1
|
Wang SQ, Wang X, Guo L, Chen XX, Huang XJ, Zhang S, Ye WC, Zhang XQ, Shi L, Wang Y, Hu LJ. In-Silico Screening-Based Discovery of New Natural eEF2K Inhibitors with Neuritogenic Activity. ACS Med Chem Lett 2025; 16:475-482. [PMID: 40104800 PMCID: PMC11912280 DOI: 10.1021/acsmedchemlett.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K), an atypical Ser/Thr-protein kinase that regulates neuronal protein synthesis homeostasis via an inhibitory phosphorylation of eEF2, has emerged as a promising therapeutic target for several diseases, including Alzheimer's disease (AD). In this study, we employed molecular docking with an in-house natural product library of 4270 compounds, containing 2177 novel compounds and 603 new structural frameworks, to identify eEF2K inhibitors. Following virtual screening, 25 natural products were selected for in-vitro evaluation of eEF2 phosphorylation inhibition as well as protein synthesis promotion. Our findings identified that compounds 17 and 23 potently suppress eEF2K activity, increase protein synthesis, and concurrently induce neuritogenesis. Molecular dynamics simulations suggest that 17 and 23 may stably bind to the eEF2K protein. Our findings highlighted 17 and 23 as new natural eEF2K inhibitors and promising candidates for promoting neural differentiation, providing potential therapeutic leads for the treatment of AD.
Collapse
Affiliation(s)
- Shu-Qin Wang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xinyu Wang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Lingling Guo
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiao-Xia Chen
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiao-Jun Huang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Shiqing Zhang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Wen-Cai Ye
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiao-Qi Zhang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Lei Shi
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ying Wang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Li-Jun Hu
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
Guangdong Basic Research Center of Excellence for Natural Bioactive
Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People’s
Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Center
for Bioactive Natural Molecules and Innovative Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Ebrahimi A, Parivar K, Roodbari NHE, Eidi A. Treatment with quercetin increases Nrf2 expression and neuronal differentiation of sub ventricular zone derived neural progenitor stem cells in adult rats. Mol Biol Rep 2023; 50:8163-8175. [PMID: 37555870 DOI: 10.1007/s11033-023-08707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND The presence of neural precursor stem cells (NPSCs) in some parts of the adult brain and the potency of these types of cells with a therapeutic viewpoint, has opened up a new approach for the treatment and recovery of the defects of central nervous system (CNS). Quercetin, as an herbal flavonoid, has been extensively investigated and shown to have numerous restoratives, inhibitory, and protective effects on some cell-lines and disorders. The purpose of this study is to simultaneously investigate the effect of quercetin on the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene and the effect on the proliferation and differentiation of NPSCs derived from the subventricular zone (SVZ) of the brain of adult rats. METHODS AND RESULTS The cell obtained from SVZ cultured for one week and treated with quercetin at the concentrations of 1, 5, and 15 μM to evaluate the Nrf2 expression, proliferation and differentiation of NSCs after one week. Cellular and genetic results was performed by RT-PCR, MTT assay test, quantification of images with Image-J and counting. The results indicated that the quercetin increases expression of Nrf2 at concentration above 5 μM. Also differentiation and proliferation rate of NSCs is affected by various concentrations of quercetin in a dose-dependent manner. CONCLUSION These findings confirmed the dose-dependent effect of quercetin on proliferation and differentiation of cell. In addition, quercetin increased the expression of Nrf2 gene. By combining these two effects of quercetin, this substance can be considered an effective compound in the treatment of degenerative defects in CNS.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nasim Hayati-E Roodbari
