1
|
Alagesan K, Nagarajan H, Ramachandran B, Vetrivel U, Jeyaraj Pandian C, Jeyaraman J. Targeting TetR-family transcription regulators for combating tetracycline resistance in resilient Acinetobacter baumannii: in silico identification of potent inhibitors. J Biomol Struct Dyn 2025:1-26. [PMID: 40420564 DOI: 10.1080/07391102.2025.2507812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/15/2024] [Indexed: 05/28/2025]
Abstract
Acinetobacter baumannii stands out as a potent pathogenic microbe responsible for healthcare-associated infections characterized by elevated morbidity and mortality. This bacterium has acquired a range of mechanisms for resisting antibiotics, resulting in the emergence of strains that can withstand antibiotics from multiple classes. Effectively addressing this urgent concern requires finding ways to overcome these resistance mechanisms. In this context, our study focuses on TetR Transcriptional Factor Regulators (TetR-FTRs). It coordinates functions of tetracycline efflux pump proteins (TetA and TetR) and exert influence over metabolic pathways, quorum sensing, and biofilm formation. The primary objective is to identify potent inhibitors targeting TetR-FTRs through scaffold-based shape screening across thirteen distinct databases. A wide array of in silico techniques was employed, including molecular docking, molecular dynamics simulations, Swiss Similarity search, Virtual Screening, MM/GBSA analysis, ADMET assessment, PAINS assay, SIFT analysis, and MM/PBSA calculations. The initial Swiss similarity search yielded 2178 compounds for subsequent virtual screening, with the application of PAINS analysis rigorously pruning the list, eliminating 14 false positive hits. Further refinement through SIFT approach discriminated closely related interacting compounds into three distinct clusters - ChemBridge5963254, BDH33906706, and ZINC000013607604, which fulfilled all SIFT criteria. Comparative evaluation against reference compounds revealed favorable glide scores, lower binding free energies, and interactions with crucial active site residue Hsd128-Mg2+. Molecular dynamics simulations consistently exhibited stable binding for these clusters in contrast to reference compounds. Our analysis underscores three specific compounds, namely ChemBridge5963254, BDH33906706, and ZINC000013607604, as promising candidates for addressing tetracycline resistance and combating A. baumannii infections.
Collapse
Affiliation(s)
- Karthika Alagesan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Hemavathy Nagarajan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Balajee Ramachandran
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Umashankar Vetrivel
- ICMR-Department of Virology and Biotechnology/Bioinformatics Division, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Jeyakanthan Jeyaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
2
|
Wilcken S, Koutsandrea PH, Bakker T, Kulik A, Orthwein T, Franz-Wachtel M, Harbig T, Nieselt KK, Forchhammer K, Brötz-Oesterhelt H, Macek B, Mordhorst S, Kaysser L, Gust B. The TetR-like regulator Sco4385 and Crp-like regulator Sco3571 modulate heterologous production of antibiotics in Streptomyces coelicolor M512. Appl Environ Microbiol 2025; 91:e0231524. [PMID: 40183567 DOI: 10.1128/aem.02315-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025] Open
Abstract
Heterologous expression in well-studied model strains is a routinely applied method to investigate biosynthetic pathways. Here, we pursue a comparative approach of large-scale DNA-affinity-capturing assays (DACAs) coupled with semi-quantitative mass spectrometry (MS) to identify putative regulatory proteins from Streptomyces coelicolor M512, which bind to the heterologously expressed biosynthetic gene clusters (BGCs) of the liponucleoside antibiotics caprazamycin and liposidomycin. Both gene clusters share an almost identical genetic arrangement, including the location of promoter regions, as detected by RNA sequencing. A total of 2,214 proteins were trapped at the predicted promoter regions, with only three binding to corresponding promoters in both gene clusters. Among these, the overexpression of a yet uncharacterized TetR-family regulator (TFR), Sco4385, increased caprazamycin but not liposidomycin production. Protein-DNA interaction experiments using biolayer interferometry confirmed the binding of Sco4385 to Pcpz10 and PlpmH at different locations within both promoter regions, which might explain its functional variance. Sequence alignment allowed the determination of a consensus sequence present in both promoter regions, to which Sco4385 was experimentally shown to bind. Furthermore, we found that the overexpression of the Crp regulator, Sco3571, leads to a threefold increase in caprazamycin and liposidomycin production yields, possibly due to an increased expression of a precursor pathway.IMPORTANCEStreptomycetes are well-studied model organisms for the biosynthesis of pharmaceutically, industrially, and biotechnologically valuable metabolites. Their naturally broad repertoire of natural products can be further exploited by heterologous expression of biosynthetic gene clusters (BGCs) in non-native host strains. This approach forces the host to adapt to a new regulatory and metabolic environment. In our study, we demonstrate that a host regulator not only interacts with newly incorporated gene clusters but also regulates precursor supply for the produced compounds. We present a comprehensive study of regulatory proteins that interact with two genetically similar gene clusters for the biosynthesis of liponucleoside antibiotics. Thereby, we identified regulators of the heterologous host that influence the production of the corresponding antibiotic. Surprisingly, the regulatory interaction is highly specific for each biosynthetic gene cluster, even though they encode largely structurally similar metabolites.
Collapse
Affiliation(s)
- Sarah Wilcken
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), Tübingen, Germany
| | | | - Tomke Bakker
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Andreas Kulik
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Tim Orthwein
- Department of Microbiology and Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Institute of Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Theresa Harbig
- Interfaculty Institute for Bioinformatics and Medical Informatics, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Kay Katja Nieselt
- Interfaculty Institute for Bioinformatics and Medical Informatics, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Department of Microbiology and Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Partner Site Tübingen, German Centre for Infection Research (DZIF), Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Cluster of Excellence Controlling Microbes to Fight Infections, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Institute of Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Leonard Kaysser
- Institute for Drug Discovery, Department of Pharmaceutical Biology, Leipzig University, Leipzig, Germany
| | - Bertolt Gust
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
3
|
Deryabin DG, Inchagova KS, Nikonorova ER, Karimov IF, Duskaev GK. Quorum Sensing in Chromobacterium subtsugae ATCC 31532 (Formerly Chromobacterium violaceum ATCC 31532): Transcriptomic and Genomic Analyses. Microorganisms 2025; 13:1021. [PMID: 40431194 PMCID: PMC12114271 DOI: 10.3390/microorganisms13051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Chromobacterium spp. use a density-dependent cell-to-cell communication mechanism (quorum sensing, QS) to control various traits, including the pigment violacein biosynthesis. Recently, one of the type strains of this genus, previously deposited in the American Type Culture Collection under accession number C. violaceum 31532, was reclassified as C. subtsugae, making the QS data obtained for the first species irrelevant to the second. The goal of this study is to conduct transcriptomic and genomic analyses of the C. subtsugae ATCC 31532 (formerly C. violaceum ATCC 31532) strain to identify density-dependent regulated genes and the mechanisms of their QS control. Whole transcriptome dataset analysis comparing QS-negative mid-log phase and QS-positive early stationary phase samples revealed 35 down-regulated and 261 up-regulated genes, including 44 genes that increased transcription activity the most (log2 (fold change) > 4.0). In addition to the violacein biosynthesis, QS-controlled traits in C. subtsugae ATCC 31532 included the following: (i) cdeAB-oprM efflux pump; (ii) RND efflux transporter; (iii) chuPRSTUV iron acquisition system; (iv) polyamine transport system; (v) carbohydrate (semialdehydes) metabolic pathways; (vi) SAM/SPASM maturase system XYE (predicted); (vii) prophage proteins; and (viii) fucose-binding lectin II. Subsequent screening of the promoter regions of the up-regulated genes and operons in most cases showed the presence of CsuR AHL-receptor/transcriptional regulator binding sites with 56.25-68.75% similarity to the ideal 16-base-pair palindrome 5'-CTGTCCGATAGGACAG-3' sequence, supporting the concept of QS control in C. subtsugae ATCC 31532 by the csuI-csuR gene pair. Notably, several transcriptional regulators (MarR, TetR/AcrR, HU family DNA-binding protein, helix-turn-helix domain-containing protein) were found to be under QS control. Based on these data, a hierarchical QS regulatory network in C. subtsugae ATCC 31532 was hypothesized that provides direct control of the target genes via a canonical autoinduction mechanism and further dissemination of the effect via the activity of QS-controlled transcriptional regulators.
Collapse
Affiliation(s)
- Dmitry G. Deryabin
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg 460000, Russia; (K.S.I.); (E.R.N.); (I.F.K.)
| | - Ksenia S. Inchagova
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg 460000, Russia; (K.S.I.); (E.R.N.); (I.F.K.)
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, Orenburg 460000, Russia
| | - Eugenia R. Nikonorova
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg 460000, Russia; (K.S.I.); (E.R.N.); (I.F.K.)
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow 117216, Russia
- State Research Center of Dermatovenerology and Cosmetology of Russian Ministry of Health, Moscow 107076, Russia
| | - Ilshat F. Karimov
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg 460000, Russia; (K.S.I.); (E.R.N.); (I.F.K.)
