1
|
Kalani L, Kim BH, de Chavez AR, Roemer A, Mikhailov A, Merritt JK, Good KV, Chow RL, Delaney KR, Hendzel MJ, Zhou Z, Neul JL, Vincent JB, Ausió J. Testing the PEST hypothesis using relevant Rett mutations in MeCP2 E1 and E2 isoforms. Hum Mol Genet 2024; 33:1833-1845. [PMID: 39137370 PMCID: PMC11540922 DOI: 10.1093/hmg/ddae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Mutations in methyl-CpG binding protein 2 (MeCP2), such as the T158M, P152R, R294X, and R306C mutations, are responsible for most Rett syndrome (RTT) cases. These mutations often result in altered protein expression that appears to correlate with changes in the nuclear size; however, the molecular details of these observations are poorly understood. Using a C2C12 cellular system expressing human MeCP2-E1 isoform as well as mouse models expressing these mutations, we show that T158M and P152R result in a decrease in MeCP2 protein, whereas R306C has a milder variation, and R294X resulted in an overall 2.5 to 3 fold increase. We also explored the potential involvement of the MeCP2 PEST domains in the proteasome-mediated regulation of MeCP2. Finally, we used the R294X mutant to gain further insight into the controversial competition between MeCP2 and histone H1 in the chromatin context. Interestingly, in R294X, MeCP2 E1 and E2 isoforms were differently affected, where the E1 isoform contributes to much of the overall protein increase observed, while E2 decreases by half. The modes of MeCP2 regulation, thus, appear to be differently regulated in the two isoforms.
Collapse
Affiliation(s)
- Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Alberto Ruiz de Chavez
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Anastasia Roemer
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave, Edmonton, AB T6G 2H7, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Jonathan K Merritt
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, 1211 Medical Center Dr, Nashville, TN 37232, United States
| | - Katrina V Good
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Michael J Hendzel
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave, Edmonton, AB T6G 2H7, Canada
| | - Zhaolan Zhou
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, 1211 Medical Center Dr, Nashville, TN 37232, United States
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 27 King College Cir, Toronto, ON M5T 1R8, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
2
|
Pantier R, Brown M, Han S, Paton K, Meek S, Montavon T, Shukeir N, McHugh T, Kelly DA, Hochepied T, Libert C, Jenuwein T, Burdon T, Bird A. MeCP2 binds to methylated DNA independently of phase separation and heterochromatin organisation. Nat Commun 2024; 15:3880. [PMID: 38719804 PMCID: PMC11079052 DOI: 10.1038/s41467-024-47395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Correlative evidence has suggested that the methyl-CpG-binding protein MeCP2 contributes to the formation of heterochromatin condensates via liquid-liquid phase separation. This interpretation has been reinforced by the observation that heterochromatin, DNA methylation and MeCP2 co-localise within prominent foci in mouse cells. The findings presented here revise this view. MeCP2 localisation is independent of heterochromatin as MeCP2 foci persist even when heterochromatin organisation is disrupted. Additionally, MeCP2 foci fail to show hallmarks of phase separation in live cells. Importantly, we find that mouse cellular models are highly atypical as MeCP2 distribution is diffuse in most mammalian species, including humans. Notably, MeCP2 foci are absent in Mus spretus which is a mouse subspecies lacking methylated satellite DNA repeats. We conclude that MeCP2 has no intrinsic tendency to form condensates and its localisation is independent of heterochromatin. Instead, the distribution of MeCP2 in the nucleus is primarily determined by global DNA methylation patterns.
Collapse
Affiliation(s)
- Raphaël Pantier
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Megan Brown
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Sicheng Han
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Katie Paton
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Stephen Meek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Thomas Montavon
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Toni McHugh
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - David A Kelly
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Tino Hochepied
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Tom Burdon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
3
|
Schmidt A, Zhang H, Schmitt S, Rausch C, Popp O, Chen J, Cmarko D, Butter F, Dittmar G, Lermyte F, Cardoso MC. The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues. Cells 2024; 13:139. [PMID: 38247831 PMCID: PMC10814525 DOI: 10.3390/cells13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Stephanie Schmitt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gunnar Dittmar
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| |
Collapse
|
4
|
Saviola F, Zigiotto L, Novello L, Zacà D, Annicchiarico L, Corsini F, Rozzanigo U, Papagno C, Jovicich J, Sarubbo S. The role of the default mode network in longitudinal functional brain reorganization of brain gliomas. Brain Struct Funct 2022; 227:2923-2937. [PMID: 35460446 PMCID: PMC9653323 DOI: 10.1007/s00429-022-02490-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The study of patients after glioma resection offers a unique opportunity to investigate brain reorganization. It is currently unknown how the whole-brain connectomic profile evolves longitudinally after surgical resection of a glioma and how this may be associated with tumor characteristics and cognitive outcome. In this longitudinal study, we investigate the impact of tumor lateralization and grade on functional connectivity (FC) in highly connected networks, or hubs, and cognitive performance. Twenty-eight patients (17 high-grade, 11 low-grade gliomas) underwent longitudinal pre/post-surgery resting-state fMRI scans and neuropsychological assessments (73 total measures). FC matrices were constructed considering as functional hubs the default mode (DMN) and fronto-parietal networks. No-hubs included primary sensory functional networks and any other no-hubs nodes. Both tumor hemisphere and grade affected brain reorganization post-resection. In right-hemisphere tumor patients, regardless of grade and relative to left-hemisphere gliomas, FC increased longitudinally after the intervention, both in terms of FC within hubs (phubs = 0.0004) and FC between hubs and no-hubs (phubs-no-hubs = 0.005). Regardless of tumor side, only lower-grade gliomas showed longitudinal FC increases relative to high-grade tumors within a precise hub network, the DMN. The neurocognitive profile was longitudinally associated with spatial features of the connectome, mainly within the DMN. We provide evidence that clinical glioma features, such as lateralization and grade, affect post-surgical longitudinal functional reorganization and cognitive recovery. The data suggest a possible role of the DMN in supporting cognition, providing useful information for prognostic prediction and surgical planning.
