1
|
Roberts SH, Zaghloul MS, Ismail U, Rowe RA, Engel C, Meade R, Elizondo-Benedetto S, Genin GM, Zayed MA. In Vivo Porcine Model of Acute Iliocaval Deep Vein Thrombosis. J Endovasc Ther 2024:15266028241231513. [PMID: 38357736 DOI: 10.1177/15266028241231513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
CLINICAL IMPACT The study establishes a rapid, technically straightforward, and reproducible porcine large animal model for acute iliocaval deep vein thrombosis (DVT). The procedure can be performed with basic endovascular skillsets. With its procedural efficiency and consistency, the platform is promising for comparative in vivo testing of venous thrombectomy devices in a living host, and for future verification and validation studies to determine efficacy of novel thrombectomy devices relative to predicates.
Collapse
Affiliation(s)
- Sophia H Roberts
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mohamed S Zaghloul
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | | | - Connor Engel
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Santiago Elizondo-Benedetto
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Guy M Genin
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Caeli Vascular, Inc., St. Louis, MO, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Caeli Vascular, Inc., St. Louis, MO, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Division of Molecular Cell Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Shamsara M, Jamshidizad A, Rahim-Tayefeh A, Davari M, Rajabi Zangi A, Masoumi F, Zomorodipour A. Generation of Mouse Model of Hemophilia A by Introducing Novel Mutations, Using CRISPR/Nickase Gene Targeting System. CELL JOURNAL 2023; 25:655-659. [PMID: 37718768 PMCID: PMC10520988 DOI: 10.22074/cellj.2023.1999800.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 09/19/2023]
Abstract
Developing mouse models of hemophilia A has been shown to facilitate in vivo studies to explore the probable mechanism(s) underlying the disease and to examine the efficiency of the relevant potential therapeutics. This study aimed to knockout (KO) the coagulation factor viii (fviii) gene in NMRI mice, using CRISPR/Cas9 (D10A/nickase) system, to generate a mouse model of hemophilia A. Two single guide RNAs (sgRNAs), designed from two distinct regions on NMRI mouse FVIII (mFVIII) exon 3, were designed and inserted in the pX335 vector, expressing both sgRNAs and nickase. The recombinant construct was delivered into mouse zygotes and implanted into the pseudopregnant female mice's uterus. Mutant mice were identified by genotyping, genomic sequencing, and mFVIII activity assessment. Two separate lines of hemophilia A were obtained through interbreeding the offspring of the female mice receiving potential CRISPR-Cas9-edited zygotes. Genomic DNA analysis revealed disruptions of the mfviii gene reading frame through a 22-bp deletion and a 23-bp insertion in two separate founder mice. The founder mice showed all the clinical signs of hemophilia A including; excessive bleeding after injuries, and spontaneous bleeding in joints and other organs. Coagulation test data showed that mFVIII coagulation activity was significantly diminished in the mFVIII knockout (FVIIIKO) mice compared to normal mice. The CRISPR/nickase system was successfully applied to generate mouse lines with the knockout fviii gene. The two novel FVIIIKO mice demonstrated all clinical symptoms of hemophilia A, which could be successfully inherited. Therefore, both of the developed FVIIIKO mouse lines are eligible for being considered as proper mouse models of hemophilia A for in vivo therapeutic studies.
Collapse
Affiliation(s)
- Mehdi Shamsara
- Department of Animal Biotechnology, Institute Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Jamshidizad
- Department of Animal Biotechnology, Institute Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Aidin Rahim-Tayefeh
- Department of Animal Biotechnology, Institute Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Maliheh Davari
- Department of Molecular Medicine, Institute of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Rajabi Zangi
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Masoumi
- Department of Molecular Medicine, Institute of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Zomorodipour
- Department of Molecular Medicine, Institute of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
3
|
Noda M, Tatsumi K, Matsui H, Matsunari Y, Sato T, Fukuoka Y, Hotta A, Okano T, Kichikawa K, Sugimoto M, Shima M, Nishio K. Development of alternative gene transfer techniques for ex vivo and in vivo gene therapy in a canine model. Regen Ther 2021; 18:347-354. [PMID: 34584911 PMCID: PMC8441024 DOI: 10.1016/j.reth.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Gene therapy have recently attracted much attention as a curative therapeutic option for inherited single gene disorders such as hemophilia. Hemophilia is a hereditary bleeding disorder caused by the deficiency of clotting activity of factor VIII (FVIII) or factor IX (FIX), and gene therapy for hemophilia using viral vector have been vigorously investigated worldwide. Toward further advancement of gene therapy for hemophilia, we have previously developed and validated the efficacy of novel two types of gene transfer technologies using a mouse model of hemophilia A. Here we investigated the efficacy and safety of the technologies in canine model. Especially, validations of technical procedures of the gene transfers for dogs were focused. METHODS Green fluorescence protein (GFP) gene were transduced into normal beagle dogs by ex vivo and in vivo gene transfer techniques. For ex vivo gene transfer, blood outgrowth endothelial cells (BOECs) derived from peripheral blood of normal dogs were transduced with GFP gene using lentivirus vector, propagated, fabricated as cell sheets, then implanted onto the omentum of the same dogs. For in vivo gene transfer, normal dogs were subjected to GFP gene transduction with non-viral piggyBac vector by liver-targeted hydrodynamic injections. RESULTS No major adverse events were observed during the gene transfers in both gene transfer systems. As for ex vivo gene transfer, histological findings from the omental biopsy performed 4 weeks after implantation revealed the tube formation by implanted GFP-positive BOECs in the sub-adipose tissue layer without any inflammatory findings, and the detected GFP signals were maintained over 6 months. Regarding in vivo gene transfer, analyses of liver biopsy samples revealed more than 90% of liver cells were positive for GFP signals in the injected liver lobes 1 week after gene transfers, then the signals gradually declined overtime. CONCLUSIONS Two types of gene transfer techniques were successfully applied to a canine model, and the transduced gene expressions persisted for a long term. Toward clinical application for hemophilia patients, practical assessments of therapeutic efficacy of these techniques will need to be performed using a dog model of hemophilia and FVIII (or FIX) gene.
