1
|
Sorial MES, Abdelghany RM, El Sayed NSED. Modulation of the cognitive impairment associated with Alzheimer's disease by valproic acid: possible drug repurposing. Inflammopharmacology 2025; 33:2083-2094. [PMID: 40108007 PMCID: PMC11991970 DOI: 10.1007/s10787-025-01695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
Sporadic Alzheimer's disease is a progressive neurodegenerative disorder affecting the central nervous system. Its main two hallmarks are extracellular deposition of aggregated amyloid beta resulting in senile plaques and intracellular hyperphosphorylated tau proteins forming neuro-fibrillary tangles. As those processes are promoted by the glycogen synthase kinase-3 enzyme, GSK3 inhibitors may be of therapeutic value in SAD. GSK3 is also inhibited by the action of insulin on insulin signaling. Insulin receptor desensitization in the brain is hypothesized to cause inhibition of insulin signaling pathway that ultimately causes cognitive deficits seen in SAD. In extant research, induction of cognitive impairment is achieved by intracerebroventricular injection of streptozotocin-a diabetogenic compound that causes desensitization to insulin receptors in the brain leading to the appearance of most of the SAD signs and symptoms. Valproic acid -a histone deacetylase inhibitor and anti-epileptic drug-has been recently studied in the management of SAD as a possible GSK3 inhibitor. Accordingly, the aim of the present study is to explore the role of multiple VPA doses on the downstream effects of the insulin signaling pathway in ICV STZ-injected mice and suggest a possible mechanism of VPA action. ICV STZ-injected mice showed deficiency in short- and long-term memory as well as increased anxiety, as established by open field test, Modified Y-maze, Morris water maze, and elevated plus maze neurobehavioral tests.
Collapse
Affiliation(s)
- Mirna Ezzat Sedrak Sorial
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo, Egypt.
| | - Ragwa Mansour Abdelghany
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo, Egypt
| | | |
Collapse
|
2
|
Alves SS, Servilha-Menezes G, Rossi L, de Oliveira JAC, Grigorio-de-Sant'Ana M, Sebollela A, da Silva-Junior RMP, Garcia-Cairasco N. Insulin signaling disruption exacerbates memory impairment and seizure susceptibility in an epilepsy model with Alzheimer's disease-like pathology. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02896-1. [PMID: 39987343 DOI: 10.1007/s00702-025-02896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Alzheimer's disease (AD) and epilepsy exhibit a complex bidirectional relationship. Curiously, diabetes as a comorbidity increases the risk of epilepsy among AD patients. Recently, we reported that the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy, displays a partial AD-like phenotype, including brain insulin resistance. We also assessed seizure susceptibility in an AD model created through intracerebroventricular injections of streptozotocin (icv-STZ), which induces AD features via brain insulin resistance. Our goal was to explore how disrupted brain insulin signaling influences AD-like features and seizure susceptibility in the WAR strain. Adult male WARs received a single intracerebroventricular injection of streptozotocin (icv-STZ) (1.5 mg/kg) or vehicle (saline). Two weeks post-injection, spatial memory was assessed using the Barnes Maze (BM) test. Three weeks later, the rats underwent an audiogenic kindling (AuK) protocol (20 acoustic stimuli, 2 per day) to evaluate seizure frequency and severity. Seizures were analyzed using the Categorized Severity Index and Racine's scale and Western blot analysis was performed on hippocampal tissue. Our findings revealed that icv-STZ significantly worsened memory performance, increased seizure frequency, and reduced seizure onset relative to vehicle. Furthermore, icv-STZ decreased Akt activation and increased Glycogen Synthase Kinase-3 (GSK3) phosphorylation, indicating disrupted insulin signaling. Notably, icv-STZ decreased tau phosphorylation without altering amyloid β precursor protein (AβPP) levels. In conclusion, a low-dose icv-STZ injection exacerbates memory deficits and seizure susceptibility in the WAR strain by disturbing downstream proteins involved in insulin signaling. This highlights the implications of brain insulin resistance in both AD and epilepsy.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Letícia Rossi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - José Antonio Cortes de Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Mariana Grigorio-de-Sant'Ana
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
3
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Khamies SM, El-Yamany MF, Ibrahim SM. Canagliflozin Mitigated Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice: Role of AMPK/SIRT-1 Signaling Pathway in Modulating Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:39. [PMID: 39073453 DOI: 10.1007/s11481-024-10140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Sporadic Alzheimer's disease (SAD) represents a major health concern especially among elderly. Noteworthy, neuroinflammation and oxidative stress are highly implicated in AD pathogenesis resulting in enhanced disease progression. Moreover, most of the available anti-Alzheimer drugs have several adverse effects with variable efficacy, therefore new strategies, including agents with anti-inflammatory and antioxidant effects, are encouraged. Along these lines, canagliflozin (CAN), with its anti-inflammatory and anti-apoptotic activities, presents a promising candidate for AD treatment. Therefore, this study aimed to evaluate the therapeutic potential of CAN via regulation of AMPK/SIRT-1/BDNF/GSK-3β signaling pathway in SAD. SAD model was induced by intracerebroventricular streptozotocin injection (ICV-STZ;3 mg/kg, once), while CAN was administered (10 mg/kg/day, orally) to STZ-treated mice for 21 days. Behavioral tests, novel object recognition (NOR), Y-Maze, and Morris Water Maze (MWM) tests, histopathological examination, total adenosine monophosphate-activated protein kinase (T-AMPK) expression, p-AMPK, and silent information regulator-1 (SIRT-1) were evaluated. Furthermore, brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3β (GSK-3β), acetylcholinesterase (AChE), Tau protein, insulin-degrading enzyme (IDE), nuclear factor erythroid-2 (Nrf-2), interleukin-6 (IL-6), nuclear factor kappa-B-p65 (NFκB-p65), beta-site APP cleaving enzyme 1 (BACE-1), and amyloid beta (Aβ) plaque were assessed. CAN restored STZ-induced cognitive deficits, confirmed by improved behavioral tests and histopathological examination. Besides, CAN halted STZ-induced neurotoxicity through activation of p-AMPK/SIRT-1/BDNF pathway, subsequently reduction of GSK-3β, Tau protein, AChE, NFκB-p65, IL-6, BACE-1, and Aβ plaque associated with increased IDE and Nrf-2. Consequentially, our findings assumed that CAN, via targeting p-AMPK/SIRT-1 pathway, combated neuroinflammation and oxidative stress in STZ-induced AD. Thus, this study highlighted the promising effect of CAN for treating AD.
Collapse
Affiliation(s)
- Sara M Khamies
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Menoufia University, Menoufia, 32511, Egypt
| | - Mohammed F El-Yamany
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Sherehan M Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
5
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y, Li J. Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci 2023; 17:1217451. [PMID: 37732313 PMCID: PMC10507181 DOI: 10.3389/fnins.2023.1217451] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.
Collapse
Affiliation(s)
- Yong-mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-bei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Alves SS, de Oliveira JAC, Lazarini-Lopes W, Servilha-Menezes G, Grigório-de-Sant'Ana M, Del Vecchio F, Mazzei RF, Sousa Almeida S, da Silva Junior RMP, Garcia-Cairasco N. Audiogenic Seizures in the Streptozotocin-Induced Rat Alzheimer's Disease Model. J Alzheimers Dis 2023:JAD230153. [PMID: 37393501 DOI: 10.3233/jad-230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative and progressive disorder with no cure and constant failures in clinical trials. The main AD hallmarks are amyloid-β (Aβ) plaques, neurofibrillary tangles, and neurodegeneration. However, many other events have been implicated in AD pathogenesis. Epilepsy is a common comorbidity of AD and there is important evidence indicating a bidirectional link between these two disorders. Some studies suggest that disturbed insulin signaling might play an important role in this connection. OBJECTIVE To understand the effects of neuronal insulin resistance in the AD-epilepsy link. METHODS We submitted the streptozotocin (STZ) induced rat AD Model (icv-STZ AD) to an acute acoustic stimulus (AS), a known trigger of seizures. We also assessed animals' performance in the memory test, the Morris water maze and the neuronal activity (c-Fos protein) induced by a single audiogenic seizure in regions that express high levels of insulin receptors. RESULTS We identified significant memory impairment and seizures in 71.43% of all icv-STZ/AS rats, in contrast to 22.22% of the vehicle group. After seizures, icv-STZ/AS rats presented higher number of c-Fos immunopositive cells in hippocampal, cortical, and hypothalamic regions. CONCLUSION STZ may facilitate seizure generation and propagation by impairment of neuronal function, especially in regions that express high levels of insulin receptors. The data presented here indicate that the icv-STZ AD model might have implications not only for AD, but also for epilepsy. Finally, impaired insulin signaling might be one of the mechanisms by which AD presents a bidirectional connection to epilepsy.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Willian Lazarini-Lopes
- Department of Pharmacology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Flavio Del Vecchio
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| |
Collapse
|
7
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
8
|
Roy A, Sharma S, Nag TC, Katyal J, Gupta YK, Jain S. Cognitive Dysfunction and Anxiety Resulting from Synaptic Downscaling, Hippocampal Atrophy, and Ventricular Enlargement with Intracerebroventricular Streptozotocin Injection in Male Wistar Rats. Neurotox Res 2022; 40:2179-2202. [PMID: 36069980 DOI: 10.1007/s12640-022-00563-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022]
Abstract
Insulin-resistant brain state is proposed to be the early sign of Alzheimer's disease (AD), which can be studied in the intracerebroventricular streptozotocin (ICV-STZ) rodent model. ICV-STZ is reported to induce sporadic AD with the majority of the disease hallmarks as phenotype. On the other hand, available experimental evidence has used varying doses of STZ (< 1 to 3 mg/kg) and studied its effect for different study durations, ranging from 14 to 270 days. Though these studies suggest 3 mg/kg of ICV-STZ to be the optimum dose for progressive pathogenesis, the reason for such is elusive. Here, we sought to investigate the mechanism of action of 3 mg/kg ICV-STZ on cognitive and non-cognitive aspects at a follow-up interval of 2 weeks for 2 months. On the 60th day, we examined the layer thickness, cell density, ventricular volume, spine density, protein expression related to brain metabolism, and mitochondrial function by histological examination. The findings suggest a progressive loss of a spatial, episodic, and avoidance memory with an increase in anxiety in a span of 2 months. Furthermore, hippocampal neurodegeneration, ventricular enlargement, diffused amyloid plaque deposition, loss of spine in the dentate gyrus, and imbalance in energy homeostasis were found on the 60th day post-injection. Interestingly, AD rats showed a uniform fraction of time spent in four quadrants of the water maze with a change in strategy when they were exposed to height. Our findings reveal that ICV-STZ injection at a dose of 3 mg/kg can cause cognitive and neuropsychiatric abnormalities due to structural loss both at the neuronal as well as the synaptic level, which is tightly associated with the change in neuronal metabolism.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India. .,UMR-5297, Interdisciplinary Institute of Neurosciences, University of Bordeaux, Bordeaux, France.
