1
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
2
|
Kourkoulou A, Martzoukou O, Fischer R, Amillis S. A type II phosphatidylinositol-4-kinase coordinates sorting of cargo polarizing by endocytic recycling. Commun Biol 2024; 7:855. [PMID: 38997419 PMCID: PMC11245547 DOI: 10.1038/s42003-024-06553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Olga Martzoukou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Sotiris Amillis
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece.
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany.
| |
Collapse
|
3
|
Yu NN, Veerana M, Ketya W, Sun HN, Park G. RNA-Seq-Based Transcriptome Analysis of Nitric Oxide Scavenging Response in Neurospora crassa. J Fungi (Basel) 2023; 9:985. [PMID: 37888241 PMCID: PMC10607626 DOI: 10.3390/jof9100985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
While the biological role of naturally occurring nitric oxide (NO) in filamentous fungi has been uncovered, the underlying molecular regulatory networks remain unclear. In this study, we conducted an analysis of transcriptome profiles to investigate the initial stages of understanding these NO regulatory networks in Neurospora crassa, a well-established model filamentous fungus. Utilizing RNA sequencing, differential gene expression screening, and various functional analyses, our findings revealed that the removal of intracellular NO resulted in the differential transcription of 424 genes. Notably, the majority of these differentially expressed genes were functionally linked to processes associated with carbohydrate and amino acid metabolism. Furthermore, our analysis highlighted the prevalence of four specific protein domains (zinc finger C2H2, PLCYc, PLCXc, and SH3) in the encoded proteins of these differentially expressed genes. Through protein-protein interaction network analysis, we identified eight hub genes with substantial interaction connectivity, with mss-4 and gel-3 emerging as possibly major responsive genes during NO scavenging, particularly influencing vegetative growth. Additionally, our study unveiled that NO scavenging led to the inhibition of gene transcription related to a protein complex associated with ribosome biogenesis. Overall, our investigation suggests that endogenously produced NO in N. crassa likely governs the transcription of genes responsible for protein complexes involved in carbohydrate and amino acid metabolism, as well as ribosomal biogenesis, ultimately impacting the growth and development of hyphae.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
| | - Mayura Veerana
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
4
|
Iwama R, Okahashi N, Suzawa T, Yang C, Matsuda F, Horiuchi H. Comprehensive analysis of the composition of the major phospholipids during the asexual life cycle of the filamentous fungus Aspergillus nidulans. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159379. [PMID: 37659899 DOI: 10.1016/j.bbalip.2023.159379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
Filamentous fungi undergo significant cellular morphological changes during their life cycle. It has recently been reported that deletions of genes that are involved in phospholipid synthesis led to abnormal hyphal morphology and differentiation in filamentous fungi. Although these results suggest the importance of phospholipid balance in their life cycle, comprehensive analyses of cellular phospholipids are limited. Here, we performed lipidomic analysis of A. nidulans during morphological changes in a liquid medium and of colonies on a solid medium. We observed that the phospholipid composition and transcription of the genes involved in phospholipid synthesis changed dynamically during the life cycle. Specifically, the levels of phosphatidylethanolamine, and highly unsaturated phospholipids increased during the establishment of polarity. Furthermore, we demonstrated that the phospholipid composition in the hyphae at colony margins is similar to that during conidial germination. Furthermore, we demonstrated that common and characteristic phospholipid changes occurred during germination in A. nidulans and A. oryzae, and that species-specific changes also occurred. These results suggest that the exquisite regulation of phospholipid composition is crucial for the growth and differentiation of filamentous fungi.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobuyuki Okahashi
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuki Suzawa
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chuner Yang
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumio Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
5
|
Hassing B, Candy A, Eaton CJ, Fernandes TR, Mesarich CH, Di Pietro A, Scott B. Localisation of phosphoinositides in the grass endophyte Epichloë festucae and genetic and functional analysis of key components of their biosynthetic pathway in E. festucae symbiosis and Fusarium oxysporum pathogenesis. Fungal Genet Biol 2022; 159:103669. [PMID: 35114379 DOI: 10.1016/j.fgb.2022.103669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
Abstract
Phosphoinositides (PI) are essential components of eukaryotic membranes and function in a large number of signaling processes. While lipid second messengers are well studied in mammals and yeast, their role in filamentous fungi is poorly understood. We used fluorescent PI-binding molecular probes to localize the phosphorylated phosphatidylinositol species PI[3]P, PI[3,5]P2, PI[4]P and PI[4,5]P2 in hyphae of the endophyte Epichloë festucae in axenic culture and during interaction with its grass host Lolium perenne. We also analysed the roles of the phosphatidylinositol-4-phosphate 5-kinase MssD and the predicted phosphatidylinositol-3,4,5-triphosphate 3-phosphatase TepA, a homolog of the mammalian tumour suppressor protein PTEN. Deletion of tepA in E. festucae and in the root-infecting tomato pathogen Fusarium oxysporum had no impact on growth in culture or the host interaction phenotype. However, this mutation did enable the detection of PI[3,4,5]P3 in septa and mycelium of E. festucae and showed that TepA is required for chemotropism in F. oxysporum. The identification of PI[3,4,5]P3 in ΔtepA strains suggests that filamentous fungi are able to generate PI[3,4,5]P3 and that fungal PTEN homologs are functional lipid phosphatases. The F. oxysporum chemotropism defect suggests a conserved role of PTEN homologs in chemotaxis across protists, fungi and mammals.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Alyesha Candy
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Tania R Fernandes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carl H Mesarich
- Bio-Protection Research Centre, New Zealand; School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand.
