1
|
Overton E, Emelyanova A, Bunik VI. Thiamine, gastrointestinal beriberi and acetylcholine signaling. Front Nutr 2025; 12:1541054. [PMID: 40271433 PMCID: PMC12014454 DOI: 10.3389/fnut.2025.1541054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Research has highlighted numerous detrimental consequences of thiamine deficiency on digestive function. These range from impaired gastric and intestinal motility to aberrant changes in pancreatic exocrine function, gastric acidity and disturbances in gut barrier integrity and inflammation. Thiamine and its pharmacological forms, as a primary or adjunctive therapy, have been shown to improve symptoms such as nausea, constipation, dysphagia and intestinal dysmotility, in both humans and animals. This review aims to explore molecular mechanisms underlying the therapeutic action of thiamine in gastrointestinal dysfunction. Our analysis demonstrates that thiamine insufficiency restricted to the gastrointestinal system, i.e., lacking well-known symptoms of dry and wet beriberi, may arise through (i) a disbalance between the nutrient influx and efflux in the gastrointestinal system due to increased demands of thiamine by the organism; (ii) direct exposure of the gastrointestinal system to oral drugs and gut microbiome, targeting thiamine-dependent metabolism in the gastrointestinal system in the first line; (iii) the involvement of thiamine in acetylcholine (ACh) signaling and cholinergic activity in the enteric nervous system and non-neuronal cells of the gut and pancreas, employing both the coenzyme and non-coenzyme actions of thiamine. The coenzyme action relies on the requirement of the thiamine coenzyme form - thiamine diphosphate - for the production of energy and acetylcholine (ACh). The non-coenzyme action involves participation of thiamine and/or derivatives, including thiamine triphosphate, in the regulation of ACh synaptic function, consistent with the early data on thiamine as a co-mediator of ACh in neuromuscular synapses, and in allosteric action on metabolic enzymes. By examining the available evidence with a focus on the gastrointestinal system, we deepen the understanding of thiamine's contribution to overall gastrointestinal health, highlighting important implications of thiamine-dependent mechanisms in functional gastrointestinal disorders.
Collapse
Affiliation(s)
| | - Alina Emelyanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
2
|
Khodaie SA, Razavi R, Nikkhah H, Namiranian N, Kamalinejad M. Nigella sativa L. and its bioactive and nutraceutical components in the management of diabetic peripheral neuropathy. Inflammopharmacology 2024:10.1007/s10787-024-01528-6. [PMID: 39143432 DOI: 10.1007/s10787-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Diabetes-induced hyperglycemia leads to excessive production of oxygen free radicals, inflammatory cytokines, and oxidative stress, which initiates diabetic peripheral neuropathy (DPN). Currently, this condition affects 20% of adults with diabetes. Despite significant advances in the treatment of diabetes, the incidence of its complications, including DPN, is still high. Thus, there is a growing research interest in developing more effective and treatment approaches with less side effects for diabetes and its complications. Nigella sativa L. (NS) has received much research attention as an antioxidant, anti-yperglycemic factor, and anti-inflammatory agent. This natural compound demonstrates its antidiabetic neuropathy effect through various pathways, including the reduction of lipid peroxidation, the enhancement of catalase and superoxide dismutase enzyme activity, and the decrease in inflammatory cytokine levels. The present review focuses on the bioactive and nutraceutical components of black cumin (Nigella sativa L.) and their effects on DPN. In addition, we have also summarized the findings obtained from several experimental and clinical studies regarding the antidiabetic neuropathy effect of NS in animal models and human subjects.
Collapse
Affiliation(s)
- Seyed-Ali Khodaie
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roghaye Razavi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Haniyeh Nikkhah
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Namiranian
- Community & Preventive Medicine, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Behdane Baran Salem Abi Company, Tehran, Iran.
- AB Pharma inc267 Esplanade West, North Vancouver, BC, Canada.
