1
|
Aanniz T, El Baaboua A, Aboulaghras S, Bouyahya A, Benali T, Balahbib A, El Omari N, Butnariu M, Muzammil K, Yadav KK, Al Abdulmonem W, Lee LH, Zengin G, Chamkhi I. Impact of water stress to plant epigenetic mechanisms in stress and adaptation. PHYSIOLOGIA PLANTARUM 2025; 177:e70058. [PMID: 39831338 DOI: 10.1111/ppl.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation. Indeed, plants modify, change, and modulate gene expression when grown in a low-water environment. This adaptation occurs through several mechanisms that affect the expression of genes, allowing these plants to resist in dry regions. Epigenetic modulation has emerged as a major factor in the transcription regulation of drought stress-related genes. Moreover, specific molecular and epigenetic modifications in the expression of certain genetic networks lead to adapted responses that aid a plant's acclimatization and survival during repeated stress. Indeed, understanding plant responses to severe environmental stresses, including drought, is critical for biotechnological applications. Here, we first focused on drought stress in plants and their general adaptation mechanisms to this stress. We also discussed plant epigenetic regulation when exposed to water stress and how this adaptation can be passed down through generations.
Collapse
Affiliation(s)
- Tarik Aanniz
- Laboratory of Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, Timis
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Learn-Han Lee
- Microbiome Research Group, Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de Institut Scientifique Rabat
- Mohammed VI Polytechnic University, Agrobiosciences, Benguerir, Morocco
| |
Collapse
|
2
|
Bahk S, Ahsan N, An J, Kim SH, Ramadany Z, Hong JC, Thelen JJ, Chung WS. Identification of mitogen-activated protein kinases substrates in Arabidopsis using kinase client assay. PLANT SIGNALING & BEHAVIOR 2024; 19:2326238. [PMID: 38493505 PMCID: PMC10950278 DOI: 10.1080/15592324.2024.2326238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/25/2024] [Indexed: 03/19/2024]
Abstract
Mitogen-activated protein kinase (MPK) cascades are essential signal transduction components that control a variety of cellular responses in all eukaryotes. MPKs convert extracellular stimuli into cellular responses by the phosphorylation of downstream substrates. Although MPK cascades are predicted to be very complex, only limited numbers of MPK substrates have been identified in plants. Here, we used the kinase client (KiC) assay to identify novel substrates of MPK3 and MPK6. Recombinant MPK3 or MPK6 were tested against a large synthetic peptide library representing in vivo phosphorylation sites, and phosphorylated peptides were identified by high-resolution tandem mass spectrometry. From this screen, we identified 23 and 21 putative client peptides of MPK3 and MPK6, respectively. To verify the phosphorylation of putative client peptides, we performed in vitro kinase assay with recombinant fusion proteins of isolated client peptides. We found that 13 and 9 recombinant proteins were phosphorylated by MPK3 and MPK6. Among them, 11 proteins were proven to be the novel substrates of two MPKs. This study suggests that the KiC assay is a useful method to identify new substrates of MPKs.
Collapse
Affiliation(s)
- Sunghwa Bahk
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Nagib Ahsan
- Department of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Jonguk An
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun Ho Kim
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Zakiyah Ramadany
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
3
|
Qiao M, Hong C, Jiao Y, Hou S, Gao H. Impacts of Drought on Photosynthesis in Major Food Crops and the Related Mechanisms of Plant Responses to Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:1808. [PMID: 38999648 PMCID: PMC11243883 DOI: 10.3390/plants13131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024]
Abstract
Drought stress is one of the most critical threats to crop productivity and global food security. This review addresses the multiple effects of drought on the process of photosynthesis in major food crops. Affecting both light-dependent and light-independent reactions, drought leads to severe damage to photosystems and blocks the electron transport chain. Plants face a CO2 shortage provoked by stomatal closure, which triggers photorespiration; not only does it reduce carbon fixation efficiency, but it also causes lower overall photosynthetic output. Drought-induced oxidative stress generates reactive oxygen species (ROS) that damage cellular structures, including chloroplasts, further impairing photosynthetic productivity. Plants have evolved a variety of adaptive strategies to alleviate these effects. Non-photochemical quenching (NPQ) mechanisms help dissipate excess light energy as heat, protecting the photosynthetic apparatus under drought conditions. Alternative electron pathways, such as cyclical electron transmission and chloroplast respiration, maintain energy balance and prevent over-reduction of the electron transport chain. Hormones, especially abscisic acid (ABA), ethylene, and cytokinin, modulate stomatal conductance, chlorophyll content, and osmotic adjustment, further increasing the tolerance to drought. Structural adjustments, such as leaf reordering and altered root architecture, also strengthen tolerance. Understanding these complex interactions and adaptive strategies is essential for developing drought-resistant crop varieties and ensuring agricultural sustainability.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- National Engineering Research Center for Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.Q.)
