1
|
Pascoe AL, Johnston AJ, Murphy RM. Controversies in TWEAK-Fn14 signaling in skeletal muscle atrophy and regeneration. Cell Mol Life Sci 2020; 77:3369-3381. [PMID: 32200423 PMCID: PMC11104974 DOI: 10.1007/s00018-020-03495-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/27/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is one of the largest functional tissues in the human body; it is highly plastic and responds dramatically to anabolic and catabolic stimuli, including weight training and malnutrition, respectively. Excessive loss of muscle mass, or atrophy, is a common symptom of many disease states with severe impacts on prognosis and quality of life. TNF-like weak inducer of apoptosis (TWEAK) and its cognate receptor, fibroblast growth factor-inducible 14 (Fn14) are an emerging cytokine signaling pathway in the pathogenesis of muscle atrophy. Upregulation of TWEAK and Fn14 has been described in a number of atrophic and injured muscle states; however, it remains unclear whether they are contributing to the degenerative or regenerative aspect of muscle insults. The current review focuses on the expression and apparent downstream outcomes of both TWEAK and Fn14 in a range of catabolic and anabolic muscle models. Apparent changes in the signaling outcomes of TWEAK-Fn14 activation dependent on the relative expression of both the ligand and the receptor are discussed as a potential source of divergent TWEAK-Fn14 downstream effects. This review proposes both a physiological and pathological model of TWEAK-Fn14 signaling. Further research is needed on the switch between these states to develop therapeutic interventions for this pathway.
Collapse
Affiliation(s)
- Amy L Pascoe
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amelia J Johnston
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
Lim Y, Lee H, Woodby B, Valacchi G. Ozonated Oils and Cutaneous Wound Healing. Curr Pharm Des 2020; 25:2264-2278. [PMID: 31267858 DOI: 10.2174/1381612825666190702100504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022]
Abstract
Wound tissue repair is a complex and dynamic process of restoring cellular structures and tissue layers. Improvement in this process is necessary to effectively treat several pathologies characterized by a chronic delayed wound closure, such as in diabetes, and the investigation of new approaches aimed to ameliorate the wound healing process is under continuous evolution. Recently, the usage of vegetable matrices in the form of ozonated oils has been proposed, and several researchers have shown positive effects on wound healing, due to the bactericidal, antiviral, and antifungal properties of these ozonated oils. In the present review, we intend to summarize the actual state of the art of the topical usage of ozonated oil in cutaneous wounds with special emphasis to the importance of the ozonated degree of the oil.
Collapse
Affiliation(s)
- Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Brittany Woodby
- Plant for Human Health Institute, Kannapolis Research Center, North Carolina State University, 28081, NC, United States
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea.,Plant for Human Health Institute, Kannapolis Research Center, North Carolina State University, 28081, NC, United States.,Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
3
|
Gong D, Wang Y, Wang Y, Chen X, Chen S, Wang R, Liu L, Duan C, Luo S. Extensive serum cytokine analysis in patients with prostate cancer. Cytokine 2020; 125:154810. [DOI: 10.1016/j.cyto.2019.154810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022]
|
4
|