| |
Collapse
|
6
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
7
|
Fratini M, Krishnamoorthy P, Stenzel I, Riechmann M, Matzner M, Bacia K, Heilmann M, Heilmann I. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. THE PLANT CELL 2021; 33:642-670. [PMID: 33955493 PMCID: PMC8136918 DOI: 10.1093/plcell/koaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.
Collapse
Affiliation(s)
- Marta Fratini
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Irene Stenzel
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mara Riechmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kirsten Bacia
- Department of Biophysical Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
9
|
Coordinated Localization and Antagonistic Function of NtPLC3 and PI4P 5-Kinases in the Subapical Plasma Membrane of Tobacco Pollen Tubes. PLANTS 2020; 9:plants9040452. [PMID: 32260253 PMCID: PMC7238183 DOI: 10.3390/plants9040452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 01/22/2023]
Abstract
Polar tip growth of pollen tubes is regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which localizes in a well-defined region of the subapical plasma membrane. How the PtdIns(4,5)P2 region is maintained is currently unclear. In principle, the formation of PtdIns(4,5)P2 by PI4P 5-kinases can be counteracted by phospholipase C (PLC), which hydrolyzes PtdIns(4,5)P2. Here, we show that fluorescence-tagged tobacco NtPLC3 displays a subapical plasma membrane distribution which frames that of fluorescence-tagged PI4P 5-kinases, suggesting that NtPLC3 may modulate PtdIns(4,5)P2-mediated processes in pollen tubes. The expression of a dominant negative NtPLC3 variant resulted in pollen tube tip swelling, consistent with a delimiting effect on PtdIns(4,5)P2 production. When pollen tube morphologies were assessed as a quantitative read-out for PtdIns(4,5)P2 function, NtPLC3 reverted the effects of a coexpressed PI4P 5-kinase, demonstrating that NtPLC3-mediated breakdown of PtdIns(4,5)P2 antagonizes the effects of PtdIns(4,5)P2 overproduction in vivo. When analyzed by spinning disc microscopy, fluorescence-tagged NtPLC3 displayed discontinuous membrane distribution omitting punctate areas of the membrane, suggesting that NtPLC3 is involved in the spatial restriction of plasma membrane domains also at the nanodomain scale. Together, the data indicate that NtPLC3 may contribute to the spatial restriction of PtdIns(4,5)P2 in the subapical plasma membrane of pollen tubes.
Collapse
|
10
|
External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 2019; 62:150-158. [PMID: 31875532 DOI: 10.1016/j.ceb.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
As the majority of fungi are nonmotile, polarized growth in response to an external signal enables them to search for nutrients and mating partners, and hence is crucial for survival and proliferation. Although the mechanisms underlying polarization in response to external signals has commonalities with polarization during mitotic division, during budding, and fission growth, the importance of diverse feedback loops regulating external signal-mediated polarized growth is likely to be distinct and uniquely adapted to a dynamic environment. Here, we highlight recent advances in our understanding of the mechanisms that are crucial for polarity in response to external signals in fungi, with particular focus on the roles of membrane traffic, small GTPases, and lipids, as well as the interplay between cell shape and cell growth.