Collapse
Affiliation(s)
- Francesca Saviola
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy.
| | - Luca Zigiotto
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Lisa Novello
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Domenico Zacà
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Luciano Annicchiarico
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Francesco Corsini
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
- Department of Psychology, Milano-Bicocca University, Milano, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Silvio Sarubbo
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| |
Collapse
|
5
|
Schmidt A, Frei J, Poetsch A, Chittka A, Zhang H, Aßmann C, Lehmkuhl A, Bauer UM, Nuber UA, Cardoso MC. MeCP2 heterochromatin organization is modulated by arginine methylation and serine phosphorylation. Front Cell Dev Biol 2022; 10:941493. [PMID: 36172281 PMCID: PMC9510713 DOI: 10.3389/fcell.2022.941493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Rett syndrome is a human intellectual disability disorder that is associated with mutations in the X-linked MECP2 gene. The epigenetic reader MeCP2 binds to methylated cytosines on the DNA and regulates chromatin organization. We have shown previously that MECP2 Rett syndrome missense mutations are impaired in chromatin binding and heterochromatin reorganization. Here, we performed a proteomics analysis of post-translational modifications of MeCP2 isolated from adult mouse brain. We show that MeCP2 carries various post-translational modifications, among them phosphorylation on S80 and S421, which lead to minor changes in either heterochromatin binding kinetics or clustering. We found that MeCP2 is (di)methylated on several arginines and that this modification alters heterochromatin organization. Interestingly, we identified the Rett syndrome mutation site R106 as a dimethylation site. In addition, co-expression of protein arginine methyltransferases (PRMT)1 and PRMT6 lead to a decrease of heterochromatin clustering. Altogether, we identified and validated novel modifications of MeCP2 in the brain and show that these can modulate its ability to bind as well as reorganize heterochromatin, which may play a role in the pathology of Rett syndrome.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Jana Frei
- Stem Cell and Developmental Biology, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang, China
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Alexandra Chittka
- Division of Medicine, The Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Chris Aßmann
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Marburg, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Marburg, Germany
| | - Ulrike A. Nuber
- Stem Cell and Developmental Biology, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Ulrike A. Nuber, ; M. Cristina Cardoso,
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Ulrike A. Nuber, ; M. Cristina Cardoso,
| |
Collapse
|
6
|
Zhang H, Romero H, Schmidt A, Gagova K, Qin W, Bertulat B, Lehmkuhl A, Milden M, Eck M, Meckel T, Leonhardt H, Cardoso MC. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus 2022; 13:1-34. [PMID: 35156529 PMCID: PMC8855868 DOI: 10.1080/19491034.2021.2024691] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hui Zhang
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Hector Romero
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Annika Schmidt
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Katalina Gagova
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Weihua Qin
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Manuela Milden
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Malte Eck
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Fioriniello S, Csukonyi E, Marano D, Brancaccio A, Madonna M, Zarrillo C, Romano A, Marracino F, Matarazzo MR, D'Esposito M, Della Ragione F. MeCP2 and Major Satellite Forward RNA Cooperate for Pericentric Heterochromatin Organization. Stem Cell Reports 2021; 15:1317-1332. [PMID: 33296675 PMCID: PMC7724518 DOI: 10.1016/j.stemcr.2020.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) has historically been linked to heterochromatin organization, and in mouse cells it accumulates at pericentric heterochromatin (PCH), closely following major satellite (MajSat) DNA distribution. However, little is known about the specific function of MeCP2 in these regions. We describe the first evidence of a role in neurons for MeCP2 and MajSat forward (MajSat-fw) RNA in reciprocal targeting to PCH through their physical interaction. Moreover, MeCP2 contributes to maintenance of PCH by promoting deposition of H3K9me3 and H4K20me3. We highlight that the MeCP2B isoform is required for correct higher-order PCH organization, and underline involvement of the methyl-binding and transcriptional repression domains. The T158 residue, which is commonly mutated in Rett patients, is directly involved in this process. Our findings support the hypothesis that MeCP2 and the MajSat-fw transcript are mutually dependent for PCH organization, and contribute to clarify MeCP2 function in the regulation of chromatin architecture.
