1
|
Investigation of the forkhead box protein P2 gene by the next-generation sequence analysis method in children diagnosed with specific learning disorder. Psychiatr Genet 2023; 33:8-19. [PMID: 36617742 DOI: 10.1097/ypg.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE It was aimed to investigate the role of the forkhead box protein P2 (FOXP2) gene in the cause of specific learning disorder (SLD) with the next-generation sequencing method. MATERIAL AND METHODS The study included 52 children diagnosed with SLD and 46 children as control between the ages of 6-12 years. Interview Schedule for Affective Disorders and Schizophrenia for School-Age Children, Present and Lifelong Version in Turkish, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-Based Screening and Evaluation Scale for Attention Deficit and Disruptive Behavior Disorders, Specific Learning Disability Test Battery were applied to all participants. The FOXP2 gene was screened by the next-generation sequencing (NGS) method in all participants. RESULTS A total of 17 variations were detected in the FOXP2 gene in participants. The number and diversity of variations were higher in the patient group. In the patient group, c.1914 + 8A>T heterozygous variation and three different types of heterozygous variation (13insT, 13delT and 4dup) in the c.1770 region were detected. It was found that the detected variations showed significant relationships with the reading phenotypes determined by the test battery. CONCLUSION It was found that FOXP2 variations were seen more frequently in the patient group. Some of the detected variations might be related to the clinical phenotype of SLD and variations found in previous studies from different countries were not seen in Turkish population. Our study is the first to evaluate the role of FOXP2 gene variations in children with SLD in Turkish population, and novel variations in the related gene were detected.
Collapse
|
2
|
Kalashnikova TP, Satyukova MO, Anisimov GV, Karakulova YV. [Genetic background of dyslexia and dysgraphy in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:48-52. [PMID: 37315241 DOI: 10.17116/jnevro202312305148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The review is devoted to one of the current problems of pediatric neurology - reading and writing disorders in children as part of a partial developmental disorder. With the development of neuroscience, the paradigm of «brain damage» in the understanding of a number of pathological conditions was replaced by the concept of «evolutionary neurology». The dominance of the ontogenetic approach caused the appearance of a new section in ICD-11 - «Neurodevelopmental disorders». Twenty-one genes associated with the acquisition of reading and writing skills have been identified. Modern studies demonstrate the connection of neuropsychological prerequisites for reading and writing, and clinical phenotypes of dyslexia with changes in specific loci. It is assumed that there are different molecular genetic bases for dyslexia and dysgraphia depending on ethnicity, orthographic features of language, including logographic features. Pleiotropy of genes is a cause of comorbidity of reading and writing disorders with attention deficit and hyperactivity disorder, specific speech articulation disorders, and dyscalculia. A key function of many of the identified genes is their involvement in the processes of neurogenesis. Their dysfunctions cause atypical neuronal migration, ectopic formation, inadequate axonal growth, and dendrite branching at the early stage of brain development. Morphological changes can distort the correct distribution and/or integration of linguistic stimuli in critical brain areas, leading to abnormalities in phonology, semantics, spelling, and general reading comprehension. The knowledge gained can form the basis for the development of risk models for dysgraphia and dyslexia formation and be used as a diagnostic and/or screening tool, which is important for evidence-based correction, optimization of academic performance, and mitigation of psychosocial consequences.
Collapse
Affiliation(s)
| | | | - G V Anisimov
- First Medico-Pedagogical Center «Lingua Bona», Perm, Russia
| | | |
Collapse
|
3
|
Animal models of developmental dyslexia: Where we are and what we are missing. Neurosci Biobehav Rev 2021; 131:1180-1197. [PMID: 34699847 DOI: 10.1016/j.neubiorev.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental disorder and the most common learning disability among both school-aged children and across languages. Recently, sensory and cognitive mechanisms have been reported to be potential endophenotypes (EPs) for DD, and nine DD-candidate genes have been identified. Animal models have been used to investigate the etiopathological pathways that underlie the development of complex traits, as they enable the effects of genetic and/or environmental manipulations to be evaluated. Animal research designs have also been linked to cutting-edge clinical research questions by capitalizing on the use of EPs. For the present scoping review, we reviewed previous studies of murine models investigating the effects of DD-candidate genes. Moreover, we highlighted the use of animal models as an innovative way to unravel new insights behind the pathophysiology of reading (dis)ability and to assess cutting-edge preclinical models.
Collapse
|
4
|
Thomas T, Khalaf S, Grigorenko EL. A systematic review and meta-analysis of imaging genetics studies of specific reading disorder. Cogn Neuropsychol 2021; 38:179-204. [PMID: 34529546 DOI: 10.1080/02643294.2021.1969900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The imaging genetics of specific reading disabilities (SRD) is an emerging field that aims to characterize the disabilities' neurobiological causes, including atypical brain structure and function and distinct genetic architecture. The present review aimed to summarize current imaging genetics studies of SRD, characterize the effect sizes of reported results by calculating Cohen's d, complete a Fisher's Combined Probability Test for genes featured in multiple studies, and determine areas for future research. Results demonstrate associations between SRD risk genes and reading network brain phenotypes. The Fisher's test revealed promising results for the genes DCDC2, KIAA0319, FOXP2, SLC2A3, and ROBO1. Future research should focus on exploratory approaches to identify previously undiscovered genes. Using comprehensive neuroimaging (e.g., functional and effective connectivity) and genetic (e.g., sequencing and epigenetic) techniques, and using larger samples, diverse stages of development, and longitudinal investigations, would help researchers understand the neurobiological correlates of SRD to improve early identification.
Collapse
Affiliation(s)
- Tina Thomas
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Shiva Khalaf
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA.,Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
The Polygenic Nature and Complex Genetic Architecture of Specific Learning Disorder. Brain Sci 2021; 11:brainsci11050631. [PMID: 34068951 PMCID: PMC8156942 DOI: 10.3390/brainsci11050631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different, but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological, neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive. We herein present: (a) an update of studies that have shaped our current knowledge on the disorder’s genetic architecture; (b) a discussion on whether this genetic architecture is ‘unique’ to SLD or, alternatively, whether there is an underlying common genetic background with other neurodevelopmental disorders; and, (c) a brief discussion on whether we are at a position of generating meaningful correlations between genetic findings and anatomical data from neuroimaging studies or specific molecular/cellular pathways. We conclude with open research questions that could drive future research directions.