| | - Sakshi Sharma
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, Delhi, India
| | - Jatinder Katyal
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Sahraei R, Aminyavari S, Hosseini M, Hassanzadeh-Taheri M, Foadoddini M, Saebipour MR. The Ameliorative Impact of Centella asiatica on the Working Memory Deficit in Streptozotocin-induced Rat Model of Alzheimer Disease. Basic Clin Neurosci 2022; 13:25-34. [PMID: 36589020 PMCID: PMC9790102 DOI: 10.32598/bcn.2021.144.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Alzheimer disease (AD) is a complex neurodegenerative disorder with a progressive nature leading to neural damage and cognitive and memory deficit. The present study investigated the neuroprotective effects of Centella asiatica (CA) in Streptozotocin (STZ)-induced rat model of memory impairment and neuronal damage. Methods The intracerebroventricular infusion of STZ (3 mg/rat) or saline (as the vehicle) was performed on days 1 and 3. CA (150 and 300 mg/kg/d) was administered through oral gavage for 21 days after model induction. We used the Y-maze test to assess the working memory-related performances of animals. Rats were then sacrificed, and their hippocampi were harvested for evaluation of neuronal density in the cornu ammonis (CA1, CA2, CA3) and Dentate Gyrus (DG) regions using stereology technique. Results The intracerebroventricular infusion of STZ caused significant working memory impairment demonstrated in the Y-maze apparatus, with a significant decrease in alternative behavior compared to control animals (40.67±2.04 vs 73.00±1.88, P<0.0001). Oral administration of CA (150 and 300 mg/kg each day) for 21 days significantly improved STZ-induced working memory deficit (55.33±3.34 and 57.17±3.81 vs 40.67±2.04, P<0.013, P<0.004, respectively). Furthermore, 21 days of consecutive administration of CA significantly ameliorated STZ-induced neuronal loss in the CA1, CA2, and DG subfields of the hippocampus. Conclusion Overall, these data demonstrate that CA increases neuronal density and improves cognitive impairment in the STZ-induced rat model of AD, thereby having promising therapeutic potential for neurodegenerative disorders. Accordingly, further studies are needed to determine the exact molecular mechanism of CA protective effects in brain disorders, particularly AD. Highlights Centella asiatica (CA) improved the STZ-induced working memory deficit.CA could prevent hippocampal neural cell loss dose-dependent manner.CA improved memory through mitigating neuronal loss in hippocampus. Plain Language Summary Memory loss is the first signs of dementia. It is well known that a healthy diet might be as good for your brain as it is for your heart. Numerous traditionally used medicinal herbs could significantly affect key events culminating in dementia and Alzheimer's disease. Centella asiatica, commonly known as Gotu Kola or Indian Pennywort, is a tropical, medicinal plant native to Southeast Asian countries. It is one of the becoming popular medicinal plants in the world. Centella asiatica (CA) is widely used in different traditional medicine systems for various purposes, such as reducing blood pressure, memory enhancement, and promoting longevity. In the present study, we tested the possible impact of CA leaf and stem extract in an animal model of memory damage. Memory impairment was induced in adult rats by intracerebral infusion of a neurotoxin chemical. Then, the memory-impaired animals were orally treated with 150-300 mg/kg of CA extract for 21 days. Finally, we tested their working memory by placing them in a Y-maze apparatus. Furthermore, their most involved brain part (hippocampus) was dissected, and its cell density was evaluated. Our findings exhibited that CA treatment considerably improved rats' memory performance, indicating by enhancing working memory score in the Y-maze task. In addition, CA treatment significantly prevented neuronal cell loss in the hippocampus of memory-impaired rats. This study shows that CA has beneficial effects on memory and cognitive function.
Collapse
Affiliation(s)
- Razyeh Sahraei
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammadmehdi Hassanzadeh-Taheri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Foadoddini
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Saebipour
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
10
|
Latina V, Giacovazzo G, Calissano P, Atlante A, La Regina F, Malerba F, Dell’Aquila M, Stigliano E, Balzamino BO, Micera A, Coccurello R, Amadoro G. Tau Cleavage Contributes to Cognitive Dysfunction in Strepto-Zotocin-Induced Sporadic Alzheimer's Disease (sAD) Mouse Model. Int J Mol Sci 2021; 22:ijms222212158. [PMID: 34830036 PMCID: PMC8618605 DOI: 10.3390/ijms222212158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/15/2023] Open
Abstract
Tau cleavage plays a crucial role in the onset and progression of Alzheimer’s Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)—a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic β cells and to induce insulin resistance—mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-β (Aβ) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism. We have demonstrated that pathological truncation of tau at its N-terminal domain occurs into hippocampi from two well-established transgenic lines of fAD animal models, such as Tg2576 and 3xTg mice, and that it’s in vivo neutralization via intravenous (i.v.) administration of the cleavage-specific anti-tau 12A12 monoclonal antibody (mAb) is strongly neuroprotective. Here, we report the therapeutic efficacy of 12A12mAb in STZ-infused mice after 14 days (short-term immunization, STIR) and 21 days (long-term immunization regimen, LTIR) of i.v. delivery. A virtually complete recovery was detected after three weeks of 12A12mAb immunization in both novel object recognition test (NORT) and object place recognition task (OPRT). Consistently, three weeks of this immunization regimen relieved in hippocampi from ICV-STZ mice the AD-like up-regulation of amyloid precursor protein (APP), the tau hyperphosphorylation and neuroinflammation, likely due to modulation of the PI3K/AKT/GSK3-β axis and the AMP-activated protein kinase (AMPK) activities. Cerebral oxidative stress, mitochondrial impairment, synaptic and histological alterations occurring in STZ-infused mice were also strongly attenuated by 12A12mAb delivery. These results further strengthen the causal role of N-terminal tau cleavage in AD pathogenesis and indicate that its specific neutralization by non-invasive administration of 12A12mAb can be a therapeutic option for both fAD and sAD patients, as well as for those showing type 2 diabetes as a comorbidity.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Giacomo Giacovazzo
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy;
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via Amendola 122/O, 70126 Bari, Italy;
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Marco Dell’Aquila
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (M.D.); (E.S.)
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (M.D.); (E.S.)
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6I, 00184 Rome, Italy; (B.O.B.); (A.M.)
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6I, 00184 Rome, Italy; (B.O.B.); (A.M.)
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy;
- Institute for Complex System (ISC)-CNR, Via dei Taurini 19, 00185 Rome, Italy
- Correspondence: (R.C.); (G.A.)
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: (R.C.); (G.A.)
| |
Collapse
|
11
|
Whole Blood Transcriptome Characterization of 3xTg-AD Mouse and Its Modulation by Transcranial Direct Current Stimulation (tDCS). Int J Mol Sci 2021; 22:ijms22147629. [PMID: 34299250 PMCID: PMC8306644 DOI: 10.3390/ijms22147629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/05/2022] Open
Abstract
The 3xTg-AD mouse is a widely used model in the study of Alzheimer’s Disease (AD). It has been extensively characterized from both the anatomical and behavioral point of view, but poorly studied at the transcriptomic level. For the first time, we characterize the whole blood transcriptome of the 3xTg-AD mouse at three and six months of age and evaluate how its gene expression is modulated by transcranial direct current stimulation (tDCS). RNA-seq analysis revealed 183 differentially expressed genes (DEGs) that represent a direct signature of the genetic background of the mouse. Moreover, in the 6-month-old 3xTg-AD mice, we observed a high number of DEGs that could represent good peripheral biomarkers of AD symptomatology onset. Finally, tDCS was associated with gene expression changes in the 3xTg-AD, but not in the control mice. In conclusion, this study provides an in-depth molecular characterization of the 3xTg-AD mouse and suggests that blood gene expression can be used to identify new biomarkers of AD progression and treatment effects.