Collapse
|
11
|
De Miccolis Angelini RM, Abate D, Rotolo C, Gerin D, Pollastro S, Faretra F. De novo assembly and comparative transcriptome analysis of Monilinia fructicola, Monilinia laxa and Monilinia fructigena, the causal agents of brown rot on stone fruits. BMC Genomics 2018; 19:436. [PMID: 29866047 PMCID: PMC5987419 DOI: 10.1186/s12864-018-4817-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/22/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Brown rots are important fungal diseases of stone and pome fruits. They are caused by several Monilinia species but M. fructicola, M. laxa and M. fructigena are the most common all over the world. Although they have been intensively studied, the availability of genomic and transcriptomic data in public databases is still scant. We sequenced, assembled and annotated the transcriptomes of the three pathogens using mRNA from germinating conidia and actively growing mycelia of two isolates of opposite mating types per each species for comparative transcriptome analyses. RESULTS Illumina sequencing was used to generate about 70 million of paired-end reads per species, that were de novo assembled in 33,861 contigs for M. fructicola, 31,103 for M. laxa and 28,890 for M. fructigena. Approximately, 50% of the assembled contigs had significant hits when blasted against the NCBI non-redundant protein database and top-hits results were represented by Botrytis cinerea, Sclerotinia sclerotiorum and Sclerotinia borealis proteins. More than 90% of the obtained sequences were complete, the percentage of duplications was always less than 14% and fragmented and missing transcripts less than 5%. Orthologous transcripts were identified by tBLASTn analysis using the B. cinerea proteome as reference. Comparative transcriptome analyses revealed 65 transcripts over-expressed (FC ≥ 8 and FDR ≤ 0.05) or unique in M. fructicola, 30 in M. laxa and 31 in M. fructigena. Transcripts were involved in processes affecting fungal development, diversity and host-pathogen interactions, such as plant cell wall-degrading and detoxifying enzymes, zinc finger transcription factors, MFS transporters, cell surface proteins, key enzymes in biosynthesis and metabolism of antibiotics and toxins, and transposable elements. CONCLUSIONS This is the first large-scale reconstruction and annotation of the complete transcriptomes of M. fructicola, M. laxa and M. fructigena and the first comparative transcriptome analysis among the three pathogens revealing differentially expressed genes with potential important roles in metabolic and physiological processes related to fungal morphogenesis and development, diversity and pathogenesis which need further investigations. We believe that the data obtained represent a cornerstone for research aimed at improving knowledge on the population biology, physiology and plant-pathogen interactions of these important phytopathogenic fungi.
Collapse
Affiliation(s)
- Rita M. De Miccolis Angelini
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Domenico Abate
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
12
|
Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I. MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain. THE PLANT CELL 2017; 29:3030-3050. [PMID: 29167320 PMCID: PMC5757277 DOI: 10.1105/tpc.17.00543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/12/2017] [Accepted: 11/18/2017] [Indexed: 05/19/2023]
Abstract
An apical plasma membrane domain enriched in the regulatory phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is critical for polar tip growth of pollen tubes. How the biosynthesis of PtdIns(4,5)P2 by phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) is controlled by upstream signaling is currently unknown. The pollen-expressed PI4P 5-kinase PIP5K6 is required for clathrin-mediated endocytosis and polar tip growth in pollen tubes. Here, we identify PIP5K6 as a target of the pollen-expressed mitogen-activated protein kinase MPK6 and characterize the regulatory effects. Based on an untargeted mass spectrometry approach, phosphorylation of purified recombinant PIP5K6 by pollen tube extracts could be attributed to MPK6. Recombinant MPK6 phosphorylated residues T590 and T597 in the variable insert of the catalytic domain of PIP5K6, and this modification inhibited PIP5K6 activity in vitro. PIP5K6 interacted with MPK6 in yeast two-hybrid tests, immuno-pull-down assays, and by bimolecular fluorescence complementation at the apical plasma membrane of pollen tubes. In vivo, MPK6 expression resulted in reduced plasma membrane association of a fluorescent PtdIns(4,5)P2 reporter and decreased endocytosis without impairing membrane association of PIP5K6. Effects of PIP5K6 expression on pollen tube growth and cell morphology were attenuated by coexpression of MPK6 in a phosphosite-dependent manner. Our data indicate that MPK6 controls PtdIns(4,5)P2 production and membrane trafficking in pollen tubes, possibly contributing to directional growth.