Collapse
Affiliation(s)
- Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Eva Csukonyi
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Domenico Marano
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Arianna Brancaccio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | | - Carmela Zarrillo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | | | | - Maria R Matarazzo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | |
Collapse
|
8
|
Qin W, Ugur E, Mulholland CB, Bultmann S, Solovei I, Modic M, Smets M, Wierer M, Forné I, Imhof A, Cardoso MC, Leonhardt H. Phosphorylation of the HP1β hinge region sequesters KAP1 in heterochromatin and promotes the exit from naïve pluripotency. Nucleic Acids Res 2021; 49:7406-7423. [PMID: 34214177 PMCID: PMC8287961 DOI: 10.1093/nar/gkab548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Heterochromatin binding protein HP1β plays an important role in chromatin organization and cell differentiation, however the underlying mechanisms remain unclear. Here, we generated HP1β−/− embryonic stem cells and observed reduced heterochromatin clustering and impaired differentiation. We found that during stem cell differentiation, HP1β is phosphorylated at serine 89 by CK2, which creates a binding site for the pluripotency regulator KAP1. This phosphorylation dependent sequestration of KAP1 in heterochromatin compartments causes a downregulation of pluripotency factors and triggers pluripotency exit. Accordingly, HP1β−/− and phospho-mutant cells exhibited impaired differentiation, while ubiquitination-deficient KAP1−/− cells had the opposite phenotype with enhanced differentiation. These results suggest that KAP1 regulates pluripotency via its ubiquitination activity. We propose that the formation of subnuclear membraneless heterochromatin compartments may serve as a dynamic reservoir to trap or release cellular factors. The sequestration of essential regulators defines a novel and active role of heterochromatin in gene regulation and represents a dynamic mode of remote control to regulate cellular processes like cell fate decisions.
Collapse
Affiliation(s)
- Weihua Qin
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Enes Ugur
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christopher B Mulholland
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Sebastian Bultmann
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Irina Solovei
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Miha Modic
- The Francis Crick Institute and UCL Queen Square Institute of Neurology, London NW1 1AT, United Kingdom
| | - Martha Smets
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| |
Collapse
|
9
|
Transcriptomic and Epigenomic Landscape in Rett Syndrome. Biomolecules 2021; 11:biom11070967. [PMID: 34209228 PMCID: PMC8301932 DOI: 10.3390/biom11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is an extremely invalidating, cureless, developmental disorder, and it is considered one of the leading causes of intellectual disability in female individuals. The vast majority of RTT cases are caused by de novo mutations in the X-linked Methyl-CpG binding protein 2 (MECP2) gene, which encodes a multifunctional reader of methylated DNA. MeCP2 is a master epigenetic modulator of gene expression, with a role in the organization of global chromatin architecture. Based on its interaction with multiple molecular partners and the diverse epigenetic scenario, MeCP2 triggers several downstream mechanisms, also influencing the epigenetic context, and thus leading to transcriptional activation or repression. In this frame, it is conceivable that defects in such a multifaceted factor as MeCP2 lead to large-scale alterations of the epigenome, ranging from an unbalanced deposition of epigenetic modifications to a transcriptional alteration of both protein-coding and non-coding genes, with critical consequences on multiple downstream biological processes. In this review, we provide an overview of the current knowledge concerning the transcriptomic and epigenomic alterations found in RTT patients and animal models.
Collapse
|
10
|
Qin W, Stengl A, Ugur E, Leidescher S, Ryan J, Cardoso MC, Leonhardt H. HP1β carries an acidic linker domain and requires H3K9me3 for phase separation. Nucleus 2021; 12:44-57. [PMID: 33660589 PMCID: PMC7939559 DOI: 10.1080/19491034.2021.1889858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) mediated formation of membraneless organelles has been proposed to coordinate biological processes in space and time. Previously, the formation of phase-separated droplets was described as a unique property of HP1α. Here, we demonstrate that the positive net charge of the intrinsically disordered hinge region (IDR-H) of HP1 proteins is critical for phase separation and that the exchange of four acidic amino acids is sufficient to confer LLPS properties to HP1β. Surprisingly, the addition of mono-nucleosomes promoted H3K9me3-dependent LLPS of HP1β which could be specifically disrupted with methylated but not acetylated H3K9 peptides. HP1β mutants defective in H3K9me3 binding were less efficient in phase separationin vitro and failed to accumulate at heterochromatin in vivo. We propose that multivalent interactions of HP1β with H3K9me3-modified nucleosomes via its chromodomain and dimerization via its chromoshadow domain enable phase separation and contribute to the formation of heterochromatin compartments in vivo.
Collapse
Affiliation(s)
- Weihua Qin
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Stengl
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Enes Ugur
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Susanne Leidescher
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joel Ryan
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Rausch C, Weber P, Prorok P, Hörl D, Maiser A, Lehmkuhl A, Chagin VO, Casas-Delucchi CS, Leonhardt H, Cardoso MC. Developmental differences in genome replication program and origin activation. Nucleic Acids Res 2021; 48:12751-12777. [PMID: 33264404 PMCID: PMC7736824 DOI: 10.1093/nar/gkaa1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.