| |
Collapse
|
4
|
Lee KA, Kim YN, Kantharaj V, Lee YB, Woo SY. Seedling growth and photosynthetic response of Pterocarpus indicus L. to shading stress. PLANT SIGNALING & BEHAVIOR 2023; 18:2245625. [PMID: 37573547 PMCID: PMC10424625 DOI: 10.1080/15592324.2023.2245625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
In tropical forests, the shade provided by tree canopies and extreme climate causes inhibition of plant seedling growth due to the lack of light. However, the plants can acclimate to such environmental stress by generating specific responses. The present study aimed to investigate the effects of shading conditions on ecophysiological performance of Narra seedlings (Pterocarpus indicus L.) via a mesocosm experiment. A pot experiment was conducted for 20 weeks in a greenhouse with different shading treatments, 75% (control), 25%, and 4% of full sunlight (FS). As a result, the photosynthetic rate (PN), Rubisco enzyme activity, maximum carboxylation rate (VCmax), and maximum electron transport rate (Jmax) in 25% FS treatment were higher or similar to those in control after three weeks of the beginning of shade treatment, whereas the highest values after ten weeks were observed in control. In contrast, the photosynthetic pigments were highest in control after three weeks, while the values were highest in 25% FS treatment after ten weeks. The growth parameters, such as biomass and leaf area, were highest in 75% FS treatment. The expression of Rubisco, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase were up-regulated in 4% FS treatment compared to control after ten weeks, contributing to tolerating the shade stress. Our findings indicated the capacity of P. indicus seedlings to tolerate and acclimate low light conditions causing shade stress by generating specific physiological and morphological responses, especially Rubisco enzyme activity as well as gene expression related to photosynthetic activity. The present study will improve our understanding of the tolerance mechanism of Narra plant under light-deficient conditions, thereby providing a better strategy for efficiently growing seedlings of this species in tropical rainforests.
Collapse
Affiliation(s)
- Keum-Ah Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Nam Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
| | - Vimalraj Kantharaj
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Yong Bok Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
| | - Su Young Woo
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
6
|
Niu L, Du C, Wang W, Zhang M, Wang W, Liu H, Zhang J, Wu X. Transcriptome and co-expression network analyses of key genes and pathways associated with differential abscisic acid accumulation during maize seed maturation. BMC PLANT BIOLOGY 2022; 22:359. [PMID: 35869440 PMCID: PMC9308322 DOI: 10.1186/s12870-022-03751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Currently, mechanical maize kernel harvesting has not been fully utilized in developing countries including China, partly due to the absence of suitable cultivars capable of rapid desiccation during seed maturation. The initiation of rapid desiccation during seed maturation is regulated by abscisic acid (ABA). For further characterization of ABA-regulated key genes and cellular events, it is necessary to perform transcriptome analysis of maize developing embryos. The ABA synthesis-deficient mutant (vp5) and normal maize (Vp5) seeds are suitable materials for such purpose. RESULTS In the present work, developing vp5 and Vp5 embryos were compared by ABA content and transcriptome analyses. Quantitative analysis revealed the significant difference in ABA synthesis between both genotypes. From 29 days after pollination (DAP), ABA content increased rapidly in Vp5 embryos, but decreased gradually in vp5 embryos. At 36 DAP, ABA level in vp5 decreased to 1/4 that of Vp5, suggesting that the differential ABA levels would affect seed maturation. Comparative transcriptomic analysis has found 1019 differentially expressed genes (DEGs) between both genotypes, with the most DEGs (818) at 36 DAP. Further, weighted correlation network analysis (WGCNA) revealed eight DEGs co-expression modules. Particularly, a module was negatively correlated with ABA content in vp5 embryos. The module was mainly involved in metabolic and cellular processes, and its hub genes encoded thiamine, NPF proteins, calmodulin, metallothionein etc. Moreover, the expression of a set of key genes regulated by ABA was further verified by RT-qPCR. The results of the present work suggested that because of ABA deficiency, the vp5 seeds maintained strong metabolic activities and lacked dormancy initiation during seed maturation. CONCLUSION Transcriptome and WGCNA analyses revealed significant ABA-related changes in metabolic pathways and DEGs between vp5 and Vp5 during seed maturation. The results would provide insights for elucidating the molecular mechanism of ABA signaling and developing high dehydration tolerance maize suitable for mechanical harvesting.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Cui Du
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenrui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Man Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, Bohra A, Varshney RK. Moving Beyond DNA Sequence to Improve Plant Stress Responses. Front Genet 2022; 13:874648. [PMID: 35518351 PMCID: PMC9061961 DOI: 10.3389/fgene.2022.874648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
