1
|
Xavier KCM, do Nascimento Santos DKD, da Cruz RCD, da Silva LQM, Araújo AMS, Dos Santos PÉM, Guedes PM, Rolim LA, Bedor DCG, Júnior SA. Insecticidal effects of Sargassum vulgare and Caulerpa racemosa extracts on Aedes aegypti. Parasitol Int 2025; 106:103031. [PMID: 39814260 DOI: 10.1016/j.parint.2025.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Dengue is a viral disease present in many regions of the world. Aedes aegypti transmits it, and the most effective way to eliminate the mosquito is during the larval stage. Seaweeds possess metabolites with insecticidal properties, making them potential sources of new larvicides and viable alternatives to synthetic products used to control insect vectors of diseases. Thus, this study aimed to investigate the chemical composition, in vitro toxicity, and larvicidal activities of the ethanolic extract of the seaweed Sargassum vulgare (SE) and hydroalcoholic extract of the seaweed Caulerpa racemosa (CH) against Ae. aegypti. The chemical composition of the crude extracts was evaluated by high-performance liquid chromatography coupled with mass spectrometry (LC-MS), and toxic effects were assessed through in vitro cytotoxicity. The larvicidal activity was evaluated by determining mortality and lethal concentrations (LC50 and LC90), morphological analyses of larvae, and evaluation of the enzymatic action mechanism. The results showed that the extracts contained primary and secondary metabolites, mainly, alkaloids, terpenoids, carbohydrates, fatty acids, and chlorophyll derivatives, all of which were biocompatible at all tested concentrations (3 to 100 μg/mL). The SE and CH extracts showed larvicidal potential at all tested concentrations, achieving 95 % and 50 % mortality after 48 h. Observed changes in the external morphology of the larvae included color change, loss of bristles, and gill filaments. At the same time, the enzymatic action mechanism occurred through stimulation of amylase, trypsin, and acetylcholinesterase activities. Therefore, both seaweed extracts offering alternatives to synthetic chemical insecticides.
Collapse
Affiliation(s)
- Katiane Cruz Magalhães Xavier
- Department of Fundamental Chemistry, Center for Natural Sciences, Federal University of Pernambuco, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, 50740-560 Recife, Pernambuco, Brazil.
| | - Dayane Kelly Dias do Nascimento Santos
- Department of Fundamental Chemistry, Center for Natural Sciences, Federal University of Pernambuco, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, 50740-560 Recife, Pernambuco, Brazil
| | - Rômulo Carlos Dantas da Cruz
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Av Arthur de Sá, 50740-521 Recife, Pernambuco, Brazil
| | - Lidiane Quérolin Macena da Silva
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Av Arthur de Sá, 50740-521 Recife, Pernambuco, Brazil.
| | - Alex Michel Silva Araújo
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Av Arthur de Sá, 50740-521 Recife, Pernambuco, Brazil.
| | - Patryck Érmerson Monteiro Dos Santos
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco, Av. Prof. Moraes Rego,13 s/n, 50, 670-420 Recife, Pernambuco, Brazil.
| | - Patrícia Maria Guedes
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco, Av. Prof. Moraes Rego,13 s/n, 50, 670-420 Recife, Pernambuco, Brazil.
| | - Larissa Araújo Rolim
- Drug, Medicine and Food Analysis Center, Federal University of Vale do São Francisco, Av. José de Sá Maniçoba, s/n - Centro Petrolina, 56304-205 Petrolina, Brazil.
| | - Danilo Cesar Galindo Bedor
- Department of Pharmaceutical Sciences, Pharmaceutical and Cosmetic Development Center, Federal University of Pernambuco, Brazil, Recife, PE 50740-521, Brazil.
| | - Severino Alves Júnior
- Department of Fundamental Chemistry, Center for Natural Sciences, Federal University of Pernambuco, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, 50740-560 Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Zhang K, Liang J, Zhang B, Huang L, Yu J, Xiao X, He Z, Tao H, Yuan J. A Marine Natural Product, Harzianopyridone, as an Anti-ZIKV Agent by Targeting RNA-Dependent RNA Polymerase. Molecules 2024; 29:978. [PMID: 38474490 DOI: 10.3390/molecules29050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The Zika virus (ZIKV) is a mosquito-borne virus that already poses a danger to worldwide human health. Patients infected with ZIKV generally have mild symptoms like a low-grade fever and joint pain. However, severe symptoms can also occur, such as Guillain-Barré syndrome, neuropathy, and myelitis. Pregnant women infected with ZIKV may also cause microcephaly in newborns. To date, we still lack conventional antiviral drugs to treat ZIKV infections. Marine natural products have novel structures and diverse biological activities. They have been discovered to have antibacterial, antiviral, anticancer, and other therapeutic effects. Therefore, marine products are important resources for compounds for innovative medicines. In this study, we identified a marine natural product, harzianopyridone (HAR), that could inhibit ZIKV replication with EC50 values from 0.46 to 2.63 µM while not showing obvious cytotoxicity in multiple cellular models (CC50 > 45 µM). Further, it also reduced the expression of viral proteins and protected cells from viral infection. More importantly, we found that HAR directly bound to the ZIKV RNA-dependent RNA polymerase (RdRp) and suppressed its polymerase activity. Collectively, our findings provide HAR as an option for the development of anti-ZIKV drugs.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bingzhi Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lishan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuhan Xiao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Bjørklund G, Lysiuk R, Semenova Y, Lenchyk L, Dub N, Doşa MD, Hangan T. Herbal Substances with Antiviral Effects: Features and Prospects for the Treatment of Viral Diseases with Emphasis on Pro-Inflammatory Cytokines. Curr Med Chem 2024; 31:393-409. [PMID: 36698239 DOI: 10.2174/0929867330666230125121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 01/26/2023]
Abstract
Viral diseases have a significant impact on human health, and three novel coronaviruses (CoV) have emerged during the 21st century. In this review, we have emphasized the potential of herbal substances with antiviral effects. Our investigation focused on the features and prospects of viral disease treatment, with a particular emphasis on proinflammatory cytokines. We conducted comprehensive searches of various databases, including Science Direct, CABI Direct, Web of Science, PubMed, and Scopus. Cytokine storm mechanisms play a crucial role in inducing a pro-inflammatory response by triggering the expression of cytokines and chemokines. This response leads to the recruitment of leukocytes and promotes antiviral effects, forming the first line of defense against viruses. Numerous studies have investigated the use of herbal medicine candidates as immunomodulators or antivirals. However, cytokine-storm-targeted therapy is recommended for patients with acute respiratory distress syndrome caused by SARS-CoV to survive severe pulmonary failure. Our reviews have demonstrated that herbal formulations could serve as alternative medicines and significantly reduce complicated viral infections. Furthermore, they hold promising potential as specific antiviral agents in experimental animal models.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University , Astana, Kazakhstan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | | | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