Collapse
|
6
|
Grimm T, Garshasbi M, Puettmann L, Chen W, Ullmann R, Müller-Myhsok B, Klopocki E, Herbst L, Haug J, Jensen LR, Fischer C, Nöthen M, Ludwig K, Warnke A, Ott J, Schulte-Körne G, Ropers HH, Kuss AW. A Novel Locus and Candidate Gene for Familial Developmental Dyslexia on Chromosome 4q. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2020; 48:478-489. [PMID: 33172359 DOI: 10.1024/1422-4917/a000758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: Developmental dyslexia is a highly heritable specific reading and writing disability. To identify a possible new locus and candidate gene for this disability, we investigated a four-generation pedigree where transmission of dyslexia is consistent with an autosomal dominant inheritance pattern. Methods: We performed genome wide array-based SNP genotyping and parametric linkage analysis and sequencing analysis of protein-coding exons, exon-intron boundaries and conserved extragenic regions within the haplotype cosegregating with dyslexia in DNA from one affected and one unaffected family member. Cosegregation was confirmed by sequencing all available family members. Additionally, we analyzed 96 dyslexic individuals who had previously shown positive LOD scores on chromosome 4q28 as well as an even larger sample (n = 2591). Results: We found a single prominent linkage interval on chromosome 4q, where sequence analysis revealed a nucleotide variant in the 3' UTR of brain expressed SPRY1 in the dyslexic family member that cosegregated with dyslexia. This sequence alteration might affect the binding efficiency of the IGF2BP1 RNA-binding protein and thus influence the expression level of the SPRY1 gene product. An analysis of 96 individuals from a cohort of dyslexic individuals revealed a second heterozygous variant in this gene, which was absent in the unaffected sister of the proband. An investigation of the region in a much larger sample further found a nominal p-value of 0.0016 for verbal short-term memory (digit span) in 2,591 individuals for a neighboring SNV. After correcting for the local number of analyzed SNVs, and after taking into account linkage disequilibrium, we found this corresponds to a p-value of 0.0678 for this phenotype. Conclusions: We describe a new locus for familial dyslexia and discuss the possibility that SPRY1 might play a role in the etiology of a monogenic form of dyslexia.
Collapse
Affiliation(s)
- Tiemo Grimm
- Department of Human Genetics, Biozentrum, University of Würzburg, Germany
| | - Masoud Garshasbi
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lucia Puettmann
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Wei Chen
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reinhard Ullmann
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Eva Klopocki
- Department of Human Genetics, Biozentrum, University of Würzburg, Germany
| | - Lina Herbst
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Janina Haug
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Lars R Jensen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | | | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Germany
| | - Kerstin Ludwig
- Institute of Human Genetics, University of Bonn, Germany
| | - Andreas Warnke
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Würzburg, Germany
| | - Jürg Ott
- Laboratory of Statistical Genetics, Rockefeller University, New York, USA
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich, Germany
| | - Hans-Hilger Ropers
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas W Kuss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| |
Collapse
|
7
|
Lancaster HS, Liu X, Dinu V, Li J. Identifying interactive biological pathways associated with reading disability. Brain Behav 2020; 10:e01735. [PMID: 32596987 PMCID: PMC7428467 DOI: 10.1002/brb3.1735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Past research has suggested that reading disability is a complex disorder involving genetic and environment contributions, as well as gene-gene and gene-environment interaction, but to date little is known about the underlying mechanisms. METHOD Using the Avon Longitudinal Study of Parents and Children, we assessed the contributions of genetic, demographic, and environmental variables on case-control status using machine learning. We investigated the functional interactions between genes using pathway and network analysis. RESULTS Our results support a systems approach to studying the etiology of reading disability with many genes (e.g., RAPGEF2, KIAA0319, DLC1) and biological pathways (e.g., neuron migration, positive regulation of dendrite regulation, nervous system development) interacting with each other. We found that single nucleotide variants within genes often had opposite effects and that enriched biological pathways were mediated by neuron migration. We also identified behavioral (i.e., receptive language, nonverbal intelligence, and vocabulary), demographic (i.e., mother's highest education), and environmental (i.e., birthweight) factors that influenced case-control status when accounting for genetic information. DISCUSSION The behavioral and demographic factors were suggested to be protective against reading disability status, while birthweight conveyed risk. We provided supporting evidence that reading disability has a complex biological and environmental etiology and that there may be a shared genetic and neurobiological architecture for reading (dis)ability.
Collapse
Affiliation(s)
- Hope Sparks Lancaster
- College of Health SolutionsArizona State UniversityTempeAZUSA
- Department of Computing, Informatics, and Decision Systems EngineeringSchools of EngineeringArizona State UniversityTempeAZUSA
| | - Xiaonan Liu
- Department of Computing, Informatics, and Decision Systems EngineeringSchools of EngineeringArizona State UniversityTempeAZUSA
| | - Valentin Dinu
- College of Health SolutionsArizona State UniversityTempeAZUSA
| | - Jing Li
- School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
8
|
Yu X, Zuk J, Perdue MV, Ozernov‐Palchik O, Raney T, Beach SD, Norton ES, Ou Y, Gabrieli JDE, Gaab N. Putative protective neural mechanisms in prereaders with a family history of dyslexia who subsequently develop typical reading skills. Hum Brain Mapp 2020; 41:2827-2845. [PMID: 32166830 PMCID: PMC7294063 DOI: 10.1002/hbm.24980] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/18/2020] [Accepted: 02/26/2020] [Indexed: 01/16/2023] Open
Abstract
Developmental dyslexia affects 40-60% of children with a familial risk (FHD+) compared to a general prevalence of 5-10%. Despite the increased risk, about half of FHD+ children develop typical reading abilities (FHD+Typical). Yet the underlying neural characteristics of favorable reading outcomes in at-risk children remain unknown. Utilizing a retrospective, longitudinal approach, this study examined whether putative protective neural mechanisms can be observed in FHD+Typical at the prereading stage. Functional and structural brain characteristics were examined in 47 FHD+ prereaders who subsequently developed typical (n = 35) or impaired (n = 12) reading abilities and 34 controls (FHD-Typical). Searchlight-based multivariate pattern analyses identified distinct activation patterns during phonological processing between FHD+Typical and FHD-Typical in right inferior frontal gyrus (RIFG) and left temporo-parietal cortex (LTPC) regions. Follow-up analyses on group-specific classification patterns demonstrated LTPC hypoactivation in FHD+Typical compared to FHD-Typical, suggesting this neural characteristic as an FHD+ phenotype. In contrast, RIFG showed hyperactivation in FHD+Typical than FHD-Typical, and its activation pattern was positively correlated with subsequent reading abilities in FHD+ but not controls (FHD-Typical). RIFG hyperactivation in FHD+Typical was further associated with increased interhemispheric functional and structural connectivity. These results suggest that some protective neural mechanisms are already established in FHD+Typical prereaders supporting their typical reading development.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
| | - Meaghan V. Perdue
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Haskins LaboratoriesNew HavenConnecticutUSA
| | - Ola Ozernov‐Palchik
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Talia Raney
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
| | - Sara D. Beach
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Division of Medical SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Elizabeth S. Norton
- Department of Communication Sciences and DisordersNorthwestern UniversityEvanstonIllinoisUSA
| | - Yangming Ou
- Division of Newborn MedicineBoston Children’s HospitalBostonMassachusettsUSA
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterBoston Children’s HospitalBostonMassachusettsUSA
- Department of RadiologyBoston Children’s HospitalBostonMassachusettsUSA
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Graduate School of EducationCambridgeMassachusettsUSA
| |
Collapse
|
9
|
Landi N, Perdue M. Neuroimaging genetics studies of specific reading disability and developmental language disorder: A review. LANGUAGE AND LINGUISTICS COMPASS 2019; 13:e12349. [PMID: 31844423 PMCID: PMC6913889 DOI: 10.1111/lnc3.12349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developmental disorders of spoken and written language are heterogeneous in nature with impairments observed across various linguistic, cognitive, and sensorimotor domains. These disorders are also associated with characteristic patterns of atypical neural structure and function that are observable early in development, often before formal schooling begins. Established patterns of heritability point toward genetic contributions, and molecular genetics approaches have identified genes that play a role in these disorders. Still, identified genes account for only a limited portion of phenotypic variance in complex developmental disorders, described as the problem of "missing heritability." The characterization of intermediate phenotypes at the neural level may fill gaps in our understanding of heritability patterns in complex disorders, and the emerging field of neuroimaging genetics offers a promising approach to accomplish this goal. The neuroimaging genetics approach is gaining prevalence in language- and reading-related research as it is well-suited to incorporate behavior, genetics, and neurobiology into coherent etiological models of complex developmental disorders. Here, we review research applying the neuroimaging genetics approach to the study of specific reading disability (SRD) and developmental language disorder (DLD), much of which links genes with known neurodevelopmental function to functional and structural abnormalities in the brain.