Collapse
|
12
|
Pinz MP, Vogt AG, da Costa Rodrigues K, Dos Reis AS, Duarte LFB, Fronza MG, Domingues WB, Blodorn EB, Alves D, Campos VF, Savegnago L, Wilhelm EA, Luchese C. Effect of a purine derivative containing selenium to improve memory decline and anxiety through modulation of the cholinergic system and Na +/K +-ATPase in an Alzheimer's disease model. Metab Brain Dis 2021; 36:871-888. [PMID: 33651275 DOI: 10.1007/s11011-021-00703-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a worldwide problem, and there are currently no treatments that can stop this disease. To investigate the binding affinity of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) with acetylcholinesterase (AChE), to verify the effects of FSP in an AD model in mice and to evaluate the toxicological potential of this compound in mice. The binding affinity of FSP with AChE was investigated by molecular docking analyses. The AD model was induced by streptozotocin (STZ) in Swiss mice after FSP treatment (1 mg/kg, intragastrically (i.g.)), 1st-10th day of the experimental protocol. Anxiety was evaluated in an elevated plus maze test, and memory impairment was evaluated in the Y-maze, object recognition and step-down inhibitory avoidance tasks. The cholinergic system was investigated based on by looking at expression and activity of AChE and expression of choline acetyltransferase (ChAT). We evaluated expression and activity of Na+/K+-ATPase. For toxicological analysis, animals received FSP (300 mg/kg, i.g.) and aspartate aminotransferase, alanine aminotransferase activities were determined in plasma and δ-aminolevulinate dehydratase activity in brain and liver. FSP interacts with residues of the AChE active site. FSP mitigated the induction of anxiety and memory impairment caused by STZ. FSP protected cholinergic system dysfunction and reduction of activity and expression of Na+/K+-ATPase. FSP did not modify toxicological parameters evaluated and did not cause the death of mice. FSP protected against anxiety, learning and memory impairment with involvement of the cholinergic system and Na+/K+-ATPase in these actions.
Collapse
Affiliation(s)
- Mikaela Peglow Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Ane Gabriela Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Karline da Costa Rodrigues
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Angélica Schiavom Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Luis Fernando Barbosa Duarte
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Mariana Gallio Fronza
- Programa de Pós-Graduação em Biotecnologia, GPN, CDTec, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - William Borges Domingues
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Eduardo Bierhaus Blodorn
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia, GPN, CDTec, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil.
| |
Collapse
|
13
|
Pan D, Gu JH, Zhang J, Hu Y, Liu F, Iqbal K, Cekic N, Vocadlo DJ, Dai CL, Gong CX. Thiamme2-G, a Novel O-GlcNAcase Inhibitor, Reduces Tau Hyperphosphorylation and Rescues Cognitive Impairment in Mice. J Alzheimers Dis 2021; 81:273-286. [PMID: 33814439 DOI: 10.3233/jad-201450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Abnormal hyperphosphorylation of microtubule-associated protein tau plays a pivotal role in Alzheimer's disease (AD). We previously found that O-GlcNAcylation inversely correlates to hyperphosphorylation of tau in AD brain, and downregulation of brain O-GlcNAcylation promotes tau hyperphosphorylation and AD-like neurodegeneration in mice. OBJECTIVE Herein we investigated the effect of increasing O-GlcNAcylation by using intermittent dosing with low doses of a potent novel O-GlcNAcase (OGA) inhibitor on AD-like brain changes and cognitive function in a mouse model of sporadic AD (sAD) induced by intracerebroventricular (ICV) injection of streptozotocin (STZ). METHODS STZ was injected into the lateral ventricle of C57BL/6J mice. From the second day, Thiamme2-G (TM2G) or saline, as a vehicle control, was orally administered to the ICV-STZ mice three times per week for five weeks. A separate group of ICV-saline mice treated with saline was used as a baseline control. Behavioral tests, including open field and novel object recognition, were conducted three weeks after the first dose of the TM2G or saline. Protein O-GlcNAcylation, tau hyperphosphorylation, synaptic proteins, and neuroinflammation in the mouse brain were assessed by western blotting. RESULTS ICV-STZ caused decreased protein O-GlcNAcylation. Enhancement of O-GlcNAcylation to moderate levels by using low-dose OGA inhibitor in ICV-STZ mice prevented STZ-induced body weight loss, rescued cognitive impairments, and restored AD-like pathologies, including hyperphosphorylation of tau and abnormalities in synaptic proteins and neuroinflammation. CONCLUSION These findings suggest that moderately increasing protein O-GlcNAcylation by using low doses of OGA inhibitor may be a suitable therapeutic strategy for sAD.
Collapse
Affiliation(s)
- Danmin Pan
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jin-Hua Gu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jin Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yae Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nevena Cekic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
14
|
Poddar J, Singh S, Kumar P, Bali S, Gupta S, Chakrabarti S. Inhibition of complex I-III activity of brain mitochondria after intracerebroventricular administration of streptozotocin in rats is possibly related to loss of body weight. Heliyon 2020; 6:e04490. [PMID: 32743098 PMCID: PMC7387826 DOI: 10.1016/j.heliyon.2020.e04490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
The effects of streptozotocin (STZ) on the brain after intracerebroventricular (ICV) administration in rodents have been suggested to mimic the pathogenesis of sporadic Alzheimer's disease (AD). Oxidative damage, decreased glucose utilization, mitochondrial bioenergetic changes, neuroinflammation and behavioral impairment have been reported in rodents after ICV-STZ administration. However, the molecular mechanisms of STZ effects on brain after ICV administration remain highly controversial. In this study we re-examined several bioenergetic parameters of rat brain mitochondria on day 15 following ICV-STZ treatment. We observed only a moderate but statistically significant decrease in complex I-III activity in brain mitochondria from streptozotocin-treated rats. There were no changes in complex II-III activity or phosphorylation capacity of brain mitochondria after streptozotocin treatment. More importantly, it was observed that ICV-STZ treatment caused variable degrees of body-weight loss in rats, and complex I-III activity was decreased only in those rats showing a significant (more than 10%-35%) loss in body-weights.
Collapse
Affiliation(s)
- Jit Poddar
- Department of Biochemistry, Institute of Post-graduate Medical Education & Research, Kolkata, India.,Department of Biochemistry, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Sukhpal Singh
- Department of Biochemistry, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Pardeep Kumar
- Department of Biochemistry, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Sharadendu Bali
- Department of Surgery, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Sumeet Gupta
- M M College of Pharmacy, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| |
Collapse
|
15
|
Lin T, Chiu Y, Lin C, Lin C, Chao C, Chen Y, Yang S, Lin W, Mei Hsieh‐Li H, Wu Y, Chang K, Lee‐Chen G, Chen C. Exploration of multi-target effects of 3-benzoyl-5-hydroxychromen-2-one in Alzheimer's disease cell and mouse models. Aging Cell 2020; 19:e13169. [PMID: 32496635 PMCID: PMC7433010 DOI: 10.1111/acel.13169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Microtubule-associated protein Tau, abundant in the central nervous system (CNS), plays crucial roles in microtubule assembly and stabilization. Abnormal Tau phosphorylation and aggregation are a common pathogenic hallmark in Alzheimer's disease (AD). Hyperphosphorylation of Tau could change its conformation and result in self-aggregation, increased oxidative stress, and neuronal death. In this study, we examined the potential of licochalcone A (a natural chalcone) and five synthetic derivatives (LM compounds) for inhibiting Tau misfolding, scavenging reactive oxygen species (ROS) and providing neuroprotection in human cells expressing proaggregant ΔK280 TauRD -DsRed. All test compounds were soluble up to 100 μM in cell culture media and predicted to be orally bioavailable and CNS-active. Among them, licochalcone A and LM-031 markedly reduced Tau misfolding and associated ROS, promoted neurite outgrowth, and inhibited caspase 3 activity in ΔK280 TauRD -DsRed 293 and SH-SY5Y cells. Mechanistic studies showed that LM-031 upregulates HSPB1 chaperone, NRF2/NQO1/GCLC pathway, and CREB-dependent BDNF/AKT/ERK/BCL2 pathway in ΔK280 TauRD -DsRed SH-SY5Y cells. Decreased neurite outgrowth upon induction of ΔK280 TauRD -DsRed was rescued by LM-031, which was counteracted by knockdown of NRF2 or CREB. LM-031 further rescued the downregulated NRF2 and pCREB, reduced Aβ and Tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin-induced hyperglycemic 3 × Tg-AD mice. Our findings strongly indicate the potential of LM-031 for modifying AD progression by targeting HSPB1 to reduce Tau misfolding and activating NRF2 and CREB pathways to suppress apoptosis and promote neuron survival, thereby offering a new drug development avenue for AD treatment.