Plants offer a habitat for a range of interactions to occur among different stress factors. Epigenetics has become the most promising functional genomics tool, with huge potential for improving plant adaptation to biotic and abiotic stresses. Advances in plant molecular biology have dramatically changed our understanding of the molecular mechanisms that control these interactions, and plant epigenetics has attracted great interest in this context. Accumulating literature substantiates the crucial role of epigenetics in the diversity of plant responses that can be harnessed to accelerate the progress of crop improvement. However, harnessing epigenetics to its full potential will require a thorough understanding of the epigenetic modifications and assessing the functional relevance of these variants. The modern technologies of profiling and engineering plants at genome-wide scale provide new horizons to elucidate how epigenetic modifications occur in plants in response to stress conditions. This review summarizes recent progress on understanding the epigenetic regulation of plant stress responses, methods to detect genome-wide epigenetic modifications, and disentangling their contributions to plant phenotypes from other sources of variations. Key epigenetic mechanisms underlying stress memory are highlighted. Linking plant response with the patterns of epigenetic variations would help devise breeding strategies for improving crop performance under stressed scenarios.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
8
|
Sheoran S, Kaur Y, Kumar S, Shukla S, Rakshit S, Kumar R. Recent Advances for Drought Stress Tolerance in Maize ( Zea mays L.): Present Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:872566. [PMID: 35707615 PMCID: PMC9189405 DOI: 10.3389/fpls.2022.872566] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
Drought stress has severely hampered maize production, affecting the livelihood and economics of millions of people worldwide. In the future, as a result of climate change, unpredictable weather events will become more frequent hence the implementation of adaptive strategies will be inevitable. Through utilizing different genetic and breeding approaches, efforts are in progress to develop the drought tolerance in maize. The recent approaches of genomics-assisted breeding, transcriptomics, proteomics, transgenics, and genome editing have fast-tracked enhancement for drought stress tolerance under laboratory and field conditions. Drought stress tolerance in maize could be considerably improved by combining omics technologies with novel breeding methods and high-throughput phenotyping (HTP). This review focuses on maize responses against drought, as well as novel breeding and system biology approaches applied to better understand drought tolerance mechanisms and the development of drought-tolerant maize cultivars. Researchers must disentangle the molecular and physiological bases of drought tolerance features in order to increase maize yield. Therefore, the integrated investments in field-based HTP, system biology, and sophisticated breeding methodologies are expected to help increase and stabilize maize production in the face of climate change.
Collapse
|
9
|
Ali Q, Mazhar MW, Ishtiaq M, Hussain AI, Bhatti KH, Maqbool M, Hussain T, Khanum H, Sardar T, Mazhar M. Efficacy of Zn-Aspartate in comparison with ZnSO4 and L-Aspartate in amelioration of drought stress in maize by modulating antioxidant defence; osmolyte accumulation and photosynthetic attributes. PLoS One 2021; 16:e0260662. [PMID: 34941898 PMCID: PMC8700056 DOI: 10.1371/journal.pone.0260662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/14/2021] [Indexed: 12/01/2022] Open
Abstract
Human population is exceeding beyond the carrying capacity of earth resources and stresses like water shortage faced by the plants is jeopardizing the food security. Current research study was aimed to investigate the potentials of Zn-Aspartate (Zn-Asp), Zn-Sulphate (ZnSO4) and L-Aspartate (L-Asp) to be used as osmolytes and role of various levels of these chemicals in combating drought stress in maize plants in Punjab, Pakistan. Study was performed on two plots corresponding to drought and controlled environments. The lamina of maize plants was sprinkled row wise with various treatments including No spray (NS), water sprinkle (WS), sprinkle with ZnSO4 0.25% and 0.50%, sprinkle with Zn-Asp 0.25% and 0.50% and Foliar sprinkle of L-Asp 0.5% and 1%, respectively. Role of major osmoprotectants and secondary metabolites was analyzed and positive changes were found in total soluble sugars (41.16), flavonoids (5387.74), tocopherol content (9089.18), ascorbic acid (645.27) and anthocyanin (14.84) conc. which assists in mitigating drought menace on maize. Shoot mineral ions (Ca, K, Zn, P, Mg and N) status of water stressed maize plants was also analyzed and it was found that application experimental dose enhanced their availability to crop. Physio-biochemical studies were performed on antioxidants enzymes like superoxide dismutase (SOD), peroxidase (POD), carotenoid content (CC), malondialdehyde, hydrogen peroxide, aspartate and free amino acid contents. The activity of SOD was increased by 28.5% and activity of POD was increased by 33.33% due to foliar applied 0.5% Zn-Asp under drought stress. Photosynthetic pigments (chlorophyll A, B and total chlorophyll content) analysis was also carried out in this study. It was found that conc. of different chlorophylls pigments increased (chl-A: 2.24, chl-B: 25.12, total chl: 24.30) which enhanced photosynthetic activity culminating into better growth and yield). The level of malondialdehyde and hydrogen peroxide decreased by 43.9% and 32.8% respectively on treatment with 0.5% Zn-Asp proving the efficacy of the treatment in drought amelioration. Study reveals that Zn-Asp induced modulations are far better than conventional sulphate salts in mitigating water scarce environment. Current study recommends the use of the Zn-Asp to meet the global food and agricultural challenges as compared to ZnSO4 and L-Asp due to its better drought amelioration properties. This research provides valuable informations which can used for future research and practical use in agriculture fields by indigenous and other people to enhance yield of maize to meet the food necessities of country.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
- * E-mail:
| | | | | | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Tanveer Hussain
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Humaira Khanum
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Tauqeer Sardar
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Mubashir Mazhar
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| |
Collapse
|
10
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
11
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
12
|