Ruiz-Plazas X, Rodríguez-Gallego E, Alves M, Altuna-Coy A, Lozano-Bartolomé J, Portero-Otin M, García-Fontgivell JF, Martínez-González S, Segarra J, Chacón MR. Biofluid quantification of TWEAK/Fn14 axis in combination with a selected biomarker panel improves assessment of prostate cancer aggressiveness. J Transl Med 2019; 17:307. [PMID: 31500625 PMCID: PMC6734315 DOI: 10.1186/s12967-019-2053-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Conventional clinical biomarkers cannot accurately differentiate indolent from aggressive prostate cancer (PCa). We investigated the usefulness of a biomarker panel measured exclusively in biofluids for assessment of PCa aggressiveness. Methods We collected biofluid samples (plasma/serum/semen/post-prostatic massage urine) from 98 patients that had undergone radical prostatectomy. Clinical biochemistry was performed and several cytokines/chemokines including soluble(s) TWEAK, sFn14, sCD163, sCXCL5 and sCCL7 were quantified by ELISA in selected biofluids. Also, the expression of KLK2, KLK3, Fn14, CD163, CXCR2 and CCR3 was quantified by real-time PCR in semen cell sediment. Univariate, logistic regression, and receiver operating characteristic (ROC) analyses were used to assess the predictive ability of the selected biomarker panel in conjunction with clinical and metabolic variables for the evaluation of PCa aggressiveness. Results Total serum levels of prostate-specific antigen (PSA), semen levels of sTWEAK, fasting glycemia and mRNA levels of Fn14, KLK2, CXCR2 and CCR3 in semen cell sediment constituted a panel of markers that was significantly different between patients with less aggressive tumors [International Society of Urological Pathology (ISUP) grade I and II] and those with more aggressive tumors (ISUP grade III, IV and V). ROC curve analysis showed that this panel could be used to correctly classify tumor aggressiveness in 90.9% of patients. Area under the curve (AUC) analysis revealed that this combination was more accurate [AUC = 0.913 95% confidence interval (CI) 0.782–1] than a classical non-invasive selected clinical panel comprising age, tumor clinical stage (T-classification) and total serum PSA (AUC = 0.721 95% CI 0.613–0.830). Conclusions TWEAK/Fn14 axis in combination with a selected non-invasive biomarker panel, including conventional clinical biochemistry, can improve the predictive power of serum PSA levels and could be used to classify PCa aggressiveness.
Collapse
Affiliation(s)
- Xavier Ruiz-Plazas
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, University Hospital of Tarragona Joan XXIII, C/Dr. Mallafré Guasch, 4, 43007, Tarragona, Spain.,Urology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Esther Rodríguez-Gallego
- Infectious Diseases and HIV/AIDS Unit, Department of Internal Medicine, Joan XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marta Alves
- Urology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, University Hospital of Tarragona Joan XXIII, C/Dr. Mallafré Guasch, 4, 43007, Tarragona, Spain
| | - Javier Lozano-Bartolomé
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, University Hospital of Tarragona Joan XXIII, C/Dr. Mallafré Guasch, 4, 43007, Tarragona, Spain
| | - Manel Portero-Otin
- Department of Experimental Medicine, Universitat de Lleida-IRBLleida, Lleida, Spain
| | | | | | - José Segarra
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, University Hospital of Tarragona Joan XXIII, C/Dr. Mallafré Guasch, 4, 43007, Tarragona, Spain. .,Urology Unit, Joan XXIII University Hospital, Tarragona, Spain.
| | - Matilde R Chacón
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, University Hospital of Tarragona Joan XXIII, C/Dr. Mallafré Guasch, 4, 43007, Tarragona, Spain.
