cognitive impairments, as well as the molecular mechanisms involved. The present findings demonstrated that vildagliptin treatment prevented memory impairment and decreased the apoptosis of hippocampal neurons. It also attenuated the abnormal expression of caspase-3, B cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein in the diabetic model. Vildagliptin treatment also reversed diabetes-induced decreases in phosphorylated (p)-protein kinase B (Akt) and p-glycogen synthase kinase 3β (GSK3β), brain-derived neurotrophic factor and nerve growth factor expression levels. The results indicated that the administration of vildagliptin exerts a protective effect against cognitive deficits by decreasing the expression of apoptosis-related proteins in the hippocampus and that this protective effect was mediated via the Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Nan Shi
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hui Fang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Liang Ma
- Department of Endocrinology, Tangshan Union Medical College Hospital, Tangshan, Hebei 063000, P.R. China
| | - Wei-Ping Wu
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ya-Zhong Zhang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jin-Li Tian
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Luo-Bing Tian
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Kang Kang
- Department of Dermatology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Si Chen
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
48
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 767] [Impact Index Per Article: 109.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
49
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms. Neuromolecular Med 2018; 20:174-204. [PMID: 29572723 DOI: 10.1007/s12017-018-8486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- DRCI, Hôpital Foch, Suresnes, France.
- LMA (Laboratoire de Mathématiques et Applications) CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- DRCI, Hôpital Foch, Suresnes, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
50
|
Vallée A, Vallée JN. Warburg effect hypothesis in autism Spectrum disorders. Mol Brain 2018; 11:1. [PMID: 29301575 PMCID: PMC5753567 DOI: 10.1186/s13041-017-0343-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease which is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. In altered cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In ASD, the canonical WNT/β-catenin pathway is upregulated. We focus this review on the hypothesis of Warburg effect stimulated by the overexpression of the canonical WNT/β-catenin pathway in ASD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). The aerobic glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production than oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism might promote cell deregulation and progression of ASD. Warburg effect regulation could be an attractive target for developing therapeutic interventions in ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, CHU Poitiers, University of Poitiers, Poitiers, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|