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Rangsinth P, Duangjan C, Sillapachaiyaporn C, Isidoro C, Prasansuklab A, Tencomnao T. Caesalpinia mimosoides Leaf Extract Promotes Neurite Outgrowth and Inhibits BACE1 Activity in Mutant APP-Overexpressing Neuronal Neuro2a Cells. Pharmaceuticals (Basel) 2021; 14:ph14090901. [PMID: 34577601 PMCID: PMC8469274 DOI: 10.3390/ph14090901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is implicated in the imbalance of several proteins, including Amyloid-β (Aβ), amyloid precursor protein (APP), and BACE1. APP overexpression interferes with neurite outgrowth, while BACE1 plays a role in Aβ generation. Medicinal herbs with effects on neurite outgrowth stimulation and BACE1 inhibition may benefit AD. This study aimed to investigate the neurite outgrowth stimulatory effect, along with BACE1 inhibition of Caesalpinia mimosoides (CM), using wild-type (Neuro2a) and APP (Swedish mutant)-overexpressing (Neuro2a/APPSwe) neurons. The methanol extract of CM leaves stimulated neurite outgrowth in wild-type and APP-overexpressing cells. After exposure to the extract, the mRNA expression of the neurite outgrowth activation genes growth-associated protein-43 (GAP-43) and teneurin-4 (Ten-4) was increased in both Neuro2a and Neuro2a/APPSwe cells, while the mRNA expression of neurite outgrowth negative regulators Nogo receptor (NgR) and Lingo-1 was reduced. Additionally, the extract suppressed BACE1 activity in the APP-overexpressing neurons. Virtual screening demonstrated that quercetin-3′-glucuronide, quercetin-3-O-glucoside, clausarinol, and theogallin were possible inhibitors of BACE1. ADMET was analyzed to predict drug-likeness properties of CM-constituents. These results suggest that CM extract promotes neurite outgrowth and inhibits BACE1 activity in APP-overexpressing neurons. Thus, CM may serve as a source of drugs for AD treatment. Additional studies for full identification of bioactive constituents and to confirm the neuritogenesis in vivo are needed for translation into clinic of the present findings.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Chatrawee Duangjan
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-2218-8048 (A.P.); +66-2218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-2218-8048 (A.P.); +66-2218-1533 (T.T.)
| |
Collapse
|
5
|
Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, Martorell M, Mamurova A, Seilkhan A, Altybaeva N, Abdullayeva B, Docea AO, Calina D, Sharifi-Rad J. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front Pharmacol 2021; 12:665031. [PMID: 34220504 PMCID: PMC8248808 DOI: 10.3389/fphar.2021.665031] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Assem Mamurova
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ainur Seilkhan
- Educational program, Geography, Environment and Service sector, Abai Kazakh National Pedagogical University, Kazakhstan, Almaty, Kazakhstan.,Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bagila Abdullayeva
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Aneklaphakij C, Saigo T, Watanabe M, Naake T, Fernie AR, Bunsupa S, Satitpatipan V, Tohge T. Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. FRONTIERS IN PLANT SCIENCE 2021; 12:642581. [PMID: 33889165 PMCID: PMC8056029 DOI: 10.3389/fpls.2021.642581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species.
Collapse
Affiliation(s)
- Chaiwat Aneklaphakij
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoki Saigo
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Thomas Naake
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Veena Satitpatipan
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
7
|
Masood MI, Schäfer KH, Naseem M, Weyland M, Meiser P. Troxerutin flavonoid has neuroprotective properties and increases neurite outgrowth and migration of neural stem cells from the subventricular zone. PLoS One 2020; 15:e0237025. [PMID: 32797057 PMCID: PMC7428079 DOI: 10.1371/journal.pone.0237025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Troxerutin (TRX) is a water-soluble flavonoid which occurs commonly in the edible plants. Recent studies state that TRX improves the functionality of the nervous system and neutralizes Amyloid-ß induced neuronal toxicity. In this study, an in vitro assay based upon Neural stem cell (NSCs) isolated from the subventricular zone of the postnatal balb/c mice was established to explore the impact of TRX on individual neurogenesis processes in general and neuroprotective effect against ß-amyloid 1-42 (Aß42) induced inhibition in differentiation in particular. NSCs were identified exploiting immunostaining of the NSCs markers. Neurosphere clonogenic assay and BrdU/Ki67 immunostaining were employed to unravel the impact of TRX on proliferation. Differentiation experiments were carried out for a time span lasting from 48 h to 7 days utilizing ß-tubulin III and GFAP as neuronal and astrocyte marker respectively. Protective effects of TRX on Aß42 induced depression of NSCs differentiation were determined after 48 h of application. A neurosphere migration assay was carried out for 24 h in the presence and absence of TRX. Interestingly, TRX enhanced neuronal differentiation of NSCs in a dose-dependent manner after 48 h and 7 days of incubation and significantly enhanced neurite growth. A higher concentration of TRX also neutralized the inhibitory effects of Aß42 on neurite outgrowth and length after 48 h of incubation. TRX significantly stimulated cell migration. Overall, TRX not only promoted NSCs differentiation and migration but also neutralized the inhibitory effects of Aß42 on NSCs. TRX, therefore, offers an interesting lead structure from the perspective of drug design especially to promote neurogenesis in neurological disorders i.e. Alzheimer's disease.
