1
|
Li K, Wang H, Jiang B, Jin X. The impact of dysregulation SUMOylation on prostate cancer. J Transl Med 2025; 23:286. [PMID: 40050932 PMCID: PMC11887156 DOI: 10.1186/s12967-025-06271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Prostate cancer (PCa) remains one of the most common malignancies in men, with its development and progression being governed by complex molecular pathways. SUMOylation, a post-translational modification (PTM) that involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, has emerged as a critical regulator of various cellular processes such as transcription, DNA repair, cell cycle progression, and apoptosis. Emerging evidence reveals that abnormal SUMOylation may contribute to PCa pathogenesis, and notably, SUMO-associated enzymes are commonly dysregulated in PCa. This review explores the mechanisms by which SUMOylation is implicated in the regulation of key pathways, and summary aberrant expression of SUMO-related enzymes or SUMOylation sites mutations of substrtes in PCa, as well as the therapeutic implications of targeting the SUMO-related enzymes in PCa treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, 315826, China
- Department of Oncology, Beilun District People's Hospital, Ningbo, 315826, China
| | - Haifeng Wang
- Department of Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, 315826, China
- Department of Oncology, Beilun District People's Hospital, Ningbo, 315826, China
| | - Bitao Jiang
- Department of Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, 315826, China.
- Department of Oncology, Beilun District People's Hospital, Ningbo, 315826, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. SUMOylation at the crossroads of gut health: insights into physiology and pathology. Cell Commun Signal 2024; 22:404. [PMID: 39160548 PMCID: PMC11331756 DOI: 10.1186/s12964-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.
Collapse
Affiliation(s)
- Xue-Ni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Mu-Yang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Guo-Qing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Li-Na Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - De-Kui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Youssef A, Mohammed BK, Prasad A, del Aguila A, Bassi G, Yang W, Ulloa L. Splenic SUMO1 controls systemic inflammation in experimental sepsis. Front Immunol 2023; 14:1200939. [PMID: 37520526 PMCID: PMC10374847 DOI: 10.3389/fimmu.2023.1200939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The recent discovery of TAK981(Subasumstat), the first-in-class selective inhibitor of SUMOylation, enables new immune treatments. TAK981 is already in clinical trials to potentiate immunotherapy in metastatic tumors and hematologic malignancies. Cancer patients have more than ten times higher risk of infections, but the effects of TAK981 in sepsis are unknown and previous studies on SUMO in infections are conflicting. Methods We used TAK981 in two sepsis models; polymicrobial peritonitis (CLP) and LPS endotoxemia. Splenectomy was done in both models to study the role of spleen. Western blotting of SUMO-conjugated proteins in spleen lysates was done. Global SUMO1 and SUMO3 knockout mice were used to study the specific SUMO regulation of inflammation in LPS endotoxemia. Splenocytes adoptive transfer was done from SUMO knockouts to wild type mice to study the role of spleen SUMOylation in experimental sepsis. Results and discussion Here, we report that inhibition of SUMOylation with TAK981 improved survival in mild polymicrobial peritonitis by enhancing innate immune responses and peritoneal bacterial clearance. Thus, we focused on the effects of TAK981 on the immune responses to bacterial endotoxin, showing that TAK981 enhanced early TNFα production but did not affect the resolution of inflammation. Splenectomy decreased serum TNFα levels by nearly 60% and TAK981-induced TNFα responses. In the spleen, endotoxemia induced a distinct temporal and substrate specificity for SUMO1 and SUMO2/3, and both were inhibited by TAK981. Global genetic depletion of SUMO1, but not SUMO3, enhanced TNFα production and metabolic acidosis. The transfer of SUMO1-null, but not wild-type, splenocytes into splenectomized wild-type mice exacerbated TNFα production and metabolic acidosis in endotoxemia. Conclusion These results suggest that specific regulation of splenic SUMO1 can modulate immune and metabolic responses to bacterial infection.
Collapse
|
4
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 PMCID: PMC10324244 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Molfetta R, Petillo S, Cippitelli M, Paolini R. SUMOylation and related post-translational modifications in natural killer cell anti-cancer responses. Front Cell Dev Biol 2023; 11:1213114. [PMID: 37313439 PMCID: PMC10258607 DOI: 10.3389/fcell.2023.1213114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
SUMOylation is a reversible modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins, leading to changes in their localization, function, stability, and interactor profile. SUMOylation and additional related post-translational modifications have emerged as important modulators of various biological processes, including regulation of genomic stability and immune responses. Natural killer (NK) cells are innate immune cells that play a critical role in host defense against viral infections and tumors. NK cells can recognize and kill infected or transformed cells without prior sensitization, and their activity is tightly regulated by a balance of activating and inhibitory receptors. Expression of NK cell receptors as well as of their specific ligands on target cells is finely regulated during malignant transformation through the integration of different mechanisms including ubiquitin- and ubiquitin-like post-translational modifications. Our review summarizes the role of SUMOylation and other related pathways in the biology of NK cells with a special emphasis on the regulation of their response against cancer. The development of novel selective inhibitors as useful tools to potentiate NK-cell mediated killing of tumor cells is also briefly discussed.