Tang C, Zhang Z, Tian S, Cai P. Transcriptomic responses of Microcystis aeruginosa under electromagnetic radiation exposure. Sci Rep 2021; 11:2123. [PMID: 33483577 PMCID: PMC7822859 DOI: 10.1038/s41598-020-80830-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
Electromagnetic radiation is an important environmental factor. It has a potential threat to public health and ecological environment. However, the mechanism by which electromagnetic radiation exerts these biological effects remains unclear. In this study, the effect of Microcystis aeruginosa under electromagnetic radiation (1.8 GHz, 40 V/m) was studied by using transcriptomics. A total of 306 differentially expressed genes, including 121 upregulated and 185 downregulated genes, were obtained in this study. The differentially expressed genes were significantly enriched in the ribosome, oxidative phosphorylation and carbon fixation pathways, indicating that electromagnetic radiation may inhibit protein synthesis and affect cyanobacterial energy metabolism and photosynthesis. The total ATP synthase activity and ATP content significantly increased, whereas H+K+-ATPase activity showed no significant changes. Our results suggest that the energy metabolism pathway may respond positively to electromagnetic radiation. In the future, systematic studies on the effects of electromagnetic radiation based on different intensities, frequencies, and exposure times are warranted; to deeply understand and reveal the target and mechanism of action of electromagnetic exposure on organisms.
Collapse
Affiliation(s)
- Chao Tang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
| | - Ziyan Zhang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
| | - Shen Tian
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China.
- Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, People's Republic of China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
13
|
Varotto S, Tani E, Abraham E, Krugman T, Kapazoglou A, Melzer R, Radanović A, Miladinović D. Epigenetics: possible applications in climate-smart crop breeding. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5223-5236. [PMID: 32279074 PMCID: PMC7475248 DOI: 10.1093/jxb/eraa188] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 05/23/2023]
Abstract
To better adapt transiently or lastingly to stimuli from the surrounding environment, the chromatin states in plant cells vary to allow the cells to fine-tune their transcriptional profiles. Modifications of chromatin states involve a wide range of post-transcriptional histone modifications, histone variants, DNA methylation, and activity of non-coding RNAs, which can epigenetically determine specific transcriptional outputs. Recent advances in the area of '-omics' of major crops have facilitated identification of epigenetic marks and their effect on plant response to environmental stresses. As most epigenetic mechanisms are known from studies in model plants, we summarize in this review recent epigenetic studies that may be important for improvement of crop adaptation and resilience to environmental changes, ultimately leading to the generation of stable climate-smart crops. This has paved the way for exploitation of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals, and the Environment, University of Padova, Agripolis, Viale dell’Università, Padova, Italy
| | - Eleni Tani
- Department of Crop Science, Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Demeter (HAO-Demeter), Lykovrysi, Greece
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
14
|
Proteomic analyses unraveling water stress response in two Eucalyptus species originating from contrasting environments for aridity. Mol Biol Rep 2020; 47:5191-5205. [PMID: 32564226 DOI: 10.1007/s11033-020-05594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.
Collapse
|
15
|
Li C, Bian B, Gong T, Liao W. Comparative proteomic analysis of key proteins during abscisic acid-hydrogen peroxide-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:185-194. [PMID: 30082096 DOI: 10.1016/j.jplph.2018.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 05/23/2023]
Abstract
Previous results have shown that hydrogen peroxide (H2O2) is involved in abscisic acid (ABA)-induced adventitious root development under drought stress. In this study, a comparative proteomic analysis was conducted to explore the key proteins during ABA-H2O2-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. The results revealed that 48 of 56 detected proteins spots were confidently matched to NCBI database entries. Among them, 10 protein spots were up-regulated while 4 protein spots were down-regulated under drought stress; 22 protein spots were up-regulated by ABA under drought stress; treatment with ABA plus H2O2 scavenger catalase (CAT) up-regulated 6 protein spots and down-regulated 6 protein spots under drought stress. The identified proteins were divided into three categories: biological process, molecular function, and cellular component. According to their functions, the 48 identified proteins were grouped into 10 categories, including photosynthesis, stress response, protein folding, modification, and degradation, etc. According to subcellular localization, about 24 proteins (half of the total) were predicted to be localized in chloroplasts. ABA significantly up-regulated the expression of photosynthesis-related proteins (SBPase, OEE1), stress-defense-related proteins (2-Cys-Prx, HBP2), and folding-, modification-, and degradation-related proteins (TPal) under drought stress. However, the effects of ABA were inhibited by CAT. The proteins were further analyzed at the transcription level, and the expression of four of five genes (except 2-Cys-Prx) was in accordance with the corresponding protein expression. The protein abundance changes of OEE1 and SBPase were also supported by western blot analysis. Therefore, H2O2 may be involved in ABA-induced adventitious root development under drought stress by regulating photosynthesis-related proteins, stress defense-related proteins, and folding-, modification-, and degradation-related proteins.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Biting Bian
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Tingyu Gong
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China.
