1
|
Chen Y, Liu F, Sha A, Xu M, Rao Z, Zhang X. The mechanisms of environmental stress tolerance in Gluconobacter oxydans: progress and perspectives. Crit Rev Biotechnol 2024:1-14. [PMID: 39566930 DOI: 10.1080/07388551.2024.2426011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024]
Abstract
Gluconobacter oxydans have been widely used in industrial compound production for their incomplete oxidation ability. However, they are often subjected to a wide variety of severe environmental stresses, such as extreme pH, high temperature, osmotic pressure, and organic solvents, which greatly repress microbial growth viability and productivity. As typical biocatalysis chassis cells with a high tolerance to external environmental stresses, it is extremely important to construct highly tolerant chassis cells and understand the tolerance mechanisms of G. oxydans and how different stresses interact with the cell: membranes, phospholipid bilayers, transporters, and chaperone proteins. In this review, we discuss and summarize the mechanisms of environmental stress tolerance in G. oxydans, and the promising strategies that can be used to further construct tolerant strains are prospected.
Collapse
Affiliation(s)
- Yan Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Aobo Sha
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
He Q, Zheng Y, Yan K, Tang J, Yang F, Tian Y, Yang L, Dou B, Chen Y, Gu J, Chen H, Yuan F, Bei W. The cAMP receptor protein gene contributes to growth, stress resistance, and colonization of Actinobacillus pleuropneumoniae. Vet Microbiol 2024; 290:110006. [PMID: 38308931 DOI: 10.1016/j.vetmic.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Porcine infectious pleuropneumonia (PCP) is a severe disease of porcine caused by Actinobacillus pleuropneumoniae (APP). The spread of PCP remains a threat to the porcine farms and has been known to cause severe economic losses. The cAMP receptor protein (CRP) serves as a pivotal player in helping bacteria adapt to shifts in their environment, particularly when facing the challenges posed by bacterial infections. In this study, we investigated the role of CRP in APP. Our results revealed that crp mutant (Δcrp) strains were more sensitive to acidic and osmotic stress resistance and had lower biofilm formation ability than wild-type (WT) strains. Furthermore, the Δcrp strains showed deficiencies in anti-phagocytosis, adhesion, and invasion upon interaction with host cells. Mice infected with the Δcrp strains demonstrated reduced bacterial loads in their lungs compared to those infected with the WT strains. This study reveals the pivotal role of crp gene expression in regulating pleuropneumonia growth, stress resistance, iron utilization, biofilm formation, phagocytosis, adhesion, invasion and colonization. Our discoveries offer novel perspectives on understanding the development and progression of APP infections.
Collapse
Affiliation(s)
- Qiyun He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yaxuan Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jia Tang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fengming Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yanhong Tian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Lijun Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Beibei Dou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yunpeng Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jun Gu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Gao S, Liao Y, He H, Yang H, Yang X, Xu S, Wang X, Chen K, Ouyang P. Advance of tolerance engineering on microbes for industrial production. Synth Syst Biotechnol 2023; 8:697-707. [PMID: 38025766 PMCID: PMC10656194 DOI: 10.1016/j.synbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Industrial microbes have become the core of biological manufacturing, which utilized as the cell factory for production of plenty of chemicals, fuels and medicine. However, the challenge that the extreme stress conditions exist in production is unavoidable for cell factory. Consequently, to enhance robustness of the chassis cell lays the foundation for development of bio-manufacturing. Currently, the researches on cell tolerance covered various aspects, involving reshaping regulatory network, cell membrane modification and other stress response. In fact, the strategies employed to improve cell robustness could be summarized into two directions, irrational engineering and rational engineering. In this review, the metabolic engineering technologies on enhancement of microbe tolerance to industrial conditions are summarized. Meanwhile, the novel thoughts emerged with the development of biological instruments and synthetic biology are discussed.
Collapse
Affiliation(s)
- Siyuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yang Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Hao He
- Petrochemical Research Institute of PetroChina Co. Ltd., Beijing, 102206, China
| | - Huiling Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xuewei Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
4
|
Yuan D, Liu B, Yuan X, Feng L, Xu X, Zhu J, Chen Z, Xu R, Chen J, Xu G, Lin J, Yang L, Li M, Lian J, Wu M. Multisite Mutation of the Escherichia coli cAMP Receptor Protein: Enhancing Xylitol Biosynthesis by Activating Xylose Catabolism and Improving Strain Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37921650 DOI: 10.1021/acs.jafc.3c05445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The bioproduction of xylitol from hemicellulose hydrolysate has good potential for industrial development. However, xylitol productivity has always been limited due to corncob hydrolysate toxicity and glucose catabolic repression. To address these challenges, this work selected the S83 and S128 amino acid residues of the cyclic AMP receptor protein (CRP) as the modification target. By introducing multisite mutation in CRP, this approach successfully enhanced xylose catabolism and improved the strain's tolerance to corncob hydrolysate. The resulting mutant strain, designated as CPH (CRP S83H-S128P), underwent fermentation in a 20 L bioreactor with semicontinuous feeding of corncob hydrolysate. Remarkably, xylitol yield and xylitol productivity for 41 h fermentation were 175 and 4.32 g/L/h, respectively. Therefore, multisite CRP mutation was demonstrated as an efficient global regulatory strategy to effectively improve xylitol productivity from lime-pretreated corncob hydrolysates.
Collapse
Affiliation(s)
- Dongxu Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Bingbing Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Xinsong Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
| | - Leilei Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Xudong Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Jialin Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Zhengjie Chen
- Shandong Weiyan Biotechnology Co., Ltd, Binzhou 256660, PR China
| | - Renhao Xu
- Hangzhou No. 14 Middle School, Hangzhou 310006, PR China
| | - Jiao Chen
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, PR China
- Haizheng Pharmaceutical Co., Ltd, Taizhou 318000, PR China
| | - Gang Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd, Quzhou 324302, PR China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, PR China
| |
Collapse
|
5
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
6
|
Yang SK, Jeong S, Baek I, Choi JI, Lim S, Jung JH. Deionococcus proteotlycius Genomic Library Exploration Enhances Oxidative Stress Resistance and Poly-3-hydroxybutyrate Production in Recombinant Escherichia coli. Microorganisms 2023; 11:2135. [PMID: 37763980 PMCID: PMC10538107 DOI: 10.3390/microorganisms11092135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Cell growth is inhibited by abiotic stresses during industrial processes, which is a limitation of microbial cell factories. Microbes with robust phenotypes are critical for its maximizing the yield of the target products in industrial biotechnology. Currently, there are several reports on the enhanced production of industrial metabolite through the introduction of Deinococcal genes into host cells, which confers cellular robustness. Deinococcus is known for its unique genetic function thriving in extreme environments such as radiation, UV, and oxidants. In this study, we established that Deinococcus proteolyticus showed greater resistance to oxidation and UV-C than commonly used D. radiodurans. By screening the genomic library of D. proteolyticus, we isolated a gene (deipr_0871) encoding a response regulator, which not only enhanced oxidative stress, but also promoted the growth of the recombinant E. coli strain. The transcription analysis indicated that the heterologous expression of deipr_0871 upregulated oxidative-stress-related genes such as ahpC and sodA, and acetyl-CoA-accumulation-associated genes via soxS regulon. Deipr_0871 was applied to improve the production of the valuable metabolite, poly-3-hydroxybutyrate (PHB), in the synthetic E. coli strain, which lead to the remarkably higher PHB than the control strain. Therefore, the stress tolerance gene from D. proteolyticus should be used in the modification of E. coli for the production of PHB and other biomaterials.