Collapse
Affiliation(s)
- Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| | - Meaghan Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| |
Collapse
|
10
|
Sriganesh R, Joseph Ponniah R. Genetics of language and its implications on language interventions. J Genet 2018; 97:1485-1491. [PMID: 30555099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genetic variation of language genes affect neurophysiology of brain and can thus influence the way people respond to environmental language input, leading to differences in terms of their response to environmental language learning. Conversely, language learning environment too can affect gene expressions through neuroepigenetic mechanisms, leading to increasedinterindividual differences. Further, language-related cognitive processes such as learning, working memory and perception; and language-related affective factors such as stress and positive emotion involve neuroplasticity, which is also epigenetically regulated. Language intervention methods must understand the extent and the type of difficulties, and must offer personalized learning andmedical solutions. Medical intervention in terms of epigenetics and neurotransmitter regulation is proposed in addition to effectiveteaching methods to aid in effective language acquisition.
Collapse
|
11
|
|
12
|
van Oers CAMM, Goldberg N, Fiorin G, van den Heuvel MP, Kappelle LJ, Wijnen FNK. No evidence for cerebellar abnormality in adults with developmental dyslexia. Exp Brain Res 2018; 236:2991-3001. [PMID: 30116863 PMCID: PMC6223834 DOI: 10.1007/s00221-018-5351-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/02/2018] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia is commonly believed to result from a deficiency in the recognition and processing of speech sounds. According to the cerebellar deficit hypothesis, this phonological deficit is caused by deficient cerebellar function. In the current study, 26 adults with developmental dyslexia and 25 non-dyslexic participants underwent testing of reading-related skills, cerebellar functions, and MRI scanning of the brain. Anatomical assessment of the cerebellum was conducted with voxel-based morphometry. Behavioural evidence, that was indicative of impaired cerebellar function, was found to co-occur with reading impairments in the dyslexic subjects, but a causal relation between the two was not observed. No differences in local grey matter volume, nor in structure-function relationships within the cerebellum were found between the two groups. Possibly, the observed behavioural pattern is due to aberrant white matter connectivity. In conclusion, no support for the cerebellar deficit hypothesis or the presence of anatomical differences of the cerebellum in adults with developmental dyslexia was found.
Collapse
Affiliation(s)
- Casper A M M van Oers
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Neurology, Amphia Hospital, Breda, The Netherlands.
| | - Nadya Goldberg
- Utrecht institute of Linguistics OTS, Utrecht, The Netherlands
| | - Gaetano Fiorin
- Utrecht institute of Linguistics OTS, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
13
|
Müller B, Schaadt G, Boltze J, Emmrich F, Skeide MA, Neef NE, Kraft I, Brauer J, Friederici AD, Kirsten H, Wilcke A. ATP2C2 and DYX1C1 are putative modulators of dyslexia-related MMR. Brain Behav 2017; 7:e00851. [PMID: 29201552 PMCID: PMC5698869 DOI: 10.1002/brb3.851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dyslexia is a specific learning disorder affecting reading and spelling abilities. Its prevalence is ~5% in German-speaking individuals. Although the etiology of dyslexia largely remains to be determined, comprehensive evidence supports deficient phonological processing as a major contributing factor. An important prerequisite for phonological processing is auditory discrimination and, thus, essential for acquiring reading and spelling skills. The event-related potential Mismatch Response (MMR) is an indicator for auditory discrimination capabilities with dyslexics showing an altered late component of MMR in response to auditory input. METHODS In this study, we comprehensively analyzed associations of dyslexia-specific late MMRs with genetic variants previously reported to be associated with dyslexia-related phenotypes in multiple studies comprising 25 independent single-nucleotide polymorphisms (SNPs) within 10 genes. RESULTS First, we demonstrated validity of these SNPs for dyslexia in our sample by showing that additional inclusion of a polygenic risk score improved prediction of impaired writing compared with a model that used MMR alone. Secondly, a multifactorial regression analysis was conducted to uncover the subset of the 25 SNPs that is associated with the dyslexia-specific late component of MMR. In total, four independent SNPs within DYX1C1 and ATP2C2 were found to be associated with MMR stronger than expected from multiple testing. To explore potential pathomechanisms, we annotated these variants with functional data including tissue-specific expression analysis and eQTLs. CONCLUSION Our findings corroborate the late component of MMR as a potential endophenotype for dyslexia and support tripartite relationships between dyslexia-related SNPs, the late component of MMR and dyslexia.
Collapse
Affiliation(s)
- Bent Müller
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany
| | - Gesa Schaadt
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany.,Department of Psychology Humboldt-Universität zu Berlin Berlin Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany.,Department of Medical Cell Technology Fraunhofer Research Institution for Marine Biotechnology Lübeck Germany.,Institute for Medical and Marine Biotechnology University of Lübeck Lübeck Germany
| | - Frank Emmrich
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany
| | | | - Michael A Skeide
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Nicole E Neef
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Indra Kraft
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Jens Brauer
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Angela D Friederici
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Holger Kirsten
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany.,Institute for Medical Informatics Statistics and Epidemiology University of Leipzig Leipzig Germany.,LIFE-Leipzig Research Center for Civilization Diseases University of Leipzig Leipzig Germany
| | - Arndt Wilcke
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany
| |
Collapse
|
14
|
Gialluisi A, Guadalupe T, Francks C, Fisher SE. Neuroimaging genetic analyses of novel candidate genes associated with reading and language. BRAIN AND LANGUAGE 2017; 172:9-15. [PMID: 27476042 DOI: 10.1016/j.bandl.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/07/2016] [Indexed: 05/23/2023]
Abstract
Neuroimaging measures provide useful endophenotypes for tracing genetic effects on reading and language. A recent Genome-Wide Association Scan Meta-Analysis (GWASMA) of reading and language skills (N=1862) identified strongest associations with the genes CCDC136/FLNC and RBFOX2. Here, we follow up the top findings from this GWASMA, through neuroimaging genetics in an independent sample of 1275 healthy adults. To minimize multiple-testing, we used a multivariate approach, focusing on cortical regions consistently implicated in prior literature on developmental dyslexia and language impairment. Specifically, we investigated grey matter surface area and thickness of five regions selected a priori: middle temporal gyrus (MTG); pars opercularis and pars triangularis in the inferior frontal gyrus (IFG-PO and IFG-PT); postcentral parietal gyrus (PPG) and superior temporal gyrus (STG). First, we analysed the top associated polymorphisms from the reading/language GWASMA: rs59197085 (CCDC136/FLNC) and rs5995177 (RBFOX2). There was significant multivariate association of rs5995177 with cortical thickness, driven by effects on left PPG, right MTG, right IFG (both PO and PT), and STG bilaterally. The minor allele, previously associated with reduced reading-language performance, showed negative effects on grey matter thickness. Next, we performed exploratory gene-wide analysis of CCDC136/FLNC and RBFOX2; no other associations surpassed significance thresholds. RBFOX2 encodes an important neuronal regulator of alternative splicing. Thus, the prior reported association of rs5995177 with reading/language performance could potentially be mediated by reduced thickness in associated cortical regions. In future, this hypothesis could be tested using sufficiently large samples containing both neuroimaging data and quantitative reading/language scores from the same individuals.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands.