Collapse
Affiliation(s)
- Masashi Noda
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| | - Hideto Matsui
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| | | | - Takeshi Sato
- Department of Diagnostic Radiology and IVR, Nara Medical University, Kashihara, Japan
| | - Yasushi Fukuoka
- Department of Diagnostic Radiology and IVR, Nara Medical University, Kashihara, Japan
| | - Akitsu Hotta
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kimihiko Kichikawa
- Department of Diagnostic Radiology and IVR, Nara Medical University, Kashihara, Japan
| | - Mitsuhiko Sugimoto
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| | | | - Kenji Nishio
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
4
|
Kaneko H, Kikuchi K, Men NT, Dang-Nguyen TQ, Oyadomari M, Touma S, Suzuki N, Katagiri Y. Embryo production by intracytoplasmic injection of sperm retrieved from neonatal testicular tissue of Agu pigs after cryopreservation and grafting into nude mice. Anim Sci J 2021; 91:e13479. [PMID: 33331680 DOI: 10.1111/asj.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/27/2022]
Abstract
The Agu is the only indigenous pig breed in Japan but its population is very small. In order to estimate the efficacy of testicular xenografting for the conservation of Agu pigs, we investigated whether neonatal testicular fragments would acquire the capacity to produce sperm after they had been cryopreserved and grafted into nude mice. Although on day 180 (day 0 = xenografting), grafts showed a low proportion of seminiferous tubule cross-sections containing sperm (0.1 ± 0.1%, mean ± SEM for four mice), the proportion reached 36.9 ± 16.7% (n = 4 mice) by day 240. When single sperm obtained on day 240 was injected into individual porcine oocytes, 28.2% of the oocytes were found to contain one male and one female pronuclei with the second polar body. Moreover, the blastocyst formation rate after injection of the xenogeneic sperm was 28.4%, whereas that in the absence of sperm injection (attributable to parthenogenesis) was 13.3%. These findings suggest that more than half of the blastocysts resulted from fertilization. Thus, testicular xenografting could assist the conservation of Agu pigs by salvaging germ cells present in neonatal testes even after cryopreservation.
Collapse
Affiliation(s)
- Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Nguyen Thi Men
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Thanh Quang Dang-Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Motoharu Oyadomari
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan
| | - Shihei Touma
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan
| | - Naoto Suzuki
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan
| | - Yoshito Katagiri
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan
| |
Collapse
|
5
|
Suva LJ, Westhusin ME, Long CR, Gaddy D. Engineering bone phenotypes in domestic animals: Unique resources for enhancing musculoskeletal research. Bone 2020; 130:115119. [PMID: 31712131 PMCID: PMC8805042 DOI: 10.1016/j.bone.2019.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States.
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
6
|
Guo XL, Chung TH, Qin Y, Zheng J, Zheng H, Sheng L, Wynn T, Chang LJ. Hemophilia Gene Therapy: New Development from Bench to Bed Side. Curr Gene Ther 2019; 19:264-273. [PMID: 31549954 DOI: 10.2174/1566523219666190924121836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Novel gene therapy strategies have changed the prognosis of many inherited diseases in recent years. New development in genetic tools and study models has brought us closer to a complete cure for hemophilia. This review will address the latest gene therapy research in hemophilia A and B including gene therapy tools, genetic strategies and animal models. It also summarizes the results of recent clinical trials. Potential solutions are discussed regarding the current barriers in gene therapy for hemophilia.