| |
Collapse
|
16
|
Xin L, Zheng H, Yang Z, Guo J, Liu T, Sun L, Xiao Y, Yang J, Yang Q, Guo L. Physiological and proteomic analysis of maize seedling response to water deficiency stress. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:29-38. [PMID: 29852332 DOI: 10.1016/j.jplph.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 05/10/2023]
Abstract
Low water availability is a major abiotic factor limiting photosynthesis and the growth and yield of crops. Maize (Zea mays) is among the most drought-sensitive cereal crops. Herein, the physiological and proteomic changes of maize seedlings caused by polyethylene-glycol-induced water deficit were analyzed. The results showed that malondialdehyde and proline contents increased continuously in the treated seedlings. Soluble sugar content and superoxide dismutase activity were upregulated initially but became downregulated under prolonged water deficit. A total of 104 proteins were found to be differentially accumulated under water stress. The identified proteins were mainly involved in photosynthesis, carbohydrate metabolism, stress defense, energy production, and protein metabolism. Interestingly, substantial incongruence between protein and transcript levels was observed, indicating that gene expression in water-stressed maize seedlings is controlled by complex mechanisms. Finally, we propose a hypothetical model that includes the different molecular, physiological, and biochemical changes that occurred during the response and tolerance of maize seedlings to water deficiency. Our study provides valuable insight for further research into the overall mechanisms underlying drought response and tolerance in maize and other plants.
Collapse
Affiliation(s)
- Longfei Xin
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Huifang Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zongju Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiameng Guo
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianxue Liu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Xiao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Yang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinghua Yang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Tyutereva EV, Dmitrieva VA, Shavarda AL, Voitsekhovskaja OV. Stomata control is changed in a chlorophyll b-free barley mutant. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:453-463. [PMID: 32290984 DOI: 10.1071/fp17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/07/2017] [Indexed: 06/11/2023]
Abstract
The barley (Hordeum vulgare L.) chlorina f2 3613 mutant exhibits low photosynthesis and slow growth. This results from downregulation of the levels of photosynthetic antenna proteins caused by the absence of chl b, the major regulator of photosynthetic antennae in land plants. Here, we demonstrate that, when grown in the field in full sunlight, this mutant displays a changed pattern of stomatal responses compared with the parental wild-type cultivar Donaria. However, stomatal regulation of chlorina f2 3613 plants was restored when plants were placed under a shade cover for several days. The shade cover reduced incident PAR from 2000-2200μmolm-2s-1 to 800-880μmolm-2s-1 as measured at noon. Contents of ABA, the xanthophyll precursors of ABA biosynthesis and minor antenna proteins, as well as reactive oxygen species levels in stomata and the sensitivity of stomata to exogenously supplied ABA, were determined in leaves of wild-type Donaria and chlorina f2 3613 before and after shading. The results support the view that the restoration of stomatal control in barley chlorina f2 3613 is correlated with an increase in the levels of the minor antenna protein Lhcb6, which has recently been implicated in the enhancement of stomatal sensitivity to ABA in Arabidopsis thaliana (L.) Heynh.
Collapse
Affiliation(s)
- Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint-Petersburg, Russia
| | - Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint-Petersburg, Russia
| | - Alexey L Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint-Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint-Petersburg, Russia
| |
Collapse
|
18
|
Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I. No Time to Waste: Transcriptome Study Reveals that Drought Tolerance in Barley May Be Attributed to Stressed-Like Expression Patterns that Exist before the Occurrence of Stress. FRONTIERS IN PLANT SCIENCE 2018; 8:2212. [PMID: 29375595 PMCID: PMC5767312 DOI: 10.3389/fpls.2017.02212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 05/24/2023]
Abstract
Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed with special emphasis on processes that take place in barley roots. When possible, the interconnections between particular factors are emphasized to draw a broader picture of the molecular mechanisms of drought tolerance in barley.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Marta Sowa
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Gajek
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Janusz Kościelniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
19
|
|
20
|
Vidović M, Morina F, Prokić L, Milić-Komić S, Živanović B, Jovanović SV. Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H 2O 2 in (peri)vascular tissue induced by sunlight and paraquat. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:25-39. [PMID: 27688091 DOI: 10.1016/j.jplph.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm-2s-1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H2O2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H2O2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H2O2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H2O2 in signaling were discussed.