| |
Collapse
|
15
|
Identification of NCAN as a candidate gene for developmental dyslexia. Sci Rep 2017; 7:9294. [PMID: 28839234 PMCID: PMC5570950 DOI: 10.1038/s41598-017-10175-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/04/2017] [Indexed: 01/22/2023] Open
Abstract
A whole-genome linkage analysis in a Finnish pedigree of eight cases with developmental dyslexia (DD) revealed several regions shared by the affected individuals. Analysis of coding variants from two affected individuals identified rs146011974G > A (Ala1039Thr), a rare variant within the NCAN gene co-segregating with DD in the pedigree. This variant prompted us to consider this gene as a putative candidate for DD. The RNA expression pattern of the NCAN gene in human tissues was highly correlated (R > 0.8) with that of the previously suggested DD susceptibility genes KIAA0319, CTNND2, CNTNAP2 and GRIN2B. We investigated the association of common variation in NCAN to brain structures in two data sets: young adults (Brainchild study, Sweden) and infants (FinnBrain study, Finland). In young adults, we found associations between a common genetic variant in NCAN, rs1064395, and white matter volume in the left and right temporoparietal as well as the left inferior frontal brain regions. In infants, this same variant was found to be associated with cingulate and prefrontal grey matter volumes. Our results suggest NCAN as a new candidate gene for DD and indicate that NCAN variants affect brain structure.
Collapse
|
16
|
Xia Z, Hancock R, Hoeft F. Neurobiological bases of reading disorder Part I: Etiological investigations. LANGUAGE AND LINGUISTICS COMPASS 2017; 11:e12239. [PMID: 28785303 PMCID: PMC5543813 DOI: 10.1111/lnc3.12239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/22/2017] [Indexed: 05/29/2023]
Abstract
While many studies have focused on identifying the neural and behavioral characteristics of decoding-based reading disorder (RD, aka developmental dyslexia), the etiology of RD remains largely unknown and understudied. Because the brain plays an intermediate role between genetic factors and behavioral outcomes, it is promising to address causality from a neural perspective. In the current, Part I of the two-part review, we discuss neuroimaging approaches to addressing the causality issue and review the results of studies that have employed these approaches. We assume that if a neural signature were associated with RD etiology, it would (a) manifest across comparisons in different languages, (b) be experience independent and appear in comparisons between RD and reading-matched controls, (c) be present both pre- and post-intervention, (d) be found in at-risk, pre-reading children and (e) be associated with genetic risk. We discuss each of these five characteristics in turn and summarize the studies that have examined each of them. The available literature provides evidence that anomalies in left temporo-parietal cortex, and possibly occipito-temporal cortex, may be closely related to the etiology of RD. Improved understanding of the etiology of RD can help improve the accuracy of early detection and enable targeted intervention of cognitive processes that are amenable to change, leading to improved outcomes in at-risk or affected populations.
Collapse
Affiliation(s)
- Zhichao Xia
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| | - Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
- Haskins Laboratories, USA
- Department of Neuropsychiatry, Keio University School of Medicine, Japan
- Dyslexia Center, University of California San Francisco, USA
| |
Collapse
|
17
|
Wang Y, Mauer MV, Raney T, Peysakhovich B, Becker BLC, Sliva DD, Gaab N. Development of Tract-Specific White Matter Pathways During Early Reading Development in At-Risk Children and Typical Controls. Cereb Cortex 2017; 27:2469-2485. [PMID: 27114172 PMCID: PMC5964366 DOI: 10.1093/cercor/bhw095] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia is a neurodevelopmental disorder with a strong genetic basis. Previous studies observed white matter alterations in the left posterior brain regions in adults and school-age children with dyslexia. However, no study yet has examined the development of tract-specific white matter pathways from the pre-reading to the fluent reading stage in children at familial risk for dyslexia (FHD+) versus controls (FHD-). This study examined white matter integrity at pre-reading, beginning, and fluent reading stages cross-sectionally ( n = 78) and longitudinally (n = 45) using an automated fiber-tract quantification method. Our findings depict white matter alterations and atypical lateralization of the arcuate fasciculus at the pre-reading stage in FHD+ versus FHD- children. Moreover, we demonstrate faster white matter development in subsequent good versus poor readers and a positive association between white matter maturation and reading development using a longitudinal design. Additionally, the combination of white matter maturation, familial risk, and psychometric measures best predicted later reading abilities. Furthermore, within FHD+ children, subsequent good readers exhibited faster white matter development in the right superior longitudinal fasciculus compared with subsequent poor readers, suggesting a compensatory mechanism. Overall, our findings highlight the importance of white matter pathway maturation in the development of typical and atypical reading skills.
Collapse
Affiliation(s)
- Yingying Wang
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Meaghan V. Mauer
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Talia Raney
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Barbara Peysakhovich
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bryce L. C. Becker
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Danielle D. Sliva
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Nadine Gaab
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Harvard Graduate School of Education, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
19
|
Eicher JD, Montgomery AM, Akshoomoff N, Amaral DG, Bloss CS, Libiger O, Schork NJ, Darst BF, Casey BJ, Chang L, Ernst T, Frazier J, Kaufmann WE, Keating B, Kenet T, Kennedy D, Mostofsky S, Murray SS, Sowell ER, Bartsch H, Kuperman JM, Brown TT, Hagler DJ, Dale AM, Jernigan TL, Gruen JR. Dyslexia and language impairment associated genetic markers influence cortical thickness and white matter in typically developing children. Brain Imaging Behav 2016; 10:272-82. [PMID: 25953057 PMCID: PMC4639472 DOI: 10.1007/s11682-015-9392-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dyslexia and language impairment (LI) are complex traits with substantial genetic components. We recently completed an association scan of the DYX2 locus, where we observed associations of markers in DCDC2, KIAA0319, ACOT13, and FAM65B with reading-, language-, and IQ-related traits. Additionally, the effects of reading-associated DYX3 markers were recently characterized using structural neuroimaging techniques. Here, we assessed the neuroimaging implications of associated DYX2 and DYX3 markers, using cortical volume, cortical thickness, and fractional anisotropy. To accomplish this, we examined eight DYX2 and three DYX3 markers in 332 subjects in the Pediatrics Imaging Neurocognition Genetics study. Imaging-genetic associations were examined by multiple linear regression, testing for influence of genotype on neuroimaging. Markers in DYX2 genes KIAA0319 and FAM65B were associated with cortical thickness in the left orbitofrontal region and global fractional anisotropy, respectively. KIAA0319 and ACOT13 were suggestively associated with overall fractional anisotropy and left pars opercularis cortical thickness, respectively. DYX3 markers showed suggestive associations with cortical thickness and volume measures in temporal regions. Notably, we did not replicate association of DYX3 markers with hippocampal measures. In summary, we performed a neuroimaging follow-up of reading-, language-, and IQ-associated DYX2 and DYX3 markers. DYX2 associations with cortical thickness may reflect variations in their role in neuronal migration. Furthermore, our findings complement gene expression and imaging studies implicating DYX3 markers in temporal regions. These studies offer insight into where and how DYX2 and DYX3 risk variants may influence neuroimaging traits. Future studies should further connect the pathways to risk variants associated with neuroimaging/neurocognitive outcomes.