4
|
Harsha Mohan E, Madhusudan S, Baskaran R. The sea lettuce Ulva sensu lato: Future food with health-promoting bioactives. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Gonzalez-Pastor R, Carrera-Pacheco SE, Zúñiga-Miranda J, Rodríguez-Pólit C, Mayorga-Ramos A, Guamán LP, Barba-Ostria C. Current Landscape of Methods to Evaluate Antimicrobial Activity of Natural Extracts. Molecules 2023; 28:1068. [PMID: 36770734 PMCID: PMC9920787 DOI: 10.3390/molecules28031068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Natural extracts have been and continue to be used to treat a wide range of medical conditions, from infectious diseases to cancer, based on their convenience and therapeutic potential. Natural products derived from microbes, plants, and animals offer a broad variety of molecules and chemical compounds. Natural products are not only one of the most important sources for innovative drug development for animal and human health, but they are also an inspiration for synthetic biology and chemistry scientists towards the discovery of new bioactive compounds and pharmaceuticals. This is particularly relevant in the current context, where antimicrobial resistance has risen as a global health problem. Thus, efforts are being directed toward studying natural compounds' chemical composition and bioactive potential to generate drugs with better efficacy and lower toxicity than existing molecules. Currently, a wide range of methodologies are used to analyze the in vitro activity of natural extracts to determine their suitability as antimicrobial agents. Despite traditional technologies being the most employed, technological advances have contributed to the implementation of methods able to circumvent issues related to analysis capacity, time, sensitivity, and reproducibility. This review produces an updated analysis of the conventional and current methods to evaluate the antimicrobial activity of natural compounds.
Collapse
Affiliation(s)
- Rebeca Gonzalez-Pastor
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Saskya E. Carrera-Pacheco
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Cristina Rodríguez-Pólit
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Arianna Mayorga-Ramos
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Linda P. Guamán
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- School of Medicine, College of Health Sciences, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| |
Collapse
|
6
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
7
|
Kuo YT, Liu CH, Li JW, Lin CJ, Jassey A, Wu HN, Perng GC, Yen MH, Lin LT. Identification of the phytobioactive Polygonum cuspidatum as an antiviral source for restricting dengue virus entry. Sci Rep 2020; 10:16378. [PMID: 33009425 PMCID: PMC7532532 DOI: 10.1038/s41598-020-71849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 11/09/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne pathogen that is becoming a serious global threat, owing to its rising incidence in inter-tropical regions that yield over 50 million annual infections. There are currently no approved antiviral agents for the management of dengue, and recent shortcomings in its immunization called for immediate action to develop effective drugs with prophylactic ability to better manage its infection. In an attempt to discover novel antiviral sources, we identified the medicinal herb Polygonum cuspidatum (PC) as a bioactive botanical material against DENV infectivity. Specifically, the methanolic extract from PC rhizomes (PCME) potently inhibited DENV infection without causing significant cytotoxicity. Further examination on the viral life cycle demonstrated that PCME particularly targeted the initial stages of DENV infection, while pre- and post-infection treatments had no effect. More importantly, the PCME could efficiently inactivate DENV free virus particles and block the viral attachment and entry/fusion events without apparently influencing viral replication, egress, and cell-to-cell spread. The antiviral effect of PCME was also recapitulated in infection analysis using DENV pseudoparticles displaying viral structural proteins that mediate DENV particle entry. Besides, PCME treatment also inhibited direct DENV entry into several cell types relevant to its infection and reduced viral infectivity of other members of the Flaviviridae family, including the hepatitis C virus (HCV) and Zika virus (ZIKV). Due to its potency against DENV entry, we suggest that the phytobioactive extract from PC is an excellent starting point as an antiviral source material for further development of therapeutic strategies in the prophylactic management of DENV infection.
Collapse
Affiliation(s)
- Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jin-Wei Li
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alagie Jassey
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Guey Chuen Perng
- Department of Microbiology and Immunology & Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta. Mar Drugs 2020; 18:md18100493. [PMID: 32993146 PMCID: PMC7601752 DOI: 10.3390/md18100493] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
For a long time, algal chemistry from terrestrial to marine or freshwater bodies, especially chlorophytes, has fascinated numerous investigators to develop new drugs in the nutraceutical and pharmaceutical industries. As such, chlorophytes comprise a diverse structural class of secondary metabolites, having functional groups that are specific to a particular source. All bioactive compounds of chlorophyte are of great interest due to their supplemental/nutritional/pharmacological activities. In this review, a detailed description of the chemical diversity of compounds encompassing alkaloids, terpenes, steroids, fatty acids and glycerides, their subclasses and their structures are discussed. These promising natural products have efficiency in developing new drugs necessary in the treatment of various deadly pathologies (cancer, HIV, SARS-CoV-2, several inflammations, etc.). Marine chlorophyte, therefore, is portrayed as a pivotal treasure in the case of drugs having marine provenience. It is a domain of research expected to probe novel pharmaceutically or nutraceutically important secondary metabolites resulting from marine Chlorophyta. In this regard, our review aims to compile the isolated secondary metabolites having diverse chemical structures from chlorophytes (like Caulerpa ssp., Ulva ssp., Tydemania ssp., Penicillus ssp., Codium ssp., Capsosiphon ssp., Avrainvillea ssp.), their biological properties, applications and possible mode of action.