Collapse
Affiliation(s)
- Xiao-Lu Guo
- Geno-immune Medical Institute, Shenzhen, China
| | | | - Yue Qin
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Jie Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huyong Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Liyuan Sheng
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
| | - Tung Wynn
- Department of Pediatrics and Division of Hematology/Oncology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
7
|
Nakamura K, Otake M. [Current progress of research and use of microminipigs in drug development]. Nihon Yakurigaku Zasshi 2019; 152:202-207. [PMID: 30298842 DOI: 10.1254/fpj.152.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The use of minipigs has been increasing in the areas of pharmacology researches and drug development. The microminipig developed by Fuji Micra Inc. (Shizuoka, Japan) inherits characteristics of other pig strains showing several similarities to humans in anatomy, physiology, omnivorousness and diurnal, but at the same time has several advantages over other pig strains because of its small size which allows easy keeping, handling and dosing, and saving of test substances. The microminipig weighs about 10 kg at the age of 6 months. Canine cages can be used to keep the animal. Swine leukocyte antigens (SLA) are defined in each individual animal which is useful for testing immunological reactions. As there are many similarities in metabolic enzymes and transporters to those in humans, the microminipig is a powerful animal model for toxicokinetic studies. Unfortunately as in other minipigs the microminipig is not appropriate for embryo-fetal development studies of antibody drugs due to its poor placental transfer, but can be used for other reproductive and developmental studies. Repeat dose toxicity, safety pharmacology, immunotoxicity and local tolerance studies should be also other arenas of this animal model.
Collapse
Affiliation(s)
- Kazuichi Nakamura
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| | - Masayoshi Otake
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center
| |
Collapse
|
8
|
Kaneko H, Kikuchi K, Men NT, Noguchi J. Embryo production by intracytoplasmic injection of sperm retrieved from Meishan neonatal testicular tissue cryopreserved and grafted into nude mice. Anim Sci J 2018; 90:158-166. [PMID: 30523649 PMCID: PMC6587828 DOI: 10.1111/asj.13138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022]
Abstract
Testicular xenografting, combined with cryopreservation can assist conservation of the genetic diversity of indigenous pigs by salvaging germ cells from their neonatal testes. Using Meishan male piglets as an example, we examined whether testicular tissue would acquire the ability to produce sperm after cryopreservation and grafting into nude mice (MS group). For comparison, testicular tissue from neonatal Western crossbreed male piglets was used (WC group). Sixty days after xenografting (day 0 = grafting), MS grafts had already developed seminiferous tubules containing sperm, whereas in the WC grafts, sperm first appeared on day 120. The proportion of tubules containing spermatids and sperm was higher in the MS group than in the WC group between days 90 and 120. Moreover, in vitro‐matured porcine oocytes injected with a single sperm obtained from the MS group on day 180 developed to the blastocyst stage. The blastocyst formation rate after injection of the xenogeneic sperm was 14.6%, whereas the ratio in the absence of such injection (attributable to parthenogenesis) was 6.7%. Thus, cryopreserved Meishan testicular tissue acquired spermatogenic activity in host mice 60 days earlier than Western crossbreed tissue. Such xenogeneic sperm are likely capable of generating blastocysts in vitro.
Collapse
Affiliation(s)
- Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Nguyen Thi Men
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Junko Noguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Advances in gene therapy for hemophilia: basis, current status, and future perspectives. Int J Hematol 2018; 111:31-41. [DOI: 10.1007/s12185-018-2513-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
|
10
|
Ohmori T, Mizukami H, Katakai Y, Kawai S, Nakamura H, Inoue M, Shu T, Sugimoto H, Sakata Y. Safety of intra-articular transplantation of lentivirally transduced mesenchymal stromal cells for haemophilic arthropathy in a non-human primate. Int J Hematol 2018; 108:239-245. [PMID: 29737459 DOI: 10.1007/s12185-018-2465-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/01/2022]
Abstract
Joint bleeding and resultant arthropathy are major determinants of quality of life in haemophilia patients. We previously developed a mesenchymal stromal cell (MSC)-based treatment approach for haemophilic arthropathy in a mouse model of haemophilia A. Here, we evaluated the long-term safety of intra-articular injection of lentivirally transduced autologous MSCs in non-human primates. Autologous bone-marrow-derived MSCs transduced with a lentiviral vector expressing coagulation factor VIII (FVIII) were injected into the left knee joint of cynomolgus monkeys. We first conducted codon optimization to increase FVIII production in the cells. Lentiviral transduction of autologous MSCs resulted in a significant increase of FVIII in the culture supernatant before transplantation. We did not find any tumour generation around the knee structure at 11-16 months after injection by magnetic resonance imaging. The proviral sequence of the simian immunodeficiency virus lentiviral vector was not detected in the heart, lungs, spleen, liver, testis, or bone marrow by real-time quantitative PCR. We confirmed the long-term safety of intra-articular injection of transduced MSCs in a non-human primate. The procedure may be an attractive therapeutic approach for joint diseases in haemophilia patients.