Collapse
Affiliation(s)
- Marija Vidović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Filis Morina
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Sonja Milić-Komić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Bojana Živanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Sonja Veljović Jovanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|
21
|
Wang X, Komatsu S. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. J Proteomics 2016; 143:45-56. [PMID: 26808589 DOI: 10.1016/j.jprot.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. BIOLOGICAL SIGNIFICANCE Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
22
|
Zhao Y, Wang Y, Yang H, Wang W, Wu J, Hu X. Quantitative Proteomic Analyses Identify ABA-Related Proteins and Signal Pathways in Maize Leaves under Drought Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:1827. [PMID: 28008332 PMCID: PMC5143342 DOI: 10.3389/fpls.2016.01827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/21/2016] [Indexed: 05/08/2023]
Abstract
Drought stress is one of major factors resulting in maize yield loss. The roles of abscisic acid (ABA) have been widely studied in crops in response to drought stress. However, more attention is needed to identify key ABA-related proteins and also gain deeper molecular insights about drought stress in maize. Based on this need, the physiology and proteomics of the ABA-deficient maize mutant vp5 and its wild-type Vp5 under drought stress were examined and analyzed. Malondialdehyde content increased and quantum efficiency of photosystem II decreased under drought stress in both genotypes. However, the magnitude of the increase or decrease was significantly higher in vp5 than in Vp5. A total of 7051 proteins with overlapping expression patterns among three replicates in the two genotypes were identified by Multiplex run iTRAQ-based quantitative proteomic and liquid chromatography-tandem mass spectrometry methods, of which the expression of only 150 proteins (130 in Vp5, 27 in vp5) showed changes of at least 1.5-fold under drought stress. Among the 150 proteins, 67 and 60 proteins were up-regulated and down-regulated by drought stress in an ABA-dependent way, respectively. ABA was found to play active roles in regulating signaling pathways related to photosynthesis, oxidative phosphorylation (mainly related to ATP synthesis), and glutathione metabolism (involved in antioxidative reaction) in the maize response to drought stress. Our results provide an extensive dataset of ABA-dependent, drought-regulated proteins in maize plants, which may help to elucidate the underlying mechanisms of ABA-enhanced tolerance to drought stress in maize.
Collapse
|
23
|
Černý M, Novák J, Habánová H, Cerna H, Brzobohatý B. Role of the proteome in phytohormonal signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:1003-15. [PMID: 26721743 DOI: 10.1016/j.bbapap.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023]
Abstract
Phytohormones are orchestrators of plant growth and development. A lot of time and effort has been invested in attempting to comprehend their complex signaling pathways but despite success in elucidating some key components, molecular mechanisms in the transduction pathways are far from being resolved. The last decade has seen a boom in the analysis of phytohormone-responsive proteins. Abscisic acid, auxin, brassinosteroids, cytokinin, ethylene, gibberellins, nitric oxide, oxylipins, strigolactones, salicylic acid--all have been analyzed to various degrees. For this review, we collected data from proteome-wide analyses resulting in a list of over 2000 annotated proteins from Arabidopsis proteomics and nearly 500 manually filtered protein families merged from all the data available from different species. We present the currently accepted model of phytohormone signaling, highlight the contributions made by proteomic-based research and describe the key nodes in phytohormone signaling networks, as revealed by proteome analysis. These include ubiquitination and proteasome mediated degradation, calcium ion signaling, redox homeostasis, and phosphoproteome dynamics. Finally, we discuss potential pitfalls and future perspectives in the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
24
|
Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress. Sci Rep 2015; 5:15626. [PMID: 26503333 PMCID: PMC4650667 DOI: 10.1038/srep15626] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022] Open
Abstract
Abscisic acid (ABA) regulates various developmental processes and stress responses in plants.
Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA
signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in
maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type
Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to
4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run
iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723
non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at
least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in
both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved
in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a
vital role in regulating these pathways related to mRNA synthesis, protein synthesis and
photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation
sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the
ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or
dephosphorylation cascades.
Collapse
|
25
|
Gong F, Yang L, Tai F, Hu X, Wang W. "Omics" of maize stress response for sustainable food production: opportunities and challenges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:714-32. [PMID: 25401749 DOI: 10.1089/omi.2014.0125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.