Collapse
Affiliation(s)
- Cathia Rausch
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Patrick Weber
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - David Hörl
- Department of Biology II, LMU Munich, 81377 Munich, Germany
| | - Andreas Maiser
- Department of Biology II, LMU Munich, 81377 Munich, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Vadim O Chagin
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
12
|
Gropman AL. Epigenetics and pervasive developmental disorders. EPIGENETICS IN PSYCHIATRY 2021:519-552. [DOI: 10.1016/b978-0-12-823577-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Chen D, Liu J, Wu Z, Li SH. Role of miR-132/methyl-CpG-binding protein 2 in the regulation of neural stem cell differentiation. Neural Regen Res 2021; 16:345-349. [PMID: 32859795 PMCID: PMC7896221 DOI: 10.4103/1673-5374.290908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a well-known transcription repressor, and mutations in MECP2 cause serious neurological disorders. Many studies have suggested that MeCP2 is involved in neural maturation only, and have not reported its role in neural stem cell differentiation. In the present study, we investigated this possible role of MeCP2 in neural stem cells. We used two different differentiation methods to explore how MeCP2 influences neural stem cell differentiation. When we transfected MeCP2-overexpressing lentivirus into neural stem cells, astrocytic differentiation was impaired. This impaired astrocytic differentiation occurred even in conditions of 20% fetal bovine serum, which favored astrocytic differentiation. In addition, miR-132 had the largest expression change after differentiation among several central nervous system related miRNAs. A luciferase assay confirmed that miR-132 directly targeted MeCP2, and that miR-132 was able to reduce MeCP2 expression at both the RNA and protein levels. The upregulation of miR-132 by miRNA mimics promoted astrocytic differentiation, which was fully recovered by MeCP2 overexpression. These results indicate that miR-132 regulates cell lineage differentiation by reducing MeCP2. The study was approved by the Ethics Committee of Shanghai Tenth People's Hospital of TongJi University, China (approval No. SHDSYY-2018-4748) on March 10, 2018.
Collapse
Affiliation(s)
- Dong Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jie Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shao-Hua Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
14
|
MeCP2 Levels Regulate the 3D Structure of Heterochromatic Foci in Mouse Neurons. J Neurosci 2020; 40:8746-8766. [PMID: 33046553 DOI: 10.1523/jneurosci.1281-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 02/02/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein critical for normal brain function, and both depletion and overexpression of MeCP2 lead to severe neurodevelopmental disease, Rett syndrome (RTT) and MECP2 multiplication disorder, respectively. However, the molecular mechanism by which abnormal MeCP2 dosage causes neuronal dysfunction remains unclear. As MeCP2 expression is nearly equivalent to that of core histones and because it binds DNA throughout the genome, one possible function of MeCP2 is to regulate the 3D structure of chromatin. Here, to examine whether and how MeCP2 levels impact chromatin structure, we used high-resolution confocal and electron microscopy and examined heterochromatic foci of neurons in mice. Using models of RTT and MECP2 triplication syndrome, we found that the heterochromatin structure was significantly affected by the alteration in MeCP2 levels. Analysis of mice expressing either MeCP2-R270X or MeCP2-G273X, which have nonsense mutations in the upstream and downstream regions of the AT-hook 2 domain, respectively, showed that the magnitude of heterochromatin changes was tightly correlated with the phenotypic severity. Postnatal alteration in MeCP2 levels also induced significant changes in the heterochromatin structure, which underscored importance of correct MeCP2 dosage in mature neurons. Finally, functional analysis of MeCP2-overexpressing mice showed that the behavioral and transcriptomic alterations in these mice correlated significantly with the MeCP2 levels and occurred in parallel with the heterochromatin changes. Taken together, our findings demonstrate the essential role of MeCP2 in regulating the 3D structure of neuronal chromatin, which may serve as a potential mechanism that drives pathogenesis of MeCP2-related disorders.SIGNIFICANCE STATEMENT Neuronal function is critically dependent on methyl-CpG binding protein 2 (MeCP2), a nuclear protein abundantly expressed in neurons. The importance of MeCP2 is underscored by the severe childhood neurologic disorders, Rett syndrome (RTT) and MECP2 multiplication disorders, which are caused by depletion and overabundance of MeCP2, respectively. To clarify the molecular function of MeCP2 and to understand the pathogenesis of MECP2-related disorders, we performed detailed structural analyses of neuronal nuclei by using mouse models and high-resolution microscopy. We show that the level of MeCP2 critically regulates 3D structure of heterochromatic foci, and this is mediated in part by the AT-hook 2 domain of MeCP2. Our results demonstrate that one primary function of MeCP2 is to regulate chromatin structure.
Collapse
|
15
|
Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals. Genes (Basel) 2020; 11:genes11060595. [PMID: 32481609 PMCID: PMC7349813 DOI: 10.3390/genes11060595] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.