Collapse
Affiliation(s)
- Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki, 305-0003, Japan
| | - Sho Kawai
- Department of Radiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hitoyasu Nakamura
- Department of Radiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Makoto Inoue
- ID Pharma Inc., 6 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Tsugumine Shu
- ID Pharma Inc., 6 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Hideharu Sugimoto
- Department of Radiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yoichi Sakata
- Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
11
|
Matsunari H, Watanabe M, Nakano K, Enosawa S, Umeyama K, Uchikura A, Yashima S, Fukuda T, Klymiuk N, Kurome M, Kessler B, Wuensch A, Zakhartchenko V, Wolf E, Hanazono Y, Nagaya M, Umezawa A, Nakauchi H, Nagashima H. Modeling lethal X-linked genetic disorders in pigs with ensured fertility. Proc Natl Acad Sci U S A 2018; 115:708-713. [PMID: 29311328 PMCID: PMC5789933 DOI: 10.1073/pnas.1715940115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically engineered pigs play an indispensable role in the study of rare monogenic diseases. Pigs harboring a gene responsible for a specific disease can be efficiently generated via somatic cell cloning. The generation of somatic cell-cloned pigs from male cells with mutation(s) in an X chromosomal gene is a reliable and straightforward method for reproducing X-linked genetic diseases (XLGDs) in pigs. However, the severe symptoms of XLGDs are often accompanied by impaired growth and reproductive disorders, which hinder the reproduction of these valuable model animals. Here, we generated unique chimeric boars composed of mutant cells harboring a lethal XLGD and normal cells. The chimeric boars exhibited the cured phenotype with fertility while carrying and transmitting the genotype of the XLGD. This unique reproduction system permits routine production of XLGD model pigs through the male-based breeding, thereby opening an avenue for translational research using disease model pigs.
Collapse
Affiliation(s)
- Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Kazuaki Nakano
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| | - Shin Enosawa
- National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Ayuko Uchikura
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| | - Sayaka Yashima
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| | - Toru Fukuda
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Annegret Wuensch
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Valeri Zakhartchenko
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Akihiro Umezawa
- National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan;
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| |
Collapse
|
12
|
Kaneko H, Kikuchi K, Nakai M, Fuchimoto D, Suzuki S, Sembon S, Noguchi J, Onishi A. Establishment of a strain of haemophilia-A pigs by xenografting of foetal testicular tissue from neonatally moribund cloned pigs. Sci Rep 2017; 7:17026. [PMID: 29208927 PMCID: PMC5717049 DOI: 10.1038/s41598-017-17017-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022] Open
Abstract
Grafting of testicular tissue into immunodeficient mice makes it possible to obtain functional sperm from immature donor animals that cannot be used for reproduction. We have developed a porcine model of human haemophilia A (haemophilia-A pigs) by nuclear transfer cloning from foetal fibroblasts after disruption of the X-linked coagulation factor VIII (F8) gene. Despite having a recessive condition, female F8+/- cloned pigs died of severe bleeding at an early age, as was the case for male F8-/Y cloned pigs, thus making it impossible to obtain progeny. In this study, therefore, we produced sperm from F8-/Y cloned pigs by grafting their foetal testicular tissue into nude mice. Two F8+/- female pigs were generated from oocytes injected with xenogeneic sperm. Unlike the F8+/- cloned pigs, they remained asymptomatic, and delivered five F8-/Y and four F8+/- pigs after being crossed with wild-type boars. The descendant F8-/Y pigs conserved the haemophilia phenotype. Thus, the present F8+/- pigs show resolution of the phenotypic abnormality, and will facilitate production of F8-/Y pigs as founders of a strain of haemophilia-A pigs for the development of new therapeutics for haemophilia A. This strategy will be applicable to other genetically modified pigs.
Collapse
Affiliation(s)
- Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan.
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Michiko Nakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan.,NARO, Tsukuba, Ibaraki, 305-8517, Japan
| | - Daiichiro Fuchimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan.
| | - Shunichi Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan.