Collapse
Affiliation(s)
- John D Eicher
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
| | - Angela M Montgomery
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Natacha Akshoomoff
- Center for Human Development, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92037, USA
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, 95817, USA
| | - Cinnamon S Bloss
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - Ondrej Libiger
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - Nicholas J Schork
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - Burcu F Darst
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - B J Casey
- Sackler Institute for Developmental Psychobiology, Weil Cornell Medical College, New York, NY, 10065, USA
| | - Linda Chang
- Department of Medicine, Queen's Medical Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Thomas Ernst
- Department of Medicine, Queen's Medical Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Jean Frazier
- Department of Psychiatry, University of Massachusetts Medical School, Boston, MA, 01655, USA
| | - Walter E Kaufmann
- Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Harvard Medical School, Children's Hospital Boston, Boston, MA, 02115, USA
| | - Brian Keating
- Department of Medicine, Queen's Medical Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Tal Kenet
- Department of Neurology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - David Kennedy
- Department of Psychiatry, University of Massachusetts Medical School, Boston, MA, 01655, USA
| | - Stewart Mostofsky
- Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Sarah S Murray
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, University of Southern California, Los Angeles, CA, 90027, USA
- Developmental Cognitive Neuroimaging Laboratory Children's Hospital, Los Angeles, CA, 90027, USA
| | - Hauke Bartsch
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Joshua M Kuperman
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Timothy T Brown
- Center for Human Development, University of California, La Jolla, San Diego, CA, 92037, USA
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Donald J Hagler
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
- Radiology University of California, La Jolla, San Diego, CA, 92037, USA
| | - Anders M Dale
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92037, USA
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92037, USA
- Radiology University of California, La Jolla, San Diego, CA, 92037, USA
- Cognitive Science University of California, La Jolla, San Diego, CA, 92037, USA
| | - Terry L Jernigan
- Center for Human Development, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92037, USA
- Radiology University of California, La Jolla, San Diego, CA, 92037, USA
- Cognitive Science University of California, La Jolla, San Diego, CA, 92037, USA
| | - Jeffrey R Gruen
- Department of Genetics, Yale University, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Investigative, School of Medicine, Medicine Yale University, New Haven, CT, 06520, USA.
- Department of Pediatrics, Genetics, and Investigative Medicine, Yale Child Health Research Center, 464 Congress Avenue, New Haven, CT, 06520-8081, USA.
| |
Collapse
|
20
|
Kong R, Song RR. [Research advances in susceptible genes for developmental dyslexia in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1308-1312. [PMID: 27974128 PMCID: PMC7403085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2023]
Abstract
Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Collapse
Affiliation(s)
- Rui Kong
- Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
21
|
Kong R, Song RR. [Research advances in susceptible genes for developmental dyslexia in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1308-1312. [PMID: 27974128 PMCID: PMC7403085 DOI: 10.7499/j.issn.1008-8830.2016.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Collapse
Affiliation(s)
- Rui Kong
- Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
22
|
Gunnarsson B, Jónsdóttir GA, Björnsdóttir G, Konte B, Sulem P, Kristmundsdóttir S, Kehr B, Gústafsson Ó, Helgason H, Iordache PD, Ólafsson S, Frigge ML, Þorleifsson G, Arnarsdóttir S, Stefánsdóttir B, Giegling I, Djurovic S, Sundet KS, Espeseth T, Melle I, Hartmann AM, Thorsteinsdottir U, Kong A, Guðbjartsson DF, Ettinger U, Andreassen OA, Dan Rujescu, Halldórsson JG, Stefánsson H, Halldórsson BV, Stefánsson K. A sequence variant associating with educational attainment also affects childhood cognition. Sci Rep 2016; 6:36189. [PMID: 27811963 PMCID: PMC5095652 DOI: 10.1038/srep36189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Only a few common variants in the sequence of the genome have been shown to impact cognitive traits. Here we demonstrate that polygenic scores of educational attainment predict specific aspects of childhood cognition, as measured with IQ. Recently, three sequence variants were shown to associate with educational attainment, a confluence phenotype of genetic and environmental factors contributing to academic success. We show that one of these variants associating with educational attainment, rs4851266-T, also associates with Verbal IQ in dyslexic children (P = 4.3 × 10−4, β = 0.16 s.d.). The effect of 0.16 s.d. corresponds to 1.4 IQ points for heterozygotes and 2.8 IQ points for homozygotes. We verified this association in independent samples consisting of adults (P = 8.3 × 10−5, β = 0.12 s.d., combined P = 2.2 x 10−7, β = 0.14 s.d.). Childhood cognition is unlikely to be affected by education attained later in life, and the variant explains a greater fraction of the variance in verbal IQ than in educational attainment (0.7% vs 0.12%,. P = 1.0 × 10−5).
Collapse
Affiliation(s)
| | | | | | - Bettina Konte
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | | - Birte Kehr
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | | | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Paul D Iordache
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,Institute of Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
| | | | | | | | | | | | - Ina Giegling
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Srdjan Djurovic
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo 0450, Norway
| | - Kjetil S Sundet
- Department of Psychology, University of Oslo, Oslo 0373, Norway.,NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo 0373, Norway.,NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway
| | - Ingrid Melle
- Department of Medical Genetics, Oslo University Hospital, Oslo 0450, Norway.,Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Annette M Hartmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Daníel F Guðbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ole A Andreassen
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway.,NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0424, Norway
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Department of Psychiatry, University of Munich (LMU), Munich, Germany
| | | | | | - Bjarni V Halldórsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,Institute of Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
| | - Kári Stefánsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
23
|
Ozernov-Palchik O, Yu X, Wang Y, Gaab N. Lessons to be learned: how a comprehensive neurobiological framework of atypical reading development can inform educational practice. Curr Opin Behav Sci 2016; 10:45-58. [PMID: 27766284 DOI: 10.1016/j.cobeha.2016.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dyslexia is a heritable reading disorder with an estimated prevalence of 5-17%. A multiple deficit model has been proposed that illustrates dyslexia as an outcome of multiple risks and protective factors interacting at the genetic, neural, cognitive, and environmental levels. Here we review the evidence on each of these levels and discuss possible underlying mechanisms and their reciprocal interactions along a developmental timeline. Current and potential implications of neuroscientific findings for contemporary challenges in the field of dyslexia, as well as for reading development and education in general, are then discussed.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Center for Reading and Language Research, Tufts University, Medford, MA 02155, United States
| | - Xi Yu
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Yingying Wang
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States; Harvard Graduate School of Education, Cambridge, MA 02138, United States
| |
Collapse
|
24
|
Cui Z, Xia Z, Su M, Shu H, Gong G. Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. Hum Brain Mapp 2016; 37:1443-58. [PMID: 26787263 PMCID: PMC6867308 DOI: 10.1002/hbm.23112] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/06/2015] [Accepted: 12/26/2015] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals.
