1
|
Manoochehrabadi T, Solouki A, Majidi J, Khosravimelal S, Lotfi E, Lin K, Daryabari SH, Gholipourmalekabadi M. Silk biomaterials for corneal tissue engineering: From research approaches to therapeutic potentials; A review. Int J Biol Macromol 2025; 305:141039. [PMID: 39956223 DOI: 10.1016/j.ijbiomac.2025.141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The corneal complications can result in opacity and eventual blindness. Furthermore, a shortage of available donors constrains the existing therapeutic options. Therefore, one of the most promising strategies involves the application of biomaterials, particularly silk. Silk has garnered significant attention among these biomaterials due to its natural origin and diverse features derived from different sources. One of the most critical factors of silk is its transparency, which is crucial for the cornea, and there are no concerns about infection. This material also possesses several advantages, including cost-effectiveness in production, biocompatibility in vivo and in vitro, biodegradation, and desirable mechanical characteristics. Modifications in the topographical structure, porosity, and crystallinity of silk enhance its properties and optimize its suitability for wound dressing, efficient drug delivery systems, and various cornea-related treatments. In each layer, silk was examined as a single biomaterial or blended with the others, so, this review aims to explore silk as a potential material for corneal regenerative medicine from a novel viewpoint. By considering a range of studies, a classification system has been developed that categorizes the utilization of silk in the various layers of the cornea and sub-categorizes the different modifications and applications of silk.
Collapse
Affiliation(s)
- Tahereh Manoochehrabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Solouki
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jila Majidi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ehsan Lotfi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
2
|
Micropattern Silk Fibroin Film Facilitates Tendon Repair In Vivo and Promotes Tenogenic Differentiation of Tendon Stem/Progenitor Cells through the α2 β1/FAK/PI3K/AKT Signaling Pathway In Vitro. Stem Cells Int 2023; 2023:2915826. [PMID: 36684388 PMCID: PMC9859702 DOI: 10.1155/2023/2915826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Background Tendon injuries are common clinical disorders. Due to the limited regeneration ability of tendons, tissue engineering technology is often used as an adjuvant treatment. This study explored the molecular pathways underlying micropattern SF film-regulated TSPC propensity and their repairing effects to highlight the application value of micropattern SF films. Methods First, we characterized the physical properties of the micropattern SF films and explored their repairing effects on the injured tendons in vivo. Then, we seeded TSPCs on SF films in vitro and determined the micropattern SF film-induced gene expression and activation of signaling pathways in TSPCs through high-throughput RNA sequencing and proteomics assays. Results The results of in vivo studies suggested that micropattern SF films can promote remodeling of the injured tendon. In addition, immunohistochemistry (IHC) results showed that tendon marker genes were significantly increased in the micropattern SF film repair group. Transcriptomic and proteomic analyses demonstrated that micropattern SF film-induced genes and proteins in TSPCs were mainly enriched in the focal adhesion kinase (FAK)/actin and phosphoinositide 3-kinase (PI3K)/AKT pathways. Western blot analysis showed that the expression of integrins α2β1, tenascin-C (TNC), and tenomodulin (TNMD) and the phosphorylation of AKT were significantly increased in the micropattern SF film group, which could be abrogated by applying PI3K/AKT inhibitors. Conclusion Micropattern SF films modified by water annealing can promote remodeling of the injured tendon in vivo and regulate the tendon differentiation of TSPCs through the α2β1/FAK/PI3K/AKT signaling pathway in vitro. Therefore, they have great medical value in tendon repair.
Collapse
|
3
|
Bhattacharjee P, Ahearne M. Influence of spiral topographies on human limbal-derived immortalized corneal epithelial cells. Exp Eye Res 2022; 225:109252. [PMID: 36150543 DOI: 10.1016/j.exer.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
Cells migrate from the limbus to the corneal epithelium following a centripetal pathway. Corneal epithelial cells tend to orientate in spiral or vortex patterns. However, when cultured in-vitro, limbal derived corneal epithelia do not tend to align or migrate in a spiral pattern. Here, we used soft lithography to create silk fibroin substrates with spiral topographies that direct the human limbal-derived immortalized corneal epithelial cells (hTCEpi) to form a spiral orientation. The impact of this topography on the cells was then characterized. The spiral patterns affected cytoskeletal organization, cell spreading, and nuclei shapes. Spiral width and numbers had a significant impact on proliferation of cells, their focal adhesion, their chromatin condensation, and number of actin filaments. Immunocytochemical staining showed that the spiral pattern enhanced the expression of markers associated with limbal stem cells. The current work illustrates micro spiral patterns can serve to control the nature of limbal derived epithelial cells by providing relevant biophysical cues.
