1
|
Chilibroste S, dos Santos JC, Mónaco A, Joosten LAB, Moreno M, Chabalgoity JA. Salmonella LVR01 triggers antagonistic two-armed innate immune memory that impacts on antitumor efficacy. Front Immunol 2025; 16:1535131. [PMID: 40370463 PMCID: PMC12075395 DOI: 10.3389/fimmu.2025.1535131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
The current understanding of innate immune memory encompasses both trained immunity and immune tolerance, where cells can exhibit enhanced responsiveness or immune paralysis upon subsequent stimuli, respectively. Various agents induce either of these responses, including β-glucan, Leishmania, BCG and LPS. BCG is a clinically approved immunotherapy for bladder cancer and BCG-induced trained immunity is important in driving anti-tumor adaptive immunity. Salmonella also shows promise in cancer treatment, eliciting potent anti-tumor immune responses, but with transitory effects. This led us to investigate whether Salmonella LVR01, like BCG, triggers trained immunity and its impact on anti-tumor responses. Herein, we report that Salmonella induces an enhanced response in bone marrow cells, characterized by a robust cytokine response upon a second stimulus, in a fashion that resembles trained immunity. Coherently with that, Salmonella administration induces enhanced responsiveness to a tumor implanted later in time, resulting in slow tumor growth and extended survival. However, in vitro stimulation of human monocytes and murine bone-marrow derived myeloid-enriched cells with Salmonella results in decreased production of cytokines resembling immune paralysis. Overall, our results suggest that Salmonella LVR01 induces enhanced responses of innate immune memory, as well as paralysis on monocytes. These two antagonistic effects could be the basis of the transitory effect of Salmonella treatment and suggest that further investigation on these phenomena could shed light on how to improve Salmonella-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Sofía Chilibroste
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jéssica C. dos Santos
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - José A. Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Yunko K, Martyniuk V, Gnatyshyna L, Khoma V, Matskiv T, Tulaidan H, Mykhalyuk O, Karitonas R, Gylyte B, Manusadžianas L, Stoliar O. Alleviation of specific responses in the combined exposure of freshwater mussel Unio tumidus to psychoactive substances and microplastics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104682. [PMID: 40174756 DOI: 10.1016/j.etap.2025.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/23/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The environmentally relevant aquatic pollution is associated with the mixtures of xenobiotics, each in the low, picomolar to micromolar concentrations. Among these substances, the combinations of pharmaceuticals and microplastics (MP) have become an increasingly serious threat. The objective of this study was to track the specific and multi-stress responses of swollen river mussels (Unio tumidus) to the psychoactive substances caffeine (Caff) and chlorpromazine (Cpz) under combined exposure with MP. The MP (1 mg·L-1, size 35-50 μm), Caff (20 µg·L-1), Cpz (12 ng·L-1) or their mixture (Mix) were administered to mussels for 14 days. The redox state, enzymes of biotransformation and apoptosis were analysed in the digestive gland. All exposures except Mix caused oxidative injury to lipids and proteins, accompanied by increased GSH and metallothionein levels, suppressed NAD+ and activation of GST (except Mix), and GTPase. MP had the lower particular impact. Specific responses to Caff were activation of Cyp450 (EROD) and cathepsin D, decreased GSH/GSSG ratio and prominent demetallation of metallothionein. The Cpz caused an increase in NADH/NAD+ ratio and caspase-3 inhibition. In the combined exposure, the specific responses to single xenobiotics were alleviated which was confirmed by discriminant analysis. The Mix-group was distinguished by the highest NADH/NAD+ and GSH/GSSG ratios, markedly increased caspase-3 activity accompanied by the decrease of protein carbonyl level and the highest IBR index, attesting to the negative cumulative effect of multi-stress exposure. The vulnerability of mussels to pM concentration of neuroleptic Cpz needs particular attention.
Collapse
Affiliation(s)
- K Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| | - V Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine; Ternopil Ivan Puluj National Technical University, Rus'ka St 56, Ternopil 46001, Ukraine.
| | - L Gnatyshyna
- I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, Ternopil 46001, Ukraine.
| | - V Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| | - T Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, Ternopil 46001, Ukraine.
| | - H Tulaidan
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| | - O Mykhalyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| | - R Karitonas
- Nature Research Centre, Vilnius, Lithuania, Akademijos 2, Vilnius 08412, Lithuania.
| | - B Gylyte
- Nature Research Centre, Vilnius, Lithuania, Akademijos 2, Vilnius 08412, Lithuania.
| | - L Manusadžianas
- Nature Research Centre, Vilnius, Lithuania, Akademijos 2, Vilnius 08412, Lithuania.
| | - O Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| |
Collapse
|
3
|
Martyniuk V, Matskiv T, Yunko K, Khoma V, Gnatyshyna L, Faggio C, Stoliar O. Reductive stress and cytotoxicity in the swollen river mussel (Unio tumidus) exposed to microplastics and salinomycin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123724. [PMID: 38462197 DOI: 10.1016/j.envpol.2024.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 μg L-1), MP (1 mg L-1, 2 μm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Tetiana Matskiv
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Kateryna Yunko
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Vira Khoma
- Department of Research of Materials, Substances and Products, Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, St. Budny, 48, Ternopil, 46020, Ukraine.
| | - Lesya Gnatyshyna
- Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Oksana Stoliar
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy.