| |
Collapse
|
3
|
Zarei SA, Shahriari-Khalaji M, Andolina IM, Behzadi G. Antinociceptive effects of vitamin B-complex: A behavioral and histochemical study in rats. IBRO Neurosci Rep 2023; 15:270-280. [PMID: 37860709 PMCID: PMC10582472 DOI: 10.1016/j.ibneur.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
B-vitamins have been evaluated as a useful adjuvant therapy to treat pain. In spite of clinical and experimental evidence indicating the analgesic effect of B-vitamins, few studies have investigated their effect on aspects of the inflammatory pain response. In the present study, we investigated the analgesic effect of chronic application of B-complex vitamins (Neurobion) using an inflammatory experimental pain model in rats. Nociceptive behavioral responses were evaluated in male Wistar rats after plantar injection of formalin, comparing the treatment group (TG) with Neurobion pretreatment to the control group (CG) without the pretreatment. In addition, neuronal activity in the central pain pathway was evaluated using c-Fos immunohistochemical reactivity and NADPH-d histochemistry. A highly significant reduction of painful behaviors such as licking and flinching were observed in TG, especially during the secondary phase of the formalin test compared to CG. Results suggest that long-term pre-treatment using Neurobion can have a beneficial effect in reducing the chronic phase of pain. In addition, we observed a downregulation of c-Fos and NADPH-d in dorsal spinal neurons, suggesting that the antinociceptive effect induced by Neurobion could be due to a suppression of nociceptive transmission at the spinal level, particularly in the afferent regions of the dorsal spinal horn, which these neurons utilizing nitric oxide at least as one of their pain neurotransmitters.
Collapse
Affiliation(s)
- Shahab A. Zarei
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ian Max Andolina
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Bettendorff L. Synthetic Thioesters of Thiamine: Promising Tools for Slowing Progression of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11296. [PMID: 37511056 PMCID: PMC10379298 DOI: 10.3390/ijms241411296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Thiamine (vitamin B1) is essential for the brain. This is attributed to the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. The synthetic thiamine prodrug, the thioester benfotiamine (BFT), has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has no known adverse effects and improves cognitive outcomes in patients with mild Alzheimer's disease. In cell culture and animal models, BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. Recent in vitro studies show that another thiamine thioester, O,S-dibenzoylthiamine (DBT), is even more efficient than BFT, especially with respect to its anti-inflammatory potency, and is effective at lower concentrations. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified open thiazole ring derivatives. The identification of the active neuroprotective metabolites and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental, and psychiatric conditions. The present review aims to summarize existing data on the neuroprotective effects of thiamine thioesters and give a comprehensive account.
Collapse
Affiliation(s)
- Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
5
|
Paez-Hurtado AM, Calderon-Ospina CA, Nava-Mesa MO. Mechanisms of action of vitamin B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) in pain: a narrative review. Nutr Neurosci 2023; 26:235-253. [PMID: 35156556 DOI: 10.1080/1028415x.2022.2034242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pain is a complex sensory and emotional experience with nociceptive, nociplastic, and neuropathic components. An involvement of neurotropic B vitamins (B1 - thiamine, B6 - pyridoxine, and B12 - cyanocobalamin) as modulators of inflammation and pain has been long discussed. New evidence suggests their therapeutic potential in different pain conditions. In this review, we discuss the main role of neurotropic B vitamins on different nociceptive pathways in the nervous system and to describe their analgesic action mechanisms. The performed literature review showed that, through different mechanisms, these vitamins regulate several inflammatory and neural mediators in nociceptive and neuropathic pain. Some of these processes include aiming the activation of the descending pain modulatory system and in specific intracellular pathways, anti-inflammatory, antioxidative and nerve regenerative effects. Moreover, recent data shows the antinociceptive, antiallodynic, and anti-hyperalgesic effects of the combination of these vitamins, as well as their synergistic effects with known analgesics. Understanding how vitamins B1, B6, and B12 affect several nociceptive mechanisms can therefore be of significance in the treatment of various pain conditions.
Collapse
Affiliation(s)
- A M Paez-Hurtado
- Neuroscience Research Group (NEUROS)-Centro Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - C A Calderon-Ospina
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - M O Nava-Mesa
- Neuroscience Research Group (NEUROS)-Centro Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
6
|
Sambon M, Wins P, Bettendorff L. Neuroprotective Effects of Thiamine and Precursors with Higher Bioavailability: Focus on Benfotiamine and Dibenzoylthiamine. Int J Mol Sci 2021; 22:ijms22115418. [PMID: 34063830 PMCID: PMC8196556 DOI: 10.3390/ijms22115418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Thiamine (vitamin B1) is essential for brain function because of the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. In order to compensate thiamine deficiency, several thiamine precursors with higher bioavailability were developed since the 1950s. Among these, the thioester benfotiamine (BFT) has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. BFT has no adverse effects and improves cognitive outcome in patients with mild Alzheimer’s disease (AD). Recent in vitro studies show that another thiamine thioester, dibenzoylthiamine (DBT) is even more efficient that BFT, especially with respect to its anti-inflammatory potency. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified metabolites in particular open thiazole ring derivatives. The identification of the active neuroprotective derivatives and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental and psychiatric conditions.