Collapse
Affiliation(s)
- Fangping Gong
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University , Zhengzhou, China
| | | | | | | | | |
Collapse
|
26
|
Wu X, Gong F, Yang L, Hu X, Tai F, Wang W. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize. FRONTIERS IN PLANT SCIENCE 2015; 5:801. [PMID: 25653661 PMCID: PMC4299431 DOI: 10.3389/fpls.2014.00801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/22/2014] [Indexed: 05/29/2023]
Abstract
ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China e-mail:
| |
Collapse
|
27
|
Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). J Proteomics 2014; 115:81-92. [PMID: 25540934 DOI: 10.1016/j.jprot.2014.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 01/30/2023]
Abstract
UNLABELLED We recently demonstrated that chloroplast small HSP26 (sHSP26) is abundant in maize leaves under heat stress and potentially involved in maize heat tolerance. However, it largely remains unclear how sHSP26 functions in maize under heat stress. Here, 2-DE-based proteomics, RNA interference (RNAi), co-immunoprecipitation (Co-IP) and yeast two-hybrid (Y2H) were used to reveal chloroplast proteins interacting with sHSP26 and how sHSP26 functions under heat stress. After the silencing of sHSP26, a total of 45 protein spots from isolated protoplasts were greatly changed in abundance, of which 33 spots are chloroplastic. Co-IP revealed that nine proteins possibly associated with sHSP26. Y2H demonstrated that six chloroplast proteins interact with sHSP26 under heat stress. In particular, four proteins, including ATP synthase subunit β, chlorophyll a-b binding protein, oxygen-evolving enhancer protein 1 and photosystem I reaction center subunit IV, strongly interacted with sHSP26 and their abundance greatly declined after RNAi of sHSP26 under heat stress. In addition, H2O2 accumulation in the chloroplasts significantly increased the expression of sHSP26, and the suppression of sHSP26 expression significantly reduced the O2 evolution rate of photosystem II under heat stress. Overall, these findings demonstrate the relevance of sHSP26 in protecting maize chloroplasts under heat stress. BIOLOGICAL SIGNIFICANCE Maize is one of the most important crops worldwide. Frequent heat stress reduces significantly the yield and quality of maize. Our results demonstrated that sHSP26 improved maize chloroplast performance under heat stress by interacting with specific proteins. These findings are useful for understanding the mechanism of heat stress response and heat-tolerant molecular breeding in maize.
Collapse
|
28
|
Komatsu S, Kamal AHM, Makino T, Hossain Z. Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1208-18. [PMID: 24726903 DOI: 10.1016/j.bbapap.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Biophotons are ultraweak photon emissions that are closely related to various biological activities and processes. In mammals, biophoton emissions originate from oxidative bursts in immunocytes during immunological responses. Biophotons emitted from plant organs provide novel information about the physiological state of plant under in vivo condition. In this review, the principles and recent advances in the measurement of biophoton emissions in plants are described. Furthermore, examples of biophoton emission and proteomics in soybean under abiotic stress are reviewed and discussed. Finally, this review suggests that the application of proteomics should provide a better interpretation of plant response to biophoton emission and allow the identification of genes that will allow the screening of crops able to produce maximal yields, even in stressful environments.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| | - Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Takahiro Makino
- Graduate School for the Creation of New Photonics Industries, Hamamatsu 431-1202, Japan
| | - Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State University, Kolkata 700126, West Bengal, India
| |
Collapse
|
29
|
Wang C, Grohme MA, Mali B, Schill RO, Frohme M. Towards decrypting cryptobiosis--analyzing anhydrobiosis in the tardigrade Milnesium tardigradum using transcriptome sequencing. PLoS One 2014; 9:e92663. [PMID: 24651535 PMCID: PMC3961413 DOI: 10.1371/journal.pone.0092663] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Background Many tardigrade species are capable of anhydrobiosis; however, mechanisms underlying their extreme desiccation resistance remain elusive. This study attempts to quantify the anhydrobiotic transcriptome of the limno-terrestrial tardigrade Milnesium tardigradum. Results A prerequisite for differential gene expression analysis was the generation of a reference hybrid transcriptome atlas by assembly of Sanger, 454 and Illumina sequence data. The final assembly yielded 79,064 contigs (>100 bp) after removal of ribosomal RNAs. Around 50% of them could be annotated by SwissProt and NCBI non-redundant protein sequences. Analysis using CEGMA predicted 232 (93.5%) out of the 248 highly conserved eukaryotic genes in the assembly. We used this reference transcriptome for mapping and quantifying the expression of transcripts regulated under anhdydrobiosis in a time-series during dehydration and rehydration. 834 of the transcripts were found to be differentially expressed in a single stage (dehydration/inactive tun/rehydration) and 184 were overlapping in two stages while 74 were differentially expressed in all three stages. We have found interesting patterns of differentially expressed transcripts that are in concordance with a common hypothesis of metabolic shutdown during anhydrobiosis. This included down-regulation of several proteins of the DNA replication and translational machinery and protein degradation. Among others, heat shock proteins Hsp27 and Hsp30c were up-regulated in response to dehydration and rehydration. In addition, we observed up-regulation of ployubiquitin-B upon rehydration together with a higher expression level of several DNA repair proteins during rehydration than in the dehydration stage. Conclusions Most of the transcripts identified to be differentially expressed had distinct cellular function. Our data suggest a concerted molecular adaptation in M. tardigradum that permits extreme forms of ametabolic states such as anhydrobiosis. It is temping to surmise that the desiccation tolerance of tradigrades can be achieved by a constitutive cellular protection system, probably in conjunction with other mechanisms such as rehydration-induced cellular repair.