- Department of Epidemiology and Infectious Diseases, Orenburg State Medical University of Russian Ministry of Health, Orenburg 460000, Russia
| | - Galimzhan K. Duskaev
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg 460000, Russia; (K.S.I.); (E.R.N.); (I.F.K.)
| |
Collapse
|
4
|
Peng F, Ke Z, Jin H, Wang W, Zhang H, Li Y. Structural insights into the regulation mechanism of Mycobacterium tuberculosis MftR. FASEB J 2024; 38:e23724. [PMID: 38837712 DOI: 10.1096/fj.202302409rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Mycobacterium tuberculosis, the pathogen of the deadly disease tuberculosis, depends on the redox cofactor mycofactocin (MFT) to adapt to and survive under hypoxic conditions. MftR is a TetR family transcription regulator that binds upstream of the MFT gene cluster and controls MFT synthesis. To elucidate the structural basis underlying MftR regulation, we determined the crystal structure of Mycobacterium tuberculosis MftR (TB-MftR). The structure revealed an interconnected hydrogen bond network in the α1-α2-α3 helices of helix-turn-helix (HTH) DNA-binding domain that is essential for nucleic acid interactions. The ligand-binding domain contains a hydrophobic cavity enclosing long-chain fatty acyl-CoAs like the key regulatory ligand oleoyl-CoA. Despite variations in ligand-binding modes, comparative analyses suggest regulatory mechanisms are largely conserved across TetR family acyl-CoA sensors. By elucidating the intricate structural mechanisms governing DNA and ligand binding by TB-MftR, our study enhances understanding of the regulatory roles of this transcription factor under hypoxic conditions, providing insights that could inform future research into Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zunhui Ke
- Department of Blood Transfusion, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoruo Jin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Medical Subcenter of HUST Analytical & Testing Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| |
Collapse
|
5
|
Filipek J, Chalaskiewicz K, Kosmider A, Nielipinski M, Michalak A, Bednarkiewicz M, Goslawski-Zeligowski M, Prucnal F, Sekula B, Pietrzyk-Brzezinska AJ. Comprehensive structural overview of the C-terminal ligand-binding domains of the TetR family regulators. J Struct Biol 2024; 216:108071. [PMID: 38401830 DOI: 10.1016/j.jsb.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
TetR family regulators (TFRs) represent a large group of one-component bacterial signal transduction systems which recognize environmental signals, like the presence of antibiotics or other bactericidal compounds, and trigger the cell response by regulating the expression of genes that secure bacterial survival in harsh environmental conditions. TFRs act as homodimers, each protomer is composed of a conserved DNA-binding N-terminal domain (NTD) and a variable ligand-binding C-terminal domain (CTD). Currently, there are about 500 structures of TFRs available in the Protein Data Bank and one-fourth of them represent the structures of TFR-ligand complexes. In this review, we summarized information on the ligands interacting with TFRs and based on structural data, we compared the CTDs of the TFR family members, as well as their ligand-binding cavities. Additionally, we divided the whole TFR family, including more than half of a million sequences, into subfamilies according to calculated multiple sequence alignment and phylogenetic tree. We also highlighted structural elements characteristic of some of the subfamilies. The presented comprehensive overview of the TFR CTDs provides good bases and future directions for further studies on TFRs that are not only important targets for battling multidrug resistance but also good candidates for many biotechnological approaches, like TFR-based biosensors.
Collapse
Affiliation(s)
- Jakub Filipek
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Katarzyna Chalaskiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Aleksandra Kosmider
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maciej Nielipinski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka Michalak
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maria Bednarkiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Mieszko Goslawski-Zeligowski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Filip Prucnal
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Bartosz Sekula
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland.
| |
Collapse
|
6
|
Cook GD, Stasulli NM. Employing synthetic biology to expand antibiotic discovery. SLAS Technol 2024; 29:100120. [PMID: 38340893 DOI: 10.1016/j.slast.2024.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Antimicrobial-resistant (AMR) bacterial pathogens are a continually growing threat as our methods for combating these infections continue to be overcome by the evolution of resistance mechanisms. Recent therapeutic methods have not staved off the concern of AMR infections, so continued research focuses on new ways of identifying small molecules to treat AMR pathogens. While chemical modification of existing antibiotics is possible, there has been rapid development of resistance by pathogens that were initially susceptible to these compounds. Synthetic biology is becoming a key strategy in trying to predict and induce novel, natural antibiotics. Advances in cloning and mutagenesis techniques applied through a synthetic biology lens can help characterize the native regulation of antibiotic biosynthetic gene clusters (BGCs) to identify potential modifications leading to more potent antibiotic activity. Additionally, many cryptic antibiotic BGCs are derived from non-ribosomal peptide synthase (NRPS) and polyketide synthase (PKS) biosynthetic pathways; complex, clustered genetic sequences that give rise to amino acid-derived natural products. Synthetic biology can be applied to modify and metabolically engineer these enzyme-based systems to promote rapid and sustainable production of natural products and their variants. This review will focus on recent advances related to synthetic biology as applied to genetic pathway characterization and identification of antibiotics from naturally occurring BGCs. Specifically, we will summarize recent efforts to characterize BGCs via general genomic mutagenesis, endogenous gene expression, and heterologous gene expression.
Collapse
Affiliation(s)
- Greta D Cook
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Rd, Dodds Hall 316, West Haven 06516 USA
| | - Nikolas M Stasulli
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Rd, Dodds Hall 316, West Haven 06516 USA.
| |
Collapse
|
7
|
Xiao Y, Qin T, He S, Chen Y, Li H, He Q, Wang X, Yang S. Systematic investigation of TetR-family transcriptional regulators and their roles on lignocellulosic inhibitor acetate tolerance in Zymomonas mobilis. Front Bioeng Biotechnol 2024; 12:1385519. [PMID: 38585710 PMCID: PMC10998469 DOI: 10.3389/fbioe.2024.1385519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
TetR-family transcriptional regulators are widely distributed among bacteria and involved in various cellular processes such as multidrug and inhibitor resistance. Zymomonas mobilis is a industrial bacterium for lignocellulosic ethanol production. Although TetR-family regulators and their associated RND-family efflux pumps in Z. mobilis have been identified to be differentially expressed under various inhibitors and stressful conditions, there are no systematic investigation yet. In this study, bioinformatic analyses indicated that there are three TetR-family transcriptional regulators (ZMO0281, ZMO0963, ZMO1547) and two RND-family efflux pumps (ZMO0282-0285, ZMO0964-0966) adjacent to corresponding TetR-family regulators of ZMO0281 and ZMO0963 in Z. mobilis. Genetics studies were then carried out with various mutants of TetR-family regulators constructed, and ZMO0281 was characterized to be related to acetate tolerance. Combining transcriptomics and dual-reporter gene system, this study demonstrated that three TetR-family regulators repressed their adjacent genes specifically. Moreover, TetR-family regulator ZMO0281 might also be involved in other cellular processes in the presence of acetate. In addition, the upregulation of RND-family efflux pumps due to ZMO0281 deletion might lead to an energy imbalance and decreased cell growth in Z. mobilis under acetate stress. The systematic investigation of all three TetR-family regulators and their roles on a major lignocellulosic inhibitor acetate tolerance in Z. mobilis thus not only unravels the molecular mechanisms of TetR-family regulators and their potential cross-talks on regulating RND-family efflux pumps and other genes in Z. mobilis, but also provides guidance on understanding the roles of multiple regulators of same family in Z. mobilis and other microorganisms for efficient lignocellulosic biochemical production.
Collapse
Affiliation(s)
- Yubei Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Tongjia Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
- Chinese Medicine College, Guangdong Yunfu Vocational College of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuche He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
8
|
Yan X, Dong Y, Gu Y, Cui H. Effect of Precursors and Their Regulators on the Biosynthesis of Antibiotics in Actinomycetes. Molecules 2024; 29:1132. [PMID: 38474644 DOI: 10.3390/molecules29051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
During the life activities of microorganisms, a variety of secondary metabolites are produced, including antimicrobials and antitumor drugs, which are widely used in clinical practice. In addition to exploring new antibiotics, this makes it one of the research priorities of Actinomycetes to effectively increase the yield of antibiotics in production strains by various means. Most antibiotic-producing strains have a variety of functional regulatory factors that regulate their growth, development, and secondary metabolite biosynthesis processes. Through the study of precursor substances in antibiotic biosynthesis, researchers have revealed the precursor biosynthesis process and the mechanism by which precursor synthesis regulators affect the biosynthesis of secondary metabolites, which can be used to obtain engineered strains with high antibiotic production. This paper summarizes the supply of antibiotic biosynthesis precursors and the progress of research on the role of regulators in the process of precursors in biosynthesis. This lays the foundation for the establishment of effective breeding methods to improve antibiotic yields through the manipulation of precursor synthesis genes and related regulators.
Collapse
Affiliation(s)
- Xu Yan
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yao Dong
- College of Biology & Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yawen Gu
- Analytical and Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Hao Cui
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
9
|
Schumacher MA, Lent N, Chen VB, Salinas R. Structures of the DarR transcription regulator reveal unique modes of second messenger and DNA binding. Nat Commun 2023; 14:7239. [PMID: 37945601 PMCID: PMC10636190 DOI: 10.1038/s41467-023-42823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
The mycobacterial repressor, DarR, a TetR family regulator (TFR), was the first transcription regulator shown to bind c-di-AMP. However, the molecular basis for this interaction and the mechanism involved in DNA binding by DarR remain unknown. Here we describe DarR-c-di-AMP and DarR-DNA structures and complementary biochemical assays. The DarR-c-di-AMP structure reveals a unique effector binding site for a TFR, located between DarR dimer subunits. Strikingly, we show this motif also binds cAMP. The location of the adenine nucleotide binding site between subunits suggests this interaction may facilitate dimerization and hence DNA binding. Indeed, biochemical assays show cAMP enhances DarR DNA binding. Finally, DarR-DNA structures reveal a distinct TFR DNA-binding mechanism involving two interacting dimers on the DNA. Thus, the combined data unveil a newly described second messenger binding motif and DNA binding mode for this important family of regulators.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Nicholas Lent
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Vincent B Chen
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
10
|
Singh P, Kumar A, Chhabra R, Singh K, Kaur J. MSMEG_5850, a stress-induced TetR protein, involved in global transcription regulation in Mycobacterium smegmatis. Future Microbiol 2023; 18:563-580. [PMID: 37284769 DOI: 10.2217/fmb-2022-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Aim: To decipher the role of MSMEG_5850 in the physiology of mycobacteria. Methods: MSMEG_5850 was knocked out and RNA sequencing was performed. MSMEG_5850 protein was purified from the Escherichia coli pET28a system. Electrophoretic mobility shift assay and size exclusion chromatography were used to determine the binding of MSMEG_5850 to its motif and binding stoichiometry. The effect of nutritional stress was monitored. Results: Transcriptome analysis revealed the differential expression of 148 genes in an MSMEG_5850 knockout strain. MSMEG_5850 had control over 50 genes because those genes had a binding motif upstream of their sequence. The electrophoretic mobility shift assay showed MSMEG_5850 bound to its motif as a monomer. MSMEG_5850 was upregulated under nutritional stress and promoted the survival of mycobacteria. Conclusion: The study confirms the role of MSMEG_5850 in global transcriptional regulation.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
- Current Address: Fellow Scientist, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ravindresh Chhabra
- Department of Biochemistry, Central University of Punjab, Bathinda, 151001, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
11
|
Wani SR, Dubey AA, Jain V. Ms6244 is a novel Mycobacterium smegmatis TetR family transcriptional repressor that regulates cell growth and morphophysiology. FEBS Lett 2023; 597:1428-1440. [PMID: 36694284 DOI: 10.1002/1873-3468.14582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Transcriptional factors such as the TetR family of transcriptional regulators (TFTRs) are widely found amongst bacteria, including mycobacteria, and are accountable for their survival. Here, we characterized a novel TFTR, Ms6244, from Mycobacterium smegmatis that negatively autoregulates its expression and represses its neighbouring gene, Ms6243. We also report the binding of Ms6244 to the inverted repeats in the intergenic region of Ms6244 and Ms6243. Further, an Ms6244-deleted strain shows various morpho-physiological differences compared to the wild type. We further confirmed that the deletion of Ms6244 itself and not the resultant Ms6243 overexpression is the cause of the altered physiology. Our data thus suggest that Ms6244 is an essential regulator, having far-reaching effects on M. smegmatis physiology.