| |
Collapse
|
4
|
Li HR, Liu Q, Zhu CL, Sun XY, Sun CY, Yu CM, Li P, Deng XM, Wang JF. β-Nicotinamide mononucleotide activates NAD+/SIRT1 pathway and attenuates inflammatory and oxidative responses in the hippocampus regions of septic mice. Redox Biol 2023; 63:102745. [PMID: 37201414 DOI: 10.1016/j.redox.2023.102745] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the common serious complications in sepsis, and the pathogenesis of SAE remains unclear. Sirtuin 1 (SIRT1) has been reported to be downregulated in the hippocampus and SIRT1 agonists can attenuated the cognitive dysfunction in septic mice. Nicotinamide adenine dinucleotide (NAD+) is a key substrate to maintain the deacetylation activity of SIRT1. As an intermediate of NAD+, β-Nicotinamide Mononucleotide (NMN) has been reported to be promising in treating neurodegenerative diseases and cerebral ischemic injury. Thus we sought to investigate the potential role of NMN in SAE treatment. The SAE model was established by cecal ligation and puncture (CLP) in vivo, and neuroinflammation model was established with LPS-treated BV-2 cells in vitro. Memory impairment was assessed by Morris water maze and fear conditioning tests. As a result, the levels of NAD+, SIRT1 and PGC-1α were significantly reduced in the hippocampus of septic mice, while the acetylation of total lysine, phosphorylation of P38 and P65 were enhanced. All these changes induced by sepsis were inverted by NMN. Treating with NMN resulted in improved behavior performance in the fear conditioning tests and Morris water maze. Apoptosis, inflammatory and oxidative responses in the hippocampus of septic mice were attenuated significantly after NMN administration. These protective effect of NMN against memory dysfunction, inflammatory and oxidative injuries were reversed by the SIRT1 inhibitor, EX-527. Similarly, LPS-induced activation of BV-2 cells were attenuated by NMN, EX-527 or SIRT1 knockdown could reverse such effect of NMN in vitro. In conclusion, NMN is protective against sepsis-induced memory dysfunction, and the inflammatory and oxidative injuries in the hippocampus region of septic mice. The NAD+/SIRT1 pathway might be involved in one of the mechanisms of the protective effect.
Collapse
Affiliation(s)
- Hui-Ru Li
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng-Long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Yang Sun
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen-Yan Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chang-Meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Navas LE, Blanco-Alcaina E, Suarez-Martinez E, Verdugo-Sivianes EM, Espinosa-Sanchez A, Sanchez-Diaz L, Dominguez-Medina E, Fernandez-Rozadilla C, Carracedo A, Wu LE, Carnero A. NAD pool as an antitumor target against cancer stem cells in head and neck cancer. J Exp Clin Cancer Res 2023; 42:55. [PMID: 36864434 PMCID: PMC9983242 DOI: 10.1186/s13046-023-02631-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that affect different anatomical locations. Despite this heterogeneity, HNSCC treatment depends on the anatomical location, TNM stage and resectability of the tumor. Classical chemotherapy is based on platinum-derived drugs (cisplatin, carboplatin and oxaliplatin), taxanes (docetaxel, paclitaxel) and 5-fluorouracil1. Despite advances in HNSCC treatment, the rate of tumor recurrence and patient mortality remain high. Therefore, the search for new prognostic identifiers and treatments targeting therapy-resistant tumor cells is vital. Our work demonstrates that there are different subgroups with high phenotypic plasticity within the CSC population in HNSCC. CD10, CD184, and CD166 may identify some of these CSC subpopulations with NAMPT as a common metabolic gene for the resilient cells of these subpopulations. We observed that NAMPT reduction causes a decrease in tumorigenic and stemness properties, migration capacity and CSC phenotype through NAD pool depletion. However, NAMPT-inhibited cells can acquire resistance by activating the NAPRT enzyme of the Preiss-Handler pathway. We observed that coadministration of the NAMPT inhibitor with the NAPRT inhibitor cooperated inhibiting tumor growth. The use of an NAPRT inhibitor as an adjuvant improved NAMPT inhibitor efficacy and reduced the dose and toxicity of these inhibitors. Therefore, it seems that the reduction in the NAD pool could have efficacy in tumor therapy. This was confirmed by in vitro assays supplying the cells with products of inhibited enzymes (NA, NMN or NAD) and restoring their tumorigenic and stemness properties. In conclusion, the coinhibition of NAMPT and NAPRT improved the efficacy of antitumor treatment, indicating that the reduction in the NAD pool is important to prevent tumor growth.