| |
Collapse
|
5
|
Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Niño MD, Ramos AM, Cabello R, Gonzalez-Enguita C, Linkermann A, Sanz AB, Ortiz A. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis 2018; 9:118. [PMID: 29371637 PMCID: PMC5833412 DOI: 10.1038/s41419-017-0043-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Urinary tract-associated diseases comprise a complex set of disorders with a variety of etiologic agents and therapeutic approaches and a huge global burden of disease, estimated at around 1 million deaths per year. These diseases include cancer (mainly prostate, renal, and bladder), urinary tract infections, and urolithiasis. Cell death plays a key role in the pathogenesis and therapy of these conditions. During urinary tract infections, invading bacteria may either promote or prevent host cell death by interfering with cell death pathways. This has been studied in detail for uropathogenic E. coli (UPEC). Inhibition of host cell death may allow intracellular persistence of live bacteria, while promoting host cell death causes tissue damage and releases the microbes. Both crystals and urinary tract obstruction lead to tubular cell death and kidney injury. Among the pathomechanisms, apoptosis, necroptosis, and autophagy represent key processes. With respect to malignant disorders, traditional therapeutic efforts have focused on directly promoting cancer cell death. This may exploit tumor-specific characteristics, such as targeting Vascular Endothelial Growth Factor (VEGF) signaling and mammalian Target of Rapamycin (mTOR) activity in renal cancer and inducing survival factor deprivation by targeting androgen signaling in prostate cancer. An area of intense research is the use of immune checkpoint inhibitors, aiming at unleashing the full potential of immune cells to kill cancer cells. In the future, this may be combined with additional approaches exploiting intrinsic sensitivities to specific modes of cell death such as necroptosis and ferroptosis. Here, we review the contribution of diverse cell death mechanisms to the pathogenesis of urinary tract-associated diseases as well as the potential for novel therapeutic approaches based on an improved molecular understanding of these mechanisms.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ramiro Cabello
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | | | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ana Belén Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| |
Collapse
|
6
|
Affiliation(s)
- Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Armstrong CL, Galisteo R, Brown SA, Winkles JA. TWEAK activation of the non-canonical NF-κB signaling pathway differentially regulates melanoma and prostate cancer cell invasion. Oncotarget 2016; 7:81474-81492. [PMID: 27821799 PMCID: PMC5348407 DOI: 10.18632/oncotarget.13034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine that binds with high affinity to a plasma membrane-anchored receptor named Fn14. Both TWEAK and Fn14 expression has been detected in human cancer tissue, and studies have shown that TWEAK/Fn14 signaling can promote either "pro-cancer" or "anti-cancer" cellular effects in vitro, depending on the cancer cell line under investigation. In this study, we engineered murine B16 melanoma cells to secrete high levels of soluble TWEAK and examined their properties. TWEAK production by B16 cells preferentially activated the non-canonical NF-κB signaling pathway and increased the expression of several previously described TWEAK-inducible genes, including Fn14. TWEAK overexpression in B16 cells inhibited both cell growth and invasion in vitro. The TWEAK-mediated reduction in B16 cell invasive capacity was dependent on activation of the non-canonical NF-κB signaling pathway. Finally, we found that this same signaling pathway was also important for TWEAK-stimulated human DU145 prostate cancer cell invasion. Therefore, even though TWEAK:Fn14 binding activates non-canonical NF-κB signaling in both melanoma and prostate cancer cells, this shared cellular response can trigger a very different downstream outcome (inhibition or stimulation of cell invasiveness, respectively).
Collapse
Affiliation(s)
- Cheryl L. Armstrong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebeca Galisteo
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharron A.N. Brown
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A. Winkles
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Sanz AB, Ruiz-Andres O, Sanchez-Niño MD, Ruiz-Ortega M, Ramos AM, Ortiz A. Out of the TWEAKlight: Elucidating the Role of Fn14 and TWEAK in Acute Kidney Injury. Semin Nephrol 2016; 36:189-98. [DOI: 10.1016/j.semnephrol.2016.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
The TWEAK receptor Fn14 is a potential cell surface portal for targeted delivery of glioblastoma therapeutics. Oncogene 2015; 35:2145-55. [PMID: 26300004 DOI: 10.1038/onc.2015.310] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is the cell surface receptor for the tumor necrosis factor (TNF) family member TNF-like weak inducer of apoptosis (TWEAK). The Fn14 gene is normally expressed at low levels in healthy tissues but expression is significantly increased after tissue injury and in many solid tumor types, including glioblastoma (GB; formerly referred to as 'GB multiforme'). GB is the most common and aggressive primary malignant brain tumor and the current standard-of-care therapeutic regimen has a relatively small impact on patient survival, primarily because glioma cells have an inherent propensity to invade into normal brain parenchyma, which invariably leads to tumor recurrence and patient death. Despite major, concerted efforts to find new treatments, a new GB therapeutic that improves survival has not been introduced since 2005. In this review article, we summarize studies indicating that (i) Fn14 gene expression is low in normal brain tissue but is upregulated in advanced brain cancers and, in particular, in GB tumors exhibiting the mesenchymal molecular subtype; (ii) Fn14 expression can be detected in glioma cells residing in both the tumor core and invasive rim regions, with the maximal levels found in the invading glioma cells located within normal brain tissue; and (iii) TWEAK Fn14 engagement as well as Fn14 overexpression can stimulate glioma cell migration, invasion and resistance to chemotherapeutic agents in vitro. We also discuss two new therapeutic platforms that are currently in development that leverage Fn14 overexpression in GB tumors as a way to deliver cytotoxic agents to the glioma cells remaining after surgical resection while sparing normal healthy brain cells.