Collapse
|
7
|
Nava-Mesa MO, Aispuru Lanche GR. [Role of B vitamins, thiamine, pyridoxine, and cyanocobalamin in back pain and other musculoskeletal conditions: a narrative review]. Semergen 2021; 47:551-562. [PMID: 33865694 DOI: 10.1016/j.semerg.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Low back pain, as well as other musculoskeletal disorders (neck pain, osteoarthritis, etc.), are a very frequent cause of consultation both in primary care and in other hospital specialties and are usually associated with high functional and work disability. Acute low back pain can present different nociceptive, neuropathic and nonciplastic components, which leads to consider it as a mixed type pain. The importance of the concept of mixed pain is due to the fact that the symptomatic relief of these pathologies requires a multimodal therapeutic approach to various pharmacological targets. The antinociceptive role of the B vitamin complex has been recognized for several decades, specifically the combination of Thiamine, Pyridoxine and Cyanocobalamin (TPC). Likewise, there is accumulated evidence that indicates an adjuvant analgesic action in low back pain. The aim of the present review is to present the existing evidence and the latest findings on the therapeutic effects of the TPC combination in low back pain. Likewise, some of the most relevant mechanisms of action involved that can explain these effects are analyzed. The reviewed evidence indicates that the combined use of PCT has an adjuvant analgesic effect in mixed pain, specifically in low back pain and other musculoskeletal disorders with nociceptive and neuropathic components. This effect can be explained by an anti-inflammatory, antinociceptive, neuroprotective and neuromodulatory action of the TPC combination on the descending pain system.
Collapse
Affiliation(s)
- M O Nava-Mesa
- Grupo de Investigación en Neurociencias (NEUROS), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - G R Aispuru Lanche
- Grupo de Trabajo Aparato Locomotor Semergen. Gerencia de Atención Primaria de Burgos, Castilla y León, España.
| |
Collapse
|
8
|
Aleshin VA, Mezhenska OA, Parkhomenko YM, Kaehne T, Bunik VI. Thiamine Mono- and Diphosphate Phosphatases in Bovine Brain Synaptosomes. BIOCHEMISTRY (MOSCOW) 2021; 85:378-386. [PMID: 32564742 DOI: 10.1134/s000629792003013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases are accompanied by changes in the activity of thiamine mono- and diphosphate phosphatases, but molecular identification of these mammalian enzymes is incomplete. In this work, the protein fraction of bovine brain synaptosomes displaying phosphatase activity toward thiamine derivatives was subjected to affinity chromatography on thiamine-Sepharose. Protein fractions eluted with thiamine (pH 7.4 or 5.6), NaCl, and urea were assayed for the phosphatase activity against thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), and structurally similar purine nucleotides. Proteins in each fraction were identified by mass spectrometry using the SwissProt database for all organisms because of insufficient annotation of the bovine genome. Peptides of two annotated bacterial phosphatases, alkaline phosphatase L from the DING protein family and exopolyphosphatase, were identified in the acidic thiamine eluate. The abundance of peptides of alkaline phosphatase L and exopolyphosphatase in the eluted fractions correlated with ThMPase and ThDPase activities, respectively. The elution profiles of the ThMPase and ThDPase activities differed from the elution profiles of nucleotide phosphatases, thus indicating the specificity of these enzymes toward thiamine derivatives. The search for mammalian DING phosphatases in the eluates from thiamine-Sepharose revealed X-DING-CD4, mostly eluted by the acidic thiamine solution (pH 5.6). The identified exopolyphosphatase demonstrated structural similarity with apyrases possessing the ThDPase activity. The obtained results demonstrate that mammalian DING proteins and apyrases exhibit ThMPase and ThDPase activity, respectively.
Collapse
Affiliation(s)
- V A Aleshin
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Mezhenska
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01601, Ukraine
| | - Y M Parkhomenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01601, Ukraine
| | - T Kaehne
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, 39120, Germany
| | - V I Bunik
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119992, Russia
| |
Collapse
|
9
|
Guo Y, Zhou D, Zhang H, Zhang NN, Qi X, Chen X, Chen Q, Li J, Ge H, Teng YB. Structural insights into a new substrate binding mode of a histidine acid phosphatase from Legionella pneumophila. Biochem Biophys Res Commun 2021; 540:90-94. [PMID: 33450485 DOI: 10.1016/j.bbrc.2020.12.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
MapA is a histidine acid phosphatase (HAP) from Legionella pneumophila that catalyzes the hydroxylation of a phosphoryl group from phosphomonoesters by an active-site histidine. Several structures of HAPs, including MapA, in complex with the inhibitor tartrate have been solved and the substrate binding tunnel identified; however, the substrate recognition mechanism remains unknown. To gain insight into the mechanism of substrate recognition, the crystal structures of apo-MapA and the MapAD281A mutant in complex with 5'-AMP were solved at 2.2 and 2.6 Å resolution, respectively. The structure of the MapAD281A/5'-AMP complex reveals that the 5'-AMP fits fully into the substrate binding tunnel, with the 2'-hydroxyl group of the ribose moiety stabilized by Glu201 and the adenine moiety sandwiched between His205 and Phe237. This is the second structure of a HAP/AMP complex solved with 5'-AMP binding in a unique manner in the active site. The structure presents a new substrate recognition mechanism of HAPs.