Collapse
Affiliation(s)
- Saloni Rajesh Wani
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Abhishek Anil Dubey
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| |
Collapse
|
12
|
Li Z, Yang S, Zhang Z, Wu Y, Tang J, Wang L, Chen S. Enhancement of acarbose production by genetic engineering and fed-batch fermentation strategy in Actinoplanes sp. SIPI12-34. Microb Cell Fact 2022; 21:240. [DOI: 10.1186/s12934-022-01969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Acarbose, as an alpha-glucosidase inhibitor, is widely used clinically to treat type II diabetes. In its industrial production, Actinoplanes sp. SE50/110 is used as the production strain. Lack of research on its regulatory mechanisms and unexplored gene targets are major obstacles to rational strain design. Here, transcriptome sequencing was applied to uncover more gene targets and rational genetic engineering was performed to increase acarbose production.
Results
In this study, with the help of transcriptome information, a TetR family regulator (TetR1) was identified and confirmed to have a positive effect on the synthesis of acarbose by promoting the expression of acbB and acbD. Some genes with low expression levels in the acarbose biosynthesis gene cluster were overexpressed and this resulted in a significant increase in acarbose yield. In addition, the regulation of metabolic pathways was performed to retain more glucose-1-phosphate for acarbose synthesis by weakening the glycogen synthesis pathway and strengthening the glycogen degradation pathway. Eventually, with a combination of multiple strategies and fed-batch fermentation, the yield of acarbose in the engineered strain increased 58% compared to the parent strain, reaching 8.04 g/L, which is the highest fermentation titer reported.
Conclusions
In our research, acarbose production had been effectively and steadily improved through genetic engineering based on transcriptome analysis and fed-batch culture strategy.
Graphical Abstract
Collapse
|
13
|
Nag A, Mehra S. Involvement of the SCO3366 efflux pump from S. coelicolor in rifampicin resistance and its regulation by a TetR regulator. Appl Microbiol Biotechnol 2022; 106:2175-2190. [PMID: 35194656 DOI: 10.1007/s00253-022-11837-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
Overexpression of efflux pumps represents a key mechanism of resistance in bacteria. Soil bacteria such as Streptomyces harbour a vast array of efflux genes that are transcriptionally silent under laboratory conditions. However, dissemination of many of these genes into clinical pathogens via horizontal gene transfer results in conferring resistance to multiple drugs. In this study, we have identified the role of a MFS transporter, SCO3366 from Streptomyces coelicolor, in governing multidrug resistance. Overexpression and knockout studies revealed that SCO3366 provides resistance to several structurally unrelated drugs including ciprofloxacin, chloramphenicol, rifampicin and EtBr, with rifampicin being the major substrate. Beyond multidrug resistance, SCO3366 was efficient in providing tolerance towards oxidative stress. A combinatorial mechanism of increased oxidative stress tolerance decreased intracellular drug levels and decreased permeability act synergistically to provide resistance towards rifampicin. Shedding light on the regulation of SCO3366, we find the pump to be directly regulated by the TetR regulator SCO3367 in a negative manner and the repression was found to be relieved in presence of different compounds recognized as substrates of SCO3366. KEY POINTS: • First reported rifampicin efflux pump in Streptomyces coelicolor • Resistance to rifampicin is the result of a synergistic action of increased efflux with increased oxidative stress tolerance and decreased permeability, which can potentially arise in clinically relevant bacteria • SCO3366-SCO3367 to be a novel system that operates to protect the bacteria under varied environmental stress conditions.
Collapse
Affiliation(s)
- Ankita Nag
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
14
|
Cooper C, Peterson EJR, Bailo R, Pan M, Singh A, Moynihan P, Nakaya M, Fujiwara N, Baliga N, Bhatt A. MadR mediates acyl CoA-dependent regulation of mycolic acid desaturation in mycobacteria. Proc Natl Acad Sci U S A 2022; 119:e2111059119. [PMID: 35165190 PMCID: PMC8872791 DOI: 10.1073/pnas.2111059119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis has a lipid-rich cell envelope that is remodeled throughout infection to enable adaptation within the host. Few transcriptional regulators have been characterized that coordinate synthesis of mycolic acids, the major cell wall lipids of mycobacteria. Here, we show that the mycolic acid desaturase regulator (MadR), a transcriptional repressor of the mycolate desaturase genes desA1 and desA2, controls mycolic acid desaturation and biosynthesis in response to cell envelope stress. A madR-null mutant of M. smegmatis exhibited traits of an impaired cell wall with an altered outer mycomembrane, accumulation of a desaturated α-mycolate, susceptibility to antimycobacterials, and cell surface disruption. Transcriptomic profiling showed that enriched lipid metabolism genes that were significantly down-regulated upon madR deletion included acyl-coenzyme A (aceyl-CoA) dehydrogenases, implicating it in the indirect control of β-oxidation pathways. Electromobility shift assays and binding affinities suggest a unique acyl-CoA pool-sensing mechanism, whereby MadR is able to bind a range of acyl-CoAs, including those with unsaturated as well as saturated acyl chains. MadR repression of desA1/desA2 is relieved upon binding of saturated acyl-CoAs of chain length C16 to C24, while no impact is observed upon binding of shorter chain and unsaturated acyl-CoAs. We propose this mechanism of regulation as distinct to other mycolic acid and fatty acid synthesis regulators and place MadR as the key regulatory checkpoint that coordinates mycolic acid remodeling during infection in response to host-derived cell surface perturbation.
Collapse
Affiliation(s)
- Charlotte Cooper
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Rebeca Bailo
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109
| | - Albel Singh
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Patrick Moynihan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8585, Japan
| | - Nitin Baliga
- Institute for Systems Biology, Seattle, WA 98109;
- Department of Biology, University of Washington, Seattle, WA 98105
- Department of Microbiology, University of Washington, Seattle, WA 98105
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98105
- Lawrence Berkeley National Lab, Berkeley, CA 94720
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
15
|
Mendauletova A, Latham JA. Biosynthesis of the redox cofactor mycofactocin is controlled by the transcriptional regulator MftR and induced by long-chain acyl-CoA species. J Biol Chem 2021; 298:101474. [PMID: 34896395 PMCID: PMC8728441 DOI: 10.1016/j.jbc.2021.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022] Open
Abstract
Mycofactocin (MFT) is a ribosomally synthesized and post-translationally-modified redox cofactor found in pathogenic mycobacteria. While MFT biosynthetic proteins have been extensively characterized, the physiological conditions under which MFT biosynthesis is required are not well understood. To gain insights into the mechanisms of regulation of MFT expression in Mycobacterium smegmatis mc2155, we investigated the DNA-binding and ligand-binding activities of the putative TetR-like transcription regulator, MftR. In this study, we demonstrated that MftR binds to the mft promoter region. We used DNase I footprinting to identify the 27 bp palindromic operator located 5′ to mftA and found it to be highly conserved in Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium ulcerans, and Mycobacterium marinum. To determine under which conditions the mft biosynthetic gene cluster (BGC) is induced, we screened for effectors of MftR. As a result, we found that MftR binds to long-chain acyl-CoAs with low micromolar affinities. To demonstrate that oleoyl-CoA induces the mft BGC in vivo, we re-engineered a fluorescent protein reporter system to express an MftA–mCherry fusion protein. Using this mCherry fluorescent readout, we show that the mft BGC is upregulated in M. smegmatis mc2155 when oleic acid is supplemented to the media. These results suggest that MftR controls expression of the mft BGC and that MFT production is induced by long-chain acyl-CoAs. Since MFT-dependent dehydrogenases are known to colocalize with acyl carrier protein/CoA-modifying enzymes, these results suggest that MFT might be critical for fatty acid metabolism or cell wall reorganization.
Collapse
Affiliation(s)
- Aigera Mendauletova
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - John A Latham
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| |
Collapse
|
16
|
Xie W, Xia Q, Chen L, Xiong G, Gao Y, Yu Y, He X. Cloning and identification of a new repressor of 3,17β-Hydroxysteroid dehydrogenase of Comamonas testosteroni. Mol Biol Rep 2021; 48:7067-7075. [PMID: 34677711 DOI: 10.1007/s11033-021-06566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND 3,17β-hydroxysteroid dehydrogenase (3,17β-HSD) is a key enzyme in the metabolic pathway for steroid compounds catabolism in Comamonas testosteroni. Tetracycline repressor (TetR) family, repressors existing in most microorganisms, may play key roles in regulating the expression of 3,17β-HSD. Previous reports showed that three tetR genes are located in the contig58 of C. testosteroni ATCC 11996 (GenBank: AHIL01000049.1), among which the first tetR gene encoded a potential repressor of 3,17β-HSD by sensing environmental signals. However, whether the other proposed tetR genes act as repressors of 3,17β-HSD are still unknown. METHODS AND RESULTS In the present study, we cloned the second tetR gene and analyzed the regulatory mechanism of the protein on 3,17β-HSD using electrophoretic mobility shift assay (EMSA), gold nanoparticles (AuNPs)-based assay, and loss-of-function analysis. The results showed that the second tetR gene was 660-bp, encoding a 26 kD protein, which could regulate the expression of 3,17β-HSD gene via binding to the conserved consensus sequences located 1100-bp upstream of the 3,17β-HSD gene. Furthermore, the mutant strain of C. testosteroni with the second tetR gene knocked-out mutant expresses good biological genetic stability, and the expression of 3,17β-HSD in the mutant strain is slightly higher than that in the wild type under testosterone induction. CONCLUSIONS The second tetR gene acts as a negative regulator in 3,17β-HSD expression, and the mutant has potential application in bioremediation of steroids contaminated environment.