| | - Shoichiro Sembon
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan.,NARO, Tsukuba, Ibaraki, 305-8517, Japan
| | - Junko Noguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan
| | - Akira Onishi
- Nihon University, College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
13
|
Kaneko H, Kikuchi K, Men NT, Nakai M, Noguchi J, Kashiwazaki N, Ito J. Production of sperm from porcine fetal testicular tissue after cryopreservation and grafting into nude mice. Theriogenology 2017; 91:154-162. [DOI: 10.1016/j.theriogenology.2016.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 02/06/2023]
|
14
|
Abstract
Hemophilia is the most well-known hereditary bleeding disorder, with an incidence of one in every 5000 to 30,000 males worldwide. The disease is treated by infusion of protein products on demand and as prophylaxis. Although these therapies have been very successful, some challenging and unresolved tasks remain, such as reducing bleeding rates, presence of target joints and/or established joint damage, eliminating the development of inhibitors, and increasing the success rate of immune-tolerance induction (ITI). Many preclinical trials are carried out on animal models for hemophilia generated by the hemophilia research community, which in turn enable prospective clinical trials aiming to tackle these challenges. Suitable animal models are needed for greater advances in treating hemophilia, such as the development of better models for evaluation of the efficacy and safety of long-acting products, more powerful gene therapy vectors than are currently available, and successful ITI strategies. Mice, dogs, and pigs are the most commonly used animal models for hemophilia. With the advent of the nuclease method for genome editing, namely the CRISPR/Cas9 system, it is now possible to create animal models for hemophilia other than mice in a short period of time. This review presents currently available animal models for hemophilia, and discusses the importance of animal models for the development of better treatment options for hemophilia.
Collapse
Affiliation(s)
- Ching-Tzu Yen
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Ni Fan
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan ; Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chieh Chou
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan ; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary Animal Models For Human Gene Therapy Applications. Curr Gene Ther 2016; 15:531-40. [PMID: 26415576 DOI: 10.2174/1566523215666150929110424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
Abstract
Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.
Collapse
|
16
|
Chao BN, Baldwin WH, Healey JF, Parker ET, Shafer-Weaver K, Cox C, Jiang P, Kanellopoulou C, Lollar P, Meeks SL, Lenardo MJ. Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene. J Thromb Haemost 2016; 14:346-55. [PMID: 26588198 PMCID: PMC4755856 DOI: 10.1111/jth.13202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 12/27/2022]
Abstract
UNLABELLED ESSENTIALS: Anti-factor VIII (FVIII) inhibitory antibody formation is a severe complication in hemophilia A therapy. We genetically engineered and characterized a mouse model with complete deletion of the F8 coding region. F8(TKO) mice exhibit severe hemophilia, express no detectable F8 mRNA, and produce FVIII inhibitors. The defined background and lack of FVIII in F8(TKO) mice will aid in studying FVIII inhibitor formation. BACKGROUND The most important complication in hemophilia A treatment is the development of inhibitory anti-Factor VIII (FVIII) antibodies in patients after FVIII therapy. Patients with severe hemophilia who express no endogenous FVIII (i.e. cross-reacting material, CRM) have the greatest incidence of inhibitor formation. However, current mouse models of severe hemophilia A produce low levels of truncated FVIII. The lack of a corresponding mouse model hampers the study of inhibitor formation in the complete absence of FVIII protein. OBJECTIVES We aimed to generate and characterize a novel mouse model of severe hemophilia A (designated the F8(TKO) strain) lacking the complete coding sequence of F8 and any FVIII CRM. METHODS Mice were created on a C57BL/6 background using Cre-Lox recombination and characterized using in vivo bleeding assays, measurement of FVIII activity by coagulation and chromogenic assays, and anti-FVIII antibody production using ELISA. RESULTS All F8 exonic coding regions were deleted from the genome and no F8 mRNA was detected in F8(TKO) mice. The bleeding phenotype of F8(TKO) mice was comparable to E16 mice by measurements of factor activity and tail snip assay. Similar levels of anti-FVIII antibody titers after recombinant FVIII injections were observed between F8(TKO) and E16 mice. CONCLUSIONS We describe a new C57BL/6 mouse model for severe hemophilia A patients lacking CRM. These mice can be directly bred to the many C57BL/6 strains of genetically engineered mice, which is valuable for studying the impact of a wide variety of genes on FVIII inhibitor formation on a defined genetic background.
Collapse
Affiliation(s)
- Brittany N. Chao
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD
| | - Wallace H. Baldwin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; the Department of Pediatrics, Emory University, Atlanta, GA
| | - John F. Healey
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; the Department of Pediatrics, Emory University, Atlanta, GA
| | - Ernest T. Parker
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; the Department of Pediatrics, Emory University, Atlanta, GA
| | - Kimberly Shafer-Weaver
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; the Department of Pediatrics, Emory University, Atlanta, GA
| | - Ping Jiang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD
| | - Chrysi Kanellopoulou
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD
| | - Pete Lollar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; the Department of Pediatrics, Emory University, Atlanta, GA
| | - Shannon L. Meeks
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; the Department of Pediatrics, Emory University, Atlanta, GA
| | - Michael J. Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Genetically engineered livestock for biomedical models. Transgenic Res 2016; 25:345-59. [PMID: 26820410 DOI: 10.1007/s11248-016-9928-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022]
Abstract
To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome.
Collapse
|
18
|
Sim DS, Kauser K. In Vivo Target Validation Using Biological Molecules in Drug Development. Handb Exp Pharmacol 2016; 232:59-70. [PMID: 26552401 DOI: 10.1007/164_2015_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Drug development is a resource-intensive process requiring significant financial and time investment. Preclinical target validation studies and in vivo testing of the therapeutic molecules in clinically relevant disease models can accelerate and significantly de-risk later stage clinical development. In this chapter, we will focus on (1) in vivo animal models and (2) pharmacological tools for target validation.