Collapse
Affiliation(s)
- Zaixu Cui
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing100875China
| | - Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing100875China
| | - Mengmeng Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing100875China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing100875China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing100875China
| |
Collapse
|
25
|
DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development. J Neurosci 2015; 34:14455-62. [PMID: 25339756 DOI: 10.1523/jneurosci.1216-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function. Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2 years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading comprehension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal outgrowth.
Collapse
|
26
|
Insights into the genetic foundations of human communication. Neuropsychol Rev 2015; 25:3-26. [PMID: 25597031 DOI: 10.1007/s11065-014-9277-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
Abstract
The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.
Collapse
|
27
|
Eicher JD, Gruen JR. Language impairment and dyslexia genes influence language skills in children with autism spectrum disorders. Autism Res 2014; 8:229-34. [PMID: 25448322 DOI: 10.1002/aur.1436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/01/2014] [Indexed: 12/27/2022]
Abstract
Language and communication development is a complex process influenced by numerous environmental and genetic factors. Many neurodevelopment disorders include deficits in language and communication skills in their diagnostic criteria, including autism spectrum disorders (ASD), language impairment (LI), and dyslexia. These disorders are polygenic and complex with a significant genetic component contributing to each. The similarity of language phenotypes and comorbidity of these disorders suggest that they may share genetic contributors. To test this, we examined the association of genes previously implicated in dyslexia, LI, and/or language-related traits with language skills in children with ASD. We used genetic and language data collected in the Autism Genome Research Exchange (AGRE) and Simons Simplex Collection (SSC) cohorts to perform a meta-analysis on performance on a receptive vocabulary task. There were associations with LI risk gene ATP2C2 and dyslexia risk gene MRPL19. Additionally, we found suggestive evidence of association with CMIP, GCFC2, KIAA0319L, the DYX2 locus (ACOT13, GPLD1, and FAM65B), and DRD2. Our results show that LI and dyslexia genes also contribute to language traits in children with ASD. These associations add to the growing literature of generalist genes that contribute to multiple related neurobehavioral traits. Future studies should examine whether other genetic contributors may be shared among these disorders and how risk variants interact with each other and the environment to modify clinical presentations.
Collapse
Affiliation(s)
- John D Eicher
- Department of Genetics, Yale University, New Haven, Connecticut
| | | |
Collapse
|
28
|
Kere J. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochem Biophys Res Commun 2014; 452:236-43. [PMID: 25078623 DOI: 10.1016/j.bbrc.2014.07.102] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Among complex disorders, those concerning neuropsychiatric phenotypes involve particular challenges compared to disorders with more easily distinguished clinical signs and measures. One such common and unusually challenging phenotype to disentangle genetically is developmental dyslexia (DD), or reading disability, defined as the inability to learn to read and write for an otherwise normally intelligent child with normal senses and educational opportunity. There is presently ample evidence for the strongly biological etiology for DD, and a dozen susceptibility genes have been suggested. Many of these genes point to common but previously unsuspected biological mechanisms, such as neuronal migration and cilia functions. I discuss here the state-of-the-art in genomic and neurobiological aspects of DD research, starting with short general background to its history.
Collapse
Affiliation(s)
- Juha Kere
- Department of Biosciences and Nutrition, Centre for Innovative Medicine, Karolinska Institutet, Stockholm, Sweden; Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland.
| |
Collapse
|
29
|
Roberts JL, Hovanes K, Dasouki M, Manzardo AM, Butler MG. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders or learning disability presenting for genetic services. Gene 2014; 535:70-8. [PMID: 24188901 PMCID: PMC4423794 DOI: 10.1016/j.gene.2013.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/26/2013] [Accepted: 10/10/2013] [Indexed: 01/15/2023]
Abstract
Chromosomal microarray analysis is now commonly used in clinical practice to identify copy number variants (CNVs) in the human genome. We report our experience with the use of the 105 K and 180K oligonucleotide microarrays in 215 consecutive patients referred with either autism or autism spectrum disorders (ASD) or developmental delay/learning disability for genetic services at the University of Kansas Medical Center during the past 4 years (2009-2012). Of the 215 patients [140 males and 75 females (male/female ratio=1.87); 65 with ASD and 150 with learning disability], abnormal microarray results were seen in 45 individuals (21%) with a total of 49 CNVs. Of these findings, 32 represented a known diagnostic CNV contributing to the clinical presentation and 17 represented non-diagnostic CNVs (variants of unknown significance). Thirteen patients with ASD had a total of 14 CNVs, 6 CNVs recognized as diagnostic and 8 as non-diagnostic. The most common chromosome involved in the ASD group was chromosome 15. For those with a learning disability, 32 patients had a total of 35 CNVs. Twenty-six of the 35 CNVs were classified as a known diagnostic CNV, usually a deletion (n=20). Nine CNVs were classified as an unknown non-diagnostic CNV, usually a duplication (n=8). For the learning disability subgroup, chromosomes 2 and 22 were most involved. Thirteen out of 65 patients (20%) with ASD had a CNV compared with 32 out of 150 patients (21%) with a learning disability. The frequency of chromosomal microarray abnormalities compared by subject group or gender was not statistically different. A higher percentage of individuals with a learning disability had clinical findings of seizures, dysmorphic features and microcephaly, but not statistically significant. While both groups contained more males than females, a significantly higher percentage of males were present in the ASD group.