Collapse
Affiliation(s)
- Franziska Hempel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ralph Golbik
- Department of Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Helm
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sacha Baginsky
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
13
|
A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers. Sci Rep 2017; 7:16157. [PMID: 29170445 PMCID: PMC5700942 DOI: 10.1038/s41598-017-16508-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/13/2017] [Indexed: 01/10/2023] Open
Abstract
Defensins are cysteine-rich cationic antimicrobial peptides contributing to the innate immunity in plants. A unique gene encoding a highly cationic bi-domain defensin MtDef5 has been identified in a model legume Medicago truncatula. MtDef5 consists of two defensin domains of 50 amino acids each linked by a 7-amino acid peptide. It exhibits broad-spectrum antifungal activity against filamentous fungi at submicromolar concentrations. It rapidly permeabilizes the plasma membrane of the ascomycete fungi Fusarium graminearum and Neurospora crassa and induces accumulation of reactive oxygen species. It is internalized by these fungi, but uses spatially distinct modes of entry into these fungi. It co-localizes with cellular membranes, travels to nucleus and becomes dispersed in other subcellular locations. It binds to several membrane-resident phospholipids with preference for phosphatidylinositol monophosphates and forms oligomers. Mutations of the cationic amino acids present in the two γ-core motifs of this defensin that eliminate oligomerization also knockout its ability to induce membrane permeabilization and fungal growth arrest. MtDef5 is the first bi-domain plant defensin that exhibits potent broad-spectrum antifungal activity, recruits multiple membrane phospholipids and forms oligomers in their presence. These findings raise the possibility that MtDef5 might be useful as a novel antifungal agent in transgenic crops.
Collapse
|
14
|
Shipman EN, Jones K, Jenkinson CB, Kim DW, Zhu J, Khang CH. Nuclear and structural dynamics during the establishment of a specialized effector-secreting cell by Magnaporthe oryzae in living rice cells. BMC Cell Biol 2017; 18:11. [PMID: 28125974 PMCID: PMC5270211 DOI: 10.1186/s12860-017-0126-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/18/2017] [Indexed: 11/21/2022] Open
Abstract
Background To cause an economically important blast disease on rice, the filamentous fungus Magnaporthe oryzae forms a specialized infection structure, called an appressorium, to penetrate host cells. Once inside host cells, the fungus produces a filamentous primary hypha that differentiates into multicellular bulbous invasive hyphae (IH), which are surrounded by a host-derived membrane. These hyphae secrete cytoplasmic effectors that enter host cells presumably via the biotrophic interfacial complex (BIC). The first IH cell, also known as the side BIC-associated cell, is a specialized effector-secreting cell essential for a successful infection. This study aims to determine cellular processes that lead to the development of this effector-secreting first IH cell inside susceptible rice cells. Results Using live-cell confocal imaging, we determined a series of cellular events by which the appressorium gives rise to the first IH cell in live rice cells. The filamentous primary hypha extended from the appressorium and underwent asymmetric swelling at its apex. The single nucleus in the appressorium divided, and then one nucleus migrated into the swollen apex. Septation occurred in the filamentous region of the primary hypha, establishing the first IH cell. The tip BIC that was initially associated with the primary hypha became the side BIC on the swollen apex prior to nuclear division in the appressorium. The average distance between the early side BIC and the nearest nucleus in the appressorium was estimated to be more than 32 μm. These results suggest an unknown mechanism by which effectors that are expressed in the appressorium are transported through the primary hypha for their secretion into the distantly located BIC. When M. oryzae was inoculated on heat-killed rice cells, penetration proceeded as normal, but there was no differentiation of a bulbous IH cell, suggesting its specialization for establishment of biotrophic infection. Conclusions Our studies reveal cellular dynamics associated with the development of the effector-secreting first IH cell. Our data raise new mechanistic questions concerning hyphal differentiation in response to host environmental cues and effector trafficking from the appressorium to the BIC. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0126-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma N Shipman
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kiersun Jones