Collapse
Affiliation(s)
- Seul-Ki Yang
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Inwoo Baek
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
| |
Collapse
|
7
|
Somin S, Kulasiri D, Samarasinghe S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: a review of related concepts and strategies for the development of computational modelling. Transl Neurodegener 2023; 12:11. [PMID: 36907887 PMCID: PMC10009979 DOI: 10.1186/s40035-023-00344-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment for Alzheimer's disease (AD) can be more effective in the early stages. Although we do not completely understand the aetiology of the early stages of AD, potential pathological factors (amyloid beta [Aβ] and tau) and other co-factors have been identified as causes of AD, which may indicate some of the mechanism at work in the early stages of AD. Today, one of the primary techniques used to help delay or prevent AD in the early stages involves alleviating the unwanted effects of oxidative stress on Aβ clearance. 4-Hydroxynonenal (HNE), a product of lipid peroxidation caused by oxidative stress, plays a key role in the adduction of the degrading proteases. This HNE employs a mechanism which decreases catalytic activity. This process ultimately impairs Aβ clearance. The degradation of HNE-modified proteins helps to alleviate the unwanted effects of oxidative stress. Having a clear understanding of the mechanisms associated with the degradation of the HNE-modified proteins is essential for the development of strategies and for alleviating the unwanted effects of oxidative stress. The strategies which could be employed to decrease the effects of oxidative stress include enhancing antioxidant activity, as well as the use of nanozymes and/or specific inhibitors. One area which shows promise in reducing oxidative stress is protein design. However, more research is needed to improve the effectiveness and accuracy of this technique. This paper discusses the interplay of potential pathological factors and AD. In particular, it focuses on the effect of oxidative stress on the expression of the Aβ-degrading proteases through adduction of the degrading proteases caused by HNE. The paper also elucidates other strategies that can be used to alleviate the unwanted effects of oxidative stress on Aβ clearance. To improve the effectiveness and accuracy of protein design, we explain the application of quantum mechanical/molecular mechanical approach.
Collapse
Affiliation(s)
- Sarawoot Somin
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand.,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand. .,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand
| |
Collapse
|
8
|
Yuan X, Cao J, Wang R, Han Y, Zhu J, Lin J, Yang L, Wu M. Genetically Engineering Escherichia coli to Produce Xylitol from Corncob Hydrolysate without Lime Detoxification. Molecules 2023; 28:1550. [PMID: 36838538 PMCID: PMC9967598 DOI: 10.3390/molecules28041550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Before fermentation with hemicellulosic hydrolysate as a substrate, it is generally necessary to detoxify the toxic substances that are harmful to microorganism growth. Cyclic AMP receptor protein (CRP) is a global regulator, and mutation of its key sites may have an important impact on E. coli virulence tolerance. Using corncob hydrolysate without ion-exchange or lime detoxification as the substrate, shake flask fermentation experiments showed that CRP mutant IS5-dG (I112L, T127G, A144T) produced 18.4 g/L of xylitol within 34 h, and the OD600 was 9.7 at 24 h; these values were 41.5% and 21.3% higher than those of the starting strain, IS5-d, respectively. This mutant produced 82 g/L of xylitol from corncob hydrolysate without ion-exchange or lime detoxification during fed-batch fermentation in a 15-L bioreactor, with a productivity of 1.04 g/L/h; these values were 173% and 174% higher than the starting strain, respectively. To our knowledge, this is the highest xylitol concentration and productivity produced by microbial fermentation using completely non-detoxified hemicellulosic hydrolysate as the substrate to date. This study also showed that alkali neutralization, high temperature sterilization, and fermentation of the hydrolysate had important effects on the xylose loss rate and xylitol production.
Collapse
Affiliation(s)
- Xinsong Yuan
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiyun Cao
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Rui Wang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Yu Han
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Jinmiao Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Jianping Lin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Lirong Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mianbin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
9
|
Chislett M, Guo J, Bond PL, Wang Y, Donose BC, Yuan Z. Reactive nitrogen species from free nitrous acid (FNA) cause cell lysis. WATER RESEARCH 2022; 217:118401. [PMID: 35427827 DOI: 10.1016/j.watres.2022.118401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Free nitrous acid (FNA, i.e. HNO2) has been demonstrated to have broad biocidal effects on a range of microorganisms, which has direct implications for wastewater management. However, the biocidal mechanisms still remain largely unknown. This study aims to test the hypothesis that FNA will induce cell lysis via cell membrane perforations, and consequently cause cell death via proteolysis, through the use of two model organisms namely Escherichia coli K12 and Pseudomonas putida KT2440. A combination of analytical techniques that included viability assays, atomic force microscopy (AFM), protein abundance assays and proteomic analysis using Quadruple-Orbitrap™ Mass spectrometry was used to evaluate the extent of cell death and possible cell lysis mechanisms. FNA treatment at 6.09 mg/L for 24 h (conditions typically applied in applications) induced 36 ± 4.2% and 91 ± 3.5% cell death/lysis of E. coli and P. putida, respectively. AFM showed that the lysis of cells was observed via perforations in the cell membrane; cells also appeared to shrink and become flat following FNA treatment. By introducing a reactive nitrogen species (RNS) scavenger to act as a treatment control, we further revealed that it was the nitrosative decomposition species of FNA, such as .NO that caused the cell lysis through the destruction of protein macromolecules found in the cell membrane (proteolysis). Subsequently, the RNS went on to cause the destruction of protein macromolecules within the cells. The death of these model organisms E. coli and P. putida following exposure to FNA treatment provides insights into the use of FNA as an antimicrobial agent in wastewater treatment.
Collapse
Affiliation(s)
- Mariella Chislett
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Philip L Bond
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yue Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bogdan C Donose
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
10
|
Involvement of E. coli 6S RNA in Oxidative Stress Response. Int J Mol Sci 2022; 23:ijms23073653. [PMID: 35409013 PMCID: PMC8998176 DOI: 10.3390/ijms23073653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
6S RNA, a small non-coding RNA present in almost all bacteria, inhibits transcription via direct binding to RNA polymerase holoenzymes. The mechanism of 6S RNA action was investigated to a large extent in E. coli, however, lack of 6S RNA (ΔssrS) was demonstrated to be unfavorable but not essential for cell survival under various growth conditions. In the present study, we revealed, for the first time, a lethal phenotype of the ΔssrS strain in the presence of high concentrations of H2O2. This phenotype was rescued by complementation of the ssrS gene on a plasmid. We performed comparative qRT-PCR analyses on an enlarged set of mRNAs of genes associated with the oxidative stress response, allowing us to identify four genes known to be involved in this pathway (soxS, ahpC, sodA and tpx) that had decreased mRNA levels in the ΔssrS strain. Finally, we performed comparative proteomic analyses of the wild-type and ΔssrS strains, confirming that ΔssrS bacteria have reduced levels of the proteins AhpC and Tpx involved in H2O2 reduction. Our findings substantiate the crucial role of the riboregulator 6S RNA for bacterial coping with extreme stresses.