Collapse
Key Words
- A2BP1
- ACADL
- ACOXL
- ADIPOQ
- ALS2 chromosome region gene 8
- ALS2CR8
- ANKRD11
- ANOVA
- ASD
- Autism spectrum disorders (ASD)
- BAC
- BCL2-like 11 gene
- BCL2L11
- CACNA1C
- CHRNA7
- CNV
- COBL
- CT
- Chromosomal microarray analysis
- Copy number variant (CNV)
- DLG1
- DLG4
- DNA
- Developmental delay
- EEF1B2
- EEG
- F-box only 45 gene
- FAM117B
- FAT tumor suppressor 1 gene
- FAT1
- FBXO45
- FISH
- FXR2
- FZD5
- GALR1
- GATA zinc finger domain-containing protein 2B gene
- GATAD2B
- GDNF-inducible zinc finger protein 1 gene
- GZF1
- HAX1
- HCLS1-associated protein X1 gene
- HDAC
- IDH1
- IL1RAPL1
- ITPR1
- KLF7
- KNG1
- LINS
- LMNA
- Learning disability
- MAP2
- MBP
- MRPL19
- MYL1
- NADH-ubiquinone oxidoreductase Fe-S protein 1 gene
- NDUFS1
- NLGN2
- NPHP1
- NRXN1
- PAK2
- PARK2
- PMP22
- POLG
- PRPF8
- PTEN
- PTH2R
- RPE
- SACS
- SD
- SH2B adaptor protein 1 gene
- SH2B1
- SH3 and multiple ankyrin repeat domains 3 gene
- SHANK3
- SHOX
- SMARCA4
- STAG2
- SUMF1
- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member gene
- TRAPPC2
- UCSC
- USP6
- University of California, Santa Cruz
- X-linked inhibitor of apoptosis gene
- XIAP
- YWHAE
- ZNF407
- aCGH
- acyl-coA dehydrogenase, long chain gene
- acyl-coA oxidase-like gene
- adipocyte-, C1q-, and collagen domain containing gene
- analysis of variance
- ankyrin repeat domain-containing protein 11 gene
- array comparative genomic hybridization
- ataxin 2-binding protein 1 gene
- autism spectrum disorder
- bacterial artificial chromosome
- calcium channel, voltage dependent, L-type, alpha 1C subunit gene
- cholinergic receptor, neuronal nicotinic, alpha polypeptide 7 gene
- computed tomography
- copy number variant
- cordon-bleu gene
- deoxyribonucleic acid
- discs, large homolog 1 gene
- discs, large homolog 4 gene
- electroencephalogram
- eukaryotic translation elongation factor 1, beta-2 gene
- family with sequence similarity 117, member B gene
- fluorescence in situ hybridization
- fragile X mental retardation, autosomal homolog 2 gene
- frizzled 5 gene
- galanin receptor 1 gene
- histone deacetylase gene
- inositol 1,4,5-triphosphate receptor, type 1 gene
- interleukin 1 receptor accessory protein-like 1 gene
- isocitrate dehydrogenase 1 gene
- kininogen 1 gene
- kruppel-like factor 7 gene
- lamin A gene
- lines homolog gene
- microtubule-associated protein 2 gene
- mitochondrial ribosomal protein L19 gene
- myelin basic protein gene
- myosin, light peptide 1 gene
- nephrocystin 1 gene
- neurexin 1 gene
- neuroligin 2 gene
- parathyroid hormone receptor 2 gene
- parkin gene
- peripheral myelin protein 22 gene
- phosphatase and tensin homolog gene
- polymerase gamma gene
- precursor mRNA-processing factor 8 gene
- protein-activated kinase 2 gene
- ribulose 5-phosphate 3-epimerase gene
- sacsin gene
- short stature homeobox gene
- standard deviation
- stromal antigen 2 gene
- sulfatase-modifying factor 1 gene
- tracking protein particle complex, subunit 2 gene
- tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon isoform gene
- ubiquitin-specific protease 6 gene
- zinc finger protein 407 gene
Collapse
Affiliation(s)
- Jennifer L Roberts
- Departments of Psychiatry, Behavioral Sciences and Pediatrics, The University of Kansas, Medical Center, Kansas City, KS, USA
| | | | - Majed Dasouki
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, USA; King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ann M Manzardo
- Departments of Psychiatry, Behavioral Sciences and Pediatrics, The University of Kansas, Medical Center, Kansas City, KS, USA
| | - Merlin G Butler
- Departments of Psychiatry, Behavioral Sciences and Pediatrics, The University of Kansas, Medical Center, Kansas City, KS, USA.
| |
Collapse
|
30
|
Yoshimoto R, Okawa K, Yoshida M, Ohno M, Kataoka N. Identification of a novel component C2ORF3 in the lariat-intron complex: lack of C2ORF3 interferes with pre-mRNA splicing via intron turnover pathway. Genes Cells 2013; 19:78-87. [DOI: 10.1111/gtc.12114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/14/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rei Yoshimoto
- Chemical Genetics Laboratory; RIKEN Advanced Science Institute; Wako Saitama 351-0198 Japan
- Institute for Virus Research; Kyoto University; Sakyo-ku Kyoto 606-8507 Japan
| | - Katsuya Okawa
- Drug Research Laboratories; Kyowa Hakko Kirin Co., Ltd; Nagaizumi Shizuoka 411-8731 Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory; RIKEN Advanced Science Institute; Wako Saitama 351-0198 Japan
| | - Mutsuhito Ohno
- Institute for Virus Research; Kyoto University; Sakyo-ku Kyoto 606-8507 Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research; Medical Innovation Center; Kyoto University Graduate School of Medicine; Sakyo-ku Kyoto 606-8507 Japan
| |
Collapse
|
31
|
Handedness: A neurogenetic shift of perspective. Neurosci Biobehav Rev 2013; 37:2788-93. [DOI: 10.1016/j.neubiorev.2013.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 02/01/2023]
|
32
|
Eicher JD, Powers NR, Miller LL, Akshoomoff N, Amaral DG, Bloss CS, Libiger O, Schork NJ, Darst BF, Casey BJ, Chang L, Ernst T, Frazier J, Kaufmann WE, Keating B, Kenet T, Kennedy D, Mostofsky S, Murray SS, Sowell ER, Bartsch H, Kuperman JM, Brown TT, Hagler DJ, Dale AM, Jernigan TL, St Pourcain B, Davey Smith G, Ring SM, Gruen JR. Genome-wide association study of shared components of reading disability and language impairment. GENES, BRAIN, AND BEHAVIOR 2013; 12:792-801. [PMID: 24024963 PMCID: PMC3904347 DOI: 10.1111/gbb.12085] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/16/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
Abstract
Written and verbal languages are neurobehavioral traits vital to the development of communication skills. Unfortunately, disorders involving these traits-specifically reading disability (RD) and language impairment (LI)-are common and prevent affected individuals from developing adequate communication skills, leaving them at risk for adverse academic, socioeconomic and psychiatric outcomes. Both RD and LI are complex traits that frequently co-occur, leading us to hypothesize that these disorders share genetic etiologies. To test this, we performed a genome-wide association study on individuals affected with both RD and LI in the Avon Longitudinal Study of Parents and Children. The strongest associations were seen with markers in ZNF385D (OR = 1.81, P = 5.45 × 10(-7) ) and COL4A2 (OR = 1.71, P = 7.59 × 10(-7) ). Markers within NDST4 showed the strongest associations with LI individually (OR = 1.827, P = 1.40 × 10(-7) ). We replicated association of ZNF385D using receptive vocabulary measures in the Pediatric Imaging Neurocognitive Genetics study (P = 0.00245). We then used diffusion tensor imaging fiber tract volume data on 16 fiber tracts to examine the implications of replicated markers. ZNF385D was a predictor of overall fiber tract volumes in both hemispheres, as well as global brain volume. Here, we present evidence for ZNF385D as a candidate gene for RD and LI. The implication of transcription factor ZNF385D in RD and LI underscores the importance of transcriptional regulation in the development of higher order neurocognitive traits. Further study is necessary to discern target genes of ZNF385D and how it functions within neural development of fluent language.