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Cory B Jenkinson
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dong Won Kim
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Jie Zhu
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Chang Hyun Khang
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
15
|
Heilmann I, Ischebeck T. Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. PLANT REPRODUCTION 2016; 29:3-20. [PMID: 26676144 DOI: 10.1007/s00497-015-0270-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/17/2015] [Indexed: 05/12/2023]
Abstract
Phosphoinositides in pollen. In angiosperms, sexual reproduction is a series of complex biological events that facilitate the distribution of male generative cells for double fertilization. Angiosperms have no motile gametes, and the distribution units of generative cells are pollen grains, passively mobile desiccated structures, capable of delivering genetic material to compatible flowers over long distances and in an adverse environment. The development of pollen (male gametogenesis) and the formation of a pollen tube after a pollen grain has reached a compatible flower (pollen tube growth) are important aspects of plant developmental biology. In recent years, a wealth of information has been gathered about the molecular control of cell polarity, membrane trafficking and cytoskeletal dynamics underlying these developmental processes. In particular, it has been found that regulatory membrane phospholipids, such as phosphoinositides (PIs), are critical regulatory players, controlling key steps of trafficking and polarization. Characteristic features of PIs are the inositol phosphate headgroups of the lipids, which protrude from the cytosolic surfaces of membranes, enabling specific binding and recruitment of numerous protein partners containing specific PI-binding domains. Such recruitment is globally an early event in polarization processes of eukaryotic cells and also of key importance to pollen development and tube growth. Additionally, PIs serve as precursors of other signaling factors with importance to male gametogenesis. This review highlights the recent advances about the roles of PIs in pollen development and pollen function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
16
|
Lew RR, Giblon RE, Lorenti MSH. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol 2015. [PMID: 26212074 DOI: 10.1016/j.fgb.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension.
Collapse
Affiliation(s)
- Roger R Lew
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rachel E Giblon
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Miranda S H Lorenti
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
17
|
|
18
|
Schultzhaus Z, Yan H, Shaw BD. Aspergillus nidulansflippase DnfA is cargo of the endocytic collar and plays complementary roles in growth and phosphatidylserine asymmetry with another flippase, DnfB. Mol Microbiol 2015; 97:18-32. [DOI: 10.1111/mmi.13019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Zachary Schultzhaus
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station TX USA
| | - Huijuan Yan
- Department of Plant Protection; Fujian Agricultural and Forestry University; Fuzhou Fujian China
| | - Brian D. Shaw
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station TX USA
| |
Collapse
|
19
|
|
20
|
Dettmann A, Heilig Y, Valerius O, Ludwig S, Seiler S. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5. PLoS Genet 2014; 10:e1004762. [PMID: 25411845 PMCID: PMC4239118 DOI: 10.1371/journal.pgen.1004762] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022] Open
Abstract
Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell–cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell–cell communication in fungi and higher eukaryotes. Appropriate cellular responses to external stimuli depend on the highly orchestrated activity of interconnected signaling cascades. One crucial level of control arises from the formation of discrete complexes through scaffold proteins that bind multiple components of a given pathway. Central for our understanding of these signaling platforms is the archetypical MAP kinase scaffold Ste5p, a protein that is restricted to budding yeast and close relatives. We identified HAM-5, a protein highly conserved in filamentous ascomycete fungi, as cell–cell communication-specific scaffold protein of the Neurospora crassa MAK-2 cascade (homologous to the budding yeast pheromone pathway). We also describe a network of upstream acting proteins, consisting of two Ste20-related kinases, the small G-protein RAS-2 and the adenylate cyclase capping protein CAP-1, whose signals converge on HAM-5. Our work has implications for the mechanistic understanding of MAP kinase scaffold proteins and their function during intercellular communication in eukaryotic microbes as well as higher eukaryotes.