Collapse
Affiliation(s)
- Promita Bhattacharjee
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Elhusseiny AM, Soleimani M, Eleiwa TK, ElSheikh RH, Frank CR, Naderan M, Yazdanpanah G, Rosenblatt MI, Djalilian AR. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:259-268. [PMID: 35303110 PMCID: PMC8968724 DOI: 10.1093/stcltm/szab028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
The corneal epithelium serves to protect the underlying cornea from the external environment and is essential for corneal transparency and optimal visual function. Regeneration of this epithelium is dependent on a population of stem cells residing in the basal layer of the limbus, the junction between the cornea and the sclera. The limbus provides the limbal epithelial stem cells (LESCs) with an optimal microenvironment, the limbal niche, which strictly regulates their proliferation and differentiation. Disturbances to the LESCs and/or their niche can lead to the pathologic condition known as limbal stem cell deficiency (LSCD) whereby the corneal epithelium is not generated effectively. This has deleterious effects on the corneal and visual function, due to impaired healing and secondary corneal opacification. In this concise review, we summarize the characteristics of LESCs and their niche, and present the current and future perspectives in the management of LSCD with an emphasis on restoring the function of the limbal niche.
Collapse
Affiliation(s)
- Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Taher K Eleiwa
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Reem H ElSheikh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Charles R Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Morteza Naderan
- Department of Ophthalmology, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding author: Ali R. Djalilian, Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Luo Y, Kang KB, Sartaj R, Sun MG, Zhou Q, Guaiquil VH, Rosenblatt MI. Silk films with nanotopography and extracellular proteins enhance corneal epithelial wound healing. Sci Rep 2021; 11:8168. [PMID: 33854156 PMCID: PMC8046786 DOI: 10.1038/s41598-021-87658-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Corneal wound healing depends on extracellular matrix (ECM) and topographical cues that modulate migration and proliferation of regenerating cells. In our study, silk films with either flat or nanotopography patterned parallel ridge widths of 2000, 1000, 800 nm surfaces were combined with ECMs which include collagen type I (collagen I), fibronectin, laminin, and Poly-D-Lysine to accelerate corneal wound healing. Silk films with 800 nm ridge width provided better cell spreading and wound recovery than other size topographies. Coating 800 nm patterned silk films with collagen I proves to optimally further increased mouse and rabbit corneal epithelial cells growth and wound recovery. This enhanced cellular response correlated with redistribution and increase in size and total amount of focal adhesion. Transcriptomics and signaling pathway analysis suggested that silk topography regulates cell behaviors via actin nucleation ARP-WASP complex pathway, which regulate filopodia formation. This mechanism was further explored and inhibition of Cdc42, a key protein in this pathway, delayed wound healing and decreased the length, density, and alignment of filopodia. Inhibition of Cdc42 in vivo resulted in delayed re-epithelization of injured corneas. We conclude that silk film nanotopography in combination with collagen I constitutes a better substrate for corneal wound repair than either nanotopography or ECM alone.
Collapse
Affiliation(s)
- Yuncin Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Kai B Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Rachel Sartaj
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Michael G Sun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Sun MG, Luo Y, Teng T, Guaiquil V, Zhou Q, McGinn L, Nazzal O, Walsh M, Lee J, Rosenblatt MI. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. MACROMOL CHEM PHYS 2021; 222:2170013. [PMID: 34149247 PMCID: PMC8208642 DOI: 10.1002/macp.202170013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Silk fibroin films are excellent candidate biomaterials for corneal tissue engineering due to their optical transparency, biocompatibility, and mechanical strength. Their tunable chemical and mechanical properties open the possibility of engineering cellular microenvironments that can both mimic native corneal tissue and provide stimuli to actively promote wound regeneration. While silk film mechanical properties, such as surface topography, have demonstrated the ability to control corneal epithelial cell wound regenerating behavior, few studies have explored the stiffness tunability of these films and its cellular effects. Cells are known actively sense the stiffness of their surroundings and processes such as cell adhesion, migration, proliferation, and expression of stem markers can be strongly influenced by matrix stiffness. This study develops technical solutions that allow for both the fabrication of films with stiffnesses similar to corneal tissue and also for their characterization in an aqueous, native-like environment at a scale relevant to cellular forces. Physiological evidence demonstrates that corneal epithelial cells are mechanosensitive to films of different stiffnesses and show that cell spreading, cytoskeletal tension, and molecular mechanotransducer localization are associated with film stiffness. These results indicate that silk film stiffness can be used to regulate cell behavior for the purposes of ocular surface repair.