Collapse
|
16
|
Zhao B, Chaturvedi P, Zimmerman DL, Belmont AS. Efficient and Reproducible Multigene Expression after Single-Step Transfection Using Improved BAC Transgenesis and Engineering Toolkit. ACS Synth Biol 2020; 9:1100-1116. [PMID: 32216371 DOI: 10.1021/acssynbio.9b00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Achieving stable expression of a single transgene in mammalian cells remains challenging; even more challenging is obtaining simultaneous stable expression of multiple transgenes at reproducible, relative expression levels. Previously, we attained copy-number-dependent, chromosome-position-independent expression of reporter minigenes by embedding them within a BAC "scaffold" containing the mouse Msh3-Dhfr locus (DHFR BAC). Here, we extend this "BAC TG-EMBED" approach. First, we report a toolkit of endogenous promoters capable of driving transgene expression over a 0.01- to 5-fold expression range relative to the CMV promoter, allowing fine-tuning of relative expression levels of multiple reporter genes. Second, we demonstrate little variation in expression level and long-term expression stability of a reporter gene embedded in BACs containing either transcriptionally active or inactive genomic regions, making the choice of BAC scaffolds more flexible. Third, we present a novel BAC assembly scheme, "BAC-MAGIC", for inserting multiple transgenes into BAC scaffolds, which is much more time-efficient than traditional galK-based methods. As a proof-of-principle for our improved BAC TG-EMBED toolkit, we simultaneously fluorescently labeled three nuclear compartments at reproducible, relative intensity levels in 94% of stable clones after a single transfection using a DHFR BAC scaffold containing 4 transgenes assembled with BAC-MAGIC. Our extended BAC TG-EMBED toolkit and BAC-MAGIC method provide an efficient, versatile platform for stable simultaneous expression of multiple transgenes at reproducible, relative levels.
Collapse
Affiliation(s)
- Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David L. Zimmerman
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrew S. Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
MeCP2 and Chromatin Compartmentalization. Cells 2020; 9:cells9040878. [PMID: 32260176 PMCID: PMC7226738 DOI: 10.3390/cells9040878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional epigenetic reader playing a role in transcriptional regulation and chromatin structure, which was linked to Rett syndrome in humans. Here, we focus on its isoforms and functional domains, interactions, modifications and mutations found in Rett patients. Finally, we address how these properties regulate and mediate the ability of MeCP2 to orchestrate chromatin compartmentalization and higher order genome architecture.
Collapse
|
18
|
Stachecka J, Lemanska W, Noak M, Szczerbal I. Expression of key genes involved in DNA methylation during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes. Biochem Biophys Res Commun 2020; 522:811-818. [DOI: 10.1016/j.bbrc.2019.11.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
|
19
|
Marano D, Fioriniello S, Fiorillo F, Gibbons RJ, D'Esposito M, Della Ragione F. ATRX Contributes to MeCP2-Mediated Pericentric Heterochromatin Organization during Neural Differentiation. Int J Mol Sci 2019; 20:E5371. [PMID: 31671722 PMCID: PMC6862095 DOI: 10.3390/ijms20215371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multi-function factor involved in locus-specific transcriptional modulation and the regulation of genome architecture, e.g., pericentric heterochromatin (PCH) organization. MECP2 mutations are responsible for Rett syndrome (RTT), a devastating postnatal neurodevelopmental disorder, the pathogenetic mechanisms of which are still unknown. MeCP2, together with Alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX), accumulates at chromocenters, which are repressive PCH domains. As with MECP2, mutations in ATRX cause ATR-X syndrome which is associated with severe intellectual disability. We exploited two murine embryonic stem cell lines, in which the expression of MeCP2 or ATRX is abolished. Through immunostaining, chromatin immunoprecipitation and western blot, we show that MeCP2 and ATRX are reciprocally dependent both for their expression and targeting to chromocenters. Moreover, ATRX plays a role in the accumulation of members of the heterochromatin protein 1 (HP1) family at PCH and, as MeCP2, modulates their expression. Furthermore, ATRX and HP1 targeting to chromocenters depends on an RNA component. 3D-DNA fluorescence in situ hybridization (FISH) highlighted, for the first time, a contribution of ATRX in MeCP2-mediated chromocenter clustering during neural differentiation. Overall, we provide a detailed dissection of the functional interplay between MeCP2 and ATRX in higher-order PCH organization in neurons. Our findings suggest molecular defects common to RTT and ATR-X syndrome, including an alteration in PCH.