Collapse
Affiliation(s)
- Anne Dettmann
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yvonne Heilig
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Sarah Ludwig
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Stephan Seiler
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
21
|
Fu C, Ao J, Dettmann A, Seiler S, Free SJ. Characterization of the Neurospora crassa cell fusion proteins, HAM-6, HAM-7, HAM-8, HAM-9, HAM-10, AMPH-1 and WHI-2. PLoS One 2014; 9:e107773. [PMID: 25279949 PMCID: PMC4184795 DOI: 10.1371/journal.pone.0107773] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Intercellular communication of vegetative cells and their subsequent cell fusion is vital for different aspects of growth, fitness, and differentiation of filamentous fungi. Cell fusion between germinating spores is important for early colony establishment, while hyphal fusion in the mature colony facilitates the movement of resources and organelles throughout an established colony. Approximately 50 proteins have been shown to be important for somatic cell-cell communication and fusion in the model filamentous fungus Neurospora crassa. Genetic, biochemical, and microscopic techniques were used to characterize the functions of seven previously poorly characterized cell fusion proteins. HAM-6, HAM-7 and HAM-8 share functional characteristics and are proposed to function in the same signaling network. Our data suggest that these proteins may form a sensor complex at the cell wall/plasma membrane for the MAK-1 cell wall integrity mitogen-activated protein kinase (MAPK) pathway. We also demonstrate that HAM-9, HAM-10, AMPH-1 and WHI-2 have more general functions and are required for normal growth and development. The activation status of the MAK-1 and MAK-2 MAPK pathways are altered in mutants lacking these proteins. We propose that these proteins may function to coordinate the activities of the two MAPK modules with other signaling pathways during cell fusion.
Collapse
Affiliation(s)
- Ci Fu
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Jie Ao
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Anne Dettmann
- Institute for Biology II, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Stephan Seiler
- Institute for Biology II, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rho GTPase-phosphatidylinositol phosphate interplay in fungal cell polarity. Biochem Soc Trans 2014; 42:206-11. [PMID: 24450653 DOI: 10.1042/bst20130226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rho G-proteins and phosphatidylinositol phosphates, which are important for exocytosis, endocytosis and cytoskeleton organization, are key regulators of polarized growth in a range of organisms. The aim of the present brief review is to highlight recent findings and their implications with respect to the functions and interplay between Rho G-proteins and phosphatidylinositol phosphates in highly polarized fungal filamentous growth.
Collapse
|
23
|
Heilmann M, Heilmann I. Arranged marriage in lipid signalling? The limited choices of PtdIns(4,5)P2 in finding the right partner. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:789-797. [PMID: 23627419 DOI: 10.1111/plb.12025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/07/2013] [Indexed: 06/02/2023]
Abstract
Inositol-containing phospholipids (phosphoinositides, PIs) control numerous cellular processes in eukaryotic cells. For plants, a key involvement of PIs has been demonstrated in the regulation of membrane trafficking, cytoskeletal dynamics and in processes mediating the adaptation to changing environmental conditions. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) mediates its cellular functions via binding to various alternative target proteins. Such downstream targets of PtdIns(4,5)P(2) are characterised by the possession of specific lipid-binding domains, and binding of the PtdIns(4,5)P(2) ligand exerts effects on their activity or localisation. The large number of potential alternative binding partners - and associated cellular processes - raises the question how alternative or even contrapuntal effects of PtdIns(4,5)P(2) are orchestrated to enable cellular function. This article aims to provide an overview of recent insights and new views on how distinct functional pools of PtdIns(4,5)P(2) are generated and maintained. The emerging picture suggests that PtdIns(4,5)P(2) species containing different fatty acids influence the lateral mobility of the lipids in the membrane, possibly enabling specific interactions of PtdIns(4,5)P(2) pools with certain downstream targets. PtdIns(4,5)P(2) pools with certain functions might also be defined by protein-protein interactions of PI4P 5-kinases, which pass PtdIns(4,5)P(2) only to certain downstream partners. Individually or in combination, PtdIns(4,5)P(2) species and specific protein-protein interactions of PI4P 5-kinases might contribute to the channelling of PtdIns(4,5)P(2) signals towards specific functional effects. The dynamic nature of PI-dependent signalling complexes with specific functions is an added challenge for future studies of plant PI signalling.