Collapse
Affiliation(s)
- Te‐Hsien Lin
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Ya‐Jen Chiu
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Chih‐Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Chung‐Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research Chang Gung University/Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Chih‐Ying Chao
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Yu‐Chieh Chen
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Shu‐Mei Yang
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Wenwei Lin
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Hsiu Mei Hsieh‐Li
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Yih‐Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Kuo‐Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Guey‐Jen Lee‐Chen
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Chiung‐Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| |
Collapse
|
16
|
Nasiri E, Sankowski R, Dietrich H, Oikonomidi A, Huerta PT, Popp J, Al-Abed Y, Bacher M. Key role of MIF-related neuroinflammation in neurodegeneration and cognitive impairment in Alzheimer's disease. Mol Med 2020; 26:34. [PMID: 32303185 PMCID: PMC7164357 DOI: 10.1186/s10020-020-00163-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage Migration Inhibitory Factor (MIF) is a potent proinflammatory cytokine that promotes the production of other immune mediators. MIF is produced by most cell types in the brain including microglia, astrocytes and neurons. Enhanced expression of MIF might contribute to the persistent activation of glial, chronic neuroinflammation and neurodegeneration. Here, we investigated the effect of MIF on inflammatory markers and spatial learning in a mouse model of sporadic AD and on tau pathology in AD patients. Methods We examined the effects of MIF deficiency and pharmacological MIF inhibition in vitro and in vivo. In vitro, quantitative PCR and ELISA were used to assess cytokine production of STZ-treated glial cells. In vivo, C57BL/6 mice were subjected to intracerebroventricular streptozotocin injection (3 mg/kg, ICV-STZ). Neuroinflammation and contextual learning performance were assessed using quantitative PCR and fear conditioning, respectively. Pharmacological MIF inhibition was achieved with intraperitoneal injections of ISO-1 (daily, IP, 20 mg/kg in 5% DMSO in 0.9% NaCl) for 4 weeks following ICV-STZ injection. The findings from ISO-1 treated mice were confirmed in MIF knockout C57BL/6. To assess the role of MIF in human AD, cerebrospinal fluid levels of MIF and hyperphosphorylated tau were measured using ELISA. Results Administration ICV-STZ resulted in hippocampal dependent cognitive impairment. MIF inhibition with ISO-1 significantly improved the STZ-induced impairment in contextual memory performance, indicating MIF-related inflammation as a major contributor to ICV-STZ-induced memory deficits. Furthermore, inhibition of the MIF resulted in reduced cytokine production in vitro and in vivo. In human subjects with AD at early clinical stages, cerebrospinal fluid levels of MIF were increased in comparison with age-matched controls, and correlated with biomarkers of tau hyper-phosphorylation and neuronal injury hinting at MIF levels as a potential biomarker for early-stage AD. Conclusions The present study indicates the key role of MIF in controlling the chronic cytokine release in neuroinflammation related to tau hyperphosphorylation, neurodegeneration, and clinical manifestations of AD, suggesting the potential of MIF inhibition as therapeutic strategy to slow down neurodegeneration and clinical disease progression.
Collapse
Affiliation(s)
- Elham Nasiri
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Roman Sankowski
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, NY, USA. .,Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA. .,Current address: Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Current address: Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Aikaterini Oikonomidi
- Old Age Psychiatry, Department of Psychiatry, University hospital of Lausanne, Lausanne, Switzerland
| | - Patricio T Huerta
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Laboratory of Immune & Neural Networks, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, University hospital of Lausanne, Lausanne, Switzerland.,Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Bacher
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
17
|
Hajizadeh Moghaddam A, Ahmadnia H, Jelodar SK, Ranjbar M. Hesperetin nanoparticles attenuate anxiogenic-like behavior and cerebral oxidative stress through the upregulation of antioxidant enzyme expression in experimental dementia of Alzheimer's type. Neurol Res 2020; 42:477-486. [PMID: 32252616 DOI: 10.1080/01616412.2020.1747716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: In this study, we investigate the neuroprotective effects of Hesperetin (Hst) and Nano-Hst on anxiogenic-like behavior and cerebral antioxidant defenses at transcriptional and enzymatic levels in a streptozotocin (STZ)-induced Alzheimer rat model.Methods: Wistar rats were administrated with Hst and Nano-Hst (10 and 20 mg/kg/d) for three weeks. The elevated plus-maze test assessed anxiogenic-like behavior. After behavioral test, activity and gene expression of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GRx) enzymes, as well as malondialdehyde (MDA) and glutathione (GSH) levels, were measured in the cerebral cortex.Results: Based on our results, a rat model of Alzheimer's disease (AD) exhibited anxiogenic-like behavior, activity and gene expression of cerebral antioxidant enzymes and GSH level was decreased while the MDA level was increased. Hst and Nano-Hst treatment reversed anxiogenic-like behavior, and the activities of antioxidant enzymes were elevated. Hst and Nano-Hst effects on the gene expression of CAT, SOD and GRx were confirmed by quantitative real-time PCR (qRT-PCR) in which the expression levels of these genes in the cerebral brain were significantly increased compared to STZ group.Conclusions: These findings indicated that the administration of Hst and Nano-Hst may be used to treat anxiety -related to AD via an up-regulation of cerebral antioxidant enzyme gene.
Collapse
Affiliation(s)
| | - Hananeh Ahmadnia
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
18
|
Bavarsad K, Hadjzadeh MAR, Hosseini M, Pakdel R, Beheshti F, Bafadam S, Ashaari Z. Effects of levothyroxine on learning and memory deficits in a rat model of Alzheimer's disease: the role of BDNF and oxidative stress. Drug Chem Toxicol 2020; 43:57-63. [PMID: 29927658 DOI: 10.1080/01480545.2018.1481085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/01/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
The effect of levothyroxine (L-T4) on the learning and memory impairment induced by streptozotocin (STZ) and brain tissue oxidative damage in rats was evaluated. An animal model of the Alzheimer's disease (AD) was established by intracerebroventricular injection of STZ (3 mg/kg) in male Wistar rats (250 ± 50 g). After that, the rats were treated for 3 weeks with L-T4 (10, 100 μg/kg) or normal saline. Passive avoidance (PA) learning and spatial memory were evaluated using shuttle box and Morris water maze (MWM), respectively. Finally, the rats were euthanized, their blood samples were collected for further thyroxine assessment and their brains were removed after decapitation in order to measure the oxidative stress parameters and brain-derived neurotrophic factor (BDNF). In the MWM, latency (s) increased in the AD rats compared with the normal control group while it decreased in the 10 μg/kg L-T4 injected AD rats compared with the AD group. In the PA, the latency for entering the dark compartment was lower in the AD group than in the normal control group and it decreased in the 10 μg/kg L-T4 injected AD rats. The low dose of L-T4 (10 μg/kg) reduced malondialdehyde concentration but increased thiols concentration, superoxide dismutase, catalase activities and BDNF level in hippocampal tissues of the AD rats. Injection of L-T4 (10 μg/kg) alleviated memory deficits and also improved factors of oxidative stress and BDNF level in the STZ-induced AD rats.
Collapse
Affiliation(s)
- Kowsar Bavarsad
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Pakdel
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Farimah Beheshti
- Department of Basic Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Soleyman Bafadam
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Ashaari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Abstract
Endogenous retroviruses (ERVs) consist of interspersed genomic elements derived from retroviral infections that invaded our ancestral germ lines. Notably, ERVs compose 8 to 10% of the human and mouse genomes. Until recently, ERVs were considered unimportant, so-called “junk” DNA. However, this naïve characterization has changed dramatically as distinct ERV-related functions are revealed in heath and disease. In this study, we demonstrate that chronic ERV activation is associated with cognitive impairment, measured with hippocampus-related tasks, in a mouse model. We confirm these findings in an independent mouse model of acute retroviral activation and show that cognitive deficits are mitigated in the absence of the retroviral RNA sensor protein MAVS. Our results point to an underappreciated therapeutic modality for impaired cognition. Retrotransposons compose a staggering 40% of the mammalian genome. Among them, endogenous retroviruses (ERV) represent sequences that closely resemble the proviruses created from exogenous retroviral infection. ERVs make up 8 to 10% of human and mouse genomes and range from evolutionarily ancient sequences to recent acquisitions. Studies in Drosophila have provided a causal link between genomic retroviral elements and cognitive decline; however, in mammals, the role of ERVs in learning and memory remains unclear. Here we studied 2 independent murine models for ERV activation: muMT strain (lacking B cells and antibody production) and intracerebroventricular injection of streptozotocin (ICVI-STZ). We conducted behavioral assessments (contextual fear memory and spatial learning), as well as gene and protein analysis (RNA sequencing, PCR, immunohistochemistry, and western blot assays). Mice lacking mitochondrial antiviral-signaling protein (MAVS) and mice lacking stimulator of IFN genes protein (STING), 2 downstream sensors of ERV activation, provided confirmation of ERV impact. We found that muMT mice and ICVI-STZ mice induced hippocampal ERV activation, as shown by increased gene and protein expression of the Gag sequence of the transposable element intracisternal A-particle. ERV activation was accompanied by significant hippocampus-related memory impairment in both models. Notably, the deficiency of the MAVS pathway was protective against ICVI-STZ–induced cognitive pathology. Overall, our results demonstrate that ERV activation is associated with cognitive impairment in mice. Moreover, they provide a molecular target for strategies aimed at attenuating retroviral element sensing, via MAVS, to treat dementia and neuropsychiatric disorders.