Collapse
|
9
|
Pong LY, Yew PN, Lee WL, Lim YY, Sharifah SH. Anti-dengue virus serotype 2 activity of tannins from porcupine dates. Chin Med 2020; 15:49. [PMID: 32467721 PMCID: PMC7238553 DOI: 10.1186/s13020-020-00329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/12/2020] [Indexed: 11/10/2022] Open
Abstract
Background Dengue fever is currently endemic in tropical and subtropical countries worldwide and effective drug against DENV infection is still unavailable. Porcupine dates, which are traditionally used to treat dengue fever, might contain potential anti-dengue compounds. Two porcupine dates, black date (BD) and powdery date (PD) from Himalayan porcupine (Hystrix brachyura), were investigated for their antiviral activities against DENV-2 in vitro. Methods The methanol crude extracts (MBD and MPD) were prepared from the raw material of porcupine dates. The tannin-rich fractions (BDTF and PDTF) were isolated from their methanol crude extracts using column chromatography. The presence of tannins in BDTF and PDTF extracts was determined by fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses. The cytotoxicity and anti-DENV-2 activities including virus yield inhibition, virucidal, virus attachment and pre-treatment assays of the extracts were examined in Vero cells. Results Our findings revealed that all the extracts of porcupine dates exhibited antiviral activity against DENV-2 in Vero cells. The IC50 of BDTF and PDTF were 25 µg/mL and 11 µg/mL respectively, while their methanol crude extracts demonstrated lower antiviral efficacy (IC50 ≈ 101–107 µg/mL). BDTF and PDTF also exerted a similar higher virucidal effect (IC50 of 11 µg/mL) than methanol crude extracts (IC50 ≈ 52–66 µg/mL). Furthermore, all the extracts inhibited the attachment of DENV-2 by at least 80%. Pre-treatments of cells with BDTF and PDTF markedly prevented DENV-2 infection when compared to methanol crude extracts. Conclusion This study suggests that porcupine dates possess antiviral properties against DENV-2, which is attributed to its tannin compounds.
Collapse
Affiliation(s)
- Lian Yih Pong
- 1Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia.,2Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Peng Nian Yew
- 3School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia.,4Present Address: Department of Bioscience, Faculty of Applied Science, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
| | - Wai Leng Lee
- 3School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Yau Yan Lim
- 3School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Syed Hassan Sharifah
- 1Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia.,2Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| |
Collapse
|
10
|
Wang Y, Wang L, Hu T, Wang F, Han Z, Yin Z, Ge X, Xie K, Lei P. Hydrogen improves cell viability partly through inhibition of autophagy and activation of PI3K/Akt/GSK3β signal pathway in a microvascular endothelial cell model of traumatic brain injury. Neurol Res 2020; 42:487-496. [PMID: 32292127 DOI: 10.1080/01616412.2020.1747717] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective:Traumatic brain injury (TBI) is one of the most serious public health problems in the world. Hydrogen (H2), a flammable, colorless, and odorless gas, has been observed to have preventive and therapeutic effects on brain trauma and other neurological disorders, but its exact mechanism has not been fully clarified.Methods: To further study the mechanism underlying the role of hydrogen gas in alleviating BBB damage after TBI, we performed the scratch injury model on cultured brain microvascular endothelial cells (bEnd.3), which formed the microvascular endothelial barrier - an integral part of the highly specialized BBB.Results: In the case of TBI, hydrogen was able to improve the decline of cell viability induced by TBI. More importantly, inhibition of PI3 K/Akt/GSK3β signal pathway or activation of autophagy reduced the protective effect of hydrogen on cell viability, indicating that such protective effect was regulated by PI3 K/Akt/GSK3β signal pathway and was related to the inhibition of autophagy.Conclusion: So we concluded that hydrogen improved the cell viability in a microvascular endothelial cell model of TBI partly through inhibition of autophagy, and inhibitory effect of hydrogen on autophagy was exerted by activating PI3 K/Akt/GSK3β signal pathway. These findings enriched our knowledge about the mechanism of hydrogen therapy against TBI.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Hosseini S, Muñoz-Soto RB, Oliva-Ramírez J, Vázquez-Villegas P, Aghamohammadi N, Rodriguez-Garcia A, Martinez-Chapa SO. Latest Updates in Dengue Fever Therapeutics: Natural, Marine and Synthetic Drugs. Curr Med Chem 2020; 27:719-744. [DOI: 10.2174/0929867325666180629124709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/22/2022]
Abstract
In this paper, we review the history of Dengue, the mechanism of infection, the
molecular characteristics and components of Dengue, the mechanism of entry to the target
cells, cyclization of the genome and replication process, as well as translation of the proteins
for virus assembly. The major emphasis of this work is on natural products and plant extracts,
which were used for as palliative or adjuvant treatment of Dengue. This review article also
summarizes the latest findings in regards to the marine products as effective drugs to target
different symptoms of Dengue. Furthermore, an update on synthetic drugs for treating Dengue
is provided in this review. As a novel alternative, we describe monoclonal antibody therapy
for Dengue management and treatment.