Collapse
Affiliation(s)
- Yu Guo
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Dan Zhou
- Institute of Health Sciences and School of Life Science, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Hui Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Nan-Nan Zhang
- Institute of Health Sciences and School of Life Science, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Xiaoyu Qi
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Xiaofang Chen
- Institute of Health Sciences and School of Life Science, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Qi Chen
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Jing Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Honghua Ge
- Institute of Health Sciences and School of Life Science, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Yan-Bin Teng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
10
|
Sambon M, Gorlova A, Demelenne A, Alhama-Riba J, Coumans B, Lakaye B, Wins P, Fillet M, Anthony DC, Strekalova T, Bettendorff L. Dibenzoylthiamine Has Powerful Antioxidant and Anti-Inflammatory Properties in Cultured Cells and in Mouse Models of Stress and Neurodegeneration. Biomedicines 2020; 8:biomedicines8090361. [PMID: 32962139 PMCID: PMC7555733 DOI: 10.3390/biomedicines8090361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.
Collapse
Affiliation(s)
- Margaux Sambon
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium; (M.S.); (J.A.-R.); (P.W.)
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.G.); (T.S.)
- Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Alice Demelenne
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, 4000 Liège, Belgium; (A.D.); (M.F.)
| | - Judit Alhama-Riba
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium; (M.S.); (J.A.-R.); (P.W.)
- Faculty of Sciences, University of Girona, 17004 Girona, Spain
| | - Bernard Coumans
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cell, University of Liège, 4000 Liège, Belgium; (B.C.); (B.L.)
| | - Bernard Lakaye
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cell, University of Liège, 4000 Liège, Belgium; (B.C.); (B.L.)
| | - Pierre Wins
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium; (M.S.); (J.A.-R.); (P.W.)
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, 4000 Liège, Belgium; (A.D.); (M.F.)
| | - Daniel C. Anthony
- Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.G.); (T.S.)
- Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium; (M.S.); (J.A.-R.); (P.W.)
- Correspondence: ; Tel.: +32-4-366-5967
| |
Collapse
|
11
|
Transcriptome Analysis Reveals the Effects of Troxerutin and Cerebroprotein Hydrolysate Injection on Injured Spinal Cords in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3561235. [PMID: 32831862 PMCID: PMC7424371 DOI: 10.1155/2020/3561235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a serious condition that results in disability and has a high morbidity rate; its treatment is very difficult. Although troxerutin and cerebroprotein hydrolysate (TCH) injections have been extensively used in clinics in China for the treatment of traumatic brain injury (TBI) and cerebral stroke, the potential efficacy of TCH injection in the treatment of SCI has never been revealed. In this study, the effects of administering TCH injections on neurological recovery in post-SCI rats were first tested with regard to the behavior and histology; subsequently, the specific expression profile of mRNAs and long noncoding RNAs (LncRNAs) in their spinal cords were conducted using RNA sequencing (RNA-seq). The LncRNA-mRNA networks were also elucidated. After SCI, we found that TCH injection with the right dose is effective for the recovery of locomotion function and repairing of the damaged tissue in the spinal cord; TCH injection is also discovered to have a role in the regulation of 443 differentially expressed genes (DEGs) and 27 differentially expressed LncRNAs (DELs) that are identified to have multiple functions, including locomotion, blood vessel morphogenesis, thiamine metabolism, Hippo signaling pathway, and axon guidance, by applying the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis. In addition, it is revealed that, after SCI, the highly expressed LncRNA AABR07071383.1 in the post-SCI cis/trans-regulates the expression of mRNA Acpp mRNA that encodes a key enzyme involved in the metabolic process of thiamine in the abirritation of the dorsal root ganglion (DRG), which implies that TCH injection may be more effective when administered with benfotiamine (a common treatment drug).