Collapse
|
11
|
Pareek V, Gupta R, Devineau S, Sivasankaran SK, Bhargava A, Khan MA, Srikumar S, Fanning S, Panwar J. Does Silver in Different Forms Affect Bacterial Susceptibility and Resistance? A Mechanistic Perspective. ACS APPLIED BIO MATERIALS 2022; 5:801-817. [PMID: 35073697 DOI: 10.1021/acsabm.1c01179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The exceptional increase in antibiotic resistance in past decades motivated the scientific community to use silver as a potential antibacterial agent. However, due to its unknown antibacterial mechanism and the pattern of bacterial resistance to silver species, it has not been revolutionized in the health sector. This study deciphers mechanistic aspects of silver species, i.e., ions and lysozyme-coated silver nanoparticles (L-Ag NPs), against E. coli K12 through RNA sequencing analysis. The obtained results support the reservoir nature of nanoparticles for the controlled release of silver ions into bacteria. This study differentiates between the antibacterial mechanism of silver species by discussing the pathway of their entry in bacteria, sequence of events inside cells, and response of bacteria to overcome silver stress. Controlled release of ions from L-Ag NPs not only reduces bacterial growth but also reduces the likelihood of resistance development. Conversely, direct exposure of silver ions, leads to rapid activation of the bacterial defense system leading to development of resistance against silver ions, like the well-known antibiotic resistance problem. These findings provide valuable insight on the mechanism of silver resistance and antibacterial strategies deployed by E. coli K12, which could be a potential target for the generation of aim-based and effective nanoantibiotics.
Collapse
Affiliation(s)
- Vikram Pareek
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India.,School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin 4, Ireland
| | - Rinki Gupta
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | | | | | - Arpit Bhargava
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | - Mohd Azeem Khan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | - Shabrinath Srikumar
- Department of Food, Nutrition and Health, College of Food and Agriculture, UAE University, Al Ain 15551, UAE
| | - Séamus Fanning
- School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin 4, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| |
Collapse
|
12
|
Liu Y, Yuan H, Ding D, Dong H, Wang Q, Zhang D. Establishment of a Biosensor-based High-Throughput Screening Platform for Tryptophan Overproduction. ACS Synth Biol 2021; 10:1373-1383. [PMID: 34081459 DOI: 10.1021/acssynbio.0c00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the flexibility to fold into complex structures, RNA is well-suited to act as a cellular sensor to recognize environmental fluctuations and respond to changes by regulating the corresponding genes. In this study, we established a high-throughput screening platform to screen tryptophan high-producing strains from a large repertoire of candidate strains. This platform consists of a tryptophan-specific aptamer-based biosensor and fluorescence-activated droplet sorting technology. One mutant strain, with a 165.9% increase in Trp titer compared with the parental strain, was successfully screened from a random mutagenesis library. Sequencing results revealed that a total of 10 single-nucleotide polymorphisms were discovered in the genome of the mutant strain, among which CRP(T29K) was proven to significantly increase Trp production through improving the strain's tolerance of the harsh environment during the stationary phase of the fermentation process. Our results indicate that this strategy has great potential for improving the production of other amino acids in Escherichia coli.
Collapse
Affiliation(s)
- Yongfei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Dongqin Ding
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| |
Collapse
|
13
|
Chang RL, Stanley JA, Robinson MC, Sher JW, Li Z, Chan YA, Omdahl AR, Wattiez R, Godzik A, Matallana-Surget S. Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidation-induced damage. EMBO J 2020; 39:e104523. [PMID: 33073387 PMCID: PMC7705453 DOI: 10.15252/embj.2020104523] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation‐resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance. We integrated shotgun redox proteomics, structural systems biology, and machine learning to resolve properties determining protein damage by γ‐irradiation in Escherichia coli and D. radiodurans at multiple scales. Local accessibility, charge, and lysine enrichment accurately predict ROS susceptibility. Lysine, methionine, and cysteine usage also contribute to ROS resistance of the D. radiodurans proteome. Our model predicts proteome maintenance machinery, and proteins protecting against ROS are more resistant in D. radiodurans. Our findings substantiate that protein‐intrinsic protection impacts oxidative stress resistance, identifying causal molecular properties.
Collapse
Affiliation(s)
- Roger L Chang
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Julian A Stanley
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Matthew C Robinson
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Joel W Sher
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Zhanwen Li
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Yujia A Chan
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ashton R Omdahl
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Adam Godzik
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
14
|
Integrating CRISPR-Enabled Trackable Genome Engineering and Transcriptomic Analysis of Global Regulators for Antibiotic Resistance Selection and Identification in Escherichia coli. mSystems 2020; 5:5/2/e00232-20. [PMID: 32317390 PMCID: PMC7174635 DOI: 10.1128/msystems.00232-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growing threat of antimicrobial resistance poses a serious threat to public health care and motivates efforts to understand the means by which resistance acquisition occurs and how this can be combatted. To address these challenges, we expedited the identification of novel mutations that enable complex phenotypic changes that result in improved tolerance to antibiotics by integrating CREATE and transcriptomic analysis of global regulators. The results give us a better understanding of the mechanisms of resistance to tetracycline antibiotics and aminoglycoside antibiotics and also indicate that the method may be used for quickly identifying resistance-related mutations. It is important to expedite our understanding of antibiotic resistance to address the increasing numbers of fatalities and environmental pollution due to the emergence of antibiotic resistance and multidrug-resistant strains. Here, we combined the CRISPR-enabled trackable genome engineering (CREATE) technology and transcriptomic analysis to investigate antibiotic tolerance in Escherichia coli. We developed rationally designed site saturation mutagenesis libraries targeting 23 global regulators to identify fitness-conferring mutations in response to diverse antibiotic stresses. We identified seven novel mutations that confer resistance to the ribosome-targeting antibiotics doxycycline, thiamphenicol, and gentamicin in E. coli. To the best of our knowledge, these mutations that we identified have not been reported previously during treatment with the indicated antibiotics. Transcriptome sequencing-based transcriptome analysis was further employed to evaluate the genome-wide changes in gene expression in E. coli for SoxR G121P and cAMP receptor protein (CRP) V140W reconstructions, and improved fitness in response to doxycycline and gentamicin was seen. In the case of doxycycline, we speculated that SoxR G121P significantly increased the expression of genes involved in carbohydrate metabolism and energy metabolism to promote cell growth for improved adaptation. In the CRP V140W mutant with improved gentamicin tolerance, the expression of several amino acid biosynthesis genes and fatty acid degradation genes was significantly changed, and these changes probably altered the cellular energy state to improve adaptation. These findings have important significance for understanding such nonspecific mechanisms of antibiotic resistance and developing new antibacterial drugs. IMPORTANCE The growing threat of antimicrobial resistance poses a serious threat to public health care and motivates efforts to understand the means by which resistance acquisition occurs and how this can be combatted. To address these challenges, we expedited the identification of novel mutations that enable complex phenotypic changes that result in improved tolerance to antibiotics by integrating CREATE and transcriptomic analysis of global regulators. The results give us a better understanding of the mechanisms of resistance to tetracycline antibiotics and aminoglycoside antibiotics and also indicate that the method may be used for quickly identifying resistance-related mutations.