Collapse
Affiliation(s)
- Samira Hosseini
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, N.L. 64849, Mexico
| | - Rodrigo B. Muñoz-Soto
- Tecnologico de Monterrey, Campus Ciudad de México, Escuela de Ingeniería y Ciencias, Calle del Puente 222, Mexico City, Mexico
| | - Jacqueline Oliva-Ramírez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Lago de Guadalupe Km 3.5, Cd Lopez Mateos, Atizapan, Estado de Mexico, Mexico
| | | | - Nasrin Aghamohammadi
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aida Rodriguez-Garcia
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Instituto de Biotecnología. Ave. Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, N.L. 66455, Mexico
| | | |
Collapse
|
12
|
Hapugaswatta H, Amarasena P, Premaratna R, Seneviratne KN, Jayathilaka N. Differential expression of microRNA, miR-150 and enhancer of zeste homolog 2 (EZH2) in peripheral blood cells as early prognostic markers of severe forms of dengue. J Biomed Sci 2020; 27:25. [PMID: 31954402 PMCID: PMC6969970 DOI: 10.1186/s12929-020-0620-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background Dengue presents a wide clinical spectrum. Most patients recover following a self-limiting non-severe clinical course. A small proportion of patients progress to severe disease, mostly characterized by plasma leakage with or without hemorrhage. Early symptoms of severe dengue (SD) are similar to those of non-severe dengue fever (DF). Severe symptoms manifest after 3–5 days of fever, which can be life threatening due to lack of proper medications and inability to distinguish severe cases during the early stages. Early prediction of SD in patients with no warning signs who may later develop severe infection is very important for proper disease management to alleviate related complications and mortality. microRNA are small non-coding RNA molecules that regulate post-transcriptional gene expression. Due to the remarkable stability and the role of microRNA in gene expression, altered expression of microRNA was evaluated to explore clinically relevant prognostic markers of severe dengue. Methods The relative expression of microRNA hsa-let-7e (let-7e), hsa-miR-30b-5p (miR-30b), hsa-miR-30e-3p (miR-30e), hsa-miR-33a (miR-33a), and hsa-miR-150-5p (miR-150) and several putative target genes in peripheral blood cells (PBC) collected from 20 DF and 20 SD positive patients within 4 days from fever onset was evaluated by quantitative reverse transcription PCR (qRT-PCR). Results miR-150 showed significant (P < 0.01) up regulation in PBC of SD patients compared to DF patients during the acute phase of infection. Expression of enhancer of zeste homolog 2 (EZH2) was significantly (P < 0.01) down regulated indicating that genes involved in epigenetic regulation are also differentially expressed in SD patients during the early stage of infection. Conclusions Differential expression of microRNA miR-150 and the putative target gene EZH2 may serve as reliable biomarkers of disease severity during early stages of dengue infection.
Collapse
Affiliation(s)
- Harsha Hapugaswatta
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | | | - Ranjan Premaratna
- North Colombo Teaching Hospital, Ragama, Sri Lanka.,Department of Medicine, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Kapila N Seneviratne
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Nimanthi Jayathilaka
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka.
| |
Collapse
|
13
|
Chang YJ, Pong LY, Hassan SS, Choo WS. Antiviral activity of betacyanins from red pitahaya ( Hylocereus polyrhizus) and red spinach ( Amaranthus dubius) against dengue virus type 2 (GenBank accession no. MH488959). Access Microbiol 2019; 2:acmi000073. [PMID: 33062932 PMCID: PMC7525058 DOI: 10.1099/acmi.0.000073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
This study investigated the antiviral activity of betacyanins from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius) against dengue virus type 2 (DENV-2). The pulp of red pitahaya and the leaves of red spinach were extracted using methanol followed by sub-fractionation and Amberlite XAD16N column chromatography to obtain betacyanin fractions. The half maximum cytotoxicity concentration for betacyanin fractions from red pitahaya and red spinach on Vero cells were 4.346 and 2.287 mg ml-1, respectively. The half-maximal inhibitory concentration (IC50) of betacyanin fraction from red pitahaya was 125.8 μg ml-1 with selectivity index (SI) of 5.8. For betacyanin fraction from red spinach, the IC50 value was 14.62 µg ml-1 with SI of 28.51. Using the maximum non-toxic betacyanin concentration, direct virucidal effect against DENV-2 was obtained from betacyanin fraction from red pitahaya (IC50 of 126.70 μg ml-1; 95.0 % virus inhibition) and red spinach (IC50 value of 106.80 μg ml-1; 65.9 % of virus inhibition). Betacyanin fractions from red pitahaya and red spinach inhibited DENV-2 in vitro.
Collapse
Affiliation(s)
- Ying Jun Chang
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Lian Yih Pong
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sharifah S. Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
14
|
Sucipto TH, Setyawati H, Churrotin S, Amarullah IH, Sumarsih S, Wardhani P, Aryati A, Soegijanto S. ANTI-DENGUE TYPE 2 VIRUS ACTIVITIES OF ZINC (II) COMPLEX COMPOUNDS WITH 2-(2,4 -DIHYDROXYPHENYL)-3,5,7-TRIHYDROXYCROMEN-4-ONE LIGANDS IN VERO CELLS. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2019. [DOI: 10.20473/ijtid.v7i5.10851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue virus (DENV) is a disease that is transmitted through Aedes aegypti and Aedes albopictus mosquitoes, and is spread in tropical and sub-tropical regions. Now, dengue or antiviral vaccines for humans do not yet exist, but there are great efforts to achieve this goal. Complex compounds are reported to fungicidal, bactericidal and antiviral activity. Antiviral activity against DENV is an important alternative to the characterization and development of drugs candidate. The purpose of this study was to study zinc(II) compounds with 2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxycromen-4-one ligand on DENV-2 replication in Vero cells. Vero cell lines (African green monkey kidney) was used in this study, maintained and propagated in Minimum Essential Eagle Medium containing 10% fetal bovine serum at 37°C in 5% CO2. The activity of dengue virus was carried out by enzyme-immunosorbent assay (ELISA) method and CellTiter96® Non-Radioactive Proliferation. The value of activity inhibition (IC50) of complex compounds with variations of mol metal: ligand 1:2, 1:3, and 1:4 against dengue virus type 2 (DENV2) was 2.44 μg/ml, 2.75 μg/ml, respectively and 2.00 μg/ml, also the toxicity value (CC50) of complex compounds with variation mol metal: ligand 1:4 for Vero cells is 3.59 μg/ml. The results of this study were indicate that these properties have been shown to inhibit anti-dengue type 2 virus (DENV-2), but are also toxic in Vero cells. Including previous study about complex compound interaction with dengue virus type 2 activity, Zn(II) more reactive compound then Cu(II), and Co(II). The comparison with Cu(II) complex compound, it has been revealed that Co(II) and Zn(II) is more toxic, was found to be nontoxic to human erythrocyte cells even at a concentration of 500 μg/ml.