Collapse
Affiliation(s)
- Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, Germany
- ENS Group, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Mahrukh Naseem
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Maximilian Weyland
- ENS Group, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Peter Meiser
- Medical Scientific Department GM, URSAPHARM Arzneimittel GmbH, Saarbrücken, Germany
| |
Collapse
|
8
|
Chen L, Feng P, Peng A, Qiu X, Lai W, Zhang L, Li W. Protective effects of isoquercitrin on streptozotocin-induced neurotoxicity. J Cell Mol Med 2020; 24:10458-10467. [PMID: 32738031 PMCID: PMC7521287 DOI: 10.1111/jcmm.15658] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by irreversible and progressive memory loss and has no effective treatment. Recently, many small molecule nature products have been identified with neuroprotective functions and shown beneficial effects to AD patients. In the current study, we thus performed a small scale screening to determine the protective effects of natural compounds on streptozotocin (STZ)‐induced neurotoxicity and Alzheimer's disease (AD). We found that a lead flavonoid compound, isoquercitrin (ISO) display the most effective anti‐cytotoxic activities via inhibiting STZ‐induced apoptosis, mitochondria dysfunction and oxidative stress. Treatment with ISO largely rescues STZ‐induced differentiation inhibition and enhances neurite outgrowth of Neuro2a (N2a) cells in vitro. Moreover, oral administration of ISO protects hippocampal neurons from STZ‐induced neurotoxicity and significantly improves the cognitive and behavioural impairment in STZ‐induced AD rats. In general, our screening identifies ISO as an effective therapeutic candidate against STZ‐induced neurotoxicity and AD‐like changes.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Peimin Feng
- Department of Integrated Traditional and Western Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Anjiao Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangmiao Qiu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wanling Lai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wanling Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Chu S, Liu W, Lu Y, Yan M, Guo Y, Chang N, Jiang M, Bai G. Sinigrin Enhanced Antiasthmatic Effects of Beta Adrenergic Receptors Agonists by Regulating cAMP-Mediated Pathways. Front Pharmacol 2020; 11:723. [PMID: 32508648 PMCID: PMC7251054 DOI: 10.3389/fphar.2020.00723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 12/02/2022] Open
Abstract
Millions of patients suffer from asthma worldwide. However, the first-line drugs used to treat asthma, namely, the beta-adrenergic receptors agonists (β-agonists), are not recommended for use as monotherapy because of their severe dose-related side effects. This limitation has prompted the search for new therapies, which can be used in conjunction with β--agonists so that lower doses can be administered. Sinigrin is a major compound found in many antiasthmatic medicinal plants. In this study, we explored the antiasthmatic activity of sinigrin when used in combination with β-agonists and its underlying mechanism. Sinigrin enhanced the asthma-relieving effects of isoproterenol and reduced the effective isoproterenol dose in an acute-asthma model in guinea pigs. Mechanistically, sinigrin enhanced the cAMP levels induced by β-agonists by inhibiting PDE4. The resulting increase in cAMP levels stimulated the activity of the downstream effector protein kinase A, which would be expected to ultimately induce the relaxation of airway smooth muscle. In conclusion, sinigrin enhances the asthma-relieving effects of β-agonists by regulating the cAMP signaling pathway and represents a potential add-on drug to β-agonists for the treatment of asthma.