Collapse
Affiliation(s)
- Lola E. Navas
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Blanco-Alcaina
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Suarez-Martinez
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva M. Verdugo-Sivianes
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Asuncion Espinosa-Sanchez
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Sanchez-Diaz
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Dominguez-Medina
- grid.11794.3a0000000109410645BioFarma-USEF Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ceres Fernandez-Rozadilla
- grid.488911.d0000 0004 0408 4897Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Angel Carracedo
- grid.488911.d0000 0004 0408 4897Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Lindsay E. Wu
- grid.1005.40000 0004 4902 0432School of Medical Sciences, UNSW Sydney, Sydney, NSW Australia
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013, Seville, Spain. .,CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Martyniuk V, Khoma V, Matskiv T, Baranovsky V, Orlova-Hudim K, Gylytė B, Symchak R, Matciuk O, Gnatyshyna L, Manusadžianas L, Stoliar O. Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109425. [PMID: 35914710 DOI: 10.1016/j.cbpc.2022.109425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
Abstract
The vulnerability of bivalve mollusks to micropollutants is estimated mainly in single model exposures. However, chronic environmental stress and complex exposures can modulate their responses. To evaluate the impact of population-dependent adaptations on the ability to react to common micropollutants, we compared freshwater bivalves Unio tumidus from two distinct populations, pure (Pr) and contaminated (Ct), in their exposures to microplastics (MP, 1 mg L-1, size 0.1-0.5 mm), pharmaceutical ibuprofen (IBU, 0.8 μg L-1), or their combination (Mix) for 14 days. Control groups from both sites showed remarkable differences, with lower levels of total antioxidant capacity (TAC), metallothionein protein (MTSH), NADH and NAD+, cytochrome P450-related EROD, glutathione-S transferase (GST), and citrate synthase (CS) but higher levels of GSH, GSSG, caspase-3 and cathepsin D (CTD) in the Ct-control group. These data indicate a chronic stress impact in the Ct population. Under exposures, we found an almost common strategy in both populations for NAD+/NADH and MTSH suppression and CTD induction. Additionally, Mix exposure caused an increase in CS, and IBU did not change GSH in both populations. However, the expected response to IBU - the suppression of caspase-3 - was indicated only in PrIBU- and PrMix-mollusks. CTD efflux increased dramatically only in PrMP- and PrMix- groups, and suppression of EROD and GST was detected in the PrMix-group. According to discriminant analysis, exposed Pr-groups were highly differentiated from control, whereas Ct-control and exposed groups had common localization demonstrating high resistance to environmental stress. Thus, the same exposures resulted in different adverse outcome pathways depending on the population.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Vitaliy Baranovsky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | | | | | - Ruslan Symchak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Matciuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
7
|
Bertoldo MJ, Listijono DR, Ho WHJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, Loh WGN, Youngson NA, Maniam J, Wong ASA, Selesniemi K, Bustamante S, Li C, Zhao Y, Marinova MB, Kim LJ, Lau L, Wu RM, Mikolaizak AS, Araki T, Le Couteur DG, Turner N, Morris MJ, Walters KA, Goldys E, O'Neill C, Gilchrist RB, Sinclair DA, Homer HA, Wu LE. NAD + Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep 2021; 30:1670-1681.e7. [PMID: 32049001 PMCID: PMC7063679 DOI: 10.1016/j.celrep.2020.01.058] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/03/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Reproductive aging in female mammals is an irreversible process associated with declining oocyte quality, which is the rate-limiting factor to fertility. Here, we show that this loss of oocyte quality with age accompanies declining levels of the prominent metabolic cofactor nicotinamide adenine dinucleotide (NAD+). Treatment with the NAD+ metabolic precursor nicotinamide mononucleotide (NMN) rejuvenates oocyte quality in aged animals, leading to restoration in fertility, and this can be recapitulated by transgenic overexpression of the NAD+-dependent deacylase SIRT2, though deletion of this enzyme does not impair oocyte quality. These benefits of NMN extend to the developing embryo, where supplementation reverses the adverse effect of maternal age on developmental milestones. These findings suggest that late-life restoration of NAD+ levels represents an opportunity to rescue female reproductive function in mammals. Declining oocyte quality is considered an irreversible feature of aging and is rate limiting for human fertility. Bertoldo et al. show that reversing an age-dependent decline in NAD(P)H restores oocyte quality, embryo development, and functional fertility in aged mice. These findings may be relevant to reproductive medicine.
Collapse
Affiliation(s)
- Michael J Bertoldo
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Dave R Listijono
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wing-Hong Jonathan Ho
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Dale M Goss
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Dulama Richani
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Xing L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Saabah Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Jared M Campbell
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | | | - Neil A Youngson
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jayanthi Maniam
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ashley S A Wong
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kaisa Selesniemi
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA; Jumpstart Fertility Pty Ltd., Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Catherine Li
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Yiqing Zhao
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Maria B Marinova
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lynn-Jee Kim
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Laurin Lau
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Rachael M Wu
- Graduate Entry Medical School, University of Limerick, Limerick, Republic of Ireland
| | | | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - David G Le Couteur
- ANZAC Medical Research Institute, University of Sydney, Concord, NSW, Australia
| | - Nigel Turner
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Kirsty A Walters
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ewa Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Christopher O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - David A Sinclair
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA.
| | - Hayden A Homer
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia; Christopher Chen Oocyte Biology Laboratory, University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital, Herston, QLD, Australia.
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Xu N, Zhu J, Wu YQ, Zhang Y, Xia JY, Zhao Q, Lin GQ, Yu HL, Xu JH. Enzymatic Preparation of the Chiral (S)-Sulfoxide Drug Esomeprazole at Pilot-Scale Levels. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin-Qi Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Ye Xia
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical Co., Ltd., 766 Kening Road, Nanjing 211112, China
| | - Guo-Qiang Lin
- Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical Co., Ltd., 766 Kening Road, Nanjing 211112, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
New live attenuated tuberculosis vaccine MTBVAC induces trained immunity and confers protection against experimental lethal pneumonia. PLoS Pathog 2020; 16:e1008404. [PMID: 32240273 PMCID: PMC7117655 DOI: 10.1371/journal.ppat.1008404] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/15/2020] [Indexed: 01/16/2023] Open
Abstract
Among infectious diseases, tuberculosis is the leading cause of death worldwide, and represents a serious threat, especially in developing countries. The protective effects of Bacillus Calmette-Guerin (BCG), the current vaccine against tuberculosis, have been related not only to specific induction of T-cell immunity, but also with the long-term epigenetic and metabolic reprogramming of the cells from the innate immune system through a process termed trained immunity. Here we show that MTBVAC, a live attenuated strain of Mycobacterium tuberculosis, safe and immunogenic against tuberculosis antigens in adults and newborns, is also able to generate trained immunity through the induction of glycolysis and glutaminolysis and the accumulation of histone methylation marks at the promoters of proinflammatory genes, facilitating an enhanced response after secondary challenge with non-related bacterial stimuli. Importantly, these findings in human primary myeloid cells are complemented by a strong MTBVAC-induced heterologous protection against a lethal challenge with Streptococcus pneumoniae in an experimental murine model of pneumonia. Mycobacterium tuberculosis has been causing infections in our species and our ancestors for at least thousands of years. Still today, the numbers of people affected by tuberculosis are alarming with more than 1,4 million deaths per year, representing the first cause of death by infectious disease worldwide. Despite immense research efforts, Bacille Calmette-Guerin (BCG), a vaccine based on a live attenuated form of Mycobacterium bovis that was developed one century ago, remains the only licensed vaccine against tuberculosis. Several independent works have shown that BCG induces protection not only against tuberculosis, but also against other infections through the induction of epigenetic and metabolic effects in the cells of the innate immune system, what has been termed trained immunity. Here we describe how MTBVAC, a new vaccine against tuberculosis based on a genetically modified form of the human pathogen Mycobacterium tuberculosis, that has shown similar safety profiles and improved protection than BCG in preclinical studies, is able to induce trained immunity in human cells and grant protection against a heterologous model of pneumococcal infection in mice. These results underline the potential of MTBVAC as a candidate for universal vaccination against tuberculosis or treatment against bladder cancer, representing a potential alternative to the current BCG vaccines.