Collapse
|
12
|
Calderon-Ospina CA, Nava-Mesa MO, Arbeláez Ariza CE. Effect of Combined Diclofenac and B Vitamins (Thiamine, Pyridoxine, and Cyanocobalamin) for Low Back Pain Management: Systematic Review and Meta-analysis. PAIN MEDICINE (MALDEN, MASS.) 2020; 21:766-781. [PMID: 31529101 PMCID: PMC7139211 DOI: 10.1093/pm/pnz216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cumulative evidence suggests an analgesic effect of thiamine, pyridoxine, and cyanocobalamin (TPC) in monotherapy, and also when combined with nonsteroidal anti-inflammatory drugs (NSAIDs), particularly diclofenac, in a synergistic manner. The aim of this review was to determine the effects of diclofenac combined with TPC compared with diclofenac monotherapy for low back pain (LBP) management. METHODS We searched for randomized clinical trials on the MEDLINE, EMBASE, LILACS, and Cochrane databases of records of clinical trials, among other sources. We evaluated the risk of bias regarding randomization, allocation concealment, blinding, incomplete outcome data, selective reporting, and other biases. A random-effects meta-analysis to examine patients with acute LBP (N = 1,108 adults) was performed, along with a subsequent sensitivity analysis. RESULTS Five studies in patients with LBP were included in the qualitative synthesis. Four of these studies in acute LBP were included in the first meta-analysis. A sensitivity test based on risk of bias (three moderate- to high-quality studies) found that the combination therapy of diclofenac plus TPC was associated with a significant reduction in the duration of treatment (around 50%) compared with diclofenac monotherapy (odds ratio = 2.23, 95% confidence interval = 1.59 to 3.13, P < 0.00001). We found no differences in the safety profile and patient satisfaction. CONCLUSIONS This meta-analysis demonstrated that combination therapy of diclofenac with TPC might have an analgesic superiority compared with diclofenac monotherapy in acute LBP. However, there is not enough evidence to recommend this therapy in other types of pain due to the scarcity of high-quality studies.
Collapse
Affiliation(s)
| | - Mauricio Orlando Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | |
Collapse
|
13
|
Aleshin VA, Mkrtchyan GV, Bunik VI. Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance. BIOCHEMISTRY (MOSCOW) 2019; 84:829-850. [PMID: 31522667 DOI: 10.1134/s0006297919080017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thiamine (vitamin B1) is a precursor of the well-known coenzyme of central metabolic pathways thiamine diphosphate (ThDP). Highly intense glucose oxidation in the brain requires ThDP-dependent enzymes, which determines the critical significance of thiamine for neuronal functions. However, thiamine can also act through the non-coenzyme mechanisms. The well-known facilitation of acetylcholinergic neurotransmission upon the thiamine and acetylcholine co-release into the synaptic cleft has been supported by the discovery of thiamine triphosphate (ThTP)-dependent phosphorylation of the acetylcholine receptor-associated protein rapsyn, and thiamine interaction with the TAS2R1 receptor, resulting in the activation of synaptic ion currents. The non-coenzyme regulatory binding of thiamine compounds has been demonstrated for the transcriptional regulator p53, poly(ADP-ribose) polymerase, prion protein PRNP, and a number of key metabolic enzymes that do not use ThDP as a coenzyme. The accumulated data indicate that the molecular mechanisms of the neurotropic action of thiamine are far broader than it has been originally believed, and closely linked to the metabolism of thiamine and its derivatives in animals. The significance of this topic has been illustrated by the recently established competition between thiamine and the antidiabetic drug metformin for common transporters, which can be the reason for the thiamine deficiency underlying metformin side effects. Here, we also discuss the medical implications of the research on thiamine, including the role of thiaminases in thiamine reutilization and biosynthesis of thiamine antagonists; molecular mechanisms of action of natural and synthetic thiamine antagonists, and biotransformation of pharmacological forms of thiamine. Given the wide medical application of thiamine and its synthetic forms, these aspects are of high importance for medicine and pharmacology, including the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- V A Aleshin
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 19991 Moscow, Russia
| | - G V Mkrtchyan
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V I Bunik
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 19991 Moscow, Russia
| |
Collapse
|
14
|
Rahimi-Balaei M, Buchok M, Vihko P, Parkinson FE, Marzban H. Loss of prostatic acid phosphatase and α-synuclein cause motor circuit degeneration without altering cerebellar patterning. PLoS One 2019; 14:e0222234. [PMID: 31509576 PMCID: PMC6738605 DOI: 10.1371/journal.pone.0222234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Prostatic acid phosphatase (PAP), which is secreted by prostate, increases in some diseases such as prostate cancer. PAP is also present in the central nervous system. In this study we reveal that α-synuclein (Snca) gene is co-deleted/mutated in PAP null mouse. It is indicated that mice deficient in transmembrane PAP display neurological alterations. By using immunohistochemistry, cerebellar cortical neurons and zone and stripes pattern were studied in Pap-/- ;Snca-/- mouse cerebellum. We show that the Pap-/- ;Snca-/- cerebellar cortex development appears to be normal. Compartmentation genes expression such as zebrin II, HSP25, and P75NTR show the zone and stripe phenotype characteristic of the normal cerebellum. These data indicate that although aggregation of PAP and SNCA causes severe neurodegenerative diseases, PAP-/- with absence of the Snca does not appear to interrupt the cerebellar architecture development and zone and stripe pattern formation. These findings question the physiological and pathological role of SNCA and PAP during cerebellar development or suggest existence of the possible compensatory mechanisms in the absence of these genes.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew Buchok