Collapse
Affiliation(s)
- Domenico Marano
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| | - Francesca Fiorillo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
20
|
Gulmez Karaca K, Brito DV, Oliveira AM. MeCP2: A Critical Regulator of Chromatin in Neurodevelopment and Adult Brain Function. Int J Mol Sci 2019; 20:ijms20184577. [PMID: 31527487 PMCID: PMC6769791 DOI: 10.3390/ijms20184577] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) was first identified as a nuclear protein with a transcriptional repressor role that recognizes DNA methylation marks. MeCP2 has a well-established function in neurodevelopment, as evidenced by the severe neurological impairments characteristic of the Rett syndrome (RTT) pathology and the MeCP2 duplication syndrome (MDS), caused by loss or gain of MeCP2 function, respectively. Research aimed at the underlying pathophysiological mechanisms of RTT and MDS has significantly advanced our understanding of MeCP2 functions in the nervous system. It has revealed, however, that MeCP2 has more varied and complex roles than previously thought. Here we review recent insights into the functions of MeCP2 in neurodevelopment and the less explored requirement for MeCP2 in adult brain function. We focus on the emerging view that MeCP2 is a global chromatin organizer. Finally, we discuss how the individual functions of MeCP2 in neurodevelopment and adulthood are linked to its role as a chromatin regulator.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands
| | - David V.C. Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
| | - Ana M.M. Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Correspondence: ; Tel.: +49-(0)6221-5416510
| |
Collapse
|
21
|
Gulmez Karaca K, Brito DVC, Zeuch B, Oliveira AMM. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation. Neurobiol Learn Mem 2018; 149:84-97. [PMID: 29438740 DOI: 10.1016/j.nlm.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023]
Abstract
MeCP2 is required both during postnatal neurodevelopment and throughout the adult life for brain function. Although it is well accepted that MeCP2 in the maturing nervous system is critical for establishing normal development, the functions of MeCP2 during adulthood are poorly understood. Particularly, the requirement of hippocampal MeCP2 for cognitive abilities in the adult is not studied. To characterize the role of MeCP2 in adult neuronal function and cognition, we used a temporal and region-specific disruption of MeCP2 expression in the hippocampus of adult male mice. We found that MeCP2 is required for long-term memory formation and that it controls the learning-induced transcriptional response of hippocampal neurons required for memory consolidation. Furthermore, we uncovered MeCP2 functions in the adult hippocampus that may underlie cognitive integrity. We showed that MeCP2 maintains the developmentally established chromatin configuration and epigenetic landscape of CA1 neurons throughout the adulthood, and that it regulates the expression of neuronal and immune-related genes in the adult hippocampus. Overall, our findings identify MeCP2 as a maintenance factor in the adult hippocampus that preserves signal responsiveness of the genome and allows for integrity of cognitive functions. This study provides new insight into how MeCP2 maintains adult brain functions, but also into the mechanisms underlying the cognitive impairments observed in RTT patients and highlights the understudied role of DNA methylation interpretation in adult cognitive processes.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
DNA methylation is dispensable for changes in global chromatin architecture but required for chromocentre formation in early stem cell differentiation. Chromosoma 2017; 126:605-614. [PMID: 28084535 DOI: 10.1007/s00412-017-0625-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 01/05/2023]
Abstract
Epiblast stem cells (EpiSCs), which are pluripotent cells isolated from early post-implantation mouse embryos (E5.5), show both similarities and differences compared to mouse embryonic stem cells (mESCs), isolated earlier from the inner cell mass (ICM) of the E3.5 embryo. Previously, we have observed that while chromatin is very dispersed in E3.5 ICM, compact chromatin domains and chromocentres appear in E5.5 epiblasts after embryo implantation. Given that the observed chromatin re-organization in E5.5 epiblasts coincides with an increase in DNA methylation, in this study, we aimed to examine the role of DNA methylation in chromatin re-organization during the in vitro conversion of ESCs to EpiSCs. The requirement for DNA methylation was determined by converting both wild-type and DNA methylation-deficient ESCs to EpiSCs, followed by structural analysis with electron spectroscopic imaging (ESI). We show that the chromatin re-organization which occurs in vivo can be re-capitulated in vitro during the ESC to EpiSC conversion. Indeed, after 7 days in EpiSC media, compact chromatin domains begin to appear throughout the nuclear volume, creating a chromatin organization similar to E5 epiblasts and embryo-derived EpiSCs. Our data demonstrate that DNA methylation is dispensable for this global chromatin re-organization but required for the compaction of pericentromeric chromatin into chromocentres.
Collapse
|
23
|
Della Ragione F, Vacca M, Fioriniello S, Pepe G, D'Esposito M. MECP2, a multi-talented modulator of chromatin architecture. Brief Funct Genomics 2016; 15:420-431. [PMID: 27296483 DOI: 10.1093/bfgp/elw023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been a long trip from 1992, the year of the discovery of MECP2, to the present day. What is surprising is that some of the pivotal roles of MeCP2 were already postulated at that time, such as repression of inappropriate expression from repetitive elements and the regulation of pericentric heterochromatin condensation. However, MeCP2 performs many more functions. MeCP2 is a reader of epigenetic information contained in methylated (and hydroxymethylated) DNA, moving from the 'classical' CpG doublet to the more complex view addressed by the non-CpG methylation, which is a feature of the postnatal brain. MECP2 is a transcriptional repressor, although when it forms complexes with the appropriate molecules, it can become a transcriptional activator. For all of these aspects, Rett syndrome, which is caused by MECP2 mutations, is considered a paradigmatic example of a 'chromatin disorder'. Even if the hunt for bona-fide MECP2 target genes is far from concluded today, the role of MeCP2 in the maintenance of chromatin architecture appears to be clearly established. Taking a cue from the non-scientific literature, we can firmly attest that MeCP2 is a player with 'a great future behind it'*.*V. Gassmann 'Un grande avvenire dietro le spalle'. TEA Eds.