Collapse
Affiliation(s)
- M G Sun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - Y Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - T Teng
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - V Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - Q Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - L McGinn
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - O Nazzal
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, Chicago, IL 60612
| | - M Walsh
- Department of Material Sciences and Engineering, University of Wisconsin - Eau Claire, 101 Roosevelt Ave., Eau Claire, WI 54701
| | - J Lee
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - M I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| |
Collapse
|
7
|
Sun MG, Luo Y, Teng T, Guaiquil V, Zhou Q, McGinn L, Nazzal O, Walsh M, Lee J, Rosenblatt MI. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael G. Sun
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Tao Teng
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Victor Guaiquil
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Lander McGinn
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Osayd Nazzal
- Department of Pathology University of Illinois at Chicago 840 S. Wood St., Suite 130 CSN Chicago IL 60612 USA
| | - Michael Walsh
- Department of Material Sciences and Engineering University of Wisconsin – Eau Claire 101 Roosevelt Ave Eau Claire WI 54701 USA
| | - James Lee
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| |
Collapse
|
8
|
Fedele C, Mäntylä E, Belardi B, Hamkins-Indik T, Cavalli S, Netti PA, Fletcher DA, Nymark S, Priimagi A, Ihalainen TO. Azobenzene-based sinusoidal surface topography drives focal adhesion confinement and guides collective migration of epithelial cells. Sci Rep 2020; 10:15329. [PMID: 32948792 PMCID: PMC7501301 DOI: 10.1038/s41598-020-71567-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/14/2020] [Indexed: 01/09/2023] Open
Abstract
Surface topography is a key parameter in regulating the morphology and behavior of single cells. At multicellular level, coordinated cell displacements drive many biological events such as embryonic morphogenesis. However, the effect of surface topography on collective migration of epithelium has not been studied in detail. Mastering the connection between surface features and collective cellular behaviour is highly important for novel approaches in tissue engineering and repair. Herein, we used photopatterned microtopographies on azobenzene-containing materials and showed that smooth topographical cues with proper period and orientation can efficiently orchestrate cell alignment in growing epithelium. Furthermore, the experimental system allowed us to investigate how the orientation of the topographical features can alter the speed of wound closure in vitro. Our findings indicate that the extracellular microenvironment topography coordinates their focal adhesion distribution and alignment. These topographic cues are able to guide the collective migration of multicellular systems, even when cell-cell junctions are disrupted.
Collapse
Affiliation(s)
- Chiara Fedele
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Elina Mäntylä
- BioMediTech and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, 94720, USA
| | - Tiama Hamkins-Indik
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, 94720, USA
| | - Silvia Cavalli
- Istituto Italiano Di Tecnologia, Center for Advanced Biomaterials for Healthcare @CRIB, Naples, Italy
| | - Paolo A Netti
- Istituto Italiano Di Tecnologia, Center for Advanced Biomaterials for Healthcare @CRIB, Naples, Italy
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Soile Nymark
- BioMediTech and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Teemu O Ihalainen
- BioMediTech and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
9
|
Topographical curvature is sufficient to control epithelium elongation. Sci Rep 2020; 10:14784. [PMID: 32901063 PMCID: PMC7479112 DOI: 10.1038/s41598-020-70907-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
How biophysical cues can control tissue morphogenesis is a central question in biology and for the development of efficient tissue engineering strategies. Recent data suggest that specific topographies such as grooves and ridges can trigger anisotropic tissue growth. However, the specific contribution of biologically relevant topographical features such as cell-scale curvature is still unclear. Here we engineer a series of grooves and ridges model topographies exhibiting specific curvature at the ridge/groove junctions and monitored the growth of epithelial colonies on these surfaces. We observe a striking proportionality between the maximum convex curvature of the ridges and the elongation of the epithelium. This is accompanied by the anisotropic distribution of F-actin and nuclei with partial exclusion of both in convex regions as well as the curvature-dependent reorientation of pluricellular protrusions and mitotic spindles. This demonstrates that curvature itself is sufficient to trigger and modulate the oriented growth of epithelia through the formation of convex “topographical barriers” and establishes curvature as a powerful tuning parameter for tissue engineering and biomimetic biomaterial design.
Collapse
|
10
|
Effect of substrate topography on the regulation of human corneal stromal cells. Colloids Surf B Biointerfaces 2020; 190:110971. [PMID: 32197207 DOI: 10.1016/j.colsurfb.2020.110971] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022]
Abstract
Optimal functionality of native corneal stroma depends on a well-ordered arrangement of extracellular matrix (ECM). To develop an in vitro corneal model, replication of the corneal in vivo microenvironment is needed. In this study, the impact of topographic cues on keratocyte phenotype is reported. Photolithography and polymer moulding were used to fabricate microgrooves on polydimethylsiloxane (PDMS) 2-2.5 μm deep and 5 μm, 10 μm, or 20 μm in width. Microgrooves constrained the cells body, compressed nuclei and led to cytoskeletal reorganization. It also influenced the concentration of actin filaments, condensation of chromatin and cell proliferation. Cells became more spread and actin filament concentration decreased as the microgroove width increased. Relationships were also demonstrated between microgroove width and cellular processes such as adhesion, migration and gene expression. Immunocytochemistry and gene expression (RT-PCR) analysis showed that microgroove width upregulated keratocyte specific genes. A microgroove with 5 μm width led to a pronounced alignment of cells along the edges of the microchannels and better supported cell polarization and migration compared with other microgroove widths or planar substrates. These findings provide important fundamental knowledge that could serve as a basis for better-controlled tissue growth and cell-engineering applications for corneal stroma regeneration through topographical patterns.