Collapse
Affiliation(s)
- Weiqi Xie
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Qin Xia
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ling Chen
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, 24103, Kiel, Germany
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yuanhua Yu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
17
|
Covington BC, Xu F, Seyedsayamdost MR. A Natural Product Chemist's Guide to Unlocking Silent Biosynthetic Gene Clusters. Annu Rev Biochem 2021; 90:763-788. [PMID: 33848426 PMCID: PMC9148385 DOI: 10.1146/annurev-biochem-081420-102432] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial natural products have provided an important source of therapeutic leads and motivated research and innovation in diverse scientific disciplines. In recent years, it has become evident that bacteria harbor a large, hidden reservoir of potential natural products in the form of silent or cryptic biosynthetic gene clusters (BGCs). These can be readily identified in microbial genome sequences but do not give rise to detectable levels of a natural product. Herein, we provide a useful organizational framework for the various methods that have been implemented for interrogating silent BGCs. We divide all available approaches into four categories. The first three are endogenous strategies that utilize the native host in conjunction with classical genetics, chemical genetics, or different culture modalities. The last category comprises expression of the entire BGC in a heterologous host. For each category, we describe the rationale, recent applications, and associated advantages and limitations.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| |
Collapse
|
18
|
Acinetobacter baylyi regulates type IV pilus synthesis by employing two extension motors and a motor protein inhibitor. Nat Commun 2021; 12:3744. [PMID: 34145281 PMCID: PMC8213720 DOI: 10.1038/s41467-021-24124-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/02/2021] [Indexed: 11/08/2022] Open
Abstract
Bacteria use extracellular appendages called type IV pili (T4P) for diverse behaviors including DNA uptake, surface sensing, virulence, protein secretion, and twitching motility. Dynamic extension and retraction of T4P is essential for their function, and T4P extension is thought to occur through the action of a single, highly conserved motor, PilB. Here, we develop Acinetobacter baylyi as a model to study T4P by employing a recently developed pilus labeling method. By contrast to previous studies of other bacterial species, we find that T4P synthesis in A. baylyi is dependent not only on PilB but also on an additional, phylogenetically distinct motor, TfpB. Furthermore, we identify a protein (CpiA) that inhibits T4P extension by specifically binding and inhibiting PilB but not TfpB. These results expand our understanding of T4P regulation and highlight how inhibitors might be exploited to disrupt T4P synthesis. Type IV pili (T4P) are retractile appendages used by bacteria for DNA uptake and other purposes. T4P extension is thought to occur through the action of a single motor protein, PilB. Here, Ellison et al. show that T4P synthesis in Acinetobacter baylyi depends not only on PilB but also on an additional, distinct motor, TfpB.
Collapse
|
19
|
Long P, Zhang L, Huang B, Chen Q, Liu H. Integrating genome sequence and structural data for statistical learning to predict transcription factor binding sites. Nucleic Acids Res 2020; 48:12604-12617. [PMID: 33264415 PMCID: PMC7736823 DOI: 10.1093/nar/gkaa1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 01/11/2023] Open
Abstract
We report an approach to predict DNA specificity of the tetracycline repressor (TetR) family transcription regulators (TFRs). First, a genome sequence-based method was streamlined with quantitative P-values defined to filter out reliable predictions. Then, a framework was introduced to incorporate structural data and to train a statistical energy function to score the pairing between TFR and TFR binding site (TFBS) based on sequences. The predictions benchmarked against experiments, TFBSs for 29 out of 30 TFRs were correctly predicted by either the genome sequence-based or the statistical energy-based method. Using P-values or Z-scores as indicators, we estimate that 59.6% of TFRs are covered with relatively reliable predictions by at least one of the two methods, while only 28.7% are covered by the genome sequence-based method alone. Our approach predicts a large number of new TFBs which cannot be correctly retrieved from public databases such as FootprintDB. High-throughput experimental assays suggest that the statistical energy can model the TFBSs of a significant number of TFRs reliably. Thus the energy function may be applied to explore for new TFBSs in respective genomes. It is possible to extend our approach to other transcriptional factor families with sufficient structural information.
Collapse
Affiliation(s)
- Pengpeng Long
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Huang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Quan Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
| | - Haiyan Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
- School of Data Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Hanko EKR, Paiva AC, Jonczyk M, Abbott M, Minton NP, Malys N. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nat Commun 2020; 11:1213. [PMID: 32139676 PMCID: PMC7057948 DOI: 10.1038/s41467-020-14941-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Inducible gene expression systems are vital tools for the advancement of synthetic biology. Their application as genetically encoded biosensors has the potential to contribute to diagnostics and to revolutionise the field of microbial cell factory development. Currently, the number of compounds of biological interest by far exceeds the number of available biosensors. Here, we address this limitation by developing a generic genome-wide approach to identify transcription factor-based inducible gene expression systems. We construct and validate 15 functional biosensors, provide a characterisation workflow to facilitate forward engineering efforts, exemplify their broad-host-range applicability, and demonstrate their utility in enzyme screening. Previously uncharacterised interactions between sensors and compounds of biological relevance are identified by employing the largest reported library of metabolite-responsive biosensors in an automated high-throughput screen. With the rapidly growing genomic data these innovative capabilities offer a platform to vastly increase the number of biologically detectable molecules. Inducible gene expression tools have important applications as genetically encoded biosensors. Here the authors conduct a genome-wide approach to identify and utilise functional sensors.
Collapse
Affiliation(s)
- Erik K R Hanko
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ana C Paiva
- Centre for Biomolecular Sciences, School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Magdalena Jonczyk
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Matthew Abbott
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
21
|
Colclough AL, Scadden J, Blair JMA. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genomics 2019; 20:731. [PMID: 31606035 PMCID: PMC6790063 DOI: 10.1186/s12864-019-6075-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background TetR-family transcriptional regulators (TFTRs) are DNA binding factors that regulate gene expression in bacteria. Well-studied TFTRs, such as AcrR, which regulates efflux pump expression, are usually encoded alongside target operons. Recently, it has emerged that there are many TFTRs which act as global multi-target regulators. Our classical view of TFTRs as simple, single-target regulators therefore needs to be reconsidered. As some TFTRs regulate essential processes (e.g. metabolism) or processes which are important determinants of resistance and virulence (e.g. biofilm formation and efflux gene expression) and as TFTRs are present throughout pathogenic bacteria, they may be good drug discovery targets for tackling antimicrobial resistant infections. However, the prevalence and conservation of individual TFTR genes in Gram-negative species, has to our knowledge, not yet been studied. Results Here, a wide-scale search for TFTRs in available proteomes of clinically relevant pathogens Salmonella and Escherichia species was performed and these regulators further characterised. The majority of identified TFTRs are involved in efflux regulation in both Escherichia and Salmonella. The percentage variance in TFTR genes of these genera was found to be higher in those regulating genes involved in efflux, bleach survival or biofilm formation than those regulating more constrained processes. Some TFTRs were found to be present in all strains and species of these two genera, whereas others (i.e. TetR) are only present in some strains and some (i.e. RamR) are genera-specific. Two further pathogens on the WHO priority pathogen list (K. pneumoniae and P. aeruginosa) were then searched for the presence of the TFTRs conserved in Escherichia and Salmonella. Conclusions Through bioinformatics and literature analyses, we present that TFTRs are a varied and heterogeneous family of proteins required for the regulation of numerous important processes, with consequences to antimicrobial resistance and virulence, and that the roles and responses of these proteins are frequently underestimated. Electronic supplementary material The online version of this article (10.1186/s12864-019-6075-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A L Colclough
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J Scadden
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J M A Blair
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
22
|
Coenen A, Oetermann S, Steinbüchel A. Identification of LcpRB A3(2), a novel regulator of lcp expression in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2019; 103:5715-5726. [PMID: 31119350 DOI: 10.1007/s00253-019-09896-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
Streptomyces coelicolor A3(2) is a rubber-degrading actinomycete that harbors one gene coding for a latex clearing protein (lcpA3(2)). Within the genome of S. coelicolor A3(2), we identified a gene coding for a novel protein of the TetR family (LcpRBA3(2)) downstream of lcpA3(2) and demonstrated its binding upstream of lcpA3(2). This indicates a role of LcpRBA3(2) in the regulation of lcp expression. LcpRBA3(2) shows no homology to LcpRVH2, a putative regulator of lcp expression in Gordonia polyisoprenivorans VH2. Additionally, LcpRVH2 homologs did not occur in the genome of S. coelicolor A3(2). Reverse transcriptase (RT) experiments showed that the expression of lcpA3(2) and lcpRBA3(2) is induced with poly(cis-1,4-isoprene) as sole carbon source. For further experiments, we heterologously expressed lcpRBA3(2) in Escherichia coli, purified the protein, and subsequently verified a binding of LcpRBA3(2) upstream of lcpA3(2). The operator site was examined by a DNase I footprinting assay: it comprises 31 bp and exhibits an inverted repeat of nine bases for the putative binding region. Interestingly, two N-terminal DNA-binding HTH domains of the TetR-type (PF00440) were identified within the sequence of LcpRBA3(2). The native molecular weight of LcpRBA3(2) was determined as 44 kDa by size exclusion chromatography which correlates to the molecular weight of a monomer. Normally, proteins of the TetR family occur as dimers so that the monomeric state is a novelty. Furthermore, LcpRBA3(2) homologs were identified in silico in several Lcp-containing actinomycetes, suspecting a conserved regulation mechanism. Apparently, the expression of lcps is regulated either by an LcpRB or by an LcpR.