Collapse
|
24
|
Vacca M, Tripathi KP, Speranza L, Aiese Cigliano R, Scalabrì F, Marracino F, Madonna M, Sanseverino W, Perrone-Capano C, Guarracino MR, D'Esposito M. Effects of Mecp2 loss of function in embryonic cortical neurons: a bioinformatics strategy to sort out non-neuronal cells variability from transcriptome profiling. BMC Bioinformatics 2016; 17 Suppl 2:14. [PMID: 26821710 PMCID: PMC4959389 DOI: 10.1186/s12859-015-0859-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Mecp2 null mice model Rett syndrome (RTT) a human neurological disorder affecting females after apparent normal pre- and peri-natal developmental periods. Neuroanatomical studies in cerebral cortex of RTT mouse models revealed delayed maturation of neuronal morphology and autonomous as well as non-cell autonomous reduction in dendritic complexity of postnatal cortical neurons. However, both morphometric parameters and high-resolution expression profile of cortical neurons at embryonic developmental stage have not yet been studied. Here we address these topics by using embryonic neuronal primary cultures from Mecp2 loss of function mouse model. Results We show that embryonic primary cortical neurons of Mecp2 null mice display reduced neurite complexity possibly reflecting transcriptional changes. We used RNA-sequencing coupled with a bioinformatics comparative approach to identify and remove the contribution of variable and hard to quantify non-neuronal brain cells present in our in vitro cell cultures. Conclusions Our results support the need to investigate both Mecp2 morphological as well as molecular effect in neurons since prenatal developmental stage, long time before onset of Rett symptoms. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0859-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcella Vacca
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR)-80131, Naples, Italy.
| | - Kumar Parijat Tripathi
- Laboratory for Genomics, Transcriptomics and Proteomics (LAB-GTP), High Performance Computing and Networking Institute (ICAR), National Research Council (CNR)-80131, Naples, Italy.
| | - Luisa Speranza
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR)-80131, Naples, Italy.
| | | | | | | | | | - Walter Sanseverino
- Sequentia Biotech SL, Calle Comte D'Urgell, 240 08036, Barcelona, Spain.
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR)-80131, Naples, Italy. .,Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Mario Rosario Guarracino
- Laboratory for Genomics, Transcriptomics and Proteomics (LAB-GTP), High Performance Computing and Networking Institute (ICAR), National Research Council (CNR)-80131, Naples, Italy.
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR)-80131, Naples, Italy. .,IRCCS Neuromed, via dell'Elettronica, Pozzilli (Is), Italy.
| |
Collapse
|
25
|
Becker A, Zhang P, Allmann L, Meilinger D, Bertulat B, Eck D, Hofstaetter M, Bartolomei G, Hottiger MO, Schreiber V, Leonhardt H, Cardoso MC. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure. J Biol Chem 2016; 291:4873-81. [PMID: 26772194 PMCID: PMC4777825 DOI: 10.1074/jbc.m115.698357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1(-/-) compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function.
Collapse
Affiliation(s)
- Annette Becker
- From the Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Peng Zhang
- From the Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Lena Allmann
- From the Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Daniela Meilinger
- the Center for Integrated Protein Science at the Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Bianca Bertulat
- From the Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Daniel Eck
- From the Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Maria Hofstaetter
- the Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Giody Bartolomei
- the Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland, and
| | - Michael O Hottiger
- the Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland, and
| | - Valérie Schreiber
- UMR7242 Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, Strasbourg University, CNRS, Ecole Superieure de Biotechnologie de Strasbourg, BP10413, 67412 Illkirch Cedex, France
| | - Heinrich Leonhardt
- the Center for Integrated Protein Science at the Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- From the Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany,
| |
Collapse
|
26
|
Jost KL, Bertulat B, Rapp A, Brero A, Hardt T, Domaing P, Gösele C, Schulz H, Hübner N, Cardoso MC. Gene repositioning within the cell nucleus is not random and is determined by its genomic neighborhood. Epigenetics Chromatin 2015; 8:36. [PMID: 26388944 PMCID: PMC4574441 DOI: 10.1186/s13072-015-0025-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Heterochromatin has been reported to be a major silencing compartment during development and differentiation. Prominent heterochromatin compartments are located at the nuclear periphery and inside the nucleus (e.g., pericentric heterochromatin). Whether the position of a gene in relation to some or all heterochromatin compartments matters remains a matter of debate, which we have addressed in this study. Answering this question demanded solving the technical challenges of 3D measurements and the large-scale morphological changes accompanying cellular differentiation. RESULTS Here, we investigated the proximity effects of the nuclear periphery and pericentric heterochromatin on gene expression and additionally considered the effect of neighboring genomic features on a gene's nuclear position. Using a well-established myogenic in vitro differentiation system and a differentiation-independent heterochromatin remodeling system dependent on ectopic MeCP2 expression, we first identified genes with statistically significant expression changes by transcriptional profiling. We identified nuclear gene positions by 3D fluorescence in situ hybridization followed by 3D distance measurements toward constitutive and facultative heterochromatin domains. Single-cell-based normalization enabled us to acquire morphologically unbiased data and we finally correlated changes in gene positioning to changes in transcriptional profiles. We found no significant correlation of gene silencing and proximity to constitutive heterochromatin and a rather unexpected inverse correlation of gene activity and position relative to facultative heterochromatin at the nuclear periphery. CONCLUSION In summary, our data question the hypothesis of heterochromatin as a general silencing compartment. Nonetheless, compared to a simulated random distribution, we found that genes are not randomly located within the nucleus. An analysis of neighboring genomic context revealed that gene location within the nucleus is rather dependent on CpG islands, GC content, gene density, and short and long interspersed nuclear elements, collectively known as RIDGE (regions of increased gene expression) properties. Although genes do not move away/to the heterochromatin upon up-/down-regulation, genomic regions with RIDGE properties are generally excluded from peripheral heterochromatin. Hence, we suggest that individual gene activity does not influence gene positioning, but rather chromosomal context matters for sub-nuclear location.