Collapse
|
15
|
Jiang C, Cheng Y, Cao H, Zhang B, Li J, Zhu L, Li Z, Zeng W, Li C, He Q. Effect of cAMP Receptor Protein Gene on Growth Characteristics and Stress Resistance of Haemophilus parasuis Serovar 5. Front Cell Infect Microbiol 2020; 10:19. [PMID: 32158699 PMCID: PMC7052058 DOI: 10.3389/fcimb.2020.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/14/2020] [Indexed: 01/19/2023] Open
Abstract
Haemophilus parasuis (HPS), a member of the family Pasteurellaceae, is a common bacteria in the upper respiratory tract of pigs but under certain circumstances can cause serious systemic disease (Glasser's disease) characterized by severe infection of the upper respiratory tract, fibrinous polyserositis, polyarthritis, and meningitis. cAMP receptor protein (CRP) is among the most important global regulators, playing a vital role in adapting to environmental changes during the process of bacterial infection. In order to investigate the function of the crp gene in the growth characteristics of H. parasuis serovar 5 (HPS5) and its ability to overcome adverse environmental stresses, a crp mutant strain (Δcrp) was constructed and verified. In this study, we found that the crp gene was involved in growth rate, biofilm formation, stress tolerance, serum resistance, and iron utilization. Compared with the wild type, both the growth rate of the crp mutant and its resistance to osmotic pressure decreased significantly. Similar phenomena were also found in biofilm formation and iron utilization. However, the resistance to heat shock and serum complement of the crp mutant were enhanced. This study aimed to reveal the function in growth characteristics and stress resistance of the crp gene in HPS5. Whether it relates to virulence requires additional in-depth research.
Collapse
Affiliation(s)
- Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yufang Cheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hua Cao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chang Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
16
|
Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates. Appl Microbiol Biotechnol 2020; 104:2039-2050. [PMID: 31950219 DOI: 10.1007/s00253-019-10324-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
The biotechnology-based production of xylitol has received widespread attention because it can use cheap and renewable lignocellulose as a raw material, thereby decreasing costs and pollution. The simultaneous use of various sugars in lignocellulose hydrolysates is a primary prerequisite for efficient xylitol production. In this study, a ΔptsG and crp* combinatorial strategy was used to generate Escherichia coli W3110 strain IS5-dI, which completely eliminated glucose repression and simultaneously used glucose and xylose. This strain produced 164 g/L xylitol from detoxified corncob hydrolysates during a fed-batch fermentation in a 15-L bioreactor, which was 14.7% higher than the xylitol produced by the starting strain, IS5-d (143 g/L), and the xylitol productivity was 3.04 g/L/h. These results represent the highest xylitol concentration and productivity reported to date for bacteria and hemicellulosic sugars. Additionally, strain IS5-dG, which differs from IS5-dI at CRP amino acid residue 127 (I127G), was tolerant to the toxins in corncob hydrolysates. In a fed-batch fermentation experiment involving a 15-L bioreactor, IS5-dG produced 137 g/L xylitol from non-detoxified corncob hydrolysates, with a productivity of 1.76 g/L/h. On the basis of these results, we believe that IS5-dI and IS5-dG may be useful host strains for the industrial-scale production of xylitol from detoxified or non-detoxified corncob hydrolysates.
Collapse
|
17
|
Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria. J Microbiol 2019; 58:131-141. [PMID: 31872373 DOI: 10.1007/s12275-020-9290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Response regulator (RR) is known a protein that mediates cell's response to environmental changes. The effect of RR from extremophiles was still under investigation. In this study, response regulator homologs were mined from NGS data of Antarctic bacteria and overexpressed in Escherichia coli. Sixteen amino acid sequences were annotated corresponding to response regulators related to the two-component regulatory systems; of these, 3 amino acid sequences (DRH632, DRH1601 and DRH577) with high homology were selected. These genes were cloned in pRadGro and expressed in E. coli. The transformant strains were subjected to various abiotic stresses including oxidative, osmotic, thermal stress, and acidic stress. There was found that the robustness of E. coli to abiotic stress was increased in the presence of these response regulator homologs. Especially, recombinant E. coli overexpressing drh632 had the highest survival rate in oxidative, hypothermic, osmotic, and acidic conditions. Recombinant E. coli overexpressing drh1601 showed the highest tolerance level to osmotic stress. These results will be applicable for development of recombinant strains with high tolerance to abiotic stress.
Collapse
|
18
|
Chevallier V, Andersen MR, Malphettes L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 2019; 117:1172-1186. [PMID: 31814104 PMCID: PMC7078918 DOI: 10.1002/bit.27247] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high‐level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, Biotech Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
19
|
Said-Salman IH, Jebaii FA, Yusef HH, Moustafa ME. Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Sci Rep 2019; 9:14425. [PMID: 31595026 PMCID: PMC6783421 DOI: 10.1038/s41598-019-51046-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
This study investigated the non-thermal effects of Wi-Fi radiofrequency radiation of 2.4 GHz on global gene expression in Escherichia coli K-12 DH5α. High-throughput RNA-sequencing of 2.4 GHz exposed and non-exposed bacteria revealed that 101 genes were differentially expressed (DEGs) at P ≤ 0.05. The up-regulated genes were 52 while the down-regulated ones were 49. QRT-PCR analysis of pgaD, fliC, cheY, malP, malZ, motB, alsC, alsK, appB and appX confirmed the RNA-seq results. About 7% of DEGs are involved in cellular component organization, 6% in response to stress stimulus, 6% in biological regulation, 6% in localization, 5% in locomotion and 3% in cell adhesion. Database for annotation, visualization and integrated discovery (DAVID) functional clustering revealed that DEGs with high enrichment score included genes for localization of cell, locomotion, chemotaxis, response to external stimulus and cell adhesion. Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis showed that the pathways for flagellar assembly, chemotaxis and two-component system were affected. Go enrichment analysis indicated that the up-regulated DEGs are involved in metabolic pathways, transposition, response to stimuli, motility, chemotaxis and cell adhesion. The down-regulated DEGs are associated with metabolic pathways and localization of ions and organic molecules. Therefore, the exposure of E. coli DH5α to Wi-Fi radiofrequency radiation for 5 hours influenced several bacterial cellular and metabolic processes.
Collapse
Affiliation(s)
- Ilham H Said-Salman
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon.
- Department of Biochemistry, Faculty of Science, Lebanese University, Beirut, Lebanon.
| | - Fatima A Jebaii
- Department of Biochemistry, Faculty of Science, Lebanese University, Beirut, Lebanon
| | - Hoda H Yusef
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohamed E Moustafa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Fernández‐Cabezón L, Cros A, Nikel PI. Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnol J 2019; 14:e1800439. [DOI: 10.1002/biot.201800439] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lorena Fernández‐Cabezón
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
21
|
Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol Res 2019; 219:1-11. [DOI: 10.1016/j.micres.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
|
22
|
Ding K, Zhang C, Li J, Chen S, Liao C, Cheng X, Yu C, Yu Z, Jia Y. cAMP Receptor Protein of Salmonella enterica Serovar Typhimurium Modulate Glycolysis in Macrophages to Induce Cell Apoptosis. Curr Microbiol 2018; 76:1-6. [PMID: 30315323 DOI: 10.1007/s00284-018-1574-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
We studied the role of glycolysis in the mechanism of cAMP receptor protein-induced macrophage cell death of Salmonella enterica serovar Typhimurium (S. Typhimurium). Cell apoptosis, caspase-3, -8, -9 enzyme activity, and pyruvic acid, lactic acid, ATP, and hexokinase (HK) contents were determined after infection of macrophages with S. Typhimurium SL1344 wild-type and a cAMP receptor protein mutant strain. While cell apoptosis, caspase-3, -8, -9 enzyme activity, lactic acid, hexokinase, and ATP levels significantly changed by infection with crp mutants compared to the wild-type strain (P < 0.05). Our data suggest that the cAMP receptor protein of S. Typhimurium can modulate macrophage death by effecting glycolysis levels. This finding may help to elucidate the mechanisms of S. Typhimurium pathogenesis.