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pirkko Vihko
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Fiona E. Parkinson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
15
|
Sambon M, Napp A, Demelenne A, Vignisse J, Wins P, Fillet M, Bettendorff L. Thiamine and benfotiamine protect neuroblastoma cells against paraquat and β-amyloid toxicity by a coenzyme-independent mechanism. Heliyon 2019; 5:e01710. [PMID: 31193162 PMCID: PMC6520661 DOI: 10.1016/j.heliyon.2019.e01710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
Background Benfotiamine (BFT) is a synthetic thiamine precursor with high bioavailability. It is efficient in treating complications of type 2 diabetes and has beneficial effects in mouse models of neurodegenerative diseases. The mechanism of action of BFT remains unknown, though it is sometimes suggested that it may be linked to increased thiamine diphosphate (ThDP) coenzyme function. Methods We used a mouse neuroblastoma cell line (Neuro2a) grown in thiamine-restricted medium. The cells were stressed by exposure to paraquat (PQ) or amyloid β1-42 peptide in the presence or absence of BFT and the cell survival was measured using the MTT method. In each case, BFT was compared with sulbutiamine (SuBT), an unrelated thiamine precursor, and thiamine. Metabolites of BFT were determined by HPLC and mass spectrometry. Results At 50 μM, BFT protects the cells against PQ and amyloid β1-42 peptide-induced toxicity with the same efficacy. Protective effects were also observed with SuBT and with higher concentrations of thiamine. The main metabolites of BFT were thiamine and S-benzoylthiamine (S-BT). Treatment with both precursors induces a strong increase in intracellular content of thiamine. Protective effects of BFT and SuBT are directly related to thiamine (but not ThDP) levels in Neuro2a cells. Conclusions BFT, SuBT and thiamine all protect the cells against oxidative stress, suggesting an antioxidant effect of thiamine. Our results are not in favor of a direct ROS scavenging effect of thiamine but rather an indirect effect possibly mediated by some antioxidant signaling pathway. It is however not clear whether this effect is due to thiamine itself, its thiol form or an unknown metabolite. General significance Our results suggest a role of thiamine in protection against oxidative stress, independent of the coenzyme function of thiamine diphosphate.
Collapse
Key Words
- ARE, antioxidant response element
- BFT, benfotiamine
- Cell biology
- FBS, fetal bovine serum
- Neuroscience
- O-BT, O-benzoylthiamine
- PQ, paraquat
- ROS, reactive oxygen species
- S-BT, S-benzoylthiamine
- SuBT, sulbutiamine
- TPK, thiamine pyrophosphokinase
- ThDP, thiamine diphosphate
- ThMP, thiamine monophosphate
Collapse
Affiliation(s)
- Margaux Sambon
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Aurore Napp
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Alice Demelenne
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Julie Vignisse
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Pierre Wins
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Tapias V, Jainuddin S, Ahuja M, Stack C, Elipenahli C, Vignisse J, Gerges M, Starkova N, Xu H, Starkov AA, Bettendorff L, Hushpulian DM, Smirnova NA, Gazaryan IG, Kaidery NA, Wakade S, Calingasan NY, Thomas B, Gibson GE, Dumont M, Beal MF. Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum Mol Genet 2018; 27:2874-2892. [PMID: 29860433 PMCID: PMC6077804 DOI: 10.1093/hmg/ddy201] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Impaired glucose metabolism, decreased levels of thiamine and its phosphate esters, and reduced activity of thiamine-dependent enzymes, such as pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and transketolase occur in Alzheimer's disease (AD). Thiamine deficiency exacerbates amyloid beta (Aβ) deposition, tau hyperphosphorylation and oxidative stress. Benfotiamine (BFT) rescued cognitive deficits and reduced Aβ burden in amyloid precursor protein (APP)/PS1 mice. In this study, we examined whether BFT confers neuroprotection against tau phosphorylation and the generation of neurofibrillary tangles (NFTs) in the P301S mouse model of tauopathy. Chronic dietary treatment with BFT increased lifespan, improved behavior, reduced glycated tau, decreased NFTs and prevented death of motor neurons. BFT administration significantly ameliorated mitochondrial dysfunction and attenuated oxidative damage and inflammation. We found that BFT and its metabolites (but not thiamine) trigger the expression of Nrf2/antioxidant response element (ARE)-dependent genes in mouse brain as well as in wild-type but not Nrf2-deficient fibroblasts. Active metabolites were more potent in activating the Nrf2 target genes than the parent molecule BFT. Docking studies showed that BFT and its metabolites (but not thiamine) bind to Keap1 with high affinity. These findings demonstrate that BFT activates the Nrf2/ARE pathway and is a promising therapeutic agent for the treatment of diseases with tau pathology, such as AD, frontotemporal dementia and progressive supranuclear palsy.