Collapse
Affiliation(s)
- Anna Coenen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sylvia Oetermann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany. .,Department of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
23
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
24
|
An integrated whole genome analysis of Mycobacterium tuberculosis reveals insights into relationship between its genome, transcriptome and methylome. Sci Rep 2019; 9:5204. [PMID: 30914757 PMCID: PMC6435705 DOI: 10.1038/s41598-019-41692-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/14/2019] [Indexed: 01/01/2023] Open
Abstract
Human tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is a complex disease, with a spectrum of outcomes. Genomic, transcriptomic and methylation studies have revealed differences between Mtb lineages, likely to impact on transmission, virulence and drug resistance. However, so far no studies have integrated sequence-based genomic, transcriptomic and methylation characterisation across a common set of samples, which is critical to understand how DNA sequence and methylation affect RNA expression and, ultimately, Mtb pathogenesis. Here we perform such an integrated analysis across 22 M. tuberculosis clinical isolates, representing ancient (lineage 1) and modern (lineages 2 and 4) strains. The results confirm the presence of lineage-specific differential gene expression, linked to specific SNP-based expression quantitative trait loci: with 10 eQTLs involving SNPs in promoter regions or transcriptional start sites; and 12 involving potential functional impairment of transcriptional regulators. Methylation status was also found to have a role in transcription, with evidence of differential expression in 50 genes across lineage 4 samples. Lack of methylation was associated with three novel variants in mamA, likely to cause loss of function of this enzyme. Overall, our work shows the relationship of DNA sequence and methylation to RNA expression, and differences between ancient and modern lineages. Further studies are needed to verify the functional consequences of the identified mechanisms of gene expression regulation.
Collapse
|
25
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Occurrence, function, and biosynthesis of mycofactocin. Appl Microbiol Biotechnol 2019; 103:2903-2912. [PMID: 30778644 DOI: 10.1007/s00253-019-09684-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Mycofactocin is a member of the rapidly growing class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Although the mycofactocin biosynthetic pathway is widely distributed among Mycobacterial species, the structure, function, and biosynthesis of the pathway product remain unknown. This mini-review will discuss the current state of knowledge regarding the mycofactocin biosynthetic pathway. In particular, we focus on the architecture and distribution of the mycofactocin biosynthetic cluster, mftABCDEF, among the Actinobacteria phylum. We discuss the potential molecular and physiological role of mycofactocin. We review known biosynthetic steps involving MftA, MftB, MftC, and MftE and relate them to pyrroloquinoline quinone biosynthesis. Lastly, we propose the function of the remaining putative biosynthetic enzymes, MftD and MftF.
Collapse
|
27
|
Wu H, Chu Z, Zhang W, Zhang C, Ni J, Fang H, Chen Y, Wang Y, Zhang L, Zhang B. Transcriptome-guided target identification of the TetR-like regulator SACE_5754 and engineered overproduction of erythromycin in Saccharopolyspora erythraea. J Biol Eng 2019; 13:11. [PMID: 30697347 PMCID: PMC6346578 DOI: 10.1186/s13036-018-0135-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background Erythromycin A (Er-A) produced by the actinomycete Saccharopolyspora erythraea is an important antibiotic extensively used in human medicine. Dissecting of transcriptional regulators and their target genes associated with erythromycin biosynthesis is crucial to obtain erythromycin overproducer strains through engineering of relevant regulatory elements in S. erythraea. Results Here, we identified a TetR family transcriptional regulator (TFR), SACE_5754, negatively controlling erythromycin production. SACE_5754 indirectly repressed the transcription of ery cluster and cannot regulate itself and its adjacent gene SACE_5753. RNA-seq coupled with EMSAs and qRT-PCR was performed to identify the targets of SACE_5754, and confirmed that transcription of SACE_0388 (encoding a pyruvate, water diknase), SACE_3599 (encoding an antibiotic resistance macrolide glycosyltransferase) and SACE_6149 (encoding a FAD-binding monooxygenase) were directly repressed by SACE_5754. A consensus palindromic sequence TYMAGG-n2/n4/n11-KKTKRA (Y: C/T, M: A/C, K: T/G, R: A/G) was proved to be essential for SACE_5754 binding using DNase I footprinting and EMSAs. During the three target genes of SACE_5754, SACE_0388 and SACE_6149 exhibited the positive effect on erythromycin production. Overexpression of either SACE_0388 or SACE_6149 in ∆SACE_5754 further increased the Er-A production. By engineering the industrial strain S. erythraea WB with deletion of SACE_5754 combined with overexpression of either SACE_0388 or SACE_6149, Er-A production in WB∆SACE_5754/pIB139–0388 and WB∆SACE_5754/pIB139–6149 was successively increased by 42 and 30% compared to WB. Co-overexpression of SACE_0388 and SACE_6149 in WB∆SACE_5754 resulted in enhanced Er-A production by 64% relative to WB. In a 5-L fermenter, WB∆SACE_5754/pIB139–0388-6149 produced 4998 mg/L Er-A, a 48% increase over WB. Conclusion We have identified a TFR, SACE_5754, as a negative regulator of erythromycin biosynthesis, and engineering of SACE_5754 and its target genes, SACE_0388 and SACE_6149, resulted in enhanced erythromycin production in both wild-type and industrial S. erythraea strains. The strategy demonstrated here may be valuable to facilitate the manipulation of transcriptional regulators and their targets for production improvement of antibiotics in industrial actinomycetes. Electronic supplementary material The online version of this article (10.1186/s13036-018-0135-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hang Wu
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Zuling Chu
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Wanxiang Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Chi Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Jingshu Ni
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Heshi Fang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Yuhong Chen
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Yansheng Wang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Lixin Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China.,2State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Buchang Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| |
Collapse
|
28
|
TetR-Type Regulator SLCG_2919 Is a Negative Regulator of Lincomycin Biosynthesis in Streptomyces lincolnensis. Appl Environ Microbiol 2018; 85:AEM.02091-18. [PMID: 30341075 DOI: 10.1128/aem.02091-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Lincomycin A (Lin-A) is a widely used antibacterial antibiotic fermented by Streptomyces lincolnensis However, the transcriptional regulatory mechanisms underlying lincomycin biosynthesis have seldom been investigated. Here, we first identified a TetR family transcriptional regulator (TFR), SLCG_2919, which negatively modulates lincomycin biosynthesis in S. lincolnensis LCGL. SLCG_2919 was found to specifically bind to promoter regions of the lincomycin biosynthetic gene cluster (lin cluster), including 25 structural genes, three resistance genes, and one regulatory gene, and to inhibit the transcription of these genes, demonstrating a directly regulatory role in lincomycin biosynthesis. Furthermore, we found that SLCG_2919 was not autoregulated, but directly repressed its adjacent gene, SLCG_2920, which encodes an ATP/GTP binding protein whose overexpression increased resistance against lincomycin and Lin-A yields in S. lincolnensis The precise SLCG_2919 binding site within the promoter region of SLCG_2920 was determined by a DNase I footprinting assay and by electrophoretic mobility shift assays (EMSAs) based on base substitution mutagenesis, with the internal 10-nucleotide (nt) AT-rich sequence (AAATTATTTA) shown to be essential for SLCG_2919 binding. Our findings indicate that SLCG_2919 is a negative regulator for controlling lincomycin biosynthesis in S. lincolnensis The present study improves our understanding of molecular regulation for lincomycin biosynthesis.IMPORTANCE TetR family transcriptional regulators (TFRs) are generally found to regulate diverse cellular processes in bacteria, especially antibiotic biosynthesis in Streptomyces species. However, knowledge of their function in lincomycin biosynthesis in S. lincolnensis remains unknown. The present study provides a new insight into the regulation of lincomycin biosynthesis through a TFR, SLCG_2919, that directly modulates lincomycin production and resistance. Intriguingly, SLCG_2919 and its adjoining gene, SLCG_2920, which encodes an ATP/GTP binding protein, were extensively distributed in diverse Streptomyces species. In addition, we revealed a new TFR binding motif, in which SLCG_2919 binds to the promoter region of SLCG_2920, dependent on the intervening AT-rich sequence rather than on the flanking inverted repeats found in the binding sites of other TFRs. These insights into transcriptional regulation of lincomycin biosynthesis by SLCG_2919 will be valuable in paving the way for genetic engineering of regulatory elements in Streptomyces species to improve antibiotic production.
Collapse
|
29
|
Barbey C, Chane A, Burini JF, Maillot O, Merieau A, Gallique M, Beury-Cirou A, Konto-Ghiorghi Y, Feuilloley M, Gobert V, Latour X. A Rhodococcal Transcriptional Regulatory Mechanism Detects the Common Lactone Ring of AHL Quorum-Sensing Signals and Triggers the Quorum-Quenching Response. Front Microbiol 2018; 9:2800. [PMID: 30524404 PMCID: PMC6262395 DOI: 10.3389/fmicb.2018.02800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
The biocontrol agent Rhodococcus erythropolis disrupts virulence of plant and human Gram-negative pathogens by catabolizing their N-acyl-homoserine lactones. This quorum-quenching activity requires the expression of the qsd (quorum-sensing signal degradation) operon, which encodes the lactonase QsdA and the fatty acyl-CoA ligase QsdC, involved in the catabolism of lactone ring and acyl chain moieties of signaling molecules, respectively. Here, we demonstrate the regulation of qsd operon expression by a TetR-like family repressor, QsdR. This repression was lifted by adding the pathogen quorum signal or by deleting the qsdR gene, resulting in enhanced lactone degrading activity. Using interactomic approaches and transcriptional fusion strategy, the qsd operon derepression was elucidated: it is operated by the binding of the common part of signaling molecules, the homoserine lactone ring, to the effector-receiving domain of QsdR, preventing a physical binding of QsdR to the qsd promoter region. To our knowledge, this is the first evidence revealing quorum signals as inducers of the suitable quorum-quenching pathway, confirming this TetR-like protein as a lactone sensor. This regulatory mechanism designates the qsd operon as encoding a global disrupting pathway for degrading a wide range of signal substrates, allowing a broad spectrum anti-virulence activity mediated by the rhodococcal biocontrol agent. Understanding the regulation mechanisms of qsd operon expression led also to the development of biosensors useful to monitor in situ the presence of exogenous signals and quorum-quenching activity.