Collapse
Affiliation(s)
- Ke Ding
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
| | - Chunjie Zhang
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China. .,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China.
| | - Jing Li
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
| | - Songbiao Chen
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
| | - Chengshui Liao
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
| | - Chuang Yu
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
| | - Zuhua Yu
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
| | - Yanyan Jia
- The Key Lab of Animal Disease and Public Healthy, Henan University of Science and Technology, Luoyang, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
| |
Collapse
|
23
|
Chu HY, Sprouffske K, Wagner A. Assessing the benefits of horizontal gene transfer by laboratory evolution and genome sequencing. BMC Evol Biol 2018; 18:54. [PMID: 29673327 PMCID: PMC5909237 DOI: 10.1186/s12862-018-1164-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recombination is widespread across the tree of life, because it helps purge deleterious mutations and creates novel adaptive traits. In prokaryotes, it often takes the form of horizontal gene transfer from a donor to a recipient bacterium. While such transfer is widespread in natural communities, its immediate fitness benefits are usually unknown. We asked whether any such benefits depend on the environment, and on the identity of donor and recipient strains. To this end, we adapted Escherichia coli to two novel carbon sources over several hundred generations of laboratory evolution, exposing evolving populations to various DNA donors. RESULTS At the end of these experiments, we measured fitness and sequenced the genomes of 65 clones from 34 replicate populations to study the genetic changes associated with adaptive evolution. Furthermore, we identified candidate de novo beneficial mutations. During adaptive evolution on the first carbon source, 4-Hydroxyphenylacetic acid (HPA), recombining populations adapted better, which was likely mediated by acquiring the hpa operon from the donor. In contrast, recombining populations did not adapt better to the second carbon source, butyric acid, even though they suffered fewer extinctions than non-recombining populations. The amount of DNA transferred, but not its benefit, strongly depended on the donor-recipient strain combination. CONCLUSIONS To our knowledge, our study is the first to investigate the genomic consequences of prokaryotic recombination and horizontal gene transfer during laboratory evolution. It shows that the benefits of recombination strongly depend on the environment and the foreign DNA donor.
Collapse
Affiliation(s)
- Hoi Yee Chu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Kathleen Sprouffske
- The Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, 1015 Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, 1015 Lausanne, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico USA
| |
Collapse
|
24
|
Goh EB, Chen Y, Petzold CJ, Keasling JD, Beller HR. Improving methyl ketone production in Escherichia coli by heterologous expression of NADH-dependent FabG. Biotechnol Bioeng 2018; 115:1161-1172. [PMID: 29411856 DOI: 10.1002/bit.26558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 11/07/2022]
Abstract
We previously engineered Escherichia coli to overproduce medium- to long-chain saturated and monounsaturated methyl ketones, which could potentially be applied as diesel fuel blending agents or in the flavor and fragrance industry. Recent efforts at strain optimization have focused on cofactor balance, as fatty acid-derived pathways face the systematic metabolic challenge of net NADPH consumption (in large part, resulting from the key fatty acid biosynthetic enzyme FabG [β-ketoacyl-ACP reductase]) and net NADH production. In this study, we attempted to mitigate cofactor imbalance by heterologously expressing NADH-dependent, rather than NADPH-dependent, versions of FabG identified in previous studies. Of the four NADH-dependent versions of FabG tested in our previously best-reported methyl ketone-producing strain (EGS1895), the version from Acholeplasma laidlawii (Al_FabG) showed the greatest increase in methyl ketone yield in shake flasks (35-75% higher than for an RFP negative-control strain, depending on sugar loading). An improved strain (EGS2920) attained methyl ketone titers during fed-batch fermentation of 5.4 ± 0.5 g/L, which were, on average, ca. 40% greater than those for the base strain (EGS1895) under fermentation conditions optimized in this study. Shotgun proteomic data for strains EGS2920 and EGS1895 during fed-batch fermentation were consistent with the goal of alleviating NADPH limitation through expression of Al_FabG. For example, relative to strain EGS1895, strain EGS2920 significantly upregulated glucose-6-phosphate isomerase (directing flux into glycolysis rather than the NADPH-producing pentose phosphate pathway) and downregulated MaeB (a NADP+ -dependent malate dehydrogenase). Overall, the results suggest that heterologous expression of NADH-dependent FabG in E. coli may improve sustained production of fatty acid-derived renewable fuels and chemicals.
Collapse
Affiliation(s)
- Ee-Been Goh
- Joint BioEnergy Institute (JBEI), Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Yan Chen
- Joint BioEnergy Institute (JBEI), Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Christopher J Petzold
- Joint BioEnergy Institute (JBEI), Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jay D Keasling
- Joint BioEnergy Institute (JBEI), Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Departments of Chemical and Biomolecular Engineering and of Bioengineering, University of California, Berkeley, California.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allee, Hørsholm, Denmark
| | - Harry R Beller
- Joint BioEnergy Institute (JBEI), Emeryville, California.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
25
|
Guo S, Yi X, Zhang W, Wu M, Xin F, Dong W, Zhang M, Ma J, Wu H, Jiang M. Inducing hyperosmotic stress resistance in succinate-producing Escherichia coli by using the response regulator DR1558 from Deinococcus radiodurans. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Gayán E, Cambré A, Michiels CW, Aertsen A. RpoS-independent evolution reveals the importance of attenuated cAMP/CRP regulation in high hydrostatic pressure resistance acquisition in E. coli. Sci Rep 2017; 7:8600. [PMID: 28819154 PMCID: PMC5561100 DOI: 10.1038/s41598-017-08958-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
High hydrostatic pressure (HHP) processing is an attractive non-thermal alternative to food pasteurization. Nevertheless, the large inter- and intra-species variations in HHP resistance among foodborne pathogens and the ease by which they can acquire extreme resistance are an issue of increasing concern. Since RpoS activity has been considered as a central determinant in the HHP resistance of E. coli and its pathovars, this study probed for the potential of an E. coli MG1655 ΔrpoS mutant to acquire HHP resistance by directed evolution. Despite the higher initial HHP sensitivity of the ΔrpoS mutant compared to the wild-type strain, evolved lineages of the former readily managed to restore or even succeed wild-type levels of resistance. A number of these ΔrpoS derivatives were affected in cAMP/CRP regulation, and this could be causally related to their HHP resistance. Subsequent inspection revealed that some of previously isolated HHP-resistant mutants derived from the wild-type strain also incurred a causal decrease in cAMP/CRP regulation. cAMP/CRP attenuated HHP-resistant mutants also exhibited higher resistance to fosfomycin, a preferred treatment for STEC infections. As such, this study reveals attenuation of cAMP/CRP regulation as a relevant and RpoS-independent evolutionary route towards HHP resistance in E. coli that coincides with fosfomycin resistance.