Collapse
|
10
|
Blocking TWEAK-Fn14 interaction inhibits hematopoietic stem cell transplantation-induced intestinal cell death and reduces GVHD. Blood 2015; 126:437-44. [PMID: 26012567 DOI: 10.1182/blood-2015-01-620583] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/09/2015] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) system reduces intestinal cell death and disease development in several models of colitis. In view of the crucial role of TNF and intestinal cell death in graft-versus-host disease (GVHD) and the ability of TWEAK to enhance TNF-induced cell death, we tested here the therapeutic potential of Fn14 blockade on allogeneic hematopoietic cell transplantation (allo-HCT)-induced intestinal GVHD. An Fn14-specific blocking human immunoglobulin G1 antibody variant with compromised antibody-dependent cellular cytotoxicity (ADCC) activity strongly inhibited the severity of murine allo-HCT-induced GVHD. Treatment of the allo-HCT recipients with this monoclonal antibody reduced cell death of gastrointestinal cells but neither affected organ infiltration by donor T cells nor cytokine production. Fn14 blockade also inhibited intestinal cell death in mice challenged with TNF. This suggests that the protective effect of Fn14 blockade in allo-HCT is based on the protection of intestinal cells from TNF-induced apoptosis and not due to immune suppression. Importantly, Fn14 blockade showed no negative effect on graft-versus-leukemia/lymphoma (GVL) activity. Thus, ADCC-defective Fn14-blocking antibodies are not only possible novel GVL effect-sparing therapeutics for the treatment of GVHD but might also be useful for the treatment of other inflammatory bowel diseases where TNF-induced cell death is of relevance.
Collapse
|
11
|
Sanz AB, Izquierdo MC, Sanchez-Niño MD, Ucero AC, Egido J, Ruiz-Ortega M, Ramos AM, Putterman C, Ortiz A. TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant 2014; 29 Suppl 1:i54-i62. [PMID: 24493870 DOI: 10.1093/ndt/gft342] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) activates the fibroblast growth factor-inducible-14 (Fn14) receptor. TWEAK has actions on intrinsic kidney cells and on inflammatory cells of potential pathophysiological relevance. The effects of TWEAK in tubular cells have been explored in most detail. In cultured murine tubular cells TWEAK induces the expression of inflammatory cytokines, downregulates the expression of Klotho, is mitogenic, and in the presence of sensitizing agents promotes apoptosis. Similar actions were observed on glomerular mesangial cells. In vivo TWEAK actions on healthy kidneys mimic cell culture observations. Increased expression of TWEAK and Fn14 was reported in human and experimental acute and chronic kidney injury. The role of TWEAK/Fn14 in kidney injury has been demonstrated in non-inflammatory compensatory renal growth, acute kidney injury and chronic kidney disease of immune and non-immune origin, including hyperlipidaemic nephropathy, lupus nephritis (LN) and anti-GBM nephritis. The nephroprotective effect of TWEAK or Fn14 targeting in immune-mediated kidney injury is the result of protection from TWEAK-induced injury of renal intrinsic cells, not from interference with the immune response. A phase I dose-ranging clinical trial demonstrated the safety of anti-TWEAK antibodies in humans. A phase II randomized placebo-controlled clinical trial exploring the efficacy, safety and tolerability of neutralizing anti-TWEAK antibodies as a tissue protection strategy in LN is ongoing. The eventual success of this trial may expand the range of kidney diseases in which TWEAK targeting should be explored.