Collapse
Affiliation(s)
- Victor Tapias
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shari Jainuddin
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Manuj Ahuja
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Cliona Stack
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ceyhan Elipenahli
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Julie Vignisse
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium
| | - Meri Gerges
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Natalia Starkova
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hui Xu
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium
| | - Dmitry M Hushpulian
- D. Rogachev Federal Scientific and Clinical Center for Pediatric Hematology, Oncology, and Immunology, 117997 Moscow, Russia
- Veropharm, Abbott EPD, 115088 Moscow, Russia
| | - Natalya A Smirnova
- D. Rogachev Federal Scientific and Clinical Center for Pediatric Hematology, Oncology, and Immunology, 117997 Moscow, Russia
| | - Irina G Gazaryan
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570, USA
- Department of Enzymology, School of Chemistry, 119991 Moscow, Russia
| | - Navneet A Kaidery
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Sushama Wakade
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Noel Y Calingasan
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bobby Thomas
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Burke Medical Research Institute, Weill Cornell Medicine, White Plains, NY 10605, USA
| | - Magali Dumont
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - M Flint Beal
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
17
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Abstract
Chronic pain is one of the most debilitating and expensive diseases, yet current therapies are often insufficient in bringing about long-term relief. Further, many treatments for chronic pain also carry significant side effects. The molecule adenosine has long been identified as a potent inhibitor of nociceptive circuits in the spinal cord; however, the widespread expression of adenosine receptors in many organ systems has limited its use as an analgesic. Recently several 5' ectonucleotidases, including tissue non-specific alkaline phosphatase (TNAP), have been characterized for their ability to generate endogenous adenosine in nociceptive circuitry of the dorsal spinal cord. These ectonucleotidases have the ability to hydrolyze the endogenous pronociceptive nucleotides like adenosine triphosphate (ATP) into the antinociceptive nucleoside adenosine. This chapter discusses the role of TNAP and other ectonucleotidases in nociceptive circuits, and their potential as future targets of new therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Sarah E Street
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,
| | | |
Collapse
|
19
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
20
|
Dhatwalia R, Singh H, Reilly TJ, Tanner JJ. Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase. Arch Biochem Biophys 2015; 585:32-38. [PMID: 26380880 DOI: 10.1016/j.abb.2015.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 11/28/2022]
Abstract
Histidine acid phosphatases (HAPs) utilize a nucleophilic histidine residue to catalyze the transfer of a phosphoryl group from phosphomonoesters to water. HAPs function as protein phosphatases and pain suppressors in mammals, are essential for Giardia lamblia excystation, and contribute to virulence of the category A pathogen Francisella tularensis. Herein we report the first crystal structure and steady-state kinetics measurements of the HAP from Legionella pneumophila (LpHAP), also known as Legionella major acid phosphatase. The structure of LpHAP complexed with the inhibitor l(+)-tartrate was determined at 2.0 Å resolution. Kinetics assays show that l(+)-tartrate is a 50-fold more potent inhibitor of LpHAP than of other HAPs. Electrostatic potential calculations provide insight into the basis for the enhanced tartrate potency: the tartrate pocket of LpHAP is more positive than other HAPs because of the absence of an ion pair partner for the second Arg of the conserved RHGXRXP HAP signature sequence. The structure also reveals that LpHAP has an atypically expansive active site entrance and lacks the nucleotide substrate base clamp found in other HAPs. These features imply that nucleoside monophosphates may not be preferred substrates. Kinetics measurements confirm that AMP is a relatively inefficient in vitro substrate of LpHAP.