Collapse
Affiliation(s)
- Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France.,Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France
| | - Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Jean-François Burini
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Mathias Gallique
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Amélie Beury-Cirou
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Virginie Gobert
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| |
Collapse
|
30
|
Ruegg TL, Pereira JH, Chen JC, DeGiovanni A, Novichkov P, Mutalik VK, Tomaleri GP, Singer SW, Hillson NJ, Simmons BA, Adams PD, Thelen MP. Jungle Express is a versatile repressor system for tight transcriptional control. Nat Commun 2018; 9:3617. [PMID: 30190458 PMCID: PMC6127294 DOI: 10.1038/s41467-018-05857-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 07/30/2018] [Indexed: 11/09/2022] Open
Abstract
Tightly regulated promoters are essential for numerous biological applications, where strong inducibility, portability, and scalability are desirable. Current systems are often incompatible with large-scale fermentations due to high inducer costs and strict media requirements. Here, we describe the bottom-up engineering of 'Jungle Express', an expression system that enables efficient gene regulation in diverse proteobacteria. This system is guided by EilR, a multidrug-binding repressor with high affinity to its optimized operator and cationic dyes that act as powerful inducers at negligible costs. In E. coli, the engineered promoters exhibit minimal basal transcription and are inducible over four orders of magnitude by 1 µM crystal violet, reaching expression levels exceeding those of the strongest current bacterial systems. Further, we provide molecular insights into specific interactions of EilR with its operator and with two inducers. The versatility of Jungle Express opens the way for tightly controlled and efficient gene expression that is not restricted to host organism, substrate, or scale.
Collapse
Affiliation(s)
- Thomas L Ruegg
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Institute of Botany, University of Basel, 4001, Basel, Switzerland
| | - Jose H Pereira
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joseph C Chen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Andy DeGiovanni
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pavel Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Giovani P Tomaleri
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nathan J Hillson
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Michael P Thelen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA. .,Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| |
Collapse
|
31
|
He H, Ye L, Li C, Wang H, Guo X, Wang X, Zhang Y, Xiang W. SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in Streptomyces bingchenggensis. Front Microbiol 2018; 9:1064. [PMID: 29875761 PMCID: PMC5974925 DOI: 10.3389/fmicb.2018.01064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Milbemycins, a group of 16-membered macrolide antibiotics, are used widely as insecticides and anthelmintics. Previously, a limited understanding of the transcriptional regulation of milbemycin biosynthesis has hampered efforts to enhance antibiotic production by engineering of regulatory genes. Here, a novel ArpA/AfsA-type system, SbbR/SbbA (SBI_08928/SBI_08929), has been identified to be involved in regulating milbemycin biosynthesis in the industrial strain S. bingchenggensis BC04. Inactivation of sbbR in BC04 resulted in markedly decreased production of milbemycin, while deletion of sbbA enhanced milbemycin production. Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting studies showed that SbbR has a specific DNA-binding activity for the promoters of milR (the cluster-situated activator gene for milbemycin production) and the bidirectionally organized genes sbbR and sbbA. Transcriptional analysis suggested that SbbR directly activates the transcription of milR, while represses its own transcription and that of sbbA. Moreover, 11 novel targets of SbbR were additionally found, including seven regulatory genes located in secondary metabolite biosynthetic gene clusters (e.g., sbi_08420, sbi_08432, sbi_09158, sbi_00827, sbi_01376, sbi_09325, and sig24sbh) and four well-known global regulatory genes (e.g., glnRsbh, wblAsbh, atrAsbh, and mtrA/Bsbh). These data suggest that SbbR is not only a direct activator of milbemycin production, but also a pleiotropic regulator that controls the expression of other cluster-situated regulatory genes and global regulatory genes. Overall, this study reveals the upper-layer regulatory system that controls milbemycin biosynthesis, which will not only expand our understanding of the complex regulation in milbemycin biosynthesis, but also provide a basis for an approach to improve milbemycin production via genetic manipulation of SbbR/SbbA system.
Collapse
Affiliation(s)
- Hairong He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Lan Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Chuang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowei Guo
- School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xiangjing Wang
- School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
32
|
Huang W, Briffotaux J, Wang X, Liu L, Hao P, Cimino M, Buchieri MV, Namouchi A, Ainsa JA, Gicquel B. Ionophore A23187 shows anti-tuberculosis activity and synergy with tebipenem. Tuberculosis (Edinb) 2017; 107:111-118. [PMID: 29050757 DOI: 10.1016/j.tube.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/25/2017] [Accepted: 09/03/2017] [Indexed: 01/13/2023]
Abstract
The objective of this study was to find molecules with anti-mycobacterial activity from a natural compounds library, investigate their mechanisms of resistance, and assess their synergy with antibiotics. We screened a library of 2582 natural compounds with Mycobacterium aurum with the aim of identifying molecules with anti-mycobacterial activity. The hits with the lowest MICs in M. aurum were also tested for their antimicrobial activity in other mycobacterial species including M. tuberculosis complex strains. The chequerboard titration assay was chosen for determining drug interactions in vitro. Spontaneous resistant mutants were isolated and their whole genome sequences compared to wild type and resistant mutants to identify resistance mechanisms. We found that ionophores show anti-mycobacterial activity in vitro. Resistance mechanism to ionophores is mediated by the MmpL5-MmpS5 transporter overexpression. Ionophore A23187 enhanced beta-lactam activity in M. tuberculosis infected macrophage. It will help in the investigation of new drug combinations against bacterial infections including tuberculosis.
Collapse
Affiliation(s)
- Wei Huang
- Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; Mycobacterial Genetics Unit, Institut Pasteur, Paris, France.
| | - Julien Briffotaux
- Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xinwei Wang
- Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lili Liu
- Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hao
- Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Mena Cimino
- Mycobacterial Genetics Unit, Institut Pasteur, Paris, France
| | | | - Amine Namouchi
- Mycobacterial Genetics Unit, Institut Pasteur, Paris, France
| | - Jose-Antonio Ainsa
- Department of Microbiology, and BIFI, University of Zaragoza, Zaragoza, Spain; CIBERES, Instituto de Salud Carlos III, Spain
| | - Brigitte Gicquel
- Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; Mycobacterial Genetics Unit, Institut Pasteur, Paris, France
| |
Collapse
|
33
|
Li X, Wang J, Shi M, Wang W, Corre C, Yang K. Evidence for the formation of ScbR/ScbR2 heterodimers and identification of one of the regulatory targets in Streptomyces coelicolor. Appl Microbiol Biotechnol 2017; 101:5333-5340. [PMID: 28439624 DOI: 10.1007/s00253-017-8275-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The homologous transcriptional regulators ScbR and ScbR2 have previously been identified as γ-butyrolactone (GBL) and antibiotic receptors, respectively. They regulate diverse physiological processes in Streptomyces coelicolor in response to GBL and antibiotic signals. In this study, ScbR and ScbR2 proteins were shown to interact using a bacterial two-hybrid system where adenylate cyclase activity was reconstituted in Escherichia coli BTH101. These ScbR/ScbR2 interactions in S. coelicolor were then demonstrated by co-immunoprecipitation. The ScbR/ScbR2 heterodimer was shown to co-exist with their ScbR and ScbR2 respective homodimers. When potential operator targets in S. coelicolor were investigated, the heterodimer was found to bind in the promoter region of sco5158, which however was not a target for ScbR or ScbR2 homodimers. These results revealed a new mechanism of regulation by ScbR and ScbR2 in S. coelicolor.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mingxin Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Christophe Corre
- Department of Chemistry and School of Life Sciences, University of Warwick, Coventry, UK
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Bhukya H, Jana AK, Sengupta N, Anand R. Structural and dynamics studies of the TetR family protein, CprB from Streptomyces coelicolor in complex with its biological operator sequence. J Struct Biol 2017; 198:134-146. [PMID: 28343010 DOI: 10.1016/j.jsb.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
In Streptomycetes, tetracycline repressor family of transcription regulators (TetR-FTRs) controls various biological processes including antibiotic biosynthesis, cellular morphology and innate resistance. Here, we focus on understanding the structural basis of transcription regulation by CprB, a member of TetR-FTRs from S. coelicolor. CprB is implicated as a receptor of γ-butyrolactones, a class of quorum sensing molecules, responsible for initiating secondary metabolic pathways. In order to understand the molecular mechanism of DNA recognition, the X-ray structure of CprB in complex with its biological relevant operator sequence was solved to a resolution of 3.95Å. Furthermore, to refine and compliment the results, atomistic molecular dynamics simulations were carried out using the X-ray structure as the template. The studies reveal that CprB binds to DNA as dimer of dimers with this mode of interaction results in minimal distortion in the DNA, enabling these proteins to recognize multiple sequences with varying affinity. Another crucial finding from our simulation results was that the positively charged N-terminal arm of CprB brings extra stability to the protein-DNA complex by interacting with the minor-groove of the DNA and anchoring itself to the phosphate backbone. Corroborating electrophoretic mobility shift assay and fluorescence anisotropy experiments showed that the mutant ΔN6-CprB exhibited about 7-8 fold reduced DNA binding. Comparison with other TetR-FTRs reveals that this strategy is also employed by over 25% of TetR-FTRs, where N-terminal anchoring mechanism is used to enhance selectivity for a particular DNA sequence.
Collapse
Affiliation(s)
- Hussain Bhukya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Asis K Jana
- India Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Neelanjana Sengupta
- Dept. of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, W. Bengal, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
35
|
The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio 2017; 8:mBio.00148-17. [PMID: 28270579 PMCID: PMC5340868 DOI: 10.1128/mbio.00148-17] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cell wall of Mycobacterium tuberculosis is composed of unique lipids that are important for pathogenesis. Indeed, the first-ever genetic screen in M. tuberculosis identified genes involved in the biosynthesis and transport of the cell wall lipid PDIM (phthiocerol dimycocerosates) as crucial for the survival of M. tuberculosis in mice. Here we show evidence for a novel molecular mechanism of the PDIM-mediated virulence in M. tuberculosis We characterized the DNA interaction and the regulon of Rv3167c, a transcriptional repressor that is involved in virulence regulation of M. tuberculosis, and discovered that it controls the PDIM operon. A loss-of-function genetic approach showed that PDIM levels directly correlate with the capacity of M. tuberculosis to escape the phagosome and induce host cell necrosis and macroautophagy. In conclusion, our study attributes a novel role of the cell wall lipid PDIM in intracellular host cell modulation, which is important for host cell exit and dissemination of M. tuberculosisIMPORTANCEMycobacterium tuberculosis is a major human pathogen that has coevolved with its host for thousands of years. The complex and unique cell wall of M. tuberculosis contains the lipid PDIM (phthiocerol dimycocerosates), which is crucial for virulence of the bacterium, but its function is not well understood. Here we show that PDIM expression by M. tuberculosis is negatively regulated by a novel transcriptional repressor, Rv3167c. In addition, we discovered that the escape of M. tuberculosis from its intracellular vacuole was greatly augmented by the presence of PDIM. The increased release of M. tuberculosis into the cytosol led to increased host cell necrosis. The discovery of a link between the cell wall lipid PDIM and a major pathogenesis pathway of M. tuberculosis provides important insights into the molecular mechanisms of host cell manipulation by M. tuberculosis.