Collapse
Affiliation(s)
- Elisa Gayán
- KU Leuven, Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Leuven, Belgium
| | - Alexander Cambré
- KU Leuven, Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Leuven, Belgium
| | - Chris W Michiels
- KU Leuven, Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Leuven, Belgium.
| |
Collapse
|
27
|
Park SH, Singh H, Appukuttan D, Jeong S, Choi YJ, Jung JH, Narumi I, Lim S. PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli. Front Microbiol 2017; 7:2124. [PMID: 28119668 PMCID: PMC5222802 DOI: 10.3389/fmicb.2016.02124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a representative microorganism that is frequently used for industrial biotechnology; thus its cellular robustness should be enhanced for the widespread application of E. coli in biotechnology. Stress response genes from the extremely radioresistant bacterium Deinococcus radiodurans have been used to enhance the stress tolerance of E. coli. In the present study, we introduced the cold shock domain-containing protein PprM from D. radiodurans into E. coli and observed that the tolerance to hydrogen peroxide (H2O2) was significantly increased in recombinant strains (Ec-PprM). The overexpression of PprM in E. coli elevated the expression of some OxyR-dependent genes, which play important roles in oxidative stress tolerance. Particularly, mntH (manganese transporter) was activated by 9-fold in Ec-PprM, even in the absence of H2O2 stress, which induced a more than 2-fold increase in the Mn/Fe ratio compared with wild type. The reduced production of highly reactive hydroxyl radicals (·OH) and low protein carbonylation levels (a marker of oxidative damage) in Ec-PprM indicate that the increase in the Mn/Fe ratio contributes to the protection of cells from H2O2 stress. PprM also conferred H2O2 tolerance to E. coli in the absence of OxyR. We confirmed that the H2O2 tolerance of oxyR mutants reflected the activation of the ycgZ-ymgABC operon, whose expression is activated by H2O2 in an OxyR-independent manner. Thus, the results of the present study showed that PprM could be exploited to improve the robustness of E. coli.
Collapse
Affiliation(s)
- Sun-Ha Park
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Harinder Singh
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Deepti Appukuttan
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Sunwook Jeong
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Yong Jun Choi
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University Gunma, Japan
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| |
Collapse
|
28
|
Roointan A, Morowvat MH. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production. Biotechnol Genet Eng Rev 2017; 32:74-91. [PMID: 28052722 DOI: 10.1080/02648725.2016.1270095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.
Collapse
Affiliation(s)
- Amir Roointan
- a Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz , Iran.,c Department of Medical Biotechnology, School of Medicine , Fasa University of Medical Sciences , Fasa , Iran
| | - Mohammad Hossein Morowvat
- a Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz , Iran.,b Pharmaceutical Sciences Research Center, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
29
|
Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol 2016; 35:48-55. [PMID: 27941803 DOI: 10.1038/nbt.3718] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023]
Abstract
Improvements in DNA synthesis and sequencing have underpinned comprehensive assessment of gene function in bacteria and eukaryotes. Genome-wide analyses require high-throughput methods to generate mutations and analyze their phenotypes, but approaches to date have been unable to efficiently link the effects of mutations in coding regions or promoter elements in a highly parallel fashion. We report that CRISPR-Cas9 gene editing in combination with massively parallel oligomer synthesis can enable trackable editing on a genome-wide scale. Our method, CRISPR-enabled trackable genome engineering (CREATE), links each guide RNA to homologous repair cassettes that both edit loci and function as barcodes to track genotype-phenotype relationships. We apply CREATE to site saturation mutagenesis for protein engineering, reconstruction of adaptive laboratory evolution experiments, and identification of stress tolerance and antibiotic resistance genes in bacteria. We provide preliminary evidence that CREATE will work in yeast. We also provide a webtool to design multiplex CREATE libraries.
Collapse
|
30
|
Basak S, Ghosh SK, Punetha VD, Aphale AN, Patra PK, Sahoo NG. An experimental modeling of trinomial bioengineering- crp, rDNA, and transporter engineering within single cell factory for maximizing two-phase bioreduction. Int J Biol Macromol 2016; 95:818-825. [PMID: 27923567 DOI: 10.1016/j.ijbiomac.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
A carbonyl reductase (cr) gene from Candida glabrata CBS138 has been heterologously expressed in cofactor regenerating E. coli host to convert Ethyl-4-chloro-3-oxobutanoate (COBE) into Ethyl-4-chloro-3-hydroxybutanoate (CHBE). The CR enzyme exhibited marked velocity at substrate concentration as high as 363mM with highest turnover number (112.77±3.95s-1). Solitary recombineering of such catalytic cell reproduced CHBE 161.04g/L per g of dry cell weight (DCW). Introduction of combinatorially engineered crp (crp*, F136I) into this heterologous E. coli host yielded CHBE 477.54g/L/gDCW. Furthermore, using nerolidol as exogenous cell transporter, the CHBE productivity has been towered to 710.88g/L/gDCW. The CHBE production has thus been upscaled to 8-12 times than those reported so far. qRT-PCR studies revealed that both membrane efflux channels such as acrAB as well as ROS scavenger genes such as ahpCF have been activated by engineering crp. Moreover, membrane protecting genes such as manXYZ together with solvent extrusion associated genes such as glpC have been upregulated inside mutant host. Although numerous proteins have been investigated to convert COBE to CHBE; this is the first approach to use engineering triad involving crp engineering, recombinant DNA engineering and transporter engineering together for improving cell performance during two-phase biocatalysis.
Collapse
Affiliation(s)
- Souvik Basak
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India.
| | - Sumanta Kumar Ghosh
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India
| | - Vinay Deep Punetha
- Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Ashish N Aphale
- Department of Biomedical Engineering, School of Engineering, University of Bridgeport, CT, USA
| | - Prabir K Patra
- Department of Biomedical Engineering, School of Engineering, University of Bridgeport, CT, USA; Department of Mechanical Engineering, School of Engineering, University of Bridgeport, CT, USA
| | - Nanda Gopal Sahoo
- Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India.
| |
Collapse
|
31
|
Yang S, Xu H, Wang J, Liu C, Lu H, Liu M, Zhao Y, Tian B, Wang L, Hua Y. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans. PLoS One 2016; 11:e0155010. [PMID: 27182600 PMCID: PMC4868304 DOI: 10.1371/journal.pone.0155010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/22/2016] [Indexed: 11/24/2022] Open
Abstract
The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2) treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998), Lon proteases (dr0349 and dr1974), NADH-quinone oxidoreductase (dr1506), thiosulfate sulfurtransferase (dr2531), the DNA repair protein UvsE (dr1819), PprA (dra0346), and RecN (dr1447), are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways.