Collapse
Affiliation(s)
- Chong Wang
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
- * E-mail:
| | - Markus A. Grohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Brahim Mali
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Ralph O. Schill
- Biological Institute, Zoology, University of Stuttgart, Stuttgart, Germany
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
30
|
Wu X, Gong F, Wang W. Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics 2014; 14:645-58. [PMID: 24395710 DOI: 10.1002/pmic.201300239] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 11/09/2022]
Abstract
Plant tissues contain large amounts of secondary compounds that significantly interfere with protein extraction and 2DE analysis. Thus, sample preparation is a crucial step prior to 2DE in plant proteomics. This tutorial highlights the guidelines that need to be followed to perform an adequate total protein extraction before 2DE in plant proteomics. We briefly describe the history, development, and feature of major sample preparation methods for the 2DE analysis of plant tissues, that is, trichloroacetic acid/acetone precipitation and phenol extraction. We introduce the interfering compounds in plant tissues and the general guidelines for tissue disruption, protein precipitation and resolubilization. We describe in details the advantages, limitations, and application of the trichloroacetic acid/acetone precipitation and phenol extraction methods to enable the readers to select the appropriate method for a specific species, tissue, or cell type. The current applications of the sample preparation methods in plant proteomics in the literature are analyzed. A comparative proteomic analysis between male and female plants of Pistacia chinensis is used as an example to represent the sample preparation methodology in 2DE-based proteomics. Finally, the current limitations and future development of these sample preparation methods are discussed. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP17).
Collapse
Affiliation(s)
- Xiaolin Wu
- State Key Laboratory of Wheat & Maize Crop Science in Henan Province, Synergetic Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | | | | |
Collapse
|
31
|
Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat Protoc 2014; 9:362-74. [PMID: 24434803 DOI: 10.1038/nprot.2014.022] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Crop plants contain large amounts of secondary compounds that interfere with protein extraction and gel-based proteomic analysis. Thus, a protein extraction protocol that can be easily applied to various crop materials with minimal optimization is essential. Here we describe a universal protocol for total protein extraction involving trichloroacetic acid (TCA)/acetone precipitation followed by SDS and phenol extraction. Through SDS extraction, the proteins precipitated by the TCA/acetone treatment can be fully resolubilized and then further purified by phenol extraction. This protocol combines TCA/acetone precipitation, which aggressively removes nonprotein compounds, and phenol extraction, which selectively dissolves proteins, resulting in effective purification of proteins from crop tissues. This protocol can also produce high-quality protein preparations from various recalcitrant tissues, and therefore it has a wide range of applications in crop proteomic analysis. Designed to run on a small scale, this protocol can be completed within 5 h.
Collapse
|
32
|
Jensen MK, Lindemose S, Masi FD, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Mundy J, Petersen M, Skriver K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio 2013; 3:321-7. [PMID: 23951554 PMCID: PMC3741915 DOI: 10.1016/j.fob.2013.07.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022] Open
Abstract
ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G]CGT as ATAF1 consensus binding sequences. Co-expression analysis across publicly available microarray experiments identified 25 genes co-expressed with ATAF1. The promoter regions of ATAF1 co-expressors were significantly enriched for ATAF1 binding sites, and TTGCGTA was identified in the promoter of the key abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis.
Collapse
Key Words
- ABA, abscisic acid
- ATAF1, Arabidopsis thaliana activating factor 1
- Abscisic acid biosynthesis
- Arabidopsis
- ChIP, chromatin-immunoprecipitation
- DBD, DNA-binding domain
- DNA-binding
- NAC transcription factor
- NAC, NAM, ATAF1/2, CUC2
- NCED3, 9-cis-epoxycarotenoid dioxygenase-3
- PBM, protein-binding microarrays
- PWM, position weight matrix
- SnRK, Sucrose nonfermenting 1(SNF1)-related serine/threonine-protein kinase
- TF, transcription factor
Collapse
Affiliation(s)
- Michael Krogh Jensen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Søren Lindemose
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Federico de Masi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Julia J. Reimer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Michael Nielsen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Venura Perera
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Chris T. Workman
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Franziska Turck
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Murray R. Grant
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - John Mundy
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Karen Skriver
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|