Collapse
|
20
|
Bavarsad K, Hosseini M, Hadjzadeh MAR, Sahebkar A. The effects of thyroid hormones on memory impairment and Alzheimer's disease. J Cell Physiol 2019; 234:14633-14640. [PMID: 30680727 DOI: 10.1002/jcp.28198] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Thyroid hormones (THs) have a wide and important range of effects within the central nervous system beginning from fetal life and continuing throughout the adult life. Thyroid disorders are one of the major causes of cognitive impairment including Alzheimer's disease (AD). Several studies in recent years have indicated an association between hypothyroidism or hyperthyroidism and AD. Despite available evidence for this association, it remains unclear whether thyroid dysfunction results from or contributes to the progression of AD. This review discusses the role of THs in learning and memory and summarizes the studies that have linked thyroid function and AD. Eventually, we elaborate how THs may be effective in treating AD by putting forward potential mechanisms.
Collapse
Affiliation(s)
- Kowsar Bavarsad
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
dos Santos JPA, Vizuete AF, Gonçalves CA. Calcineurin-Mediated Hippocampal Inflammatory Alterations in Streptozotocin-Induced Model of Dementia. Mol Neurobiol 2019; 57:502-512. [DOI: 10.1007/s12035-019-01718-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023]
|
22
|
Shahidi S, Hashemi-Firouzi N, Afshar S, Asl SS, Komaki A. Protective Effects of 5-HT1A Receptor Inhibition and 5-HT2A Receptor Stimulation Against Streptozotocin-Induced Apoptosis in the Hippocampus. Malays J Med Sci 2019; 26:40-51. [PMID: 31447607 PMCID: PMC6687217 DOI: 10.21315/mjms2019.26.2.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Intracerebroventricular administration of streptozotocin (icv-STZ) induced apoptosis changes in neurons similar to Alzheimer's disease. The serotonergic system via its receptor involved in survival of neurons. The present study examined the ability of selective 5-HT1A receptor antagonist (NAD-299) and 5-HT2A receptor agonist (TCB-2) to attenuate the apoptosis caused by the icv-STZ in the rat. METHODS The icv-STZ (3 mg/kg, 10 μL, twice) induced neuronal loss in the hippocampus of adult male rats. Animals were divided into naive control, sham-operated, STZ+saline (1 μL, icv), STZ+NAD-299 (5 μg/μL, icv), STZ+TCB-2 (5 μg/μL, icv), and STZ+NAD-299+TCB-2 (5 μg/μL of any agent, icv) groups. Following the 35 days' treatment period, neuronal apoptosis was detected using the Tunnel. Cells with morphological features of apoptotic cell were contended by microscopy. RESULTS TCB-2 and NAD-299 administration decreased number of apoptotic neurons in the treatment group compared with the STZ group. Combined treatment of STZ rat with NAD+TCB more decreased number of apoptotic cells in compare to TCB-2 or NAD-299 treated STZ groups. CONCLUSION Treatment with 5-HT1A receptor antagonist or 5-HT2A receptor agonist diminished apoptosis. The beneficial effect of 5HT1A receptor inhibition was potentiated with activation of 5-HT2A receptor in prevention of apoptosis in hippocampus.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Simin Afshar
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Soleimani Asl
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
Administration of Momordica charantia Enhances the Neuroprotection and Reduces the Side Effects of LiCl in the Treatment of Alzheimer's Disease. Nutrients 2018; 10:nu10121888. [PMID: 30513908 PMCID: PMC6316175 DOI: 10.3390/nu10121888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, the use of natural food supplements to reduce the side effects of chemical compounds used for the treatment of various diseases has become popular. Lithium chloride (LiCl) has some protective effects in neurological diseases, including Alzheimer’s disease (AD). However, its toxic effects on various systems and some relevant interactions with other drugs limit its broader use in clinical practice. In this study, we investigated the in vitro and in vivo pharmacological functions of LiCl combined with Momordica charantia (MC) in the treatment of AD. The in vitro results show that the order of the neuroprotective effect is MC5, MC3, MC2, and MC5523 under hyperglycemia or tau hyperphosphorylation. Therefore, MC5523 (80 mg/kg; oral gavage) and/or LiCl (141.3 mg/kg; intraperitoneal injection) were applied to ovariectomized (OVX) 3×Tg-AD female and C57BL/6J (B6) male mice that received intracerebroventricular injections of streptozotocin (icv-STZ, 3 mg/kg) for 28 days. We found that the combined treatment not only increased the survival rate by reducing hepatotoxicity but also increased neuroprotection associated with anti-gliosis in the icv-STZ OVX 3×Tg-AD mice. Furthermore, the cotreatment with MC5523 and LiCl prevented memory deficits associated with reduced neuronal loss, gliosis, oligomeric Aβ level, and tau hyperphosphorylation and increased the expression levels of synaptic-related protein and pS9-GSK3β (inactive form) in the icv-STZ B6 mice. Therefore, MC5523 combined with LiCl could be a potential strategy for the treatment of AD.
Collapse
|
24
|
Piquet J, Toussay X, Hepp R, Lerchundi R, Le Douce J, Faivre É, Guiot E, Bonvento G, Cauli B. Supragranular Pyramidal Cells Exhibit Early Metabolic Alterations in the 3xTg-AD Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2018; 12:216. [PMID: 30072874 PMCID: PMC6060432 DOI: 10.3389/fncel.2018.00216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
The impairment of cerebral glucose utilization is an early and predictive biomarker of Alzheimer’s disease (AD) that is likely to contribute to memory and cognition disorders during the progression of the pathology. Yet, the cellular and molecular mechanisms underlying these metabolic alterations remain poorly understood. Here we studied the glucose metabolism of supragranular pyramidal cells at an early presymptomatic developmental stage in non-transgenic (non-Tg) and 3xTg-AD mice, a mouse model of AD replicating numerous hallmarks of the disease. We performed both intracellular glucose imaging with a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose biosensor and transcriptomic profiling of key molecular elements of glucose metabolism with single-cell multiplex RT-PCR (scRT-mPCR). We found that juvenile pyramidal cells exhibit active glycolysis and pentose phosphate pathway at rest that are respectively enhanced and impaired in 3xTg-AD mice without alteration of neuronal glucose uptake or transcriptional modification. Given the importance of glucose metabolism for neuronal survival, these early alterations could initiate or at least contribute to the later neuronal dysfunction of pyramidal cells in AD.
Collapse
Affiliation(s)
- Juliette Piquet
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Xavier Toussay
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Régine Hepp
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Rodrigo Lerchundi
- CNRS UMR 9199, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Center (MIRCen), Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Juliette Le Douce
- CNRS UMR 9199, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Center (MIRCen), Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Émilie Faivre
- CNRS UMR 9199, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Center (MIRCen), Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Elvire Guiot
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Gilles Bonvento
- CNRS UMR 9199, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Center (MIRCen), Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Bruno Cauli
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| |
Collapse
|
25
|
Dos Santos JPA, Vizuete A, Hansen F, Biasibetti R, Gonçalves CA. Early and Persistent O-GlcNAc Protein Modification in the Streptozotocin Model of Alzheimer's Disease. J Alzheimers Dis 2018; 61:237-249. [PMID: 29154269 DOI: 10.3233/jad-170211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O-GlcNAc transferase (OGT), an enzyme highly expressed in brain tissue, catalyzes the addition of N-acetyl-glucosamine (GlcNAc) to hydroxyl residues of serine and threonine of proteins. Brain protein O-GlcNAcylation is diminished in Alzheimer's disease (AD), and OGT targets include proteins of the insulin-signaling pathway (e.g., insulin receptor susbtrate-1, IRS-1). We hypothesized that ICV streptozotocin (STZ) also affects O-GlcNAc protein modification. We investigated hippocampal metabolic changes in Wistar rats, particularly OGT levels and insulin resistance, as well as related astroglial activities, immediately after ICV STZ administration (first week) and later on (fourth week). We found an early (at one week) and persistent (at fourth week) decrease in OGT in the ICV STZ model of AD, characterized by a spatial cognitive deficit. Consistent with this observation, we observed a decrease in protein O-GlnNAc modification at both times. Increased phosphorylation at serine-307 of IRS-1, which is related to insulin resistance, was observed on the fourth week. The decrease in OGT and consequent protein O-GlnNAc modifications appear to precede the decrease in glucose uptake and increment of the glyoxalase system observed in the hippocampus. Changes in glial fibrillary acidic protein and S100B in the hippocampus, as well as the alterations in cerebrospinal fluid S100B, confirm the astrogliosis. Moreover, decreases in glutamine synthetase and glutathione content suggest astroglial dysfunction, which are likely implicated in the neurodegenerative cascade triggered in this model. Together, these data contribute to the understanding of neurochemical changes in the ICV STZ model of sporadic AD, and may explain the decreases in protein O-GlcNAc levels and insulin resistance observed in AD.
Collapse
Affiliation(s)
| | - Adriana Vizuete
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Hansen
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Regina Biasibetti
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
26
|
Asaad M, Lee JH. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models. Dis Model Mech 2018; 11:dmm031724. [PMID: 29784664 PMCID: PMC5992611 DOI: 10.1242/dmm.031724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models.