Collapse
Affiliation(s)
- Su Yang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Hong Xu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jiali Wang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chengzhi Liu
- Laboratory of Microbiology and Genomics, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Huizhi Lu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Mengjia Liu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Ye Zhao
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Bing Tian
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Liangyan Wang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
- * E-mail: (YH); (LW)
| | - Yuejin Hua
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
- * E-mail: (YH); (LW)
| |
Collapse
|
32
|
Engineering Synthetic Multistress Tolerance in Escherichia coli by Using a Deinococcal Response Regulator, DR1558. Appl Environ Microbiol 2015; 82:1154-1166. [PMID: 26655758 DOI: 10.1128/aem.03371-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
Cellular robustness is an important trait for industrial microbes, because the microbial strains are exposed to a multitude of different stresses during industrial processes, such as fermentation. Thus, engineering robustness in an organism in order to push the strains toward maximizing yield has become a significant topic of research. We introduced the deinococcal response regulator DR1558 into Escherichia coli (strain Ec-1558), thereby conferring tolerance to hydrogen peroxide (H2O2). The reactive oxygen species (ROS) level in strain Ec-1558 was reduced due to the increased KatE catalase activity. Among four regulators of the oxidative-stress response, OxyR, RpoS, SoxS, and Fur, we found that the expression of rpoS increased in Ec-1558, and we confirmed this increase by Western blot analysis. Electrophoretic mobility shift assays showed that DR1558 bound to the rpoS promoter. Because the alternative sigma factor RpoS regulates various stress resistance-related genes, we performed stress survival analysis using an rpoS mutant strain. Ec-1558 was able to tolerate a low pH, a high temperature, and high NaCl concentrations in addition to H2O2, and the multistress tolerance phenotype disappeared in the absence of rpoS. Microarray analysis clearly showed that a variety of stress-responsive genes that are directly or indirectly controlled by RpoS were upregulated in strain Ec-1558. These findings, taken together, indicate that the multistress tolerance conferred by DR1558 is likely routed through RpoS. In the present study, we propose a novel strategy of employing an exogenous response regulator from polyextremophiles for strain improvement.
Collapse
|
33
|
Lennon CW, Thamsen M, Friman ET, Cacciaglia A, Sachsenhauser V, Sorgenfrei FA, Wasik MA, Bardwell JCA. Folding Optimization In Vivo Uncovers New Chaperones. J Mol Biol 2015; 427:2983-94. [PMID: 26003922 PMCID: PMC4569523 DOI: 10.1016/j.jmb.2015.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 05/10/2015] [Indexed: 01/08/2023]
Abstract
By employing a genetic selection that forces the cell to fold an unstable, aggregation-prone test protein in order to survive, we have generated bacterial strains with enhanced periplasmic folding capacity. These strains enhance the soluble steady-state level of the test protein. Most of the bacterial variants we isolated were found to overexpress one or more periplasmic proteins including OsmY, Ivy, DppA, OppA, and HdeB. Of these proteins, only HdeB has convincingly been previously shown to function as chaperone in vivo. By giving bacteria the stark choice between death and stabilizing a poorly folded protein, we have now generated designer bacteria selected for their ability to stabilize specific proteins.
Collapse
Affiliation(s)
- Christopher W Lennon
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maike Thamsen
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elias T Friman
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Austin Cacciaglia
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Veronika Sachsenhauser
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frieda A Sorgenfrei
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena A Wasik
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Appl Microbiol Biotechnol 2015; 99:4533-43. [DOI: 10.1007/s00253-015-6587-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 02/05/2023]
|
35
|
Wu Y, Yang Y, Ren C, Yang C, Yang S, Gu Y, Jiang W. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metab Eng 2015; 28:169-179. [DOI: 10.1016/j.ymben.2015.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/05/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
36
|
Huang L, Pu Y, Yang X, Zhu X, Cai J, Xu Z. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol 2015; 199:55-61. [PMID: 25687103 DOI: 10.1016/j.jbiotec.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 01/23/2023]
Abstract
Transcriptional engineering has received significant attention for improving strains by modulating the behavior of transcription factors, which could be used to reprogram a series of gene transcriptions and enable multiple simultaneous modifications at the genomic level. In this study, engineering of the cAMP receptor protein (CRP) was explored with the aim of subtly balancing entire pathway networks and potentially improving lycopene production without significant genetic intervention in other pathways. Amino acid mutations were introduced to CRP by error-prone PCR, and three variants (mcrp26, mcrp159 and mcrp424) with increased lycopene productivity were screened. Combinations of three point mutations were then created via site-directed mutagenesis. The best mutant gene (mcrp26) was integrated into the genome of E. coli BW25113-BIE to replace the wild-type crp gene (MT-1), which resulted in a higher lycopene production (18.49mg/g DCW) compared to the original strain (WT). The mutant strain MT-1 was further investigated in a 10-L bench-top fermentor with a lycopene yield of 128mg/l at 20h, approximately 25% higher than WT. DNA microarray analyses showed that 396 genes (229 up-regulated and 167 down-regulated) were differentially expressed in the mutant MT-1 compared to WT. Finally, the introduction of the mutant crp gene (mcrp26) increased β-carotene production in E. coli. This is the first report of improving the phenotype for metabolite overproduction in E. coli using a CRP engineering strategy.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yue Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiuliang Yang
- Shangdong Jincheng Biopharmaceutical Corporation Limited, Zibo, China
| | - Xiangcheng Zhu
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, China
| | - Jin Cai
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
Liu W, Jiang R. Combinatorial and high-throughput screening approaches for strain engineering. Appl Microbiol Biotechnol 2015; 99:2093-104. [DOI: 10.1007/s00253-015-6400-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/31/2022]
|
38
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
39
|
Puranik S, Purohit HJ. Dynamic interactive events in gene regulation using E. coli dehydrogenase as a model. Funct Integr Genomics 2014; 15:175-88. [PMID: 25433707 DOI: 10.1007/s10142-014-0418-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Different approaches in gene expression analysis always provide a snapshot view of cellular events. During the bacterial growth, the decisions are dynamically made with participation of various genes and their interactions with modulating factors. We have selected Escherichia coli dehydrogenases as a model to capture these interactions. We have treated the cells with hydrogen peroxide with very low level and asked the questions how cellular physiology has modulated itself to survive post-shock conditions. We hypothesized that while global regulators and associated gene network dictate the overall cellular intelligence, specific redox-sensitive classes of enzymes like dehydrogenase-mediated modulation could provide the option to cell for survival under peroxide after-effect. To understand the dynamic gene interaction, we used multidimensional scaling of genes and overlaid with minimum spanning tree to understand the clustering patterns under different conditions. Study shows that under peroxide after-effect, it is the interplay of ArcA (global regulator), with ldhA (involved in intermediary metabolism) and ndh (managing co-factor NADH), that emerges as modulating association. Knockout mutants of global regulators confirmed the promoter activity trend through gene expression change for dehydrogenases.