Collapse
|
36
|
Zhao H, Wang L, Wan D, Qi J, Gong R, Deng Z, Chen W. Characterization of the aurantimycin biosynthetic gene cluster and enhancing its production by manipulating two pathway-specific activators in Streptomyces aurantiacus JA 4570. Microb Cell Fact 2016; 15:160. [PMID: 27655321 PMCID: PMC5031334 DOI: 10.1186/s12934-016-0559-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/13/2016] [Indexed: 11/11/2022] Open
Abstract
Background Aurantimycin (ATM), produced by Streptomyces aurantiacus JA 4570, is a potent antimicrobial and antitumor antibiotic. Although the chemical structure of ATM is highly distinctive and features a cyclohexadepsipeptide scaffold attached with a C14 acyl side chain, little is known about its biosynthetic pathway and regulatory mechanism. Results In this work, we report the identification and characterization of the ATM biosynthetic gene cluster from S. aurantiacus JA 4570. Targeted inactivation of artG, coding for a NRPS enzyme, completely abolished ATM production, thereof demonstrating the target gene cluster (art) is responsible for ATM biosynthesis. Moreover, four NRPS adenylation (A) domains including a freestanding enzyme ArtC have been characterized in vitro, whose substrate specificities are consistent with in silico analysis. Further genetic analysis of the two regulatory genes artB and artX unambiguously suggested both of them play positive roles in ATM biosynthesis, and ATM-A production was thus rationally enhanced to about 2.5 fold via tandem overexpression of artB and artX in S. aurantiacus JA 4570. Conclusions These results will provide the basis for the understanding of precise mechanisms for ATM biosynthesis, and open the way for both rational construction of high-production ATM producer and orient-directed generation of designer ATM derivatives via synthetic biology strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0559-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Houyuan Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liang Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dan Wan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianzhao Qi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
37
|
Libis V, Delépine B, Faulon JL. Sensing new chemicals with bacterial transcription factors. Curr Opin Microbiol 2016; 33:105-112. [PMID: 27472026 DOI: 10.1016/j.mib.2016.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/15/2016] [Accepted: 07/06/2016] [Indexed: 11/30/2022]
Abstract
Bacteria rely on allosteric transcription factors (aTFs) to sense a wide range of chemicals. The variety of effectors has contributed in making aTFs the most used input system in synthetic biological circuits. Considering their enabling role in biotechnology, an important question concerns the size of the chemical space that can potentially be detected by these biosensors. From digging into the ever changing repertoire of natural regulatory circuits, to advances in aTF engineering, we review here different strategies that are pushing the boundaries of this chemical space. We also review natural and synthetic cases of indirect sensing, where aTFs work in combination with metabolism to enable detection of new molecules.
Collapse
Affiliation(s)
- Vincent Libis
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France; Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Baudoin Delépine
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France; Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Jean-Loup Faulon
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France; Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France; SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
38
|
Wu H, Wang Y, Yuan L, Mao Y, Wang W, Zhu L, Wu P, Fu C, Müller R, Weaver DT, Zhang L, Zhang B. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea. Synth Syst Biotechnol 2016; 1:39-46. [PMID: 29062926 PMCID: PMC5640589 DOI: 10.1016/j.synbio.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 11/29/2022] Open
Abstract
Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysis revealed that SACE_3446 covering intact N-terminal DNA binding domain specifically bound to the promoter regions of erythromycin biosynthetic gene eryAI, the resistant gene ermE and the adjacent gene SACE_3447 (encoding a long-chain fatty-acid CoA ligase), and repressed their transcription. Furthermore, we explored the interaction relationships of SACE_3446 and previously identified TFRs (SACE_3986 and SACE_7301) associated with erythromycin production. Given demonstrated relatively independent regulation mode of SACE_3446 and SACE_3986 in erythromycin biosynthesis, we individually and concomitantly inactivated them in an industrial S. erythraea WB. Compared with WB, the WBΔ3446 and WBΔ3446Δ3986 mutants respectively displayed 36% and 65% yield enhancement of erythromycin A, following significantly elevated transcription of eryAI and ermE. When cultured in a 5 L fermentor, erythromycin A of WBΔ3446 and WBΔ3446Δ3986 successively reached 4095 mg/L and 4670 mg/L with 23% and 41% production improvement relative to WB. The strategy reported here will be useful to improve antibiotics production in other industrial actinomycete.
Collapse
Affiliation(s)
- Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yansheng Wang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Li Yuan
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yongrong Mao
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Weiwei Wang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Lin Zhu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Panpan Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Chengzhang Fu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, P.O. Box 15115, 66041 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, P.O. Box 15115, 66041 Saarbrücken, Germany
| | - David T Weaver
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Lixin Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China.,CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Buchang Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
39
|
Abstract
We report the identification of the biosynthetic gene cluster for the unusual antibiotic anthracimycin (atc) from the marine derived producer strain Streptomyces sp. T676 isolated off St. John's Island, Singapore. The 53 253 bps atc locus includes a trans-acyltransferase (trans-AT) polyketide synthase (PKS), and heterologous expression in Streptomyces coelicolor resulted in anthracimycin production. Analysis of the atc cluster revealed that anthracimycin is likely generated by four PKS gene products AtcC-AtcF without involvement of post-PKS tailoring enzymes, and a biosynthetic pathway is proposed. The availability of the atc cluster provides a basis for investigating the biosynthesis of anthracimycin and its subsequent bioengineering to provide novel analogues with improved pharmacological properties.
Collapse
Affiliation(s)
- Silke Alt
- Department
of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Barrie Wilkinson
- Department
of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| |
Collapse
|
40
|
Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 2015; 99:9745-59. [DOI: 10.1007/s00253-015-6936-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
|
41
|
Balhana RJC, Singla A, Sikder MH, Withers M, Kendall SL. Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions. BMC Genomics 2015; 16:479. [PMID: 26115658 PMCID: PMC4482099 DOI: 10.1186/s12864-015-1696-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 06/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown.
Collapse
Affiliation(s)
- Ricardo J C Balhana
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK. .,Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK.
| | - Ashima Singla
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK. .,Indian Institute of Technology Kanpur, Kanpur, India.
| | - Mahmudul Hasan Sikder
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK. .,Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Mike Withers
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK.
| | - Sharon L Kendall
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK.
| |
Collapse
|
42
|
Kim SH, Traag BA, Hasan AH, McDowall KJ, Kim BG, van Wezel GP. Transcriptional analysis of the cell division-related ssg genes in Streptomyces coelicolor reveals direct control of ssgR by AtrA. Antonie van Leeuwenhoek 2015; 108:201-13. [PMID: 26002075 PMCID: PMC4457907 DOI: 10.1007/s10482-015-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022]
Abstract
SsgA-like proteins are a family of actinomycete-specific regulatory proteins that control cell division and spore maturation in streptomycetes. SsgA and SsgB together activate sporulation-specific cell division by controlling the localization of FtsZ. Here we report the identification of novel regulators that control the transcription of the ssgA-like genes. Transcriptional regulators controlling ssg gene expression were identified using a DNA-affinity capture assay. Supporting transcriptional and DNA binding studies showed that the ssgA activator gene ssgR is controlled by the TetR-family regulator AtrA, while the γ-butyrolactone-responsive AdpA (SCO2792) and SlbR (SCO0608) and the metabolic regulator Rok7B7 (SCO6008) were identified as candidate regulators for the cell division genes ssgA, ssgB and ssgG. Transcription of the cell division gene ssgB depended on the sporulation genes whiA and whiH, while ssgR, ssgA and ssgD were transcribed independently of the whi genes. Our work sheds new light on the mechanisms by which sporulation-specific cell division is controlled in Streptomyces.
Collapse
Affiliation(s)
- Songhee H. Kim
- />School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University, Kwanak-gu, Seoul, 151-744 Korea
| | - Bjørn A. Traag
- />Bayer CropScience LP, Biologics, 890 Embarcadero Drive, West Sacramento, CA 95605 USA
| | - Ayad H. Hasan
- />Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Kenneth J. McDowall
- />Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Byung-Gee Kim
- />School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University, Kwanak-gu, Seoul, 151-744 Korea
| | - Gilles P. van Wezel
- />Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
43
|
Increasing Avermectin Production in Streptomyces avermitilis by Manipulating the Expression of a Novel TetR-Family Regulator and Its Target Gene Product. Appl Environ Microbiol 2015; 81:5157-73. [PMID: 26002902 DOI: 10.1128/aem.00868-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Avermectins produced by Streptomyces avermitilis are commercially important anthelmintic agents. The detailed regulatory mechanisms of avermectin biosynthesis remain unclear. Here, we identified SAV3619, a TetR-family transcriptional regulator designated AveT, to be an activator for both avermectin production and morphological differentiation in S. avermitilis. AveT was shown to indirectly stimulate avermectin production by affecting transcription of the cluster-situated activator gene aveR. AveT directly repressed transcription of its own gene (aveT), adjacent gene pepD2 (sav_3620), sav_7490 (designated aveM), and sav_7491 by binding to an 18-bp perfect palindromic sequence (CGAAACGKTKYCGTTTCG, where K is T or G and Y is T or C and where the underlining indicates inverted repeats) within their promoter regions. aveM (which encodes a putative transmembrane efflux protein belonging to the major facilitator superfamily [MFS]), the important target gene of AveT, had a striking negative effect on avermectin production and morphological differentiation. Overexpression of aveT and deletion of aveM in wild-type and industrial strains of S. avermitilis led to clear increases in the levels of avermectin production. In vitro gel-shift assays suggested that C-5-O-B1, the late pathway precursor of avermectin B1, acts as an AveT ligand. Taken together, our findings indicate positive-feedback regulation of aveT expression and avermectin production by a late pathway intermediate and provide the basis for an efficient strategy to increase avermectin production in S. avermitilis by manipulation of AveT and its target gene product, AveM.