Collapse
Affiliation(s)
- Derek S Sim
- Bayer HealthCare, 455 Mission Bay Blvd. South, Suite 493, San Francisco, CA, 94158, USA.
| | - Katalin Kauser
- Bayer HealthCare, 455 Mission Bay Blvd. South, Suite 493, San Francisco, CA, 94158, USA
| |
Collapse
|
19
|
Ohmori T, Mizukami H, Ozawa K, Sakata Y, Nishimura S. New approaches to gene and cell therapy for hemophilia. J Thromb Haemost 2015; 13 Suppl 1:S133-42. [PMID: 26149014 DOI: 10.1111/jth.12926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hemophilia is considered suitable for gene therapy because it is caused by a single gene abnormality, and therapeutic coagulation factor levels may vary across a broad range. Recent success of hemophilia B gene therapy with an adeno-associated virus (AAV) vector in a clinical trial showed the real prospect that, through gene therapy, a cure for hemophilia may become a reality. However, AAV-mediated gene therapy is not applicable to patients with hemophilia A at present, and neutralizing antibodies against AAV reduce the efficacy of AAV-mediated strategies. Because patients that benefit from AAV treatment (hemophilia B without neutralizing antibodies) are estimated to represent only 15% of total patients with hemophilia, the development of basic technologies for hemophilia A and those that result in higher therapeutic effects are critical. In this review, we present an outline of gene therapy methods for hemophilia, including the transition of technical developments thus far and our novel techniques.
Collapse
Affiliation(s)
- T Ohmori
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - H Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - K Ozawa
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Y Sakata
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - S Nishimura
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Translational Systems Biology and Medicine Initiative, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Song BS, Kim JS, Kim YH, Sim BW, Yoon SB, Cha JJ, Choi SA, Yang HJ, Mun SE, Park YH, Jeong KJ, Huh JW, Lee SR, Kim SH, Kim SU, Chang KT. Induction of autophagy during in vitro maturation improves the nuclear and cytoplasmic maturation of porcine oocytes. Reprod Fertil Dev 2015; 26:974-81. [PMID: 23902659 DOI: 10.1071/rd13106] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/25/2013] [Indexed: 12/16/2022] Open
Abstract
While a critical role of autophagy in mammalian early embryogenesis has been demonstrated, few studies have been conducted regarding the role of autophagy in in vitro maturation (IVM) of immature oocytes. In the present study we investigated the effect of rapamycin, a chemical autophagy inducer, on the nuclear and cytoplasmic maturation of porcine oocytes. Rapamycin treatment led to increased expression of LC3-II, an autophagy marker. Compared with the control group, as well as the 5 and 10nM rapamycin treatment groups, the rate of MII oocyte production was higher in the 1nM rapamycin treatment group, indicating improvement in nuclear maturation. In the analyses of cytoplasmic maturation, we found that the level of p34(cdc2), a cytoplasmic maturation marker, and the monospermic fertilisation rate were higher in the 1nM rapamycin treatment group than in the other groups. Moreover, the beneficial effect of 1nM rapamycin on cytoplasmic maturation of MII oocytes was further evidenced by increases in blastocyst formation rate, total cell number and cell survival. In the blastocyst embryos, anti-apoptotic Bcl-xL transcript levels were elevated in the 1nM rapamycin-treated group, whereas pro-apoptotic Bax transcript levels were decreased. Collectively, these results suggest that induction of autophagy during IVM contributes to enhancement of the nuclear and cytoplasmic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Jae-Jin Cha
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seon-A Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Hae-Jun Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seong-Eun Mun
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sang-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| |
Collapse
|
21
|
Genetically modified pigs to model human diseases. J Appl Genet 2015; 55:53-64. [PMID: 24234401 DOI: 10.1007/s13353-013-0182-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/06/2023]
Abstract
Genetically modified mice are powerful tools to investigate the molecular basis of many human diseases. Mice are, however, of limited value for preclinical studies, because they differ significantly from humans in size, general physiology, anatomy and lifespan. Considerable efforts are, thus, being made to develop alternative animal models for a range of human diseases. These promise powerful new resources that will aid the development of new diagnostics, medicines and medical procedures. Here, we provide a comprehensive review of genetically modified porcine models described in the scientific literature: various cancers, cystic fibrosis, Duchenne muscular dystrophy, autosomal polycystic kidney disease, Huntington’s disease, spinal muscular atrophy, haemophilia A, X-linked severe combined immunodeficiency, retinitis pigmentosa, Stargardt disease, Alzheimer’s disease, various forms of diabetes mellitus and cardiovascular diseases.