Collapse
|
10
|
Chen Y, Cai GH, Xia B, Wang X, Zhang CC, Xie BC, Shi XC, Liu H, Lu JF, Zhang RX, Zhu MQ, Liu M, Yang SZ, Yang Zhang D, Chu XY, Khan R, Wang YL, Wu JW. Mitochondrial aconitase controls adipogenesis through mediation of cellular ATP production. FASEB J 2020; 34:6688-6702. [PMID: 32212192 DOI: 10.1096/fj.201903224rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/11/2022]
Abstract
Mitochondrial aconitase (Aco2) catalyzes the conversion of citrate to isocitrate in the TCA cycle, which produces NADH and FADH2, driving synthesis of ATP through OXPHOS. In this study, to explore the relationship between adipogenesis and mitochondrial energy metabolism, we hypothesize that Aco2 may play a key role in the lipid synthesis. Here, we show that overexpression of Aco2 in 3T3-L1 cells significantly increased lipogenesis and adipogenesis, accompanied by elevated mitochondrial biogenesis and ATP production. However, when ATP is depleted by rotenone, an inhibitor of the respiratory chain, the promotive role of Aco2 in adipogenesis is abolished. In contrast to Aco2 overexpression, deficiency of Aco2 markedly reduced lipogenesis and adipogenesis, along with the decreased mitochondrial biogenesis and ATP production. Supplementation of isocitrate efficiently rescued the inhibitory effect of Aco2 deficiency. Similarly, the restorative effect of isocitrate was abolished in the presence of rotenone. Together, these results show that Aco2 sustains normal adipogenesis through mediating ATP production, revealing a potential mechanistic link between TCA cycle enzyme and lipid synthesis. Our work suggest that regulation of adipose tissue mitochondria function may be a potential way for combating abnormal adipogenesis related diseases such as obesity and lipodystrophy.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guo He Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Cong Cong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bao Cai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dan Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rajwali Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Liang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Weinrich TW, Kam JH, Ferrara BT, Thompson EP, Mitrofanis J, Jeffery G. A day in the life of mitochondria reveals shifting workloads. Sci Rep 2019; 9:13898. [PMID: 31554906 PMCID: PMC6761129 DOI: 10.1038/s41598-019-48383-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria provide energy for cellular function. We examine daily changing patterns of mitochondrial function and metabolism in Drosophila in vivo in terms of their complex (I-IV) activity, ATP production, glycolysis, and whole fly respiration in the morning, afternoon and night. Complex activity and respiration showed significant and unexpected variation, peaking in the afternoon. However, ATP levels by contrast are >40% greater in the morning and lowest at night when glycolysis peaks. Complex activity modulation was at the protein level with no evidence for differential transcription over the day. Timing differences between increased ATP production and peaks of complex activity may result from more efficient ATP production early in the day leaving complex activity with spare capacity. Optical stimulation of mitochondria is only possible in the mornings when there is such spare capacity. These results provide first evidence of shifts in cellular energy capacity at the organism level. Understanding their translation may be significant to the chosen timing of energy demanding interventions to improve function and health.
Collapse
Affiliation(s)
| | - Jaimie Hoh Kam
- University College Institute of Ophthalmology, London, UK
| | | | | | - John Mitrofanis
- University of Sydney, School of Medical Sciences, Sydney, Australia
| | - Glen Jeffery
- University College Institute of Ophthalmology, London, UK.
| |
Collapse
|
12
|
Domínguez-Andrés J, Novakovic B, Li Y, Scicluna BP, Gresnigt MS, Arts RJW, Oosting M, Moorlag SJCFM, Groh LA, Zwaag J, Koch RM, Ter Horst R, Joosten LAB, Wijmenga C, Michelucci A, van der Poll T, Kox M, Pickkers P, Kumar V, Stunnenberg H, Netea MG. The Itaconate Pathway Is a Central Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell Metab 2019; 29:211-220.e5. [PMID: 30293776 DOI: 10.1016/j.cmet.2018.09.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/18/2018] [Accepted: 09/03/2018] [Indexed: 01/13/2023]
Abstract
Sepsis involves simultaneous hyperactivation of the immune system and immune paralysis, leading to both organ dysfunction and increased susceptibility to secondary infections. Acute activation of myeloid cells induced itaconate synthesis, which subsequently mediated innate immune tolerance in human monocytes. In contrast, induction of trained immunity by β-glucan counteracted tolerance induced in a model of human endotoxemia by inhibiting the expression of immune-responsive gene 1 (IRG1), the enzyme that controls itaconate synthesis. β-Glucan also increased the expression of succinate dehydrogenase (SDH), contributing to the integrity of the TCA cycle and leading to an enhanced innate immune response after secondary stimulation. The role of itaconate was further validated by IRG1 and SDH polymorphisms that modulate induction of tolerance and trained immunity in human monocytes. These data demonstrate the importance of the IRG1-itaconate-SDH axis in the development of immune tolerance and training and highlight the potential of β-glucan-induced trained immunity to revert immunoparalysis.