Collapse
Affiliation(s)
- M Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | | |
Collapse
|
24
|
Palma-Guerrero J, Hall CR, Kowbel D, Welch J, Taylor JW, Brem RB, Glass NL. Genome wide association identifies novel loci involved in fungal communication. PLoS Genet 2013; 9:e1003669. [PMID: 23935534 PMCID: PMC3731230 DOI: 10.1371/journal.pgen.1003669] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/10/2013] [Indexed: 01/25/2023] Open
Abstract
Understanding how genomes encode complex cellular and organismal behaviors has become the outstanding challenge of modern genetics. Unlike classical screening methods, analysis of genetic variation that occurs naturally in wild populations can enable rapid, genome-scale mapping of genotype to phenotype with a medium-throughput experimental design. Here we describe the results of the first genome-wide association study (GWAS) used to identify novel loci underlying trait variation in a microbial eukaryote, harnessing wild isolates of the filamentous fungus Neurospora crassa. We genotyped each of a population of wild Louisiana strains at 1 million genetic loci genome-wide, and we used these genotypes to map genetic determinants of microbial communication. In N. crassa, germinated asexual spores (germlings) sense the presence of other germlings, grow toward them in a coordinated fashion, and fuse. We evaluated germlings of each strain for their ability to chemically sense, chemotropically seek, and undergo cell fusion, and we subjected these trait measurements to GWAS. This analysis identified one gene, NCU04379 (cse-1, encoding a homolog of a neuronal calcium sensor), at which inheritance was strongly associated with the efficiency of germling communication. Deletion of cse-1 significantly impaired germling communication and fusion, and two genes encoding predicted interaction partners of CSE1 were also required for the communication trait. Additionally, mining our association results for signaling and secretion genes with a potential role in germling communication, we validated six more previously unknown molecular players, including a secreted protease and two other genes whose deletion conferred a novel phenotype of increased communication and multi-germling fusion. Our results establish protein secretion as a linchpin of germling communication in N. crassa and shed light on the regulation of communication molecules in this fungus. Our study demonstrates the power of population-genetic analyses for the rapid identification of genes contributing to complex traits in microbial species. Many phenotypes of interest are controlled by multiple loci, and in biological systems identifying determinants of such complex traits is challenging. Here, we genotyped 112 wild isolates of Neurospora crassa and used this resource to identify genes that mediate a fundamental but poorly-understood attribute of this filamentous fungus: the ability of germinating spores to sense each other at a distance, extend projections toward one another, and fuse. Inheritance at a secretion gene, cse-1, was associated strongly with germling communication across wild strains; this association was validated in experiments showing reduced communication in a cse-1 deletion strain. By testing interacting partners of CSE1, and by assessing additional secretion and signaling factors whose inheritance associated more modestly with germling communication in wild strains, we identified eight other novel determinants of this phenotype. Our population of genotyped wild isolates provides a flexible and powerful community resource for the rapid identification of any varying, complex phenotype in N. crassa. The success of our approach, which used a phenotyping scheme far more tractable than would be required in a screen of the entire N. crassa gene deletion collection, serves as a proof of concept for association studies of wild populations for any organism.
Collapse
Affiliation(s)
- Javier Palma-Guerrero
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Charles R. Hall
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Juliet Welch
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail: (RBB); (NLG)
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail: (RBB); (NLG)
| |
Collapse
|
25
|
Guillas I, Vernay A, Vitagliano JJ, Arkowitz RA. Phosphatidylinositol 4,5-bisphosphate is required for invasive growth in Saccharomyces cerevisiae. J Cell Sci 2013; 126:3602-14. [PMID: 23781030 DOI: 10.1242/jcs.122606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphatidylinositol phosphates are important regulators of processes such as the cytoskeleton organization, membrane trafficking and gene transcription, which are all crucial for polarized cell growth. In particular, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has essential roles in polarized growth as well as in cellular responses to stress. In the yeast Saccharomyces cerevisiae, the sole phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) Mss4p is essential for generating plasma membrane PtdIns(4,5)P2. Here, we show that Mss4p is required for yeast invasive growth in low-nutrient conditions. We isolated specific mss4 mutants that were defective in cell elongation, induction of the Flo11p flocculin, adhesion and cell wall integrity. We show that mss4-f12 cells have reduced plasma membrane PtdIns(4,5)P2 levels as well as a defect in its polarized distribution, yet Mss4-f12p is catalytically active in vitro. In addition, the Mss4-f12 protein was defective in localizing to the plasma membrane. Furthermore, addition of cAMP, but not an activated MAPKKK allele, partially restored the invasive growth defect of mss4-f12 cells. Taken together, our results indicate that plasma membrane PtdIns(4,5)P2 is crucial for yeast invasive growth and suggest that this phospholipid functions upstream of the cAMP-dependent protein kinase A signaling pathway.
Collapse
Affiliation(s)
- Isabelle Guillas
- Université Nice - Sophia Antipolis, Institute of Biology Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
26
|
|