Collapse
|
11
|
Xiong S, Gao H, Qin L, Jia YG, Ren L. Engineering topography: Effects on corneal cell behavior and integration into corneal tissue engineering. Bioact Mater 2019; 4:293-302. [PMID: 31709312 PMCID: PMC6829100 DOI: 10.1016/j.bioactmat.2019.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Cell-material interactions are important to tissue engineering. Inspired by the natural topographic structures on the extracellular matrix, a growing number of studies have integrated engineering topography into investigations of cell behavior on biomaterials. Engineering topography has a significant influence on cell behaviors. These cell-topography interactions play an important role in regenerative medicine and tissue engineering. Similarly, cell-topography interactions are important to corneal reconstruction and regeneration. In this review, we primarily summarized the effects of topographic cues on the behaviors of corneal cells, including cell morphology, adhesion, migration, and proliferation. Furthermore, the integration of engineering surface topography into corneal tissue engineering was also discussed.
Collapse
Affiliation(s)
- Sijia Xiong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - HuiChang Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfeng Qin
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Sino-Singapore International Joint Research Institute, Guangzhou, 510555, China
| |
Collapse
|
12
|
Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110083. [DOI: 10.1016/j.msec.2019.110083] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
|
13
|
Kang KB, Lawrence BD, Gao XR, Guaiquil VH, Liu A, Rosenblatt MI. The Effect of Micro- and Nanoscale Surface Topographies on Silk on Human Corneal Limbal Epithelial Cell Differentiation. Sci Rep 2019; 9:1507. [PMID: 30728382 PMCID: PMC6365498 DOI: 10.1038/s41598-018-37804-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/13/2018] [Indexed: 11/09/2022] Open
Abstract
We previously reported that micro- and nano-scale topographic pitch created on silk films mimic features of the corneal basement membrane by providing biophysical cues to direct corneal epithelial cell adherence and migration. However, the effect of these topographical features on corneal limbal epithelial cell differentiation has not been explored. We hypothesize in the current study that various topographical pitch created on silk may affect corneal epithelial stem cell differentiation and alter the expression of genes involved in cell differentiation and self-renewal. We patterned silk films with different topographic pitch via soft lithography and observed human corneal limbal epithelial cell behavior. Colony forming assay demonstrated increased colony forming efficiency on patterned silk films. Cells cultured on nanoscale patterned silk films also expressed lower levels of putative keratocyte differentiation markers and higher levels of putative limbal stem cell markers. RNA-Seq analysis further implicated the involvement of pathways related to stem cell differentiation and self-renewal, including Notch, ERK/MAPK and Wnt/β-catenin signaling. We conclude that patterned silk film substrates can be used as scaffolds and provide biophysical cues to corneal limbal stem cells that may maintain corneal epithelial stem cells at a less differentiated state.
Collapse
Affiliation(s)
- Kai B Kang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian D Lawrence
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, USA
| | - X Raymond Gao
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Aihong Liu
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Palchesko RN, Carrasquilla SD, Feinberg AW. Natural Biomaterials for Corneal Tissue Engineering, Repair, and Regeneration. Adv Healthc Mater 2018; 7:e1701434. [PMID: 29845780 DOI: 10.1002/adhm.201701434] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/01/2018] [Indexed: 12/13/2022]
Abstract
Corneal blindness is a major cause of vision loss, estimated to affect over 10 million people worldwide. Once impaired through clouding or shape change, the best treatment option for restoring vision is corneal transplantation using full or partial thickness cadaveric grafts. However, donor corneas are globally limited and face rejection and graft failure, similar to other transplanted organs. Thus, there is a need for viable alternatives to donor corneas in order to increase supply, reduce rejection, and to minimize variability in tissue quality. To address this, researchers have developed new materials and strategies to tissue engineer full or partial thickness cornea grafts in order to repair, regenerate, or replace the diseased cornea. This progress report first reviews the anatomy and physiology of the cornea to frame the biological requirements and discuss the injuries and diseases that necessitate the need fortransplantation, as well as the requirements for a suitable donor tissue alternative. This is followed by recent progress using naturally derived biomaterials including silk, collagen, amniotic membranes, and decellularized corneas. Finally, remaining challenges in the field as they relate to the biomaterials discussed are identified, and the future research directions that should result in further advances in restoring corneal vision are highlighted.