Collapse
Affiliation(s)
- Jorge Domínguez-Andrés
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands.
| | - Boris Novakovic
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen 6525 GA, the Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Division of Infectious Diseases, Amsterdam Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark S Gresnigt
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands; Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rob J W Arts
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Laszlo A Groh
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Jelle Zwaag
- Department of Intensive Care and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Rebecca M Koch
- Department of Intensive Care and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Division of Infectious Diseases, Amsterdam Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Kox
- Department of Intensive Care and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands
| | - Vinod Kumar
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands; Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Henk Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen 6525 GA, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
13
|
Brunnbauer P, Leder A, Kamali C, Kamali K, Keshi E, Splith K, Wabitsch S, Haber P, Atanasov G, Feldbrügge L, Sauer IM, Pratschke J, Schmelzle M, Krenzien F. The nanomolar sensing of nicotinamide adenine dinucleotide in human plasma using a cycling assay in albumin modified simulated body fluids. Sci Rep 2018; 8:16110. [PMID: 30382125 PMCID: PMC6208386 DOI: 10.1038/s41598-018-34350-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/05/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD), a prominent member of the pyridine nucleotide family, plays a pivotal role in cell-oxidation protection, DNA repair, cell signalling and central metabolic pathways, such as beta oxidation, glycolysis and the citric acid cycle. In particular, extracellular NAD+ has recently been demonstrated to moderate pathogenesis of multiple systemic diseases as well as aging. Herein we present an assaying method, that serves to quantify extracellular NAD+ in human heparinised plasma and exhibits a sensitivity ranging from the low micromolar into the low nanomolar domain. The assay achieves the quantification of extracellular NAD+ by means of a two-step enzymatic cycling reaction, based on alcohol dehydrogenase. An albumin modified revised simulated body fluid was employed as standard matrix in order to optimise enzymatic activity and enhance the linear behaviour and sensitivity of the method. In addition, we evaluated assay linearity, reproducibility and confirmed long-term storage stability of extracellular NAD+ in frozen human heparinised plasma. In summary, our findings pose a novel standardised method suitable for high throughput screenings of extracellular NAD+ levels in human heparinised plasma, paving the way for new clinical discovery studies.
Collapse
Affiliation(s)
- Philipp Brunnbauer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Annekatrin Leder
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Can Kamali
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Kaan Kamali
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Eriselda Keshi
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Katrin Splith
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Simon Wabitsch
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Philipp Haber
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Georgi Atanasov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Linda Feldbrügge
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany.,Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Igor M Sauer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Johann Pratschke
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Moritz Schmelzle
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Felix Krenzien
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany. .,Berlin Institute of Health (BIH), Berlin, 10178, Germany.
| |
Collapse
|
14
|
Uddin GM, Youngson NA, Doyle BM, Sinclair DA, Morris MJ. Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Sci Rep 2017; 7:15063. [PMID: 29118320 PMCID: PMC5678092 DOI: 10.1038/s41598-017-14866-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Maternal overnutrition increases the risk of long-term metabolic dysfunction in offspring. Exercise improves metabolism partly by upregulating mitochondrial biogenesis or function, via increased levels of nicotinamide adenine dinucleotide (NAD+). We have shown that the NAD+ precursor, nicotinamide mononucleotide (NMN) can reverse some of the negative consequences of high fat diet (HFD) consumption. To investigate whether NMN can impact developmentally-set metabolic deficits, we compared treadmill exercise and NMN injection in offspring of obese mothers. Five week old lean and obese female C57BL6/J mice were mated with chow fed males. Female offspring weaned onto HFD were given treadmill exercise for 9 weeks, or NMN injection daily for 18 days. Maternal obesity programmed increased adiposity and liver triglycerides, with decreased glucose tolerance, liver NAD+ levels and citrate synthase activity in offspring. Both interventions reduced adiposity, and showed a modest improvement in glucose tolerance and improved markers of mitochondrial function. NMN appeared to have stronger effects on liver fat catabolism (Hadh) and synthesis (Fasn) than exercise. The interventions appeared to exert the most global benefit in mice that were most metabolically challenged (HFD-consuming offspring of obese mothers). This work encourages further study to confirm the suitability of NMN for use in reversing metabolic dysfunction linked to programming by maternal obesity.
Collapse
Affiliation(s)
- Golam Mezbah Uddin
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia
| | - Neil A Youngson
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia
| | - Bronte M Doyle
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA-02115, USA
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia.
| |
Collapse
|
15
|
Domínguez-Andrés J, Arts RJW, ter Horst R, Gresnigt MS, Smeekens SP, Ratter JM, Lachmandas E, Boutens L, van de Veerdonk FL, Joosten LAB, Notebaart RA, Ardavín C, Netea MG. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis. PLoS Pathog 2017; 13:e1006632. [PMID: 28922415 PMCID: PMC5619837 DOI: 10.1371/journal.ppat.1006632] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases. Fungal infections are a major health concern for immunocompromised individuals due to the lack of success of the currently available antifungal therapies. Unveiling the metabolic processes involved in the immune function offers a promising opportunity for the development of new therapeutic approaches against these infections. In this report, we describe how changes in monocyte glucose metabolism are crucial for host defense against infections caused by the opportunistic pathogenic yeast Candida albicans. We report how the participation of various metabolic routes, such as glycolysis, oxidative phosphorylation and the pentose phosphate pathway, were differentially required after yeast or hyphal exposure, depending on the cellular energy requirements for each response. The proper control of metabolic reprogramming of immune cells was crucial to afford protection against fungal infections in vivo.