Collapse
Affiliation(s)
- Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Menglin Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yingying Guo
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nianwei Chang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Zhao J, Zhu M, Kumar M, Ngo FY, Li Y, Lao L, Rong J. A Pharmacological Appraisal of Neuroprotective and Neurorestorative Flavonoids Against Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:103-114. [PMID: 30394219 DOI: 10.2174/1871527317666181105093834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & OBJECTIVE Alzheimer's disease (AD) and Parkinson's disease (PD) affect an increasing number of the elderly population worldwide. The existing treatments mainly improve the core symptoms of AD and PD in a temporary manner and cause alarming side effects. Naturally occurring flavonoids are well-documented for neuroprotective and neurorestorative effects against various neurodegenerative diseases. Thus, we analyzed the pharmacokinetics of eight potent natural products flavonoids for the druggability and discussed the neuroprotective and neurorestorative effects and the underlying mechanisms. CONCLUSION This review provides valuable clues for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mengxia Zhu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mukesh Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yinghui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lixing Lao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.,Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong Shenzhen, Shenzhen, China
| |
Collapse
|
11
|
Mehrbod P, Ebrahimi SN, Fotouhi F, Eskandari F, Eloff JN, McGaw LJ, Fasina FO. Experimental validation and computational modeling of anti-influenza effects of quercetin-3-O-α-L-rhamnopyranoside from indigenous south African medicinal plant Rapanea melanophloeos. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:346. [PMID: 31791311 PMCID: PMC6888925 DOI: 10.1186/s12906-019-2774-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Influenza A virus (IAV) is still a major health threat. The clinical manifestations of this infection are related to immune dysregulation, which causes morbidity and mortality. The usage of traditional medication with immunomodulatory properties against influenza infection has been increased recently. Our previous study showed antiviral activity of quercetin-3-O-α-L-rhamnopyranoside (Q3R) isolated from Rapanea melanophloeos (RM) (L.) Mez (family Myrsinaceae) against H1N1 (A/PR/8/34) infection. This study aimed to confirm the wider range of immunomodulatory effect of Q3R on selective pro- and anti-inflammatory cytokines against IAV in vitro, to evaluate the effect of Q3R on apoptosis pathway in combination with H1N1, also to assess the physical interaction of Q3R with virus glycoproteins and RhoA protein using computational docking. METHODS MDCK cells were exposed to Q3R and 100CCID50/100 μl of H1N1 in combined treatments (co-, pre- and post-penetration treatments). The treatments were tested for the cytokines evaluation at RNA and protein levels by qPCR and ELISA, respectively. In another set of treatment, apoptosis was examined by detecting RhoA GTPase protein and caspase-3 activity. Molecular docking was used as a tool for evaluation of the potential anti-influenza activity of Q3R. RESULTS The expressions of cytokines in both genome and protein levels were significantly affected by Q3R treatment. It was shown that Q3R was much more effective against influenza when it was applied in co-penetration treatment. Q3R in combination with H1N1 increased caspase-3 activity while decreasing RhoA activation. The molecular docking results showed strong binding ability of Q3R with M2 transmembrane, Neuraminidase of 2009 pandemic H1N1, N1 and H1 of PR/8/1934 and Human RhoA proteins, with docking energy of - 10.81, - 10.47, - 9.52, - 9.24 and - 8.78 Kcal/mol, respectively. CONCLUSIONS Quercetin-3-O-α-L-rhamnopyranoside from RM was significantly effective against influenza infection by immunomodulatory properties, affecting the apoptosis pathway and binding ability to viral receptors M2 transmembrane and Neuraminidase of 2009 pandemic H1N1 and human RhoA cellular protein. Further research will focus on detecting the detailed specific mechanism of Q3R in virus-host interactions.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Eskandari
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Folorunso O. Fasina
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- ECTAD, Food and Agriculture Organization of the United Nations (FAO), Dar es Salaam, Tanzania
| |
Collapse
|
12
|
Qiu J, Yang X, Wang L, Zhang Q, Ma W, Huang Z, Bao Y, Zhong L, Sun H, Ding F. Isoquercitrin promotes peripheral nerve regeneration through inhibiting oxidative stress following sciatic crush injury in mice. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:680. [PMID: 31930081 DOI: 10.21037/atm.2019.11.18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Oxidative stress has been recognized to play a crucial role in the pathogenesis of peripheral nerve injury. Isoquercitrin (quercetin-3-glucoside) is a flavonoid that exhibited many biological activities, including anti-oxidative effect. However, it is unclear whether isoquercitrin has protective effects on peripheral nerve injury. Methods Mice treated by isoquercitrin were used as a case group, and mice injected with saline was the control group. Sciatic behavioral function was assessed using SFI and CMAPs were measured by electrophysiology. Schwann cells proliferation and migration were tested using EdU staining and Transwell migration chambers respectively. The expression of oxidative stress related factors were detected by qRT-PCR and Western blotting. Results In present study, our results demonstrated that isoquercitrin (20 mg/kg/day) treatment achieved significantly higher SFI and higher amplitude of CMAP, promoted the nerve regeneration and remyelination, increased the production of GAP43, NF200, MAG and PMP22, alleviated target muscle atrophy and autophagy, and suppressed the expression of ATG7, PINK1 and Beclin1 in soleus muscles after sciatic nerve crush. In vitro studies found that isoquercitrin promoted the axonal regeneration of DRGs neurons, the proliferation and migration of Schwann cells, and the expression of proliferating cell nuclear antigen (PCNA) in Schwann cells. The administration of isoquercitrin at 40 and 320 µM showed a dose dependent, and high doses of isoquercitrin (160 and 320 µM) showed better performance in promoting axonal regeneration of DRGs neurons, and the proliferation and migration of Schwann cells than low dose of isoquercitrin (40 µM). Furthermore, isoquercitrin significantly inhibited oxidative stress through reducing the production of Nox4 and Duox1, and promoting the expression of Nrf2 and SOD2 in soleus muscles after sciatic nerve crush. Conclusions Isoquercitrin may promote motor functional recovery and nerve regeneration following peripheral nerve injury though inhibition of oxidative stress, which highlighted the therapeutic values of isoquercitrin as a neuroprotective drug for peripheral nerve repair applications.