Collapse
Affiliation(s)
- J D Eicher
- Department of Genetics, Yale UniversityNew Haven, CT, USA
| | - N R Powers
- Department of Genetics, Yale UniversityNew Haven, CT, USA
| | - L L Miller
- MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of BristolBristol, UK
| | - N Akshoomoff
- Center for Human Development, University of California at San DiegoLa Jolla, CA, USA
- Department of Psychiatry, University of California at San DiegoLa Jolla, CA, USA
| | - D G Amaral
- Department of Psychiatry and Behavioral Sciences, University of CaliforniaDavis, CA, USA
| | - C S Bloss
- Scripps Genomic Medicine, Scripps Translational Science Institute and Scripps HealthLa Jolla, CA, USA
| | - O Libiger
- Scripps Genomic Medicine, Scripps Translational Science Institute and Scripps HealthLa Jolla, CA, USA
| | - N J Schork
- Scripps Genomic Medicine, Scripps Translational Science Institute and Scripps HealthLa Jolla, CA, USA
| | - B F Darst
- Scripps Genomic Medicine, Scripps Translational Science Institute and Scripps HealthLa Jolla, CA, USA
| | - B J Casey
- Sackler Institute for Developmental Psychobiology, Weil Cornell Medical CollegeNew York, NY, USA
| | - L Chang
- Department of Medicine, University of Hawaii and Queen's Medical CenterHonolulu, HI, USA
| | - T Ernst
- Department of Medicine, University of Hawaii and Queen's Medical CenterHonolulu, HI, USA
| | - J Frazier
- Department of Psychiatry, University of Massachusetts Medical SchoolBoston, MA, USA
| | - W E Kaufmann
- Kennedy Krieger InstituteBaltimore, MD, USA
- Department of Neurology, Children's Hospital Boston, Harvard Medical SchoolBoston, MA, USA
| | - B Keating
- Department of Medicine, University of Hawaii and Queen's Medical CenterHonolulu, HI, USA
| | - T Kenet
- Department of Neurology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestown, MA, USA
| | - D Kennedy
- Department of Psychiatry, University of Massachusetts Medical SchoolBoston, MA, USA
| | | | - S S Murray
- Scripps Genomic Medicine, Scripps Translational Science Institute and Scripps HealthLa Jolla, CA, USA
| | - E R Sowell
- Department of Pediatrics, University of Southern CaliforniaLos Angeles, CA, USA
- Developmental Cognitive Neuroimaging Laboratory, Children's HospitalLos Angeles, CA, USA
| | - H Bartsch
- Multimodal Imaging Laboratory, University of California at San DiegoLa Jolla, CA, USA
| | - J M Kuperman
- Multimodal Imaging Laboratory, University of California at San DiegoLa Jolla, CA, USA
- Department of Neurosciences, University of California at San DiegoLa Jolla, CA, USA
| | - T T Brown
- Center for Human Development, University of California at San DiegoLa Jolla, CA, USA
- Multimodal Imaging Laboratory, University of California at San DiegoLa Jolla, CA, USA
- Department of Neurosciences, University of California at San DiegoLa Jolla, CA, USA
| | - D J Hagler
- Multimodal Imaging Laboratory, University of California at San DiegoLa Jolla, CA, USA
- Department of Radiology, University of California at San DiegoLa Jolla, CA, USA
| | - A M Dale
- Department of Psychiatry, University of California at San DiegoLa Jolla, CA, USA
- Multimodal Imaging Laboratory, University of California at San DiegoLa Jolla, CA, USA
- Department of Neurosciences, University of California at San DiegoLa Jolla, CA, USA
- Department of Radiology, University of California at San DiegoLa Jolla, CA, USA
- Department of Cognitive Science, University of California at San DiegoLa Jolla, CA, USA
| | - T L Jernigan
- Center for Human Development, University of California at San DiegoLa Jolla, CA, USA
- Department of Psychiatry, University of California at San DiegoLa Jolla, CA, USA
- Department of Radiology, University of California at San DiegoLa Jolla, CA, USA
- Department of Cognitive Science, University of California at San DiegoLa Jolla, CA, USA
| | - B St Pourcain
- MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of BristolBristol, UK
- School of Oral and Dental Sciences, University of BristolBristol, UK
- School of Experimental Psychology, University of BristolBristol, UK
| | - G Davey Smith
- MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of BristolBristol, UK
| | - S M Ring
- MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of BristolBristol, UK
| | - J R Gruen
- Department of Genetics, Yale UniversityNew Haven, CT, USA
- Departments of Pediatrics and Investigative Medicine, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
33
|
Eicher JD, Gruen JR. Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Mol Genet Metab 2013; 110:201-12. [PMID: 23916419 PMCID: PMC3800223 DOI: 10.1016/j.ymgme.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022]
Abstract
Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia.
Collapse
Affiliation(s)
- John D. Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Jeffrey R. Gruen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
- Departments of Pediatrics and Investigative Medicine, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
34
|
Carrion-Castillo A, Franke B, Fisher SE. Molecular genetics of dyslexia: an overview. DYSLEXIA (CHICHESTER, ENGLAND) 2013; 19:214-240. [PMID: 24133036 DOI: 10.1002/dys.1464] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 05/28/2023]
Abstract
Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs.
Collapse
Affiliation(s)
- Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | | | | |
Collapse
|
35
|
Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. Eur J Hum Genet 2013; 22:675-80. [PMID: 24022301 DOI: 10.1038/ejhg.2013.199] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 02/02/2023] Open
Abstract
Dyslexia is one of the most common childhood disorders with a prevalence of around 5-10% in school-age children. Although an important genetic component is known to have a role in the aetiology of dyslexia, we are far from understanding the molecular mechanisms leading to the disorder. Several candidate genes have been implicated in dyslexia, including DYX1C1, DCDC2, KIAA0319, and the MRPL19/C2ORF3 locus, each with reports of both positive and no replications. We generated a European cross-linguistic sample of school-age children - the NeuroDys cohort - that includes more than 900 individuals with dyslexia, sampled with homogenous inclusion criteria across eight European countries, and a comparable number of controls. Here, we describe association analysis of the dyslexia candidate genes/locus in the NeuroDys cohort. We performed both case-control and quantitative association analyses of single markers and haplotypes previously reported to be dyslexia-associated. Although we observed association signals in samples from single countries, we did not find any marker or haplotype that was significantly associated with either case-control status or quantitative measurements of word-reading or spelling in the meta-analysis of all eight countries combined. Like in other neurocognitive disorders, our findings underline the need for larger sample sizes to validate possibly weak genetic effects.
Collapse
|
36
|
Abstract
In most people, language is processed predominantly by the left hemisphere of the brain, but we do not know how or why. A popular view is that developmental language disorders result from a poorly lateralized brain, but until recently, evidence has been weak and indirect. Modern neuroimaging methods have made it possible to study normal and abnormal development of lateralized function in the developing brain and have confirmed links with language and literacy impairments. However, there is little evidence that weak cerebral lateralization has common genetic origins with language and literacy impairments. Our understanding of the association between atypical language lateralization and developmental disorders may benefit if we reconceptualize the nature of cerebral asymmetry to recognize its multidimensionality and consider variation in lateralization over developmental time. Contrary to popular belief, cerebral lateralization may not be a highly heritable, stable characteristic of individuals; rather, weak lateralization may be a consequence of impaired language learning.
Collapse
Affiliation(s)
- Dorothy V M Bishop
- Department of Experimental Psychology, University of Oxford, 9 South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|