Collapse
Affiliation(s)
- Mazen Asaad
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Li Q, Wang J, Li Y, Xu X. Neuroprotective effects of salidroside administration in a mouse model of Alzheimer's disease. Mol Med Rep 2018; 17:7287-7292. [PMID: 29568861 DOI: 10.3892/mmr.2018.8757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
Abstract
Salidroside administration improves memory in different models of learning. However, its influence on models of Alzheimer's disease (AD) has not been widely studied. In the present study, the therapeutic effect of salidroside was investigated in an animal model of AD. APPswe/PS1ΔE9 mouse (n=20) were randomly divided into either the AD model group or the salidroside + AD model group (n=10 in each group), and C57BL/6J mouse (n=20) of identical age and genetic background were randomly divided into either the normal control (NC) group or the salidroside + NC group (n=10 in each group). The Morris water maze behavioral test was applied to all mice in order to investigate the effects of salidroside administration on learning and memory functions. The concentrations of malondialdehyde (MDA), glutathione (GSH) and nitrate in the hippocampus of the mice were determined, and hippocampal superoxide dismutase (SOD) activity was also determined. In addition, terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling was used to investigate the rate of neuronal apoptosis in the hippocampus. Furthermore, the concentrations of interleukin‑6 (IL‑6) and tumor necrosis factor‑α (TNF‑α) were tested for in the brain tissues of AD mice. Learning and memory functions in AD mice were revealed to improve following administration of salidroside. Furthermore, salidroside administration was revealed to decrease the concentrations of MDA and nitrate in the hippocampus, decrease the apoptotic rate of hippocampal neurons, and increase the activity of SOD and the concentration of GSH in hippocampal tissue. In addition, it was demonstrated that salidroside administration suppressed the expression levels of IL‑6 and TNF‑α. In conclusion, this study revealed that the administration of salidroside could attenuate the effects of AD‑associated memory and learning impairment in mice. Furthermore, it was demonstrated that the effects of salidroside administration on AD mice were, at least partially, via inhibition of brain oxidative/nitrosative damage, suppression of both IL‑6 and TNF‑α expression levels, and suppression of the hippocampal neuronal apoptotic rate.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Jinhua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Yuwang Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Xiaolin Xu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
28
|
Bazazzadegan N, Dehghan Shasaltaneh M, Saliminejad K, Kamali K, Banan M, Nazari R, Riazi GH, Khorram Khorshid HR. Effects of Ectoine on Behavior and Candidate Genes Expression in ICV-STZ Rat Model of Sporadic Alzheimer's Disease. Adv Pharm Bull 2018; 7:629-636. [PMID: 29399553 PMCID: PMC5788218 DOI: 10.15171/apb.2017.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023] Open
Abstract
Purpose: Alzheimer's disease (AD) is pathologically defined by the presence of amyloid plaques and tangles in the brain, therefore, any drug or compound with potential effect on lowering amyloid plaques, could be noticed for AD management especially in the primary phases of the disease. Ectoine constitutes a group of small molecule chaperones (SMCs). SMCs inhibit proteins and other changeable macromolecular structures misfolding from environmental stresses. Ectoine has been reported successfully prohibit insulin amyloid formation in vitro. Methods: We selected eight genes, DAXX, NFκβ, VEGF, PSEN1, MTAP2, SYP, MAPK3 and TNFα genes which had previously showed significant differential expression in Alzheimer human brain and STZ- rat model. We considered the neuroprotective efficacy by comparing the expression of candidate genes levels in the hippocampus of rat model of Sopradic Alzheimer's disease (SAD), using qPCR in compound-treated and control groups as well as therapeutic effects at learning and memory levels by using Morris Water Maze (MWM) test. Results: Our results showed significant down-regulation of Syp, Mapk3 and Tnfα and up-regulation of Vegf in rat's hippocampus after treatment with ectoine comparing to the STZ-induced group. In MWM, there was no significant change in swimming distance and time for finding the hidden platform in treated comparing to STZ-induced group. In addition, it wasn't seen significant change in compound-treated comparing to STZ-induced and control groups in memory level. Conclusion: It seems this compound may have significant effect on expression level of some AD- related genes but not on clinical levels.
Collapse
Affiliation(s)
- Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Dehghan Shasaltaneh
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Koorosh Kamali
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Banan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Nazari
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gholam Hossein Riazi
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | |
Collapse
|
29
|
Li D, Huang Y, Cheng B, Su J, Zhou WX, Zhang YX. Streptozotocin Induces Mild Cognitive Impairment at Appropriate Doses in Mice as Determined by Long-Term Potentiation and the Morris Water Maze. J Alzheimers Dis 2018; 54:89-98. [PMID: 27472873 DOI: 10.3233/jad-150979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and effective therapeutic drugs in the clinic are still lacking. Ideally, AD progression could be stopped at an early stage, such as at the mild cognitive impairment (MCI) stage. MCI refers to the clinical condition between normal aging and dementia. Patients with MCI experience memory loss but do not meet the criteria for the diagnosis of clinically probable AD. However, few MCI animal models have been established. Here, we used in vivo long-term potentiation (LTP) recording and the Morris water maze (MWM) to evaluate the effects of intracerebroventricular injection of streptozotocin (ICV-STZ) in mice. We found a relationship between cognitive behavior and LTP in vivo and determined the appropriate doses of STZ for a putative MCI animal model. Animals that received≥150μg of STZ exhibited cognitive impairment in the MWM test, and few changes in behavior tests were observed in animals receiving less than 150μg of STZ. In vivo LTP recordings revealed that the induction of LTP decreased significantly in STZ-treated animals, even at the lowest dose (25μg/mouse), in a dose-dependent manner. Pathology analysis revealed STZ-induced neuron loss in a dose-dependent manner, both in the cortex and in the hippocampus, as evidenced by a significantly decreased neuronal number in the cohort treated with 75μg of STZ/mouse. Our study indicated that a low dose (25μg/mouse) of STZ impaired neural plasticity; at a higher dose of 75μg/mouse STZ, further LTP deficits were noted along with induced neuronal loss in both the cortex and the hippocampus, which could be considered a possible MCI or pre-MCI animal model; and finally, at 150μg/mouse STZ, dementia was induced, feasibly indicating a state of AD.
Collapse
|
30
|
Jia JJ, Zeng XS, Song XQ, Zhang PP, Chen L. Diabetes Mellitus and Alzheimer's Disease: The Protection of Epigallocatechin-3-gallate in Streptozotocin Injection-Induced Models. Front Pharmacol 2017; 8:834. [PMID: 29209211 PMCID: PMC5702501 DOI: 10.3389/fphar.2017.00834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is considered as a risk factor of Alzheimer's disease (AD), the front runner of neurodegenerative disorders. Streptozotocin (STZ) is a toxin for pancreatic β-cell, which can construct a model of insulin deficient diabetes through intraperitoneal or intravenous injection. A model generated by intracerebroventricular STZ (icv-STZ) also shows numerous aspects of sporadic AD. The protective roles of tea polyphenols epigallocatechin-3-gallate (EGCG) on both two diseases were researched by some scientists. This review highlights the link between diabetes and AD and recent studies on STZ injection-induced models, and also discusses the protection of EGCG to clarify its treatment in STZ-induced diabetes and AD.
Collapse
Affiliation(s)
- Jin-Jing Jia
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
- Henan Key Laboratory of Tea Biology, Xinyang Normal University, Xinyang, China
| | - Xian-Si Zeng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
- Henan Key Laboratory of Tea Biology, Xinyang Normal University, Xinyang, China
| | - Xin-Qiang Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
31
|
Li L. The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer's Disease, Based on a Mechanistic Target of Rapamycin Pathway. CNS Drugs 2017; 31:535-549. [PMID: 28540646 DOI: 10.1007/s40263-017-0431-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is an important molecule that connects aging, lifespan, energy balance, glucose and lipid metabolism, and neurodegeneration. Rapamycin exerts effects in numerous biological activities via its target protein, playing a key role in energy balance, regulation of autophagy, extension of lifespan, immunosuppression, and protection against neurodegeneration. There are many similar pathophysiological processes and molecular pathways between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), and pharmacologic agents used to treat T2DM, including glucagon-like peptide-1 (GLP-1) analogs, seem to be beneficial for AD. mTOR mediates the effects of GLP-1 analogs in the treatment of T2DM; hence, I hypothesize that mTOR is a key molecule for mediating the protective effects of GLP-1 for AD.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
32
|
A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model. Behav Brain Res 2017; 327:65-74. [DOI: 10.1016/j.bbr.2017.03.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
|
33
|
Sorial ME, El Sayed NSED. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer's disease mouse model: possible involvement of the cholinergic system. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:581-593. [PMID: 28188358 DOI: 10.1007/s00210-017-1357-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
Sporadic Alzheimer's disease (SAD) is a slowly progressive neurological disorder that is the most common form of dementia. Cholinergic system dysfunction and amyloid beta formation are the two main underlying pathological mechanisms for the disease development. In recent studies, insulin receptor desensitization and disturbances in the downstream effects of insulin receptor signaling were observed in the brains of Alzheimer's patients. Currently, intracereberoventricular (ICV) injection of streptozotocin (STZ) is found to induce behavioral, neurochemical, and structural alterations in animals resembling those found in SAD patients. Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was recently shown to regulate the transcription of several genes in both in vivo and in vitro models of Alzheimer's disease. The aim of the current study is to investigate the potential effect of different doses of valproic acid, in an ICV-STZ-induced animal model of SAD. Streptozotocin-injected mice showed cognitive and spatial memory dysfunction in the Y-maze, object recognition test, and Morris water maze (MWM) neurobehavioral tests. The mice also exhibited a decrease in acetylcholine (ACh) and neprilysin (NEP) levels accompanied by an increase in acetylcholinesterase (AChE) activity. For the first time to our knowledge, our findings have shown that VPA is capable of restoring ACh levels in ICV-STZ-injected mice, as well as normalizing both NEP levels and AChE activity. Via this mechanism, an enhancement of cognitive functions is observed. Thus, VPA is suggested to be a promising therapeutic approach against SAD.