Collapse
|
15
|
Máximo P, Ferreira LM, Branco P, Lima P, Lourenço A. Secondary Metabolites and Biological Activity of Invasive Macroalgae of Southern Europe. Mar Drugs 2018; 16:md16080265. [PMID: 30072602 PMCID: PMC6117733 DOI: 10.3390/md16080265] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
In this review a brief description of the invasive phenomena associated with algae and its consequences on the ecosystem are presented. Three examples of invasive algae of Southern Europe, belonging to Rodophyta, Chlorophyta, and Phaeophyta, were selected, and a brief description of each genus is presented. A full description of their secondary metabolites and biological activity is given and a summary of the biological activity of extracts is also included. In Asparagopsis we encounter mainly halogenated compounds. From Caulerpa, several terpenoids and alkaloids were isolated, while in Sargassum, meroterpenoids prevail.
Collapse
Affiliation(s)
- Patrícia Máximo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Luísa M Ferreira
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Paula Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Pedro Lima
- Sea4Us-Biotecnologia de Recursos Marinhos, Ltd., 8650-378 Sagres, Portugal.
- Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 1169-056 Lisboa, Portugal.
| | - Ana Lourenço
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
16
|
The Flavonoid Isoquercitrin Precludes Initiation of Zika Virus Infection in Human Cells. Int J Mol Sci 2018; 19:ijms19041093. [PMID: 29621184 PMCID: PMC5979602 DOI: 10.3390/ijms19041093] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022] Open
Abstract
The medical importance of Zika virus (ZIKV) was fully highlighted during the recent epidemics in South Pacific islands and Americas due to ZIKV association with severe damage to fetal brain development and neurological complications in adult patients. A worldwide research effort has been undertaken to identify effective compounds to prevent or treat ZIKV infection. Fruits and vegetables may be sources of compounds with medicinal properties. Flavonoids are one class of plant compounds that emerge as promising antiviral molecules against ZIKV. In the present study, we demonstrated that flavonoid isoquercitrin exerts antiviral activity against African historical and Asian epidemic strains of ZIKV in human hepatoma, epithelial, and neuroblastoma cell lines. Time-of-drug addition assays showed that isoquercitrin acts on ZIKV entry by preventing the internalisation of virus particles into the host cell. Our data also suggest that the glycosylated moiety of isoquercitrin might play a role in the antiviral effect of the flavonoid against ZIKV. Our results highlight the importance of isoquercitrin as a promising natural antiviral compound to prevent ZIKV infection.
Collapse
|
17
|
Sun J, Han Z, Qi T, Zhao R, Liu S. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein. J Biol Chem 2017; 292:20141-20161. [PMID: 28978647 DOI: 10.1074/jbc.m116.772897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 09/11/2017] [Indexed: 01/15/2023] Open
Abstract
Galectin-1 is an important immunoregulatory factor and can mediate the host-pathogen interaction via binding glycans on the surface of various viruses. We previously reported that avian respiratory viruses, including lentogenic Newcastle disease virus (NDV), can induce up-regulation of chicken galectin (CG)-1B in the primary target organ. In this study, we investigated whether CG-1B participated in the infectious process of NDV in chickens. We demonstrated that velogenic NDV induced up-regulation of CG-1B in target organs. We also found that CG-1B directly bound to NDV virions and inhibited their hemagglutination activity in vitro We confirmed that CG-1B interacted with NDV hemagglutinin-neuraminidase (HN) glycoprotein, in which the specific G4 N-glycans significantly contributed to the interaction between CG-1B and HN glycoprotein. The presence of extracellular CG-1B, rather than the internalization process, inhibited adsorption of NDV. The interaction between intracellular CG-1B and NDV HN glycoproteins inhibited cell-surface expression of HN glycoprotein and reduced the titer of progeny virus in NDV-infected DF-1 cells. Significantly, the replication of parental and HN glycosylation mutant viruses in CG-1B knockdown and overexpression cells demonstrated that the replication of NDV was correlated with the expression of CG-1B in a specific glycan-dependent manner. Collectively, our results indicate that CG-1B has anti-NDV activity by binding to N-glycans on HN glycoprotein.
Collapse
Affiliation(s)
- Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Tianming Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Ran Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China.
| |
Collapse
|
18
|
Frabasile S, Koishi AC, Kuczera D, Silveira GF, Verri WA, Duarte dos Santos CN, Bordignon J. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci Rep 2017; 7:41864. [PMID: 28157234 PMCID: PMC5291091 DOI: 10.1038/srep41864] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023] Open
Abstract
Dengue is one of the most significant health problems in tropical and sub-tropical regions throughout the world. Nearly 390 million cases are reported each year. Although a vaccine was recently approved in certain countries, an anti-dengue virus drug is still needed. Fruits and vegetables may be sources of compounds with medicinal properties, such as flavonoids. This study demonstrates the anti-dengue virus activity of the citrus flavanone naringenin, a class of flavonoid. Naringenin prevented infection with four dengue virus serotypes in Huh7.5 cells. Additionally, experiments employing subgenomic RepDV-1 and RepDV-3 replicon systems confirmed the ability of naringenin to inhibit dengue virus replication. Antiviral activity was observed even when naringenin was used to treat Huh7.5 cells 24 h after dengue virus exposure. Finally, naringenin anti-dengue virus activity was demonstrated in primary human monocytes infected with dengue virus sertoype-4, supporting the potential use of naringenin to control dengue virus replication. In conclusion, naringenin is a suitable candidate molecule for the development of specific dengue virus treatments.