Collapse
Affiliation(s)
- K Laurence Jost
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Bianca Bertulat
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Alessandro Brero
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Tanja Hardt
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Petra Domaing
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Claudia Gösele
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Herbert Schulz
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
27
|
Song C, Feodorova Y, Guy J, Peichl L, Jost KL, Kimura H, Cardoso MC, Bird A, Leonhardt H, Joffe B, Solovei I. DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics Chromatin 2014; 7:17. [PMID: 25170345 PMCID: PMC4148084 DOI: 10.1186/1756-8935-7-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
Abstract
Background Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues. Results Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain, cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient male (Mecp2-/y) mice show no apparent defects in the morphology and development of the retina. The nuclear architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major histone modifications do not differ between Mecp2-/y and Mecp2wt mice. Surprisingly, the absence of MECP2 is not compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in Mecp2-/y mice. Conclusions MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia. MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell differentiation and sets the basis for future investigations in this direction.
Collapse
Affiliation(s)
- Congdi Song
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Yana Feodorova
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Leo Peichl
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt am Main 60438, Germany
| | - Katharina Laurence Jost
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, 565-0871 Suita, Osaka, Japan
| | - Maria Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Boris Joffe
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Olins AL, Ishaque N, Chotewutmontri S, Langowski J, Olins DE. Retrotransposon Alu is enriched in the epichromatin of HL-60 cells. Nucleus 2014; 5:237-46. [PMID: 24824428 DOI: 10.4161/nucl.29141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epichromatin, the surface of chromatin facing the nuclear envelope in an interphase nucleus, reveals a "rim" staining pattern with specific mouse monoclonal antibodies against histone H2A/H2B/DNA and phosphatidylserine epitopes. Employing a modified ChIP-Seq procedure on undifferentiated and differentiated human leukemic (HL-60/S4) cells,>95% of assembled epichromatin regions overlapped with Alu retrotransposons. They also exhibited enrichment of the AluS subfamily and of Alu oligomers. Furthermore, mapping epichromatin regions to the human chromosomes revealed highly similar localization patterns in the various cell states and with the different antibodies. Comparisons with available epigenetic databases suggested that epichromatin is neither "classical" heterochromatin nor highly expressing genes, implying another function at the surface of interphase chromatin. A modified chromatin immunoprecipitation procedure (xxChIP) was developed because the studied antibodies react generally with mononucleosomes and lysed chromatin. A second fixation is necessary to securely attach the antibodies to the epichromatin epitopes of the intact nucleus.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Pharmaceutical Sciences; College of Pharmacy; University of New England; Portland, ME USA
| | - Naveed Ishaque
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Heidelberg, Germany; Heidelberg Center for Personalized Oncology; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Sasithorn Chotewutmontri
- German Cancer Research Center; Genomics and Proteomics Core Facility, High Throughput Sequencing Unit; Heidelberg, Germany
| | - Jörg Langowski
- Biophysik der Makromoleküle; German Cancer Research Center; Heidelberg, Germany
| | - Donald E Olins
- Department of Pharmaceutical Sciences; College of Pharmacy; University of New England; Portland, ME USA
| |
Collapse
|
29
|
Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome. Neurobiol Dis 2014; 68:66-77. [PMID: 24769161 PMCID: PMC4076513 DOI: 10.1016/j.nbd.2014.04.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/10/2014] [Accepted: 04/14/2014] [Indexed: 12/03/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. Oxidative damage is demonstrated in the brain, and more specifically in the neurons, of Mecp2 mutant mouse models. A direct evidence between enhanced oxidative stress and Mecp2 deficiency is provided. Oxidative damage precedes the behavioral abnormalities in Mecp2 mutant mice. Mecp2 is likely involved in the protection of the brain from oxidative stress.
Collapse
|
30
|
Gropman AL. Epigenetics and Pervasive Developmental Disorders. EPIGENETICS IN PSYCHIATRY 2014:395-424. [DOI: 10.1016/b978-0-12-417114-5.00019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|