Collapse
Affiliation(s)
- Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Darwin 3, Madrid, Spain
- * E-mail:
| | - Rob J. W. Arts
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Rob ter Horst
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Sanne P. Smeekens
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Jacqueline M. Ratter
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Ekta Lachmandas
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Lily Boutens
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Richard A. Notebaart
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Darwin 3, Madrid, Spain
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
16
|
Singh S, Kumari E, Bhardwaj R, Kumar R, Dubey VK. Molecular events leading to death of Leishmania donovani under spermidine starvation after hypericin treatment. Chem Biol Drug Des 2017; 90:962-971. [PMID: 28509385 DOI: 10.1111/cbdd.13022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 11/30/2022]
Abstract
We have previously reported that the hypericin treatment caused spermidine starvation and death of Leishmania parasite. Here, we report different molecular events under spermidine starvation and potential role of spermidine in processes other than redox homeostasis of the parasite. We have analyzed changes in expression of several genes by using quantitative gene expression analysis. Further, these changes at molecular level were also confirmed by using biochemical and cellular studies. Altered expression of several genes involved in redox metabolism, hypusine modification of eIF5A, DNA repair pathway and autophagy was observed. There was decrease in Sir2RP expression after hypericin treatment and this decrease has been found to be associated with induced ROS due to hypericin treatment as it has been rescued by either trypanothione or spermidine supplementation. Translation initiation in the parasite was decreased upon spermidine starvation. We also observed increased AMPK expression upon hypericin treatment. The increase in intracellular ATP and NAD+ levels as well as decrease in Sir2RP expression of the parasite are cytoprotective mechanism towards generated ROS due to hypericin treatment possibly by inducing autophagy as indicated by increase in autophagy related gene expression and acridine orange staining. However, the autophagy needs to be established using more rigorous methodologies.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ekta Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ruchika Bhardwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ritesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
17
|
Eanes WF. New views on the selection acting on genetic polymorphism in central metabolic genes. Ann N Y Acad Sci 2016; 1389:108-123. [PMID: 27859384 DOI: 10.1111/nyas.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Studies of the polymorphism of central metabolic genes as a source of fitness variation in natural populations date back to the discovery of allozymes in the 1960s. The unique features of these genes and their enzymes and our knowledge base greatly facilitates the systems-level study of this group. The expectation that pathway flux control is central to understanding the molecular evolution of genes is discussed, as well as studies that attempt to place gene-specific molecular evolution and polymorphism into a context of pathway and network architecture. There is an increasingly complex picture of the metabolic genes assuming additional roles beyond their textbook anabolic and catabolic reactions. In particular, this review emphasizes the potential role of these genes as part of the energy-sensing machinery. It is underscored that the concentrations of key cellular metabolites are the reflections of cellular energy status and nutritional input. These metabolites are the top-down signaling messengers that set signaling through signaling pathways that are involved in energy economy. I propose that the polymorphisms in central metabolic genes shift metabolite concentrations and in that fashion act as genetic modifiers of the energy-state coupling to the transcriptional networks that affect physiological trade-offs with significant fitness consequences.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York
| |
Collapse
|
18
|
Lachmandas E, Beigier-Bompadre M, Cheng SC, Kumar V, van Laarhoven A, Wang X, Ammerdorffer A, Boutens L, de Jong D, Kanneganti TD, Gresnigt MS, Ottenhoff THM, Joosten LAB, Stienstra R, Wijmenga C, Kaufmann SHE, van Crevel R, Netea MG. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol 2016; 46:2574-2586. [PMID: 27624090 PMCID: PMC5129526 DOI: 10.1002/eji.201546259] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/12/2016] [Accepted: 08/17/2016] [Indexed: 11/11/2022]
Abstract
Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host response to Mycobacterium tuberculosis (Mtb). Through transcriptional and metabolite analysis we show that Mtb induces a switch in host cellular metabolism toward aerobic glycolysis in human peripheral blood mononuclear cells (PBMCs). The metabolic switch is TLR2 dependent but NOD2 independent, and is mediated in part through activation of the AKT‐mTOR (mammalian target of rapamycin) pathway. We show that pharmacological inhibition of the AKT/mTOR pathway inhibits cellular responses to Mtb both in vitro in human PBMCs, and in vivo in a model of murine tuberculosis. Our findings reveal a novel regulatory layer of host responses to Mtb that will aid understanding of host susceptibility to Mtb, and which may be exploited for host‐directed therapy.