Collapse
Affiliation(s)
- Sandra Frabasile
- Sección Virologia, Facultad de Ciencias, Universidad de La República, 11400, Montevideo, Uruguay
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Diogo Kuczera
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | | | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Brazil
| | | | - Juliano Bordignon
- Sección Virologia, Facultad de Ciencias, Universidad de La República, 11400, Montevideo, Uruguay
| |
Collapse
|
19
|
Rajendran P, Subramani PA, Michael D. Polysaccharides from marine macroalga, Padina gymnospora improve the nonspecific and specific immune responses of Cyprinus carpio and protect it from different pathogens. FISH & SHELLFISH IMMUNOLOGY 2016; 58:220-228. [PMID: 27633680 DOI: 10.1016/j.fsi.2016.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/27/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Immunostimulation by plant-derived compounds presents a fascinating alternative to vaccines and antibiotics in aquaculture. Fish farmers are longing for immunostimulants that activate both specific and nonspecific immune responses of fish and protect fishes from all possible infections. In this study, we observed that polysaccharide fraction from marine macroalga, Padina gymnospora stimulated the immune response of common carp Cyprinus carpio (Filed for patent, Indian patent no. 201641027311 dated:10-Aug-2016). Our results indicate that fish fed with polysaccharides as feed supplement improved all the immune parameters tested which include serum lysozyme, myeloperoxidase activities and antibody response. Further, polysaccharide fraction protected the fish from its common bacterial pathogens namely Aeromonas hydrophila and Edwardsiella tarda with relative percent survival (RPS) values of 80 and 60 respectively. Gene expression studies, indicate that the immunostimulation by P. gymnospora might be at least in part due to the upregulation of the cytokine interleukin-1β (IL-1β) and antimicrobial peptide lysozyme-C.
Collapse
Affiliation(s)
| | - Parasuraman Aiya Subramani
- Centre for Fish Immunology, Vels Institute for Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai 600117, India
| | - Dinakaran Michael
- Centre for Fish Immunology, Vels Institute for Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai 600117, India.
| |
Collapse
|
20
|
Kuczera D, Bavia L, Mosimann ALP, Koishi AC, Mazzarotto GACA, Aoki MN, Mansano AMF, Tomeleri EI, Costa Junior WL, Miranda MM, Lo Sarzi M, Pavanelli WR, Conchon-Costa I, Duarte Dos Santos CN, Bordignon J. Isolation of dengue virus serotype 4 genotype II from a patient with high viral load and a mixed Th1/Th17 inflammatory cytokine profile in South Brazil. Virol J 2016; 13:93. [PMID: 27267473 PMCID: PMC4895951 DOI: 10.1186/s12985-016-0548-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022] Open
Abstract
Background We report the isolation and characterization of dengue virus (DENV) serotype 4 from a resident of Santa Fé, state of Paraná, South Brazil, in March 2013. This patient presented with hemorrhagic manifestations, high viral load and, interestingly, a mixed Th1/Th17 cytokine profile. Case presentation The patient presented with classical dengue symptoms, such as fever, rash, myalgia, arthralgia, and hemorrhagic manifestations including petechiae, gum bleeding and a positive tourniquet test result. A serum sample obtained 1 day after the initial appearance of clinical symptoms was positive for NS1 viral antigen, but this sample was negative for both IgM and IgG against DENV. Dengue virus infection was confirmed by isolation of the virus from C6/36 cells, and dengue virus serotyping was performed via one-step RT-PCR. The infection was confirmed to be caused by a serotype 4 dengue virus. Additionally, based on multiple alignment and phylogeny analyses of its complete genome sequence, the viral strain was classified as genotype II (termed LRV13/422). Moreover, a mixed Th1/Th17 cytokine profile was detected in the patient’s serum, and this result demonstrated significant inflammation. Biological characterization of the virus via in vitro assays comparing LRV13/422 with a laboratory-adapted reference strain of dengue virus serotype 4 (TVP/360) showed that LRV13/422 infects both vertebrate and invertebrate cell lines more efficiently than TVP/360. However, LRV13/422 was unable to inhibit type I interferon responses, as suggested by the results obtained for other dengue virus strains. Furthermore, LRV13/422 is the first completely sequenced serotype 4 dengue virus isolated in South Brazil. Conclusion The high viral load and mixed Th1/Th17 cytokine profile observed in the patient’s serum could have implications for the development of the hemorrhagic signs observed, and these potential relationships can now be further studied using suitable animal models and/or in vitro systems. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0548-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diogo Kuczera
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | - Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | | | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | | | - Mateus Nóbrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | | | | | | | - Milena Menegazzo Miranda
- Laboratório de Imunoparasitologia Experimental, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Maria Lo Sarzi
- Secretaria Municipal de Saúde de Cambé, Cambé, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratório de Imunoparasitologia Experimental, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratório de Imunoparasitologia Experimental, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil.
| |
Collapse
|
21
|
Pérez MJ, Falqué E, Domínguez H. Antimicrobial Action of Compounds from Marine Seaweed. Mar Drugs 2016; 14:E52. [PMID: 27005637 PMCID: PMC4820306 DOI: 10.3390/md14030052] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/18/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications.