Collapse
Affiliation(s)
- Sampada Puranik
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute, 440020, Nehru Marg, India
| | | |
Collapse
|
40
|
Basak S, Geng H, Jiang R. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol 2014; 173:68-75. [PMID: 24452100 DOI: 10.1016/j.jbiotec.2014.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/07/2014] [Accepted: 01/11/2014] [Indexed: 11/19/2022]
Abstract
Bioprocesses such as production of organic acids or acid hydrolysis of bioresources during biofuel production often suffer limitations due to microbial sensitivity under acidic conditions. Approaches for improving the acid tolerance of these microbes have mainly focused on using metabolic engineering tools. Here, we tried to improve strain acidic tolerance from its transcription level, i.e. we adopted error-prone PCR method to engineer global regulator cAMP receptor protein (CRP) of Escherichia coli to improve its performance at low pH. The best mutant AcM1 was identified from random mutagenesis libraries based on its growth performance. AcM1 almost doubled (0.113h(-1)) the growth rate of the control (0.062h(-1)) at pH 4.24. It also demonstrated better thermotolerance than the control at 48°C, whose growth was completely inhibited at this temperature. Quantitative real time reverse transcription PCR results revealed a stress response overlap among low pH stress-, oxidative stress- and osmotic stress-related genes. The chief enzyme responsible for cell acid tolerance, glutamate decarboxylase, demonstrated over twofold activity in AcM1 compared to the control. Differential binding properties of AcM1 mutant CRP with Class-I, II, and III CRP-dependent promoters suggested that modifications to native CRP may lead to transcription profile changes. Hence, we believe that transcriptional engineering of global regulator CRP can provide a new strain engineering alternative for E. coli.
Collapse
Affiliation(s)
- Souvik Basak
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Hefang Geng
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
41
|
Nicolaou SA, Fast AG, Nakamaru-Ogiso E, Papoutsakis ET. Overexpression of fetA (ybbL) and fetB (ybbM), Encoding an Iron Exporter, Enhances Resistance to Oxidative Stress in Escherichia coli. Appl Environ Microbiol 2013; 79:7210-9. [PMID: 24038693 PMCID: PMC3837747 DOI: 10.1128/aem.02322-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/07/2013] [Indexed: 01/19/2023] Open
Abstract
Reactive oxygen species are generated by redox reactions and the Fenton reaction of H2O2 and iron that generates the hydroxyl radical that causes severe DNA, protein, and lipid damage. We screened Escherichia coli genomic libraries to identify a fragment, containing cueR, ybbJ, qmcA, ybbL, and ybbM, which enhanced resistance to H2O2 stress. We report that the ΔybbL and ΔybbM strains are more susceptible to H2O2 stress than the parent strain and that ybbL and ybbM overexpression overcomes H2O2 sensitivity. The ybbL and ybbM genes are predicted to code for an ATP-binding cassette metal transporter, and we demonstrate that YbbM is a membrane protein. We investigated various metals to identify iron as the likely substrate of this transporter. We propose the gene names fetA and fetB (for Fe transport) and the gene product names FetA and FetB. FetAB allows for increased resistance to oxidative stress in the presence of iron, revealing a role in iron homeostasis. We show that iron overload coupled with H2O2 stress is abrogated by fetA and fetB overexpression in the parent strain and in the Δfur strain, where iron uptake is deregulated. Furthermore, we utilized whole-cell electron paramagnetic resonance to show that intracellular iron levels in the Δfur strain are decreased by 37% by fetA and fetB overexpression. Combined, these findings show that fetA and fetB encode an iron exporter that has a role in enhancing resistance to H2O2-mediated oxidative stress and can minimize oxidative stress under conditions of iron overload and suggest that FetAB facilitates iron homeostasis to decrease oxidative stress.
Collapse
Affiliation(s)
- Sergios A. Nicolaou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Alan G. Fast
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
42
|
Chong H, Geng H, Zhang H, Song H, Huang L, Jiang R. EnhancingE. coliisobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Biotechnol Bioeng 2013; 111:700-8. [DOI: 10.1002/bit.25134] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/16/2013] [Accepted: 10/10/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Huiqing Chong
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Hefang Geng
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Hongfang Zhang
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Hao Song
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Lei Huang
- Institute of Biological Engineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
43
|
Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnol Adv 2013; 31:986-91. [DOI: 10.1016/j.biotechadv.2013.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/17/2013] [Accepted: 02/25/2013] [Indexed: 11/20/2022]
|
44
|
Chong H, Yeow J, Wang I, Song H, Jiang R. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One 2013; 8:e77422. [PMID: 24124618 PMCID: PMC3790751 DOI: 10.1371/journal.pone.0077422] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022] Open
Abstract
The presence of acetate exceeding 5 g/L is a major concern during E. coli fermentation due to its inhibitory effect on cell growth, thereby limiting high-density cell culture and recombinant protein production. Hence, engineered E. coli strains with enhanced acetate tolerance would be valuable for these bioprocesses. In this work, the acetate tolerance of E. coli was much improved by rewiring its global regulator cAMP receptor protein (CRP), which is reported to regulate 444 genes. Error-prone PCR method was employed to modify crp and the mutagenesis libraries (~3×10(6)) were subjected to M9 minimal medium supplemented with 5-10 g/L sodium acetate for selection. Mutant A2 (D138Y) was isolated and its growth rate in 15 g/L sodium acetate was found to be 0.083 h(-1), much higher than that of the control (0.016 h(-1)). Real-time PCR analysis via OpenArray(®) system revealed that over 400 CRP-regulated genes were differentially expressed in A2 with or without acetate stress, including those involved in the TCA cycle, phosphotransferase system, etc. Eight genes were chosen for overexpression and the overexpression of uxaB was found to lead to E. coli acetate sensitivity.
Collapse
Affiliation(s)
- Huiqing Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Ivy Wang
- Life Technologies R&D, Singapore, Singapore
| | - Hao Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rongrong Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
45
|
Chong H, Huang L, Yeow J, Wang I, Zhang H, Song H, Jiang R. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One 2013; 8:e57628. [PMID: 23469036 PMCID: PMC3585226 DOI: 10.1371/journal.pone.0057628] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
A major challenge in bioethanol fermentation is the low tolerance of the microbial host towards the end product bioethanol. Here we report to improve the ethanol tolerance of E. coli from the transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP), which is known to regulate over 400 genes in E. coli. Three ethanol tolerant CRP mutants (E1- E3) were identified from error-prone PCR libraries. The best ethanol-tolerant strain E2 (M59T) had the growth rate of 0.08 h(-1) in 62 g/L ethanol, higher than that of the control at 0.06 h(-1). The M59T mutation was then integrated into the genome to create variant iE2. When exposed to 150 g/l ethanol, the survival of iE2 after 15 min was about 12%, while that of BW25113 was <0.01%. Quantitative real-time reverse transcription PCR analysis (RT-PCR) on 444 CRP-regulated genes using OpenArray® technology revealed that 203 genes were differentially expressed in iE2 in the absence of ethanol, whereas 92 displayed differential expression when facing ethanol stress. These genes belong to various functional groups, including central intermediary metabolism (aceE, acnA, sdhD, sucA), iron ion transport (entH, entD, fecA, fecB), and general stress response (osmY, rpoS). Six up-regulated and twelve down-regulated common genes were found in both iE2 and E2 under ethanol stress, whereas over one hundred common genes showed differential expression in the absence of ethanol. Based on the RT-PCR results, entA, marA or bhsA was knocked out in iE2 and the resulting strains became more sensitive towards ethanol.
Collapse
Affiliation(s)
- Huiqing Chong
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Lei Huang
- Institute of Biological Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Jianwei Yeow
- System Engineering, Life Technologies, Singapore
| | - Ivy Wang
- System Engineering, Life Technologies, Singapore
| | - Hongfang Zhang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Hao Song
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|