Collapse
Affiliation(s)
- Mirna Ezzat Sorial
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt
| | - Nesrine Salah El Dine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
34
|
Bazazzadegan N, Dehghan Shasaltaneh M, Saliminejad K, Kamali K, Banan M, Khorram Khorshid HR. The Effects of Melilotus officinalis Extract on Expression of Daxx, Nfkb and Vegf Genes in the Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease. Avicenna J Med Biotechnol 2017; 9:133-137. [PMID: 28706608 PMCID: PMC5501140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Possible mechanisms of Alzheimer Disease (AD) such as inflammation and oxidative stresses in the brain led us to investigate potential AD therapeutics of Melilotus officinalis, an herbal extract, with possible role as an anti-inflammatory and anti-oxidant agent. Among different genes which had important role in Sporadic AD (SAD), three genes including DAXX, NFkB and VEGF have shown significant statistical diversity in the brains of Alzheimer patients. METHODS These genes were chosen to be investigated for neuroprotective effects of the extract by comparing the expression level in the hippocampus of Sporadic AD (SAD) rat model using quantitative polymerase chain reaction (qPCR) in the treated and untreated groups. In addition, therapeutic effects at the behavioral, learning and memory level by Morris Water Maze (MWM) test were investigated. RESULTS The results represented significant decreased expression in Daxx, Nfkb and Vegf genes in the SAD rat's model treated with the herbal extract compared to the Streptozotocin-induced (STZ-induced) rats. Furthermore, no significant changes were seen in swimming distance and time for finding the hidden platform in the herbal-treated compared to the STZ-induced group. In memory level, no significant changes were observed among treated and untreated groups. CONCLUSION It seems that the herbal extract may have significant effect on Alzheimer-related gene expression changes but not on clinical levels.
Collapse
Affiliation(s)
- Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Dehghan Shasaltaneh
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Koorosh Kamali
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Banan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran,Corresponding author: Hamid Reza Khorram Khorshid, Ph.D., Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran, Tel/Fax: +98 21 22180138, E-mail:,
| |
Collapse
|
35
|
Weissmann R, Hüttenrauch M, Kacprowski T, Bouter Y, Pradier L, Bayer TA, Kuss AW, Wirths O. Gene Expression Profiling in the APP/PS1KI Mouse Model of Familial Alzheimer's Disease. J Alzheimers Dis 2016; 50:397-409. [PMID: 26639971 DOI: 10.3233/jad-150745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by early intraneuronal amyloid-β (Aβ) accumulation, extracellular deposition of Aβ peptides, and intracellular hyperphosphorylated tau aggregates. These lesions cause dendritic and synaptic alterations and induce an inflammatory response in the diseased brain. Although the neuropathological characteristics of AD have been known for decades, the molecular mechanisms causing the disease are still under investigation. Studying gene expression changes in postmortem AD brain tissue can yield new insights into the molecular disease mechanisms. To that end, one can employ transgenic AD mouse models and the next-generation sequencing technology. In this study, a whole-brain transcriptome analysis was carried out using the well-characterized APP/PS1KI mouse model for AD. These mice display a robust phenotype reflected by working memory deficits at 6 months of age, a significant neuron loss in a variety of brain areas including the CA1 region of the hippocampus and a severe amyloid pathology. Based on deep sequencing, differentially expressed genes (DEGs) between 6-month-old WT or PS1KI and APP/PS1KI were identified and verified by qRT-PCR. Compared to WT mice, 250 DEGs were found in APP/PS1KI mice, while 186 DEGs could be found compared to PS1KI control mice. Most of the DEGs were upregulated in APP/PS1KI mice and belong to either inflammation-associated pathways or lysosomal activation, which is likely due to the robust intraneuronal accumulation of Aβ in this mouse model. Our comprehensive brain transcriptome study further highlights APP/PS1KI mice as a valuable model for AD, covering molecular inflammatory and immune responses.
Collapse
Affiliation(s)
- Robert Weissmann
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Melanie Hüttenrauch
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Laurent Pradier
- Sanofi, Therapeutic Strategy Unit Neurodegeneration and Pain, Chilly Mazarin, France
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Andreas W Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
36
|
Akinola OB. Sweet old memories: a review of the experimental models of the association between diabetes, senility and dementia. Metab Brain Dis 2016; 31:1003-10. [PMID: 27444168 DOI: 10.1007/s11011-016-9876-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
As the burden of Alzheimer's dementia rises, so does our understanding of the cellular and molecular basis of this neurodegenerative disease. Some of the recent advances in the aetiopathogenesis of neurodegeneration include the finding that insulin receptor signalling is key to neurogenesis and synaptogenesis in the brain, especially in areas related to memory formation and storage, including the hippocampus. This suggests an association between impaired insulin receptor signalling and neurodegenerative events. To decipher this association, several animal models are being employed. Such models include transgenic and non-transgenic animals that range from invertebrates (Drosophila melanogaster and Caenorhabditis elegans), to vertebrates (mouse, rats and primates). The current review is an account of such models and how they have contributed to our understanding of the relationship between type 2 diabetes mellitus, ageing and dementia.
Collapse
Affiliation(s)
- O B Akinola
- Division of Molecular Endocrinology, Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.
| |
Collapse
|
37
|
Yeo HG, Lee Y, Jeon CY, Jeong KJ, Jin YB, Kang P, Kim SU, Kim JS, Huh JW, Kim YH, Sim BW, Song BS, Park YH, Hong Y, Lee SR, Chang KT. Characterization of Cerebral Damage in a Monkey Model of Alzheimer's Disease Induced by Intracerebroventricular Injection of Streptozotocin. J Alzheimers Dis 2016; 46:989-1005. [PMID: 25881906 DOI: 10.3233/jad-143222] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In line with recent findings showing Alzheimer's disease (AD) as an insulin-resistant brain state, a non-transgenic animal model with intracerebroventricular streptozotocin (icv-STZ) administration has been proposed as a representative experimental model of AD. Although icv-STZ rodent models of AD have been increasingly researched, studies in non-human primate models are very limited. In this study, we aimed to characterize the cerebral damage caused by icv-STZ in non-human primates; to achieve this, three cynomolgus monkeys (Macaca fascicularis) were administered four dosages of STZ (2 mg/kg) dissolved in artificial cerebrospinal fluid and another three controls were injected with only artificial cerebrospinal fluid at the cerebellomedullary cistern. In vivo neuroimaging was performed with clinical 3.0 T MRI, followed by quantitative analysis with FSL for evaluation of structural changes of the brain. Immunohistochemistry was performed to evaluate cerebral histopathology. We showed that icv-STZ caused severe ventricular enlargement and parenchymal atrophy, accompanying amyloid-β deposition, hippocampal cell loss, tauopathy, ependymal cell loss, astrogliosis, and microglial activation, which are observed in human aged or AD brain. The findings suggest that the icv-STZ monkey model would be a valuable resource to study the mechanisms and consequences of a variety of cerebral pathologies including major pathological hallmarks of AD. Furthermore, the study of icv-STZ monkeys could contribute to the development of treatments for age- or AD-associated cerebral changes.
Collapse
Affiliation(s)
- Hyeon-Gu Yeo
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.,Department of Biomedical Engineering, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Philyong Kang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
38
|
Daneshmand P, Saliminejad K, Dehghan Shasaltaneh M, Kamali K, Riazi GH, Nazari R, Azimzadeh P, Khorram Khorshid HR. Neuroprotective Effects of Herbal Extract (Rosa canina, Tanacetum vulgare and Urtica dioica) on Rat Model of Sporadic Alzheimer's Disease. Avicenna J Med Biotechnol 2016; 8:120-5. [PMID: 27563424 PMCID: PMC4967545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Sporadic Alzheimer's Disease (SAD) is caused by genetic risk factors, aging and oxidative stresses. The herbal extract of Rosa canina (R. canina), Tanacetum vulgare (T. vulgare) and Urtica dioica (U. dioica) has a beneficial role in aging, as an anti-inflammatory and anti-oxidative agent. In this study, the neuroprotective effects of this herbal extract in the rat model of SAD was investigated. METHODS The rats were divided into control, sham, model, herbal extract -treated and ethanol-treated groups. Drug interventions were started on the 21(st) day after modeling and each treatment group was given the drugs by intraperitoneal (I.P.) route for 21 days. The expression levels of the five important genes for pathogenesis of SAD including Syp, Psen1, Mapk3, Map2 and Tnf-α were measured by qPCR between the hippocampi of SAD model which were treated by this herbal extract and control groups. The Morris Water Maze was adapted to test spatial learning and memory ability of the rats. RESULTS Treatment of the rat model of SAD with herbal extract induced a significant change in expression of Syp (p=0.001) and Psen1 (p=0.029). In Morris Water Maze, significant changes in spatial learning seen in the rat model group were improved in herbal-treated group. CONCLUSION This herbal extract could have anti-dementia properties and improve spatial learning and memory in SAD rat model.