Collapse
Affiliation(s)
- Rachelle N. Palchesko
- Department of Biomedical Engineering; Carnegie Mellon University; Pittsburgh PA 15213 USA
- Louis J. Fox Center for Vision Restoration; University of Pittsburgh and UPMC; Pittsburgh PA 15213 USA
| | | | - Adam W. Feinberg
- Department of Biomedical Engineering; Carnegie Mellon University; Pittsburgh PA 15213 USA
- Louis J. Fox Center for Vision Restoration; University of Pittsburgh and UPMC; Pittsburgh PA 15213 USA
- Department of Materials Science and Engineering; Carnegie Mellon University; Pittsburgh PA 15213 USA
| |
Collapse
|
15
|
Abstract
At the edge of a confluent cell layer, cell-free empty space is a cue that can drive directed collective cellular migration. Similarly, contact guidance is also a robust mechanical cue that can drive cell migration. However, it is unclear which of the two effects is stronger, and how each mechanism affects collective migration. To address this question, here we explore the trajectories of cells migrating collectively on a substrate containing micropatterned grooves (10-20 μm in periodicity, 2 μm in height) compared with unpatterned control substrates. Compared with unpatterned controls, the micropatterned substrates attenuated path variance by close to 70% and augmented migration coordination by more than 30%. Together, these results show that contact guidance can play an appreciable role in collective cellular migration. Also, our result can provide insights into tissue repair and regeneration with the remodeling of the connective tissue matrix.
Collapse
|
16
|
Prina E, Mistry P, Sidney LE, Yang J, Wildman RD, Bertolin M, Breda C, Ferrari B, Barbaro V, Hopkinson A, Dua HS, Ferrari S, Rose FRAJ. 3D Microfabricated Scaffolds and Microfluidic Devices for Ocular Surface Replacement: a Review. Stem Cell Rev Rep 2018; 13:430-441. [PMID: 28573367 DOI: 10.1007/s12015-017-9740-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, there has been increased research interest in generating corneal substitutes, either for use in the clinic or as in vitro corneal models. The advancement of 3D microfabrication technologies has allowed the reconstruction of the native microarchitecture that controls epithelial cell adhesion, migration and differentiation. In addition, such technology has allowed the inclusion of a dynamic fluid flow that better mimics the physiology of the native cornea. We review the latest innovative products in development in this field, from 3D microfabricated hydrogels to microfluidic devices.
Collapse
Affiliation(s)
- Elisabetta Prina
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Pritesh Mistry
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Jing Yang
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ricky D Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Marina Bertolin
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Claudia Breda
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Barbara Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Vanessa Barbaro
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Andrew Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy.
| | - Felicity R A J Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Wang L, Lu G, Lu Q, Kaplan DL. Controlling Cell Behavior on Silk Nanofiber Hydrogels with Tunable Anisotropic Structures. ACS Biomater Sci Eng 2018; 4:933-941. [DOI: 10.1021/acsbiomaterials.7b00969] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, People’s Republic of China
| | | | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
18
|
Kang KB, Lawrence BD, Gao XR, Luo Y, Zhou Q, Liu A, Guaiquil VH, Rosenblatt MI. Micro- and Nanoscale Topographies on Silk Regulate Gene Expression of Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2017; 58:6388-6398. [PMID: 29260198 PMCID: PMC5736325 DOI: 10.1167/iovs.17-22213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Corneal basement membrane has topographical features that provide biophysical cues to direct cell adherence, migration, and proliferation. In this study, we hypothesize that varying topographic pitch created on silk films can alter epithelial cell morphology, adhesion, and the genetic expression involved in cytoskeletal dynamics-related pathways. Methods Silicon wafers with parallel ridge widths of 2000, 1000, and 800 nm were produced and used to pattern silk films via soft lithography. Human corneal epithelial cells were cultured onto silk. After 72 hours of incubation, images were taken to study cell morphology and alignment. Cytoskeletal structures were studied by immunofluorescent staining. RNA was collected from cultured cells to perform RNA-Seq transcriptome analysis using the Illumina Hiseq 2500 sequencing system. Differentially expressed genes were identified using DNAstar Qseq then verified using quantitative real-time PCR. These genes were used to perform pathway analyses using Ingenuity Pathways Analysis. Results Primary human corneal epithelial cell alignment to the surface pattern was the greatest on 1000-nm features. Fluorescent microscopy of f-actin staining showed cell cytoskeleton alignment either in parallel (2000 nm) or perpendicular (1000 and 800 nm) to the long feature axis. Z-stack projection of vinculin staining indicated increased focal adhesion formation localized on the cellular basal surface. RNA-seq analysis revealed differentially expressed genes involved in actin organization, integrin signaling, and focal adhesion kinase signaling (−log (P)>5). Conclusions Patterned silk film substrates may serve as a scaffold and provide biophysical cues to corneal epithelial cells that change their gene expression, alter cellular adherence, morphology, and may offer a promising customizable material for use in ocular surface repair.