Collapse
Affiliation(s)
- María José Pérez
- Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| | - Elena Falqué
- Departamento de Química Analítica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| | - Herminia Domínguez
- Departamento de Enxeñería Química, Facultad de Ciencias. Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| |
Collapse
|
22
|
Zanello PR, Koishi AC, Rezende Júnior CDO, Oliveira LA, Pereira AA, de Almeida MV, Duarte dos Santos CN, Bordignon J. Quinic acid derivatives inhibit dengue virus replication in vitro. Virol J 2015; 12:223. [PMID: 26695767 PMCID: PMC4688969 DOI: 10.1186/s12985-015-0443-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue is the most prevalent arboviral disease in tropical and sub-tropical areas of the world. The incidence of infection is estimated to be 390 million cases and 25,000 deaths per year. Despite these numbers, neither a specific treatment nor a preventive vaccine is available to protect people living in areas of high risk. RESULTS With the aim of seeking a treatment that can mitigate dengue infection, we demonstrated that the quinic acid derivatives known as compound 2 and compound 10 were effective against all four dengue virus serotypes and safe for use in a human hepatoma cell line (Huh7.5). Both compounds were non-virucidal to dengue virus particles and did not interfere with early steps of the dengue virus life cycle, including binding and internalization. Experiments using a replicon system demonstrated that compounds 2 and 10 impaired dengue virus replication in Huh7.5 cells. Additionally, the anti-dengue virus effects of the quinic acid derivatives were preserved in human peripheral blood mononuclear cells. CONCLUSIONS Taken together, these data suggest that quinic acid derivatives represent a novel chemical class of active compounds that could be used to combat dengue virus infection.
Collapse
Affiliation(s)
- Paula Rodrigues Zanello
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, 81350-010, Curitiba, PR, Brazil.
| | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, 81350-010, Curitiba, PR, Brazil.
| | | | | | - Adriane Antonia Pereira
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil.
| | - Mauro Vieira de Almeida
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil.
| | | | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, 81350-010, Curitiba, PR, Brazil.
| |
Collapse
|
23
|
From Bench to Bedside: Natural Products and Analogs for the Treatment of Neglected Tropical Diseases (NTDs). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63460-3.00002-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Toledo KA, Fermino ML, Andrade CDC, Riul TB, Alves RT, Muller VDM, Russo RR, Stowell SR, Cummings RD, Aquino VH, Dias-Baruffi M. Galectin-1 exerts inhibitory effects during DENV-1 infection. PLoS One 2014; 9:e112474. [PMID: 25392933 PMCID: PMC4231055 DOI: 10.1371/journal.pone.0112474] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/15/2014] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) is an enveloped RNA virus that is mosquito-transmitted and can infect a variety of immune and non-immune cells. Response to infection ranges from asymptomatic disease to a severe disorder known as dengue hemorrhagic fever. Despite efforts to control the disease, there are no effective treatments or vaccines. In our search for new antiviral compounds to combat infection by dengue virus type 1 (DENV-1), we investigated the role of galectin-1, a widely-expressed mammalian lectin with functions in cell-pathogen interactions and immunoregulatory properties. We found that DENV-1 infection of cells in vitro exhibited caused decreased expression of Gal-1 in several different human cell lines, suggesting that loss of Gal-1 is associated with virus production. In test of this hypothesis we found that exogenous addition of human recombinant Gal-1 (hrGal-1) inhibits the virus production in the three different cell types. This inhibitory effect was dependent on hrGal-1 dimerization and required its carbohydrate recognition domain. Importantly, the inhibition was specific for hrGal-1, since no effect was observed using recombinant human galectin-3. Interestingly, we found that hrGal-1 directly binds to dengue virus and acts, at least in part, during the early stages of DENV-1 infection, by inhibiting viral adsorption and its internalization to target cells. To test the in vivo role of Gal-1 in DENV infection, Gal-1-deficient-mice were used to demonstrate that the expression of endogenous Galectin-1 contributes to resistance of macrophages to in vitro-infection with DENV-1 and it is also important to physiological susceptibility of mice to in vivo infection with DENV-1. These results provide novel insights into the functions of Gal-1 in resistance to DENV infection and suggest that Gal-1 should be explored as a potential antiviral compound.
Collapse
Affiliation(s)
- Karina Alves Toledo
- Department of Biological Sciences, Universidade Estadual Paulista - UNESP (FCL-Assis), Assis, Brazil
| | - Marise Lopes Fermino
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camillo Del Cistia Andrade
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thalita Bachelli Riul
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Renata Tomé Alves
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Danielle Menjon Muller
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Raquel Rinaldi Russo
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sean R Stowell
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard D Cummings
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Victor Hugo Aquino
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Dias-Baruffi
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Structure-guided discovery of potent and dual-acting human parainfluenza virus haemagglutinin-neuraminidase inhibitors. Nat Commun 2014; 5:5268. [PMID: 25327774 DOI: 10.1038/ncomms6268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022] Open
Abstract
Human parainfluenza viruses (hPIVs) cause upper and lower respiratory tract disease in children that results in a significant number of hospitalizations and impacts health systems worldwide. To date, neither antiviral drugs nor vaccines are approved for clinical use against parainfluenza virus, which reinforces the urgent need for new therapeutic discovery strategies. Here we use a multidisciplinary approach to develop potent inhibitors that target a structural feature within the hPIV type 3 haemagglutinin-neuraminidase (hPIV-3 HN). These dual-acting designer inhibitors represent the most potent designer compounds and efficiently block both hPIV cell entry and virion progeny release. We also define the binding mode of these inhibitors in the presence of whole-inactivated hPIV and recombinantly expressed hPIV-3 HN by Saturation Transfer Difference NMR spectroscopy. Collectively, our study provides an antiviral preclinical candidate and a new direction towards the discovery of potential anti-parainfluenza drugs.