Collapse
Affiliation(s)
- Jiaying Qiu
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Lingbin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yuhua Bao
- Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Lou Zhong
- Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fei Ding
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
13
|
Smith K, Piccinini F, Balassa T, Koos K, Danka T, Azizpour H, Horvath P. Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays. Cell Syst 2019; 6:636-653. [PMID: 29953863 DOI: 10.1016/j.cels.2018.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
Abstract
Phenotypic image analysis is the task of recognizing variations in cell properties using microscopic image data. These variations, produced through a complex web of interactions between genes and the environment, may hold the key to uncover important biological phenomena or to understand the response to a drug candidate. Today, phenotypic analysis is rarely performed completely by hand. The abundance of high-dimensional image data produced by modern high-throughput microscopes necessitates computational solutions. Over the past decade, a number of software tools have been developed to address this need. They use statistical learning methods to infer relationships between a cell's phenotype and data from the image. In this review, we examine the strengths and weaknesses of non-commercial phenotypic image analysis software, cover recent developments in the field, identify challenges, and give a perspective on future possibilities.
Collapse
Affiliation(s)
- Kevin Smith
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, Lindstedtsvägen 3, 10044 Stockholm, Sweden; Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Filippo Piccinini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola, FC 47014, Italy
| | - Tamas Balassa
- Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári krt. 62, 6726 Szeged, Hungary
| | - Krisztian Koos
- Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári krt. 62, 6726 Szeged, Hungary
| | - Tivadar Danka
- Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári krt. 62, 6726 Szeged, Hungary
| | - Hossein Azizpour
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, Lindstedtsvägen 3, 10044 Stockholm, Sweden; Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári krt. 62, 6726 Szeged, Hungary; Institute for Molecular Medicine Finland, University of Helsinki, Tukholmankatu 8, 00014 Helsinki, Finland.
| |
Collapse
|
14
|
Bieler L, Vogl M, Kirchinger M, Urmann C, Riepl H, Bandtlow C, Klimaschewski L, Aigner L, Couillard-Despres S. The Prenylflavonoid ENDF1 Overrules Central Nervous System Growth Inhibitors and Facilitates Regeneration of DRG Neurons. Front Cell Neurosci 2019; 13:332. [PMID: 31396054 PMCID: PMC6668039 DOI: 10.3389/fncel.2019.00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Restoration of neuronal connectivity after lesion of the central nervous system, such as spinal cord injury, is one of the biggest challenges in modern medicine. In particular, the accumulation of axon growth inhibitory factors at the site of injury constitutes a major obstacle to structural and thus functional repair. We previously investigated a group of prenylflavonoids derived from hops for their capacity to promote neuroregeneration. We identified a molecule called ENDF1 that was very potent to enhance regrowth and branching of neurites from dorsal root ganglion neurons in culture on growth promoting substrates. In the present study, we investigated ENDF1’s capacity to promote regeneration of rat dorsal root ganglion neurons in vitro in the presence of three main components of the extracellular matrix acting as axon growth inhibitors: Semaphorin 3A, Ephrin A4 and mixed chondroitin sulfate proteoglycans. We report that ENDF1 application significantly promoted the percentages of sensory neurons able to regrow their neurites regardless of the presence of those inhibitors, and this to an extent similar to the one obtained after NGF treatment. Moreover, ENDF1 strongly enhanced the total neurite length and the complexity of neurites extending from neurons challenged with axon growth inhibitors. Although the impact of NGF and ENDF1 on the regeneration of neurons was similar, the activity of ENDF1 was not mediated by signaling through the TrkA receptor, indicating that each molecule act through different signaling pathways. In addition, ENDF1 did not decrease the phosphorylation of cofilin, a downstream effector of the regeneration-associated RhoA/ROCK signaling pathway. Hence, ENDF1 is a potent pro-neuroregenerative factors that could help in identifying new efficient targets for regenerative therapies of the nervous system.