Collapse
Affiliation(s)
- Kai B Kang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Brian D Lawrence
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States
| | - X Raymond Gao
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Aihong Liu
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
19
|
Treatment with solubilized Silk-Derived Protein (SDP) enhances rabbit corneal epithelial wound healing. PLoS One 2017; 12:e0188154. [PMID: 29155856 PMCID: PMC5695843 DOI: 10.1371/journal.pone.0188154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/01/2017] [Indexed: 12/01/2022] Open
Abstract
There is a significant clinical need to improve current therapeutic approaches to treat ocular surface injuries and disease, which affect hundreds of millions of people annually worldwide. The work presented here demonstrates that the presence of Silk-Derived Protein (SDP) on the healing rabbit corneal surface, administered in an eye drop formulation, corresponds with an enhanced epithelial wound healing profile. Rabbit corneas were denuded of their epithelial surface, and then treated for 72-hours with either PBS or PBS containing 5 or 20 mg/mL SDP in solution four times per day. Post-injury treatment with SDP formulations was found to accelerate the acute healing phase of the injured rabbit corneal epithelium. In addition, the use of SDP corresponded with an enhanced tissue healing profile through the formation of a multi-layered epithelial surface with increased tight junction formation. Additional biological effects were also revealed that included increased epithelial proliferation, and increased focal adhesion formation with a corresponding reduction in the presence of MMP-9 enzyme. These in vivo findings demonstrate for the first time that the presence of SDP on the injured ocular surface may aid to improve various steps of rabbit corneal wound healing, and provides evidence that SDP may have applicability as an ingredient in therapeutic ophthalmic formulations.
Collapse
|
20
|
Collective Migration of Lens Epithelial Cell Induced by Differential Microscale Groove Patterns. J Funct Biomater 2017; 8:jfb8030034. [PMID: 28792434 PMCID: PMC5618285 DOI: 10.3390/jfb8030034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
Abstract
Herein, a micro-patterned cell adhesive surface is prepared for the future design of medical devices. One-dimensional polydimethylsiloxane (PDMS) micro patterns were prepared by a photolithography process. We investigated the effect of microscale topographical patterned surfaces on decreasing the collective cell migration rate. PDMS substrates were prepared through soft lithography using Si molds fabricated by photolithography. Afterwards, we observed the collective cell migration of human lens epithelial cells (B-3) on various groove/ridge patterns and evaluated the migration rate to determine the pattern most effective in slowing down the cell sheet spreading speed. Microgroove patterns were variable, with widths of 3, 5, and 10 µm. After the seeding, time-lapse images were taken under controlled cell culturing conditions. Cell sheet borders were drawn in order to assess collective migration rate. Our experiments revealed that the topographical patterned surfaces could be applied to intraocular lenses to prevent or slow the development of posterior capsular opacification (PCO) by delaying the growth and spread of human lens epithelial cells.
Collapse
|
21
|
Influence of Micropatterned Silk Fibroin Films on Human Umbilical Endothelial Cell Behaviors. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0249-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Ghezzi CE, Marelli B, Omenetto FG, Funderburgh JL, Kaplan DL. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture. PLoS One 2017; 12:e0169504. [PMID: 28099503 PMCID: PMC5242458 DOI: 10.1371/journal.pone.0169504] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022] Open
Abstract
The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison to previously developed 2D approaches. Silk film contact guidance was used to control the alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These systems were compared similar systems generated with human corneal fibroblasts (hCFs). Both cell types were viable and preferentially aligned along the biomaterial patterns for up to 9 weeks in culture. H&E histological sections showed that the systems seeded with the hCSSCs displayed ECM production throughout the entire thickness of the constructs. In addition, the ECM proteins tested positive for keratocyte-specific tissue markers, including keratan sulfate, lumican, and keratocan. The quantification of hCSSC gene expression of keratocyte-tissue markers, including keratocan, lumican, human aldehyde dehydrogenase 3A1 (ALDH3A1), prostaglandin D2 synthase (PTDGS), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4), within the 3D tissue systems demonstrated upregulation when compared to 2D single silk films and to the systems generated with the hCFs. Furthermore, the production of ECM from the hCSSC seeded systems and subsequent remodeling of the initial matrix significantly improved cohesiveness and mechanical performance of the constructs, while maintaining transparency after 9 weeks.