Collapse
|
44
|
Li X, Yu T, He Q, McDowall KJ, Jiang B, Jiang Z, Wu L, Li G, Li Q, Wang S, Shi Y, Wang L, Hong B. Binding of a biosynthetic intermediate to AtrA modulates the production of lidamycin by Streptomyces globisporus. Mol Microbiol 2015; 96:1257-71. [PMID: 25786547 DOI: 10.1111/mmi.13004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 11/30/2022]
Abstract
The control of secondary production in streptomycetes involves the funneling of environmental and physiological signals to the cluster-situated (transcriptional) regulators (CSRs) of the biosynthetic genes. For some systems, the binding of biosynthetic products to the CSR has been shown to provide negative feedback. Here we show for the production of lidamycin (C-1027), a clinically relevant antitumor agent, by Streptomyces globisporus that negative feedback can extend to a point higher in the regulatory cascade. We show that the DNA-binding activity of the S. globisporus orthologue of AtrA, which was initially described as a transcriptional activator of actinorhodin biosynthesis in S. coelicolor, is inhibited by the binding of heptaene, a biosynthetic intermediate of lidamycin. Additional experiments described here show that S. globisporus AtrA binds in vivo as well as in vitro to the promoter region of the gene encoding SgcR1, one of the CSRs of lidamycin production. The feedback to the pleiotropic regulator AtrA is likely to provide a mechanism for coordinating the production of lidamycin with that of other secondary metabolites. The activity of AtrA is also regulated by actinorhodin. As AtrA is evolutionarily conserved, negative feedback of the type described here may be widespread within the streptomycetes.
Collapse
Affiliation(s)
- Xingxing Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tengfei Yu
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qing He
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bingya Jiang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhibo Jiang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linzhuan Wu
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guangwei Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglian Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Songmei Wang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lifei Wang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bin Hong
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
45
|
Taylor DL, Ante VM, Bina XR, Howard MF, Bina JE. Substrate-dependent activation of the Vibrio cholerae vexAB RND efflux system requires vexR. PLoS One 2015; 10:e0117890. [PMID: 25695834 PMCID: PMC4335029 DOI: 10.1371/journal.pone.0117890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae encodes six resistance-nodulation-division (RND) efflux systems which function in antimicrobial resistance, virulence factor production, and intestinal colonization. Among the six RND efflux systems, VexAB exhibited broad substrate specificity and played a predominant role in intrinsic antimicrobial resistance. The VexAB system was encoded in an apparent three gene operon that included vexR; which encodes an uncharacterized TetR family regulator. In this work we examined the role of vexR in vexRAB expression. We found that VexR bound to the vexRAB promoter and vexR deletion resulted in decreased vexRAB expression and increased susceptibility to VexAB antimicrobial substrates. Substrate-dependent induction of vexRAB was dependent on vexR and episomal vexR expression provided a growth advantage in the presence of the VexAB substrate deoxycholate. The expression of vexRAB increased, in a vexR-dependent manner, in response to the loss of RND efflux activity. This suggested that VexAB may function to export intracellular metabolites. Support for this hypothesis was provided by data showing that vexRAB was upregulated in several metabolic mutants including tryptophan biosynthetic mutants that were predicted to accumulate indole. In addition, vexRAB was found to be upregulated in response to exogenous indole and to contribute to indole resistance. The collective results indicate that vexR is required for vexRAB expression in response to VexAB substrates and that the VexAB RND efflux system modulates the intracellular levels of metabolites that could otherwise accumulate to toxic levels.
Collapse
Affiliation(s)
- Dawn L. Taylor
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Vanessa M. Ante
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - X. Renee Bina
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Mondraya F. Howard
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - James E. Bina
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Mao XM, Luo S, Zhou RC, Wang F, Yu P, Sun N, Chen XX, Tang Y, Li YQ. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J Biol Chem 2015; 290:7992-8001. [PMID: 25648897 DOI: 10.1074/jbc.m114.608273] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus. To reveal the transcriptional regulatory mechanism of daptomycin biosynthesis, we used the biotinylated dptE promoter (dptEp) as a probe to affinity isolate the dptEp-interactive protein AtrA, a TetR family transcriptional regulator, from the proteome of mycelia. AtrA bound directly to dptEp to positively regulate gene cluster expression and daptomycin production. Meanwhile, both ΔatrA and ΔadpA mutants showed bald phenotype and null production of daptomycin. AdpA positively regulated atrA expression by direct interaction with atrA promoter (atrAp), and removal of ArpA in S. roseosporus, a homolog of the A-factor receptor, resulted in accelerated morphological development and increased daptomycin production, suggesting that atrA was the target of AdpA to mediate the A-factor signaling pathway. Furthermore, AtrA was positively autoregulated by binding to its own promoter atrAp. Thus, for the first time at the transcriptional level, we have identified an autoregulator, AtrA, that directly mediates the A-factor signaling pathway to regulate the proper production of daptomycin.
Collapse
Affiliation(s)
- Xu-Ming Mao
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, Department of Chemical and Biomolecular Engineering, UCLA, Los, Angeles, California 90095, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Shuai Luo
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Ri-Cheng Zhou
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Feng Wang
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Pin Yu
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Ning Sun
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Xiao-Xia Chen
- the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and the Hangzhou Huadong Medicine Group Biotechnology Institute Company, Ltd., Hangzhou 310011, China
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, UCLA, Los, Angeles, California 90095
| | - Yong-Quan Li
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| |
Collapse
|
47
|
Mak S, Xu Y, Nodwell JR. The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol Microbiol 2014; 93:391-402. [PMID: 24964724 DOI: 10.1111/mmi.12689] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 12/01/2022]
Abstract
Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance.
Collapse
Affiliation(s)
- Stefanie Mak
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | | | | |
Collapse
|
48
|
Ravcheev DA, Khoroshkin MS, Laikova ON, Tsoy OV, Sernova NV, Petrova SA, Rakhmaninova AB, Novichkov PS, Gelfand MS, Rodionov DA. Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front Microbiol 2014; 5:294. [PMID: 24966856 PMCID: PMC4052901 DOI: 10.3389/fmicb.2014.00294] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/28/2014] [Indexed: 12/31/2022] Open
Abstract
DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites and regulon reconstruction. To study the function and evolution of LacI-TFs, we performed genomics-based reconstruction and comparative analysis of their regulons. For over 1300 LacI-TFs from over 270 bacterial genomes, we predicted their cognate DNA-binding motifs and identified target genes. Using the genome context and metabolic subsystem analyses of reconstructed regulons, we tentatively assigned functional roles and predicted candidate effectors for 78 and 67% of the analyzed LacI-TFs, respectively. Nearly 90% of the studied LacI-TFs are local regulators of sugar utilization pathways, whereas the remaining 125 global regulators control large and diverse sets of metabolic genes. The global LacI-TFs include the previously known regulators CcpA in Firmicutes, FruR in Enterobacteria, and PurR in Gammaproteobacteria, as well as the three novel regulators—GluR, GapR, and PckR—that are predicted to control the central carbohydrate metabolism in three lineages of Alphaproteobacteria. Phylogenetic analysis of regulators combined with the reconstructed regulons provides a model of evolutionary diversification of the LacI protein family. The obtained genomic collection of in silico reconstructed LacI-TF regulons in bacteria is available in the RegPrecise database (http://regprecise.lbl.gov). It provides a framework for future structural and functional classification of the LacI protein family and identification of molecular determinants of the DNA and ligand specificity. The inferred regulons can be also used for functional gene annotation and reconstruction of sugar catabolic networks in diverse bacterial lineages.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Matvei S Khoroshkin
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Olga N Laikova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Olga V Tsoy
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia
| | - Natalia V Sernova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Svetlana A Petrova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia
| | | | - Pavel S Novichkov
- Lawrence Berkeley National Laboratory, Genomics Division Berkeley, CA, USA
| | - Mikhail S Gelfand
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Dmitry A Rodionov
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Department of Bioinformatics, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| |
Collapse
|
49
|
Xu D, Waack P, Zhang Q, Werten S, Hinrichs W, Virolle MJ. Structure and regulatory targets of SCO3201, a highly promiscuous TetR-like regulator of Streptomyces coelicolor M145. Biochem Biophys Res Commun 2014; 450:513-8. [PMID: 24928397 DOI: 10.1016/j.bbrc.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 11/15/2022]
Abstract
SCO3201, a regulator of the TetR family, is a strong repressor of both morphological differentiation and antibiotic production when overexpressed in Streptomyces coelicolor. Here, we report the identification of 14 novel putative regulatory targets of this regulator using in vitro formaldehyde cross-linking. Direct binding of purified His6-SCO3201 was demonstrated for the promoter regions of 5 regulators (SCO1716, SCO1950, SCO3367, SCO4009 and SCO5046), a putative histidine phosphatase (SCO1809), an acetyltransferase (SCO0988) and the polyketide synthase RedX (SCO5878), using EMSA. Reverse transcriptional analysis demonstrated that the expression of the transcriptional regulators SCO1950, SCO4009, SCO5046, as well as of SCO0988 and RedX was down regulated, upon SCO3201 overexpression, whereas the expression of SCO1809 and SCO3367 was up regulated. A consensus binding motif was derived via alignment of the promoter regions of the genes negatively regulated. The positions of the predicted operator sites were consistent with a direct repressive effect of SCO3201 on 5 out of 7 of these promoters. Furthermore, the 2.1Å crystal structure of SCO3201 was solved, which provides a possible explanation for the high promiscuity of this regulator that might account for its dramatic effect on the differentiation process of S. coelicolor.
Collapse
Affiliation(s)
- Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Paul Waack
- Department of Molecular Structural Biology, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, D-17489 Greifswald, Germany
| | - Qizhong Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Sebastiaan Werten
- Department of Molecular Structural Biology, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, D-17489 Greifswald, Germany
| | - Winfried Hinrichs
- Department of Molecular Structural Biology, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, D-17489 Greifswald, Germany
| | - Marie-Joelle Virolle
- Laboratory of "Energetic Metabolism of Streptomyces", Institute of Genetics and Microbiology, University of Paris-Sud 11, France.
| |
Collapse
|
50
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|