Collapse
Affiliation(s)
- Lara Bieler
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
| | - Michael Vogl
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
| | - Michael Kirchinger
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany.,TUM Campus Straubing, Straubing, Germany
| | - Corinna Urmann
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany.,TUM Campus Straubing, Straubing, Germany
| | - Herbert Riepl
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany.,TUM Campus Straubing, Straubing, Germany
| | - Christine Bandtlow
- Division of Neurobiochemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
15
|
Flavonoids extracted from leaves of Diospyros kaki regulates RhoA activity to rescue synapse loss and reverse memory impairment in APP/PS1 mice. Neuroreport 2019; 29:564-569. [PMID: 29481523 DOI: 10.1097/wnr.0000000000000989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synapse dysfunction is an early hallmark of Alzheimer's disease (AD), and was considered to be closely related to memory loss. The molecular mechanisms that trigger synapse loss and dysfunction remain poorly understood. Increasing evidence shows a link between Rho GTPases and synapse plasticity. Rho GTPases play a role in controlling synapse function by regulating actin cytoskeleton and dendritic spines. Observations have suggested that phytochemicals, such as flavonoids, alleviate cognition impairment in AD. However, to date, the link between the protective effect of flavonoids on AD and the activity of Rho GTPases remains uninvestigated. In this study, APP/PS1 mice were used as an AD model, and we found that synapse loss occurred in AD mice brain. Flavonoids extracted from leaves of Diospyros kaki (FLDK) were used to investigate whether its protective effects on synapse were related to Rho GTPases activity in AD mice. The Rho GTPases Activation Kit showed that Ras homologous member A (RhoA)-GTP was significantly higher and Ras-related C3 botulinum toxin substrate 1 (Rac1)-GTP was significantly lower in APP/PS1 mice than in normal mice, and RhoA-GTP activity was significantly inhibited by FLDK. We also found that FLDK improved learning and memory function, and antagonized the downregulation expressions of synapse-related proteins such as synaptophysin and drebrin. These findings suggest that FLDK is a potential therapeutic agent for AD, and modulation of Rho GTPases activity might contribute toward its protective effect.
Collapse
|
16
|
Yang T, Fang F, Chen Y, Ma J, Xiao Z, Zou S, Zheng N, Yan D, Liao S, Chen S, Fang H, Yu C, Liu J, Dong M. Elevated plasma interleukin-37 playing an important role in acute coronary syndrome through suppression of ROCK activation. Oncotarget 2018; 8:9686-9695. [PMID: 28039466 PMCID: PMC5354763 DOI: 10.18632/oncotarget.14195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The plasma level of interleukin-37 is elevated in patients with acute coronary syndrome, however, its function during the onset and progress of the disease remains unclear. This study aimed to investigate the clinical significance of IL-37 in acute coronary syndrome and its underlying mechanism. METHODS 124 patients with acute coronary syndrome and 40 healthy controls were recruited in this study. Plasma interleukin-37 levels were measured in 41 patients with ST elevation myocardial infarction (STEMI), 41 patients with non-STEMI, 42 patients with unstable angina, and 40 controls. Mortality was defined as an event. RESULTS In this study, the mean follow-up period was 824±306 days (2-1077 days). 22% (n=27) of patients died. The mortality rate was significantly lower in patients with interleukin-37 serum levels below the median (6.4 pg/mL) than those with interleukin-37 serum levels above 6.4 pg/mL at 36-month follow-up (16% vs. 24%, p=0.02, log rank X2=5.39). Highly concentration of the anti-inflammatory interleukin-37 exerted a protective effect by suppressing the activated Rho Kinase (ROCK) activity in the peripheral blood mononuclear cells in vivo and in vitro after ischemia/reperfusion injury and stimulation of the Rho activator, calpeptin. CONCLUSIONS The interleukin-37 level is significantly increased in acute coronary syndrome. Elevated baseline interleukin-37 levels in patients on admission are associated with poor outcomes. Thus, we propose that interleukin-37 could be a biomarker predictive of mortality in acute coronary syndrome. Moreover, this study reveals that the protective effect of interleukin-37 against atherosclerosis may involve the inhibition of ROCK activity.