Collapse
|
26
|
Yang EJ, Moon JY, Kim SS, Yang KW, Lee WJ, Lee NH, Hyun CG. Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages. Asian Pac J Trop Biomed 2014; 4:529-37. [PMID: 25183272 DOI: 10.12980/apjtb.4.2014c1099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the anti-inflammatory effects of Jeju seaweeds on macrophage RAW 264.7 cells under lipopolysaccharide (LPS) stimulation. METHODS Ethyl acetate fractions were prepared from five different types of Jeju seaweeds, Dictyopteris divaricata (D. divaricata), Dictyopteris prolifera (D. prolifera), Prionitis cornea (P. cornea), Grateloupia lanceolata (G. lanceolata), and Grateloupia filicina (G. filicina). They were screened for inhibitory effects on proinflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). RESULTS Our results revealed that D. divaricata, D. prolifera, P. cornea, G. lanceolata, and G. filicina potently inhibited LPS-stimulated NO production (IC50 values were 18.0, 38.36, 38.43, 32.81 and 37.14 µg/mL, respectively). Consistent with these findings, D. divaricata, D. prolifera, P. cornea, and G. filicina also reduced the LPS-induced and prostaglandin E2 production in a concentration-dependent manner. Expectedly, they suppressed the expression of inducible NO synthase and cyclooxygenase-2 at the protein level in a dose-dependent manner in the RAW 264.7 cells, as determined by western blotting. In addition, the levels of TNF-α and IL-6, released into the medium, were also reduced by D. divaricata, D. prolifera, P. cornea, G. lanceolata, and G. filicina in a dose-dependent manner (IC50 values for TNF-α were 16.11, 28.21, 84.27, 45.52 and 74.75 µg/mL, respectively; IC50 values for IL-6 were 37.35, 80.08, 103.28, 62.53 and 84.28 µg/mL, respectively). The total phlorotannin content was measured by the Folin-Ciocalteu method and expressed as phloroglucinol equivalents. The content was 92.0 µg/mg for D. divaricata, 151.8 µg/mg for D. prolifera, 57.2 µg/mg for P. cornea, 53.0 µg/mg for G. lanceolata, and 40.2 µg/mg for G. filicina. CONCLUSIONS Thus, these findings suggest that Jeju seaweed extracts have potential therapeutic applications for inflammatory responses.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea ; Jeju Technopark, Ara-1-dong, Jeju-si, Jeju 690-121, Korea
| | - Ji-Young Moon
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea ; Jeju Technopark, Ara-1-dong, Jeju-si, Jeju 690-121, Korea
| | - Sang Suk Kim
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea ; Citrus Research Station, National Institute of Horticultural & Herbal Science, RDA, Jeju 699-946, Korea
| | - Kyong-Wol Yang
- Jeju Love Co., Ltd., 542-5 Haengwon-ri, Gujwa-eup, Jeju 695-975, Korea
| | - Wook Jae Lee
- Jeju Technopark, Ara-1-dong, Jeju-si, Jeju 690-121, Korea
| | - Nam Ho Lee
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea
| | - Chang-Gu Hyun
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea ; LINC Agency, Jeju National University, Ara-1-dong, Jeju 690-756, Korea
| |
Collapse
|
27
|
Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, Yueh A, Abubakar S, Zandi K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep 2014; 4:5452. [PMID: 24965553 PMCID: PMC4071309 DOI: 10.1038/srep05452] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/06/2014] [Indexed: 01/09/2023] Open
Abstract
Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted.
Collapse
Affiliation(s)
- Ehsan Moghaddam
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Boon-Teong Teoh
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sing-Sin Sam
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rafidah Lani
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, ROC
| | - Sazaly Abubakar
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Abstract
Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chan Hsu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PHK, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit AED, Wan DCC, Ye XJ, Xia J, Ng TB. Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 2014; 98:3475-94. [PMID: 24562325 DOI: 10.1007/s00253-014-5575-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/27/2023]
Abstract
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhu H, Zhao Z, Zhou Y, Chen X, Li Y, Liu X, Lu H, Zhang Y, Zhang J. High-dose glucocorticoid aggravates TBI-associated corticosteroid insufficiency by inducing hypothalamic neuronal apoptosis. Brain Res 2013; 1541:69-80. [PMID: 24103812 DOI: 10.1016/j.brainres.2013.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 01/28/2023]
Abstract
Emerging experimental and clinical data suggest that severe illness, such as traumatic brain injury (TBI), can induce critical illness-related corticosteroid insufficiency (CIRCI). However, underlying mechanisms of this TBI-associated CIRCI remain poorly understood. We hypothesized that dexamethasone (DXM), a synthetic glucocorticoid, which was widely used to treat TBI, induces hypothalamic neuronal apoptosis to aggravate CIRCI. To test this hypothesis, we have evaluated the dose effect of DXM (1 or 10mg/kg) on the development of acute CIRCI in rats with fluid percussion injury-induced TBI and on cultured rat hypothalamic neurons in vitro (DXM, 10(-5)-10(-8)mol/L). Corticosterone Increase Index was recorded as the marker for CIRCI. In addition, MTT and TUNEL assays were used to measure the viability and apoptosis of hypothalamic neurons in primary culture. Moreover, high-resolution hopping probe ion conductance microscopy (HPICM) was used to monitor the DXM-induced morphological changes in neurons. The incidence of acute CIRCI was significantly higher in the high-dose DXM group on post-injury day 7. Cellular viability was significantly decreased from 12h to 24h after the treatment with a high-dose of DXM. A significantly increase in TUNEL positive cells were detected in cultured cells treated with a high-dose of DXM after 18h. Neurites of hypothalamic neuron were dramatically thinner and the numbers of dendritic beadings increased in neurons treated with the high dose of DXM for 12h. In conclusion, high-dose DXM induced hypothalamic neurons to undergo apoptosis in vivo and in vitro, which may aggravate TBI-associated CIRCI.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, 154 Anshan Road, Heping District, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, PR China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|