Collapse
Affiliation(s)
- Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Benedetto Marelli
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Fiorenzo G. Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - James L. Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
23
|
Koppes AN, Kamath M, Pfluger CA, Burkey DD, Dokmeci M, Wang L, Carrier RL. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C. Biofabrication 2016; 8:035011. [PMID: 27550930 DOI: 10.1088/1758-5090/8/3/035011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.
Collapse
|
24
|
Degradation of silk films in multipocket corneal stromal rabbit models. J Appl Biomater Funct Mater 2016; 14:e266-76. [PMID: 27230452 DOI: 10.5301/jabfm.5000274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2016] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION The need for human cornea tissues continues to grow as an alternative option to donor tissues. Silk protein has been successfully used as a substrate to engineer corneal epithelium and stroma in vitro. Herein, we investigated the in vivo response and the effect of silk crystalline structure (beta sheet) on degradation rate of silk films in rabbit multipocket corneal models. METHODS Three different surgical techniques (peripheral-median P-M, central-superficial C-S, central-deep C-D) were used to assess the in vivo response as well as the degradation profile of silk films with low, medium and high beta sheet (crystalline) content at 2 and 3 months after surgery. RESULTS Approach C-D showed signs of sample degradation without inflammation, with one single incision and a pocket created by flushing air two thirds deep in the corneal stroma. In comparison, approaches P-M and C-S with multiple incisions presented manually dissected surgical pockets resulted in inflammation and possible extrusion of the samples, respectively. Low beta sheet samples lost structural integrity at 2 months after surgery C-D, while medium and high beta sheet content films showed initial evidence of degradation. CONCLUSIONS The in vivo response to the silk films was dependent on the location of the implant and pocket depth. Crystallinity content in silk films played a significant role in the timing of material degradation, without signs of inflammation and vascularization or changes in stromal organization.
Collapse
|
25
|
Zhou SF, Gopalakrishnan S, Xu YH, Yang J, Lam YW, Pang SW. A Unidirectional Cell Switching Gate by Engineering Grating Length and Bending Angle. PLoS One 2016; 11:e0147801. [PMID: 26821058 PMCID: PMC4731054 DOI: 10.1371/journal.pone.0147801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/09/2016] [Indexed: 11/18/2022] Open
Abstract
On a microgrooved substrate, cells migrate along the pattern, and at random positions, reverse their directions. Here, we demonstrate that these reversals can be controlled by introducing discontinuities to the pattern. On "V-shaped grating patterns", mouse osteogenic progenitor MC3T3-E1 cells reversed predominately at the bends and the ends. The patterns were engineered in a way that the combined effects of angle- and length-dependence could be examined in addition to their individual effects. Results show that when the bend was placed closer to one end, migration behaviour of cells depends on their direction of approach. At an obtuse bend (135°), more cells reversed when approaching from the long segment than from the short segment. But at an acute bend (45°), this relationship was reversed. Based on this anisotropic behaviour, the designed patterns effectively allowed cells to move in one direction but blocked migrations in the opposing direction. This study demonstrates that by the strategic placement of bends and ends on grating patterns, we can engineer effective unidirectional switching gates that can control the movement of adherent cells. The knowledge developed in this study could be utilised in future cell sorting or filtering platforms without the need for chemotaxis or microfluidic control.
Collapse
Affiliation(s)
- Shu Fan Zhou
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - Singaram Gopalakrishnan
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuan Hao Xu
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - Jie Yang
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Yun Wah Lam
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
26
|
Hardy JG, Khaing ZZ, Xin S, Tien LW, Ghezzi CE, Mouser DJ, Sukhavasi RC, Preda RC, Gil ES, Kaplan DL, Schmidt CE. Into the groove: instructive silk-polypyrrole films with topographical guidance cues direct DRG neurite outgrowth. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1327-42. [DOI: 10.1080/09205063.2015.1090181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|
28
|
Shen G, Hu X, Guan G, Wang L. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin. PLoS One 2015; 10:e0124811. [PMID: 25919690 PMCID: PMC4412632 DOI: 10.1371/journal.pone.0124811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/17/2015] [Indexed: 02/05/2023] Open
Abstract
Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell adhesion for vascular prostheses.