Collapse
Affiliation(s)
- Tengyu Yang
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| | - Fang Fang
- Division of cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Li Ka Shing Institute of Health and Sciences, Institute of Vascular Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yawen Chen
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Ma
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhaowen Xiao
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| | - Songfeng Zou
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| | - Na Zheng
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| | - Dewen Yan
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Songyan Liao
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| | - Shaoyuan Chen
- Cardiology Division, Department of Medicine, The Nanshan Hostipal, Shenzhen, Guangdong, China
| | - Hongchen Fang
- Cardiology Division, Department of Medicine, The Nanshan Hostipal, Shenzhen, Guangdong, China
| | - Chekmen Yu
- Division of cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Li Ka Shing Institute of Health and Sciences, Institute of Vascular Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| | - Ming Dong
- Division of Pathophysiology, Medical College, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Li H, Liu Y, Yi Y, miao Q, Liu S, Zhao F, Cong W, Wang C, Xia C. Purification of quercetin-3- O -sophoroside and isoquercitrin from Poacynum hendersonii leaves using macroporous resins followed by Sephadex LH-20 column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:56-63. [DOI: 10.1016/j.jchromb.2017.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
|
18
|
Liu Y, Qian C, Ding S, Shang X, Yang W, Fang S. Effect of light regime and provenance on leaf characteristics, growth and flavonoid accumulation in Cyclocarya paliurus (Batal) Iljinskaja coppices. BOTANICAL STUDIES 2016; 57:28. [PMID: 28597438 PMCID: PMC5432901 DOI: 10.1186/s40529-016-0145-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/11/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. However, limited information is available on its genotype selection and cultivation for growth and phytochemicals. Responses of growth and secondary metabolites to light regimes and genotypes are useful information to determine suitable habitat conditions for the cultivation of medicinal plants. RESULTS Both light regime and provenance significantly affected the leaf characteristics, leaf flavonoid contents, biomass production and flavonoid accumulation per plant. Leaf thickness, length of palisade cells and chlorophyll a/b decreased significantly under shading conditions, while leaf areas and total chlorophyll content increased obviously. In the full light condition, leaf flavonoid contents showed a bimodal temporal variation pattern with the maximum observed in August and the second peak in October, while shading treatment not only reduced the leaf content of flavonoids but also delayed the peak appearing of the flavonoid contents in the leaves of C. paliurus. Strong correlations were found between leaf thickness, palisade length, monthly light intensity and measured flavonoid contents in the leaves of C. paliurus. Muchuan provenance with full light achieved the highest leaf biomass and flavonoid accumulation per plant. CONCLUSIONS Cyclocarya paliurus genotypes show diverse responses to different light regimes in leaf characteristics, biomass production and flavonoid accumulation, highlighting the opportunity for extensive selection in the leaf flavonoid production.
Collapse
Affiliation(s)
- Yang Liu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Chenyun Qian
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Sihui Ding
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Wanxia Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
19
|
Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed Pharmacother 2016; 84:892-908. [PMID: 27756054 DOI: 10.1016/j.biopha.2016.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 12/25/2022] Open
Abstract
Quercetin, a ubiquitous flavonoid that is widely distributed in plants is classified as a cognitive enhancer in traditional and oriental medicine. The protective effects of quercetin for the treatment of neurodegenerative disorders and cerebrovascular diseases have been demonstrated in both in vitro and in vivo studies. The free radical scavenging activity of quercetin has been well-documented, wherein quercetin has been observed to exhibit protective effects against oxidative stress mediated neuronal damage by modulating the expression of NRF-2 dependent antioxidant responsive elements, and attenuation of neuroinflammation by suppressing NF-κB signal transducer and activator of transcription-1 (STAT-1). Several in vitro and in vivo studies have also shown that quercetin destabilizes and enhances the clearance of abnormal protein such as beta- amyloid peptide and hyperphosphorlyated tau, the key pathological hallmarks of Alzheimer's disease. Quercetin enhances neurogenesis and neuronal longevity by modulating a broad number of kinase signaling cascades such as phophoinositide 3- kinase (P13-kinase), AKT/PKB tyrosine kinase and Protein kinase C (PKC). Quercetin has also been well reported for its ability to reverse cognitive impairment and memory enhancement during aging. The current review focuses on summarizing the recent findings on the neuroprotective effect of quercetin, its mechanism of action and its possible roles in the prevention of neurological disorders.