Collapse
|
22
|
Anti-factor IXa/X bispecific antibody ACE910 prevents joint bleeds in a long-term primate model of acquired hemophilia A. Blood 2014; 124:3165-71. [PMID: 25274508 DOI: 10.1182/blood-2014-07-585737] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ACE910 is a humanized anti-factor IXa/X bispecific antibody mimicking the function of factor VIII (FVIII). We previously demonstrated in nonhuman primates that a single IV dose of ACE910 exerted hemostatic activity against hemophilic bleeds artificially induced in muscles and subcutis, and that a subcutaneous (SC) dose of ACE910 showed a 3-week half-life and nearly 100% bioavailability, offering support for effective prophylaxis for hemophilia A by user-friendly SC dosing. However, there was no direct evidence that such SC dosing of ACE910 would prevent spontaneous bleeds occurring in daily life. In this study, we newly established a long-term primate model of acquired hemophilia A by multiple IV injections of an anti-primate FVIII neutralizing antibody engineered in mouse-monkey chimeric form to reduce its antigenicity. The monkeys in the control group exhibited various spontaneous bleeding symptoms as well as continuous prolongation of activated partial thromboplastin time; notably, all exhibited joint bleeds, which are a hallmark of hemophilia. Weekly SC doses of ACE910 (initial 3.97 mg/kg followed by 1 mg/kg) significantly prevented these bleeding symptoms; notably, no joint bleeding symptoms were observed. ACE910 is expected to prevent spontaneous bleeds and joint damage in hemophilia A patients even with weekly SC dosing, although appropriate clinical investigation is required.
Collapse
|
23
|
Nielsen LN, Wiinberg B, Häger M, Holmberg HL, Hansen JJ, Roepstorff K, Tranholm M. A novel F8 -/- rat as a translational model of human hemophilia A. J Thromb Haemost 2014; 12:1274-82. [PMID: 24931420 DOI: 10.1111/jth.12635] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND In preclinical hemophilia research, an animal model that reflects both the phenotype and the pathology of the disease is needed. OBJECTIVES Here, we describe the generation and characterization of a novel genetically engineered F8(-/-) rat model. METHODS The rats were produced on a Sprague Dawley background with the zinc finger nuclease technique. A founder with a 13-bp deletion in exon 16 causing a premature translational stop in the C-terminal part of the A3 domain of factor VIII was selected, and a breeding colony was established. RESULTS Seventy per cent of the homozygous rats had clinically manifest spontaneous hemorrhagic episodes that needed treatment. The F8(-/-) rats had no detectable FVIII activity, and had a significantly prolonged activated partial thromboplastin time (APTT) and clot formation time as compared with wild-type (WT)/WT rats. In vitro spiking of rat plasma with human recombinant FVIII resulted in dose-dependent normalization of the APTT. CONCLUSION On the basis of the targeted deletion in F8, and the distinct physical and analytic characteristics of the rat, we conclude that an FVIII-deficient rat strain has been generated that has the potential to contribute greatly to translational research.
Collapse
|
24
|
Mulcahy PJ, Iremonger K, Karyka E, Herranz-Martín S, Shum KT, Tam JKV, Azzouz M. Gene therapy: a promising approach to treating spinal muscular atrophy. Hum Gene Ther 2014; 25:575-86. [PMID: 24845847 DOI: 10.1089/hum.2013.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.
Collapse
Affiliation(s)
- Pádraig J Mulcahy
- 1 Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield , Sheffield S10 2HQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
25
|
Nichols TC. Lessons Learned from Animal Models of Inherited Bleeding Disorders. HEMATOLOGY EDUCATION. EUROPEAN HEMATOLOGY ASSOCIATION. CONGRESS. EDUCATION PROGRAM 2014; 8:39-46. [PMID: 26052366 PMCID: PMC4457463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Advances in treatment of hemophilia and von Willebrand disease (VWD) depend heavily on the availability of well-characterized animal models. These animals faithfully recapitulate the severe bleeding phenotype that occurs in humans with these inherited bleeding disorders. Research in these animal models represents important early and intermediate steps of translational research aimed at addressing current limitations in treatment such as the development of inhibitory antibodies to coagulation factors VIII and IX (FVIII, FIX) or von Willebrand factor (VWF), the life-long need for frequent venous access, the expense of therapy, and the ongoing need for improved ex vivo coagulation assays and in vivo methods for assessing hemostasis. The primary strengths of research that utilizes these highly relevant animal models include the development of better and safer treatments for hemophilia and VWD. Careful consideration of the strengths and limitations of the specific models is essential for optimizing chances for successful translation of advances to clinical medicine that benefits humans and animals.