Collapse
Affiliation(s)
- Ana B Sanz
- Dialysis Unit, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2014; 170:748-64. [PMID: 23957828 DOI: 10.1111/bph.12337] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumour necrosis factor (TNF) receptor family that is induced in a variety of cell types in situations of tissue injury. Fn14 becomes activated by TNF-like weak inducer of apoptosis (TWEAK), a typical member of the TNF ligand family. TWEAK is constitutively expressed by monocytes and some tumour cell lines and also shows cytokine inducible expression in various other cell types. Fn14 activation results in stimulation of signalling pathways culminating in the activation of NFκB transcription factors and various MAPKs but might also trigger the PI3K/Akt pathway and GTPases of the Rho family. In accordance with its tissue damage-associated expression pattern and its pleiotropic proinflammatory signalling capabilities, the TWEAK-Fn14 system has been implicated in a huge number of pathologies. The use of TWEAK- and Fn14-knockout mice identified the TWEAK-Fn14 system as a crucial player in muscle atrophy, cerebral ischaemia, kidney injury, atherosclerosis and infarction as well as in various autoimmune scenarios including experimental autoimmune encephalitis, rheumatoid arthritis and inflammatory bowel disease. Moreover, there is increasing preclinical evidence that Fn14 targeting is a useful option in tumour therapy. Based on a discussion of the signalling capabilities of TWEAK and Fn14, this review is focused on two major issues. On the one hand, on the molecular and cellular basis of the TWEAK/Fn14-related pathological outcomes in the aforementioned diseases and on the other hand, on the preclinical experience that have been made so far with TWEAK and Fn14 targeting drugs.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) cytokine has been linked to kidney injury by functional studies in experimental animals, and has biomarker potential in kidney disease. RECENT FINDINGS TWEAK was known to promote tubular cell injury and kidney inflammation. Recent studies have expanded these observations, identifying additional targets of TWEAK relevant to kidney injury. Thus, TWEAK upregulates the chemokine and cholesterol scavenger receptor CXCL16 and downregulates the antiaging and antifibrotic molecule Klotho in tubular cells. Furthermore, fibrogenic TWEAK actions on renal fibroblasts were described. TWEAK or factor-inducible molecule 14 targeting decreased the kidney fibrosis resulting from immune and nonimmune kidney injury induced by transient tubular or glomerular insults or by persistent urinary tract obstruction. TWEAK might also contribute to the link between chronic kidney disease and kidney cancer, as suggested by its role in other genitourinary cancers. Progress has also been made in TWEAK targeting. A phase I clinical trial showed that TWEAK targeting is well tolerated in humans, and an ongoing trial is exploring efficacy in lupus nephritis. Nanomolecules and inhibitors of epidermal growth factor receptor pathway may also protect from the adverse effects of TWEAK in the kidney. SUMMARY These findings suggest that TWEAK targeting has clinical potential in kidney injury of immune and nonimmune origin.
Collapse
|
14
|
Figgett WA, Vincent FB, Saulep-Easton D, Mackay F. Roles of ligands from the TNF superfamily in B cell development, function, and regulation. Semin Immunol 2014; 26:191-202. [PMID: 24996229 DOI: 10.1016/j.smim.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
Most ligands from the tumour necrosis factor (TNF) superfamily play very important roles in the immune system, and particularly so in B lymphocyte biology. TNF ligands are essential to many aspects of normal B cell biology from development in the bone marrow to maturation in the periphery as well as for activation and differentiation into germinal centre, memory or plasma cells. TNF ligands also influence other aspects of B cell biology such as their ability to present antigens or regulate immune responses. Importantly, inadequate regulation of many TNF ligands is associated with B cell disorders including autoimmunity and cancers. As a result, inhibitors of a number of TNF ligands have been tested in the clinic, with some becoming very successful approved treatments alleviating B cell-mediated pathologies.
Collapse
Affiliation(s)
- William A Figgett
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabien B Vincent
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Damien Saulep-Easton
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabienne Mackay
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia.
| |
Collapse
|