Collapse
Affiliation(s)
- Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University (Science Campus), Karaikudi 630 004, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 004, Tamil Nadu, India.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Xie W, Wang M, Chen C, Zhang X, Melzig MF. Hepatoprotective effect of isoquercitrin against acetaminophen-induced liver injury. Life Sci 2016; 152:180-9. [DOI: 10.1016/j.lfs.2016.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 01/27/2023]
|
21
|
Gong H, Yuan Z, Zhan L. High-throughput screening against $$\sim $$ ∼ 6.1 million structurally diverse, lead-like compounds to discover novel ROCK inhibitors for cerebral injury recovery. Mol Divers 2015; 20:537-49. [DOI: 10.1007/s11030-015-9650-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/08/2015] [Indexed: 11/28/2022]
|
22
|
Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 10:23-42. [PMID: 26730179 PMCID: PMC4694682 DOI: 10.2147/dddt.s96936] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the concomitant modulations of signaling pathways is useful for designing more effective agents for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Xu SL, Zhu KY, Bi CWC, Yan L, Men SWX, Dong TTX, Tsim KWK. Flavonoids, derived from traditional Chinese medicines, show roles in the differentiation of neurons: possible targets in developing health food products. ACTA ACUST UNITED AC 2014; 99:292-9. [PMID: 24339039 DOI: 10.1002/bdrc.21054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 12/25/2022]
Abstract
Flavonoids, a family of phenolic compounds, are distributed in a variety of fruits, vegetables, tea, and wine. More importantly, many flavonoids are served as the active ingredients in traditional Chinese herbal medicines, which in general do not have side effects. Several lines of evidence support that flavonoids have impacts on many aspects of human health, including anti-tumor, anti-oxidation, and anti-inflammation. Recently, there is significant attention focused on the neuronal beneficial effects of flavonoids, including the promotion of nervous system development, neuroprotection against neurotoxin stress, as well as the promotion of memory, learning, and cognitive functions. Here, the activities of flavonoids on the development of nervous system are being summarized and discussed. The flavonoids from diverse herbal medicines have significant effects in different developmental stages of nervous systems, including neuronal stem cell differentiation, neurite outgrowth, and neuronal plasticity. These findings imply that flavonoids are potential candidates for the development of health supplements in preventing birth defects and neuronal diseases.
Collapse
Affiliation(s)
- Sherry L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem Toxicol 2014; 68:267-82. [DOI: 10.1016/j.fct.2014.03.018] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/10/2023]
|
25
|
Chiou YS, Wu JC, Huang Q, Shahidi F, Wang YJ, Ho CT, Pan MH. Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
26
|
Yamashita H, Muroi Y, Ishii T. Saccharin enhances neurite extension by regulating organization of the microtubules. Life Sci 2013; 93:732-41. [PMID: 24095948 DOI: 10.1016/j.lfs.2013.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/23/2013] [Indexed: 01/31/2023]
Abstract
AIMS In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension. MAIN METHODS The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis. KEY FINDINGS Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation. SIGNIFICANCE These results suggest that saccharin enhances neurite extension by promoting microtubule organization.
Collapse
Affiliation(s)
- Hiroo Yamashita
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro Hokkaido, Japan
| | | | | |
Collapse
|
27
|
Mitran SI, Catalin B, Sfredel V, Balseanu TA. Neuroregeneration and dementia: new treatment options. J Mol Psychiatry 2013; 1:12. [PMID: 25408905 PMCID: PMC4223882 DOI: 10.1186/2049-9256-1-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/03/2013] [Indexed: 01/08/2023] Open
Abstract
In the last years, physiological aging became a general concept that includes all the changes that occur in organism with old age. It is obvious now, that in developing and developed countries, new health problems concerning older population appear. One of these major concerns is probably dementia. Sooner or later, all forms of dementia lead to learning deficit, memory loss, low attention span, impairment of speech and poor problem solving skills. Normal ageing is a physiological process that also involves a lot of neurological disorders with the same type of symptoms and effects that many researchers are trying to minimize in demented patients. In this review we try to highlight some of the newest aspects of therapeutic strategies that can improve natural neuroregeneration.
Collapse
Affiliation(s)
- Smaranda Ioana Mitran
- Department of Functional Sciences, University of Medicine and Pharmacy, Craiova, Romania ; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Bogdan Catalin
- Department of Functional Sciences, University of Medicine and Pharmacy, Craiova, Romania ; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Veronica Sfredel
- Department of Functional Sciences, University of Medicine and Pharmacy, Craiova, Romania ; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Tudor-Adrian Balseanu
- Department of Functional Sciences, University of Medicine and Pharmacy, Craiova, Romania ; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania ; Physiology Department, University of Medicine and Pharmacy, No 2 Petru Rares street, Craiova, Romania
| |
Collapse
|