Collapse
Affiliation(s)
- Ekta Lachmandas
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Shih-Chin Cheng
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vinod Kumar
- UMC Groningen University of Groningen, Groningen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xinhui Wang
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,College of Computer, Qinghai Normal University, Xining, China
| | - Anne Ammerdorffer
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lily Boutens
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk de Jong
- Department of Gastroenterology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Mark S Gresnigt
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cisca Wijmenga
- UMC Groningen University of Groningen, Groningen, The Netherlands
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Uddin GM, Youngson NA, Sinclair DA, Morris MJ. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice. Front Pharmacol 2016; 7:258. [PMID: 27594836 PMCID: PMC4990541 DOI: 10.3389/fphar.2016.00258] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity is well known to be a major cause of several chronic metabolic diseases, which can be partially counteracted by exercise. This is due, in part, to an upregulation of mitochondrial activity through increased nicotinamide adenine dinucleotide (NAD+). Recent studies have shown that NAD+ levels can be increased by using the NAD+ precursor, nicotinamide mononucleotide (NMN) leading to the suggestion that NMN could be a useful intervention in diet related metabolic disorders. In this study we compared the metabolic, and especially mitochondrial-associated, effects of exercise and NMN in ameliorating the consequences of high-fat diet (HFD) induced obesity in mice. Sixty female 5 week old C57BL6/J mice were allocated across five groups: Chow sedentary: CS; Chow exercise: CEX; HFD sedentary: HS; HFD NMN: HNMN; HFD exercise: HEX (12/group). After 6 weeks of diet, exercise groups underwent treadmill exercise (15 m/min for 45 min), 6 days per week for 6 weeks. NMN or vehicle (500 mg/kg body weight) was injected (i.p.) daily for the last 17 days. No significant alteration in body weight was observed in response to exercise or NMN. The HFD significantly altered adiposity, glucose tolerance, plasma insulin, NADH levels and citrate synthase activity in muscle and liver. HEX and HNMN groups both showed significantly improved glucose tolerance compared to the HS group. NAD+ levels were increased significantly both in muscle and liver by NMN whereas exercise increased NAD+ only in muscle. Both NMN and exercise ameliorated the HFD-induced reduction in liver citrate synthase activity. However, exercise, but not NMN, ameliorated citrate synthase activity in muscle. Overall these data suggest that while exercise and NMN-supplementation can induce similar reversal of the glucose intolerance induced by obesity, they are associated with tissue-specific effects and differential alterations to mitochondrial function in muscle and liver.
Collapse
Affiliation(s)
- Golam M Uddin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Neil A Youngson
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSWAustralia; Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MAUSA
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| |
Collapse
|
20
|
Talbert ME, Barnett B, Hoff R, Amella M, Kuczynski K, Lavington E, Koury S, Brud E, Eanes WF. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction. Proc Biol Sci 2016; 282:rspb.2015.1646. [PMID: 26378219 DOI: 10.1098/rspb.2015.1646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.
Collapse
Affiliation(s)
- Matthew E Talbert
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brittany Barnett
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Hoff
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Amella
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kate Kuczynski
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erik Lavington
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evgeny Brud
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
21
|
A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol 2016; 12:601-7. [PMID: 27294321 DOI: 10.1038/nchembio.2104] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 03/28/2016] [Indexed: 11/08/2022]
Abstract
Metabolic enzymes are very specific. However, most of them show weak side activities toward compounds that are structurally related to their physiological substrates, thereby producing side products that may be toxic. In some cases, 'metabolite repair enzymes' eliminating side products have been identified. We show that mammalian glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase, two core glycolytic enzymes, produce 4-phosphoerythronate and 2-phospho-L-lactate, respectively. 4-Phosphoerythronate strongly inhibits an enzyme of the pentose phosphate pathway, whereas 2-phospho-L-lactate inhibits the enzyme producing the glycolytic activator fructose 2,6-bisphosphate. We discovered that a single, widely conserved enzyme, known as phosphoglycolate phosphatase (PGP) in mammals, dephosphorylates both 4-phosphoerythronate and 2-phospho-L-lactate, thereby preventing a block in the pentose phosphate pathway and glycolysis. Its yeast ortholog, Pho13, similarly dephosphorylates 4-phosphoerythronate and 2-phosphoglycolate, a side product of pyruvate kinase. Our work illustrates how metabolite repair enzymes can make up for the limited specificity of metabolic enzymes and permit high flux in central metabolic pathways.
Collapse
|
22
|
Beri D, Olson DG, Holwerda EK, Lynd LR. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. FEMS Microbiol Lett 2016; 363:fnw091. [PMID: 27190292 DOI: 10.1093/femsle/fnw091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 12/30/2022] Open
Abstract
Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are bacteria under investigation for production of biofuels from plant biomass. Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at high yield (>90% of theoretical) and titer (>70 g/l). Efforts to engineer C. thermocellum have not, to date, been as successful, and efforts are underway to transfer the ethanol production pathway from T. saccharolyticum to C. thermocellum One potential challenge in transferring metabolic pathways is the possibility of incompatible levels of nicotinamide cofactors. These cofactors (NAD(+), NADH, NADP(+) and NADPH) and their oxidation state are important in the context of microbial redox metabolism. In this study we directly measured the concentrations and reduced oxidized ratios of these cofactors in a number of strains of C. thermocellum and T. saccharolyticum by using acid/base extraction and enzymatic assays. We found that cofactor ratios are maintained in a fairly narrow range, regardless of the metabolic network modifications considered. We have found that the ratios are similar in both organisms, which is a relevant observation in the context of transferring the T. saccharolyticum ethanol production pathway to C. thermocellum.