Collapse
Affiliation(s)
- Parvaneh Daneshmand
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Marzieh Dehghan Shasaltaneh
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Koorosh Kamali
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Gholam Hossein Riazi
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Reza Nazari
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Pedram Azimzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran,Corresponding author: Hamid Reza Khorram Khorshid MD., Ph.D., Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran, Tel/Fax: +98 21 22180138, E-mail:
| |
Collapse
|
39
|
Casañas-Sánchez V, Pérez JA, Fabelo N, Quinto-Alemany D, Díaz ML. Docosahexaenoic (DHA) modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4) gene expression to ensure self-protection from oxidative damage in hippocampal cells. Front Physiol 2015; 6:203. [PMID: 26257655 PMCID: PMC4510835 DOI: 10.3389/fphys.2015.00203] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/03/2015] [Indexed: 01/31/2023] Open
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic, and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4), the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and, to a lesser extent in APP/PS1 transgenic mice, a familial model of Alzheimer's disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a Gpx4 CIRT (Cytoplasmic Intron-sequence Retaining Transcripts), a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the “sentinel RNA hypothesis” would expand the ability of Gpx4 (and DHA) to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear compartment. We discuss here, the crucial role of this novel transcriptional regulation triggered by DHA in the context of normal and pathological hippocampal cell.
Collapse
Affiliation(s)
- Verónica Casañas-Sánchez
- Department of Genetics, University Institute of Tropical Diseases and Public Health, University of La Laguna La Laguna, Spain
| | - José A Pérez
- Department of Genetics, University Institute of Tropical Diseases and Public Health, University of La Laguna La Laguna, Spain
| | - Noemí Fabelo
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, University of La Laguna La Laguna, Spain
| | - David Quinto-Alemany
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, University of La Laguna La Laguna, Spain
| | - Mario L Díaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, University of La Laguna La Laguna, Spain
| |
Collapse
|
40
|
Quantitative expression analysis of APP pathway and tau phosphorylation-related genes in the ICV STZ-induced non-human primate model of sporadic Alzheimer's disease. Int J Mol Sci 2015; 16:2386-402. [PMID: 25622254 PMCID: PMC4346842 DOI: 10.3390/ijms16022386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/17/2022] Open
Abstract
The accumulation and aggregation of misfolded proteins in the brain, such as amyloid-β (Aβ) and hyperphosphorylated tau, is a neuropathological hallmark of Alzheimer's disease (AD). Previously, we developed and validated a novel non-human primate model for sporadic AD (sAD) research using intracerebroventricular administration of streptozotocin (icv STZ). To date, no characterization of AD-related genes in different brain regions has been performed. Therefore, in the current study, the expression of seven amyloid precursor protein (APP) pathway-related and five tau phosphorylation-related genes was investigated by quantitative real-time PCR experiments, using two matched-pair brain samples from control and icv STZ-treated cynomolgus monkeys. The genes showed similar expression patterns within the control and icv STZ-treated groups; however, marked differences in gene expression patterns were observed between the control and icv STZ-treated groups. Remarkably, other than β-secretase (BACE1) and cyclin-dependent kinase 5 (CDK5), all the genes tested showed similar expression patterns in AD models compared to controls, with increased levels in the precuneus and occipital cortex. However, significant changes in gene expression patterns were not detected in the frontal cortex, hippocampus, or posterior cingulate. Based on these results, we conclude that APP may be cleaved via the general metabolic mechanisms of increased α- and γ-secretase levels, and that hyperphosphorylation of tau could be mediated by elevated levels of tau protein kinase, specifically in the precuneus and occipital cortex.
Collapse
|
41
|
Zhao Y, Gong CX. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cell Mol Neurobiol 2015; 35:101-10. [PMID: 25352419 PMCID: PMC11486181 DOI: 10.1007/s10571-014-0127-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/19/2014] [Indexed: 01/09/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) is a common consequence of various cerebral vascular disorders and hemodynamic and blood changes. Recent studies have revealed an important role of CCH in neurodegeneration and dementia, including vascular dementia and Alzheimer's disease (AD). This article reviews the recent advances in understanding CCH-induced neurodegeneration and AD-related brain pathology and cognitive impairment. We discuss the causes and assessment of CCH, the possible mechanisms by which CCH promotes Alzheimer-like pathology and neurodegeneration, and animal models of CCH. It appears that CCH promotes neurodegeneration and AD through multiple mechanisms, including induction of oxidative stress, Aβ accumulation and aggravation, tau hyperphosphorylation, synaptic dysfunction, neuronal loss, white matter lesion, and neuroinflammation. Better understanding of the mechanisms of CCH will help develop therapeutic strategies for preventing and treating neurodegeneration, including sporadic AD and vascular dementia, caused by CCH.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street, Changchun, 130021, Jilin, China,
| | | |
Collapse
|
42
|
Role of astrocytic glycolytic metabolism in Alzheimer's disease pathogenesis. Biogerontology 2014; 15:579-86. [PMID: 25106114 DOI: 10.1007/s10522-014-9525-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/24/2014] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) has historically been considered to arise due to the specific dysfunction and pathology of neurons in brain areas related to cognition. Recent progress indicates that astrocytes play an important role in neurodegenerative processes underlying AD. In this review, we focus on the different glucose metabolism profiles between astrocytes and neurons. In AD, a variety of CNS insults, such as the presence of amyloid protein, trigger reactive astrogliosis, which disrupts normal glycolytic activity in these cells. The compromise of the astrocytic metabolism in turn weakens the integrity of astrocytic-neuronal partnership, damages the normal brain homeostasis, impairs clearance of amyloid, promotes cytokine release and other inflammatory mediators, and over time, leads to neurodegeneration.
Collapse
|
43
|
Chen Y, Deng Y, Zhang B, Gong CX. Deregulation of brain insulin signaling in Alzheimer's disease. Neurosci Bull 2014; 30:282-94. [PMID: 24652456 PMCID: PMC5562654 DOI: 10.1007/s12264-013-1408-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023] Open
Abstract
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yanqiu Deng
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314 USA
| |
Collapse
|
44
|
Kalafatakis K, Zarros A. Intracerebroventricular administration of streptozotocin as an experimental approach to Alzheimer's disease. Int J Neurosci 2014; 124:944-6. [DOI: 10.3109/00207454.2014.890934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Zhao Y, Gu JH, Dai CL, Liu Q, Iqbal K, Liu F, Gong CX. Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice. Front Aging Neurosci 2014; 6:10. [PMID: 24575038 PMCID: PMC3918671 DOI: 10.3389/fnagi.2014.00010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/16/2014] [Indexed: 11/13/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is one of the causes of vascular dementia (VaD) and is also an etiological factor for Alzheimer’s disease (AD). However, how CCH causes cognitive impairment and contributes to Alzheimer’s pathology is poorly understood. Here we produced a mouse model of CCH by unilateral common carotid artery occlusion (UCCAO) and studied the behavioral changes and brain abnormalities in mice 2.5 months after UCCAO. We found that CCH caused significant short-term memory deficits and mild long-term spatial memory impairment, as well as decreased level of protein O-GlcNAcylation, increased level of tau phosphorylation, dysregulated synaptic proteins and insulin signaling, and selective neurodegeneration in the brain. These findings provide mechanistic insight into the effects of CCH on memory and cognition and the likely link between AD and VaD.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun Jilin, China ; Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| | - Jin-Hua Gu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA ; Department of Pharmacology, Medical School, Nantong University Nantong, Jiangsu, China
| | - Chun-Ling Dai
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| | - Qun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun Jilin, China
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| |
Collapse
|
46
|
Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, Iqbal K, Liu F, Gong CX. Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol 2013; 49:547-62. [PMID: 23996345 DOI: 10.1007/s12035-013-8539-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/15/2013] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) involves several possible molecular mechanisms, including impaired brain insulin signaling and glucose metabolism. To investigate the role of metabolic insults in AD, we injected streptozotocin (STZ), a diabetogenic compound if used in the periphery, into the lateral ventricle of the 6-month-old 3xTg-AD mice and studied the cognitive function as well as AD-like brain abnormalities, such as tau phosphorylation and Aβ accumulation, 3-6 weeks later. We found that STZ exacerbated impairment of short-term and spatial reference memory in 3xTg-AD mice. We also observed an increase in tau hyperphosphorylation and neuroinflammation, a disturbance of brain insulin signaling, and a decrease in synaptic plasticity and amyloid β peptides in the brain after STZ treatment. The expression of 20 AD-related genes, including those involved in the processing of amyloid precursor protein, cytoskeleton, glucose metabolism, insulin signaling, synaptic function, protein kinases, and apoptosis, was altered, suggesting that STZ disturbs multiple metabolic and cell signaling pathways in the brain. These findings provide experimental evidence of the role of metabolic insult in AD.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314-6399, USA
| | | | | | | | | | | | | | | | | |
Collapse
|