Collapse
Affiliation(s)
- Richa Dhatwalia
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Thomas J Reilly
- Veterinary Medical Diagnostic Laboratory, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - John J Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
21
|
Huang B, Li X, Zhu XC, Lu YS. Deceased expression of prostatic acid phosphatase in primary sensory neurons after peripheral nerve injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8602-8608. [PMID: 25674224 PMCID: PMC4314050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Prostatic acid phosphatase (PAP) is expressed in nociceptive dorsal root ganglion (DRG) neurons and functions as an ectonucleotidase that dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine to suppress pain via activating A1-adenosine receptor (A1R) in dorsal spinal cord. However, the effect of peripheral nerve injury on the expression of PAP has not been reported until now. In the present study we found that PAP expression in DRG neurons is significantly decreased from the 2nd day after peripheral nerve injury and reaches the bottom at the 14th. In addition, intrathecal PAP injection can reduce mechanical allodynia induced by spared nerve injury. Our findings suggest that the decrease of PAP is involved in pathophysiological mechanisms of neuropathic pain.
Collapse
Affiliation(s)
- Bo Huang
- The 2nd Department of Orthopaedics, 117 Hospital of PLAHangzhou, China
| | - Xia Li
- Yi Ji Shan Hospital of Wan Nan Medical CollegeAnhui, China
| | - Xiao-Chun Zhu
- General Hospital of Tibet Military Area commandTibet, China
| | - Yi-Sheng Lu
- The 2nd Department of Orthopaedics, 117 Hospital of PLAHangzhou, China
| |
Collapse
|
22
|
Abstract
Acid phosphatases are enzymes that have been studied extensively due to the fact that their dysregulation is associated with pathophysiological conditions. This characteristic has been exploited for the development of diagnostic and therapeutic methods. As an example, prostatic acid phosphatase was the first marker for metastatic prostate cancer diagnosis and the dysregulation of tartrate resistant acid phosphatase is associated with abnormal bone resorption linked to osteoporosis. The pioneering crystallization studies on prostatic acid phosphatase and mammalian tartrate-resistant acid phosphatase conformed significant milestones towards the elucidation of the mechanisms followed by these enzymes (Schneider et al., EMBO J 12:2609-2615, 1993). Acid phosphatases are also found in nonmammalian species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with mammalian acid phosphatase enzymes. Acid phosphatase (EC 3.1.3.2) enzymes catalyze the hydrolysis of phosphate monoesters following the general equation. Phosphate monoester + H2O -->/<-- alcohol + phosphate. The general classification "acid phosphatase" relies only on the optimum acidic pH for the enzymatic activity in assay conditions using non-physiological substrates. These enzymes accept a wide range of substrates in vitro, ranging from small organic molecules to phosphoproteins, constituting a heterogeneous group of enzymes from the structural point of view. These structural differences account for the divergence in cofactor dependences and behavior against substrates, inhibitors, and activators. In this group only the tartrate-resistant acid phosphatase is a metallo-enzyme whereas the other members do not require metal-ion binding for their catalytic activity. In addition, tartrate-resistant acid phosphatase and erythrocytic acid phosphatase are not inhibited by L-(+)-tartrate ion while the prostatic acid phosphatase is tartrate-sensitive. This is an important difference that can be exploited in in vitro assays to differentiate between different kinds of phosphatase activity. The search for more sensitive and specific methods of detection in clinical laboratory applications led to the development of radioimmunoassays (RIA) for determination of prostatic acid phosphatase in serum. These methods permit the direct quantification of the enzyme regardless of its activity status. Therefore, an independent structural classification exists that helps to group these enzymes according to their structural features and mechanisms. Based on this we can distinguish the histidine acid phosphatases (Van Etten, Ann N Y Acad Sci 390:27-51, 1982), the low molecular weight protein tyrosine acid phosphatases and the metal-ion dependent phosphatases. A note of caution is worthwhile mentioning here. The nomenclature of acid phosphatases has not been particularly easy for those new to the subject. Unfortunately, the acronym PAP is very common in the literature about purple acid phosphatases and prostatic acid phosphatase. In addition, LPAP is the acronym chosen to refer to the lysophosphatidic acid phosphatase which is a different enzyme. It is important to bear in mind this distinction while reviewing the literature to avoid confusion.
Collapse
|