Collapse
Affiliation(s)
- Timothy C Nichols
- University of North Carolina at Chapel Hill: Department of Pathology and Laboratory Medicine and Department of Medicine
| |
Collapse
|
26
|
Kaneko H, Kikuchi K, Nakai M, Somfai T, Noguchi J, Tanihara F, Ito J, Kashiwazaki N. Generation of live piglets for the first time using sperm retrieved from immature testicular tissue cryopreserved and grafted into nude mice. PLoS One 2013; 8:e70989. [PMID: 23923039 PMCID: PMC3726602 DOI: 10.1371/journal.pone.0070989] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022] Open
Abstract
Cryopreservation of immature testicular tissues is essential for increasing the possibilities of offspring generation by testicular xenografting for agricultural or medical purposes. However, successful production of offspring from the sperm involved has never been reported previously. In the present study, therefore, using intracytoplasmic sperm injection (ICSI), we examined whether xenogeneic sperm obtained from immature pig testicular tissue after cryopreservation would have the capacity to produce live piglets. Testicular fragments from 9- to 11-day-old piglets were vitrified after 10- or 20-min immersion in vitrification solution containing ethylene glycol (EG), polyvinyl pyrrolidone (PVP) and trehalose as cryoprotectants, and then stored in liquid nitrogen for more than 140 days. Thirty nude mice were assigned to each immersion-time group. Testicular fragments were transplanted under the back skin of castrated mice immediately after warming and removal of the cryoprotectants. Blood and testicular grafts were then recovered from the recipient mice on days 60, 120, 180 and 230−350 (day 0 = grafting). Histological assessment of the testicular grafts and analyses of inhibin and testosterone production revealed no significant differences between the two immersion-time groups, indicating equal growth activity of the cryopreserved tissues. A single sperm obtained from a mouse in each group on day 230−350 was injected into an in vitro-matured porcine oocyte, and then the ICSI oocytes were transferred to the oviducts of estrus-synchronized recipient gilts. One out of 4 gilts that had received oocytes fertilized using sperm from the 10-min immersion group delivered 2 live piglets, and one of another 4 gilts from the 20-min group delivered 4 live piglets. Thus, we have successfully generated porcine offspring utilizing sperm from immature testicular tissues after cryopreservation and transplantation into nude mice. The present model using pigs will be applicable to many large animals, since pigs are phylogenetically distant from the murine recipients.
Collapse
Affiliation(s)
- Hiroyuki Kaneko
- Animal Development and Differentiation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Kikuchi
- Animal Development and Differentiation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- * E-mail:
| | - Michiko Nakai
- Transgenic Pig Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Tamas Somfai
- Animal Breeding and Reproduction Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Junko Noguchi
- Animal Development and Differentiation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Fuminori Tanihara
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
27
|
Mao J, Xi X, Kapranov P, Dong B, Firrman J, Xu R, Xiao W. In vitro and In vivo Model Systems for Hemophilia A Gene Therapy. ACTA ACUST UNITED AC 2013; Suppl 1. [PMID: 25401041 PMCID: PMC4229687 DOI: 10.4172/2157-7412.s1-014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hemophilia A is a hereditary disorder caused by various mutations in factor VIII gene resulting in either a severe deficit or total lack of the corresponding activity. Recent success in gene therapy of a related disease, hemophilia B, gives new hope that similar success can be achieved for hemophilia A as well. To develop a gene therapy strategy for the latter, a variety of model systems are needed to evaluate molecular engineering of the factor VIII gene, vector delivery efficacy and safety-related issues. Typically, a tissue culture cell line is the most convenient way to get a preliminary glimpse of the potential of a vector delivery strategy. It is then followed by extensive testing in hemophilia A mouse and dog models. Newly developed hemophilia A sheep may provide yet another tool for evaluation of factor VIII gene delivery vectors. Hemophilia models based on other species may also be developed since hemophiliac animals have been identified or generated in rat, pig, cattle and horse. Although a genetic nonhuman primate hemophilia A model has yet to be developed, the non-genetic hemophilia A model can also be used for special purposes when specific questions need to be addressed that cannot not be answered in other model systems. Hemophilia A is caused by a functional deficiency in the factor VIII gene. This X-linked, recessive bleeding disorder affects approximately 1 in 5000 males [1–3]. Clinically, it is characterized by frequent and spontaneous joint hemorrhages, easy bruising and prolonged bleeding time. The coagulation activity of FVIII dictates severity of the clinical symptoms. Approximately 50% of all cases are classified as severe with less than 1% of normal levels of factor VIII detected [4]. This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding. In contrast, patients with 5–30% of normal factor VIII activity exhibit mild clinical manifestations.
Collapse
Affiliation(s)
- Jianhua Mao
- Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China ; Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| | - Xiaodong Xi
- Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | - Biao Dong
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| | - Jenni Firrman
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| | - Ruian Xu
- Institute of Molecular Medicine, Molecular Medicine Engineering Research Center, Huaqiao University, Quanzhou 362021, China
| | - Weidong Xiao
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| |
Collapse
|