Collapse
Affiliation(s)
- Gaotian Shen
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
| | - Xingyou Hu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
| | - Guoping Guan
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
| |
Collapse
|
29
|
Jia L, Ghezzi CE, Kaplan DL. Optimization of silk films as substrate for functional corneal epithelium growth. J Biomed Mater Res B Appl Biomater 2015; 104:431-41. [PMID: 25891207 DOI: 10.1002/jbm.b.33408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/05/2015] [Accepted: 02/19/2015] [Indexed: 11/10/2022]
Abstract
The corneal epithelium is the first cellular barrier to protect the cornea. Thus, functional tissue engineering of the corneal epithelium is a strategy for clinical transplantation. In this study, the optimization of silk films (SFs) as substrates for functional human corneal epithelium growth was investigated with primary human corneal epithelial cells on SFs, poly-D-lysine (PDL) coated SFs, arginine-glycine-aspartic acid (RGD) modified SFs and PDL blended SFs. PDL coated SFs significantly promoted cell adhesion at early phases in comparison to the other study groups, while PDL blended SF significantly promoted cell migration in a "wound healing" model. All film modifications promoted cell proliferation and viability, and a multi-layered epithelium was achieved in 4 weeks of culture. The epithelia formed were tightly apposed and maintained an intact barrier function against rose bengal dye penetration. The results suggested that a differentiated human corneal epithelium can be established with primary corneal epithelial cells on SFs in vitro, by optimizing SF composition with PDL.
Collapse
Affiliation(s)
- Liang Jia
- Department of Biomedical Engineering, Tufts University, Medford, Massachuttes, 02155.,Department of Ophthalmology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, Massachuttes, 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachuttes, 02155
| |
Collapse
|
30
|
Ghezzi CE, Rnjak-Kovacina J, Kaplan DL. Corneal tissue engineering: recent advances and future perspectives. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:278-87. [PMID: 25434371 DOI: 10.1089/ten.teb.2014.0397] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To address the growing need for corneal transplants two main approaches are being pursued: allogenic and synthetic materials. Allogenic tissue from human donors is currently the preferred choice; however, there is a worldwide shortage in donated corneal tissue. In addition, tissue rejection often limits the long-term success of this approach. Alternatively, synthetic homologs to donor corneal grafts are primarily considered temporary replacements until suitable donor tissue becomes available, as they result in a high incidence of graft failure. Tissue engineered cornea analogs would provide effective cornea tissue substitutes and alternatives to address the need to reduce animal testing of commercial products. Recent progress toward these needs is reviewed here, along with future perspectives.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- 1Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Jelena Rnjak-Kovacina
- 1Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.,2Graduate School of Biomedical Engineering, UNSW Australia, Sydney, Australia
| | - David L Kaplan
- 1Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
31
|
Xu Z, Shi L, Yang M, Zhang H, Zhu L. Fabrication of a novel blended membrane with chitosan and silk microfibers for wound healing: characterization, in vitro and in vivo studies. J Mater Chem B 2015; 3:3634-3642. [DOI: 10.1039/c5tb00226e] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel type of chitosan/silk microfibers blended membrane was fabricated, which could significantly accelerate wound healing efficiency.
Collapse
Affiliation(s)
- Zongpu Xu
- Institute of Applied Bioresource Research
- College of Animal Science
- Zhejiang University
- Hangzhou 310058
- PR China
| | - Liyang Shi
- Institute of Applied Bioresource Research
- College of Animal Science
- Zhejiang University
- Hangzhou 310058
- PR China
| | - Mingying Yang
- Institute of Applied Bioresource Research
- College of Animal Science
- Zhejiang University
- Hangzhou 310058
- PR China
| | - Haiping Zhang
- Institute of Applied Bioresource Research
- College of Animal Science
- Zhejiang University
- Hangzhou 310058
- PR China
| | - Liangjun Zhu
- Institute of Applied Bioresource Research
- College of Animal Science
- Zhejiang University
- Hangzhou 310058
- PR China
| |
Collapse
|
32
|
Nonautonomous contact guidance signaling during collective cell migration. Proc Natl Acad Sci U S A 2014; 111:1807-12. [PMID: 24449852 DOI: 10.1073/pnas.1321852111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Directed migration of groups of cells is a critical aspect of tissue morphogenesis that ensures proper tissue organization and, consequently, function. Cells moving in groups, unlike single cells, must coordinate their migratory behavior to maintain tissue integrity. During directed migration, cells are guided by a combination of mechanical and chemical cues presented by neighboring cells and the surrounding extracellular matrix. One important class of signals that guide cell migration includes topographic cues. Although the contact guidance response of individual cells to topographic cues has been extensively characterized, little is known about the response of groups of cells to topographic cues, the impact of such cues on cell-cell coordination within groups, and the transmission of nonautonomous contact guidance information between neighboring cells. Here, we explore these phenomena by quantifying the migratory response of confluent monolayers of epithelial and fibroblast cells to contact guidance cues provided by grooved topography. We show that, in both sparse clusters and confluent sheets, individual cells are contact-guided by grooves and show more coordinated behavior on grooved versus flat substrates. Furthermore, we demonstrate both in vitro and in silico that the guidance signal provided by a groove can propagate between neighboring cells in a confluent monolayer, and that the distance over which signal propagation occurs is not significantly influenced by the strength of cell-cell junctions but is an emergent property, similar to cellular streaming, triggered by mechanical exclusion interactions within the collective system.
Collapse
|