Collapse
Affiliation(s)
- Dhananjay Beri
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
23
|
Lachmandas E, van den Heuvel CNAM, Damen MSMA, Cleophas MCP, Netea MG, van Crevel R. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids. J Diabetes Res 2016; 2016:6014631. [PMID: 27057552 PMCID: PMC4709651 DOI: 10.1155/2016/6014631] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/18/2015] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus confers a threefold increased risk for tuberculosis, but the underlying immunological mechanisms are still largely unknown. Possible mediators of this increased susceptibility are short-chain fatty acids, levels of which have been shown to be altered in individuals with diabetes. We examined the influence of physiological concentrations of butyrate on cytokine responses to Mycobacterium tuberculosis (Mtb) in human peripheral blood mononuclear cells (PBMCs). Butyrate decreased Mtb-induced proinflammatory cytokine responses, while it increased production of IL-10. This anti-inflammatory effect was independent of butyrate's well-characterised inhibition of HDAC activity and was not accompanied by changes in Toll-like receptor signalling pathways, the eicosanoid pathway, or cellular metabolism. In contrast blocking IL-10 activity reversed the effects of butyrate on Mtb-induced inflammation. Alteration of the gut microbiota, thereby increasing butyrate concentrations, can reduce insulin resistance and obesity, but further studies are needed to determine how this affects susceptibility to tuberculosis.
Collapse
Affiliation(s)
- Ekta Lachmandas
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
- *Ekta Lachmandas:
| | - Corina N. A. M. van den Heuvel
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| | - Michelle S. M. A. Damen
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| | - Maartje C. P. Cleophas
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| |
Collapse
|
24
|
Abstract
Metabolic adaptation to hypoxia is critical for survival in metazoan species for which reason they have developed cellular mechanisms for mitigating its adverse consequences. Here, we have identified L-2-hydroxyglutarate (L2HG) as a universal adaptive determinant of the hypoxia response. L2HG is a metabolite of unknown function produced by the reduction of mitochondrial 2-oxoglutarate by malate dehydrogenase. L2HG accumulates in response to increases in 2-oxoglutarate, which occur as a result of tricarboxylic acid cycle dysfunction and increased mitochondrial reducing potential. These changes are closely coupled to cellular redox homeostasis, as increased cellular L2HG inhibits electron transport and glycolysis to offset the adverse consequences of mitochondrial reductive stress induced by hypoxia. Thus, L2HG couples mitochondrial and cytoplasmic energy metabolism in a model of cellular redox regulation.
Collapse
|
25
|
Bio-transformation of Glycerol to 3-Hydroxypropionic Acid Using Resting Cells of Lactobacillus reuteri. Curr Microbiol 2015. [PMID: 26204968 DOI: 10.1007/s00284-015-0878-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactobacillus reuteri grown in MRS broth containing 20 mM glycerol exhibits 3.7-fold up-regulation of 3-hydroxypropionic acid (3-HP) pathway genes during the stationary phase. Concomitantly, the resting cells prepared from stationary phase show enhancement in bio-conversion of glycerol, and the maximum specific productivity (q p) is found to be 0.17 g 3-HP per g CDW per hour. The regulatory elements such as catabolite repression site in the up-stream of 3-HP pathway genes are presumed for the augmentation of glycerol bio-conversion selectively in stationary phase. However, in the repression mutant, the maximum q p of 3-HP persisted in the stationary phase-derived resting cells indicating the role of further regulatory features. In the production stage, the external 3-HP concentration of 35 mM inhibits 3-HP synthesis. In addition, it has also moderated 1,3-propanediol formation, as it is a redox bio-catalysis involving NAD(+)/NADH ratio of 6.5. Repeated batch bio-transformation has been used to overcome product inhibition, and the total yield (Ypx) of 3-HP from the stationary phase-derived biomass is 3.3 times higher than that from the non-repeated mode. With the use of appropriate gene expression condition and repeated transfer of biomass, 3-HP produced in this study can be used for low-volume, high-value applications.
Collapse
|
26
|
Lavington E, Cogni R, Kuczynski C, Koury S, Behrman EL, O'Brien KR, Schmidt PS, Eanes WF. A small system--high-resolution study of metabolic adaptation in the central metabolic pathway to temperate climates in Drosophila melanogaster. Mol Biol Evol 2014; 31:2032-41. [PMID: 24770333 DOI: 10.1093/molbev/msu146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this article, we couple the geographic variation in 127 single-nucleotide polymorphism (SNP) frequencies in genes of 46 enzymes of central metabolism with their associated cis-expression variation to predict latitudinal or climatic-driven gene expression changes in the metabolic architecture of Drosophila melanogaster. Forty-two percent of the SNPs in 65% of the genes show statistically significant clines in frequency with latitude across the 20 local population samples collected from southern Florida to Ontario. A number of SNPs in the screened genes are also associated with significant expression variation within the Raleigh population from North Carolina. A principal component analysis of the full variance-covariance matrix of latitudinal changes in SNP-associated standardized gene expression allows us to identify those major genes in the pathway and its associated branches that are likely targets of natural selection. When embedded in a central metabolic context, we show that these apparent targets are concentrated in the genes of the upper glycolytic pathway and pentose shunt, those controlling glycerol shuttle activity, and finally those enzymes associated with the utilization of glutamate and pyruvate. These metabolites possess high connectivity and thus may be the points where flux balance can be best shifted. We also propose that these points are conserved points associated with coupling energy homeostasis and energy sensing in mammals. We speculate that the modulation of gene expression at specific points in central metabolism that are associated with shifting flux balance or possibly energy-state sensing plays a role in adaptation to climatic variation.
Collapse
Affiliation(s)
- Erik Lavington
- Department of Ecology and Evolution, Stony Brook University
| | - Rodrigo Cogni
- Department of Ecology and Evolution, Stony Brook University
| | | | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University
| | | | | | | | - Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University
| |
Collapse
|
27
|
Ippolito JE, Piwnica-Worms D. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer. PLoS One 2014; 9:e88667. [PMID: 24551133 PMCID: PMC3923810 DOI: 10.1371/journal.pone.0088667] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Joseph E. Ippolito
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (JEI); (DP-W)
| | - David Piwnica-Worms
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JEI); (DP-W)
| |
Collapse
|