Collapse
|
6
|
The Clostridium Metabolite P-Cresol Sulfate Relieves Inflammation of Primary Biliary Cholangitis by Regulating Kupffer Cells. Cells 2022; 11:cells11233782. [PMID: 36497042 PMCID: PMC9736483 DOI: 10.3390/cells11233782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To study the effect and mechanism of the Clostridium metabolite p-Cresol sulfate (PCS) in primary biliary cholangitis (PBC). METHODS Gas chromatography-mass spectrometry (GC-MS) was used to detect differences in tyrosine, phenylalanine, tryptophan, PCS, and p-Cresyl glucuronide (PCG) between the serum of PBC patients and healthy controls. In vivo experiments, mice were divided into the normal control, PBC group, and PBC tyrosine group. GC-MS was used to detect PCS and PCG. Serum and liver inflammatory factors were compared between groups along with the polarization of liver Kupffer cells. Additionally, PCS was cultured with normal bile duct epithelial cells and Kupffer cells, respectively. PCS-stimulated Kupffer cells were co-cultured with lipopolysaccharide-injured bile duct epithelial cells to detect changes in inflammatory factors. RESULTS Levels of tyrosine and phenylalanine were increased, but PCS level was reduced in PBC patients, with PCG showing a lower concentration distribution in both groups. PCS in PBC mice was also lower than those in normal control mice. After oral administration of tyrosine feed to PBC mice, PCS increased, liver inflammatory factors were decreased, and anti-inflammatory factors were increased. Furthermore, Kupffer cells in the liver polarized form M1 transitioned to M2. PCS can damage normal bile duct epithelial cells and suppress the immune response of Kupffer cells. But PCS protects bile duct epithelial cells damaged by LPS through Kupffer cells. CONCLUSIONS PCS produced by Clostridium-metabolized tyrosine reduced PBC inflammation, suggesting that intervention by food, or supplementation with PCS might represent an effective clinical strategy for treating PBC.
Collapse
|
7
|
Barroso-Gomila O, Trulsson F, Muratore V, Canosa I, Merino-Cacho L, Cortazar AR, Pérez C, Azkargorta M, Iloro I, Carracedo A, Aransay AM, Elortza F, Mayor U, Vertegaal ACO, Barrio R, Sutherland JD. Identification of proximal SUMO-dependent interactors using SUMO-ID. Nat Commun 2021; 12:6671. [PMID: 34795231 PMCID: PMC8602451 DOI: 10.1038/s41467-021-26807-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The fast dynamics and reversibility of posttranslational modifications by the ubiquitin family pose significant challenges for research. Here we present SUMO-ID, a technology that merges proximity biotinylation by TurboID and protein-fragment complementation to find SUMO-dependent interactors of proteins of interest. We develop an optimized split-TurboID version and show SUMO interaction-dependent labelling of proteins proximal to PML and RANGAP1. SUMO-dependent interactors of PML are involved in transcription, DNA damage, stress response and SUMO modification and are highly enriched in SUMO Interacting Motifs, but may only represent a subset of the total PML proximal proteome. Likewise, SUMO-ID also allow us to identify interactors of SUMOylated SALL1, a less characterized SUMO substrate. Furthermore, using TP53 as a substrate, we identify SUMO1, SUMO2 and Ubiquitin preferential interactors. Thus, SUMO-ID is a powerful tool that allows to study the consequences of SUMO-dependent interactions, and may further unravel the complexity of the ubiquitin code.
Collapse
Affiliation(s)
- Orhi Barroso-Gomila
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Fredrik Trulsson
- grid.10419.3d0000000089452978Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Veronica Muratore
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Iñigo Canosa
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Laura Merino-Cacho
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Ana Rosa Cortazar
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERONC, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Coralia Pérez
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Mikel Azkargorta
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Ibon Iloro
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERONC, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain ,grid.11480.3c0000000121671098Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain
| | - Ana M. Aransay
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Felix Elortza
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Ugo Mayor
- grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain ,grid.11480.3c0000000121671098Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain
| | - Alfred C. O. Vertegaal
- grid.10419.3d0000000089452978Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160, Derio, Spain.
| | - James D. Sutherland
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| |
Collapse
|
8
|
Gomaa AA, El-Abhar HS, Abdallah DM, Awad AS, Soubh AA. Prasugrel anti-ischemic effect in rats: Modulation of hippocampal SUMO2/3-IкBα/Ubc9 and SIRT-1/miR-22 trajectories. Toxicol Appl Pharmacol 2021; 426:115635. [PMID: 34174262 DOI: 10.1016/j.taap.2021.115635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022]
Abstract
The beneficial role of prasugrel, a P2Y12 receptor blocker, in several neurointerventional procedures has been reviewed clinically. Beyond its antiplatelet capacity, the potential neuroprotective mechanisms of prasugrel are poorly addressed experimentally. Relevant to the imbalance between neuro-inflammation and neuroprotective pathways in cerebral ischemia/reperfusion (I/R), our study evaluated the anti-ischemic potential of prasugrel treatment through tackling novel targets. Male Wistar rats were allocated into 2 sets; set 1 (I/R 60 min/3 days) to assess the neurological deficits/biochemical impact of prasugrel and set 2 (I/R 60 min/5 days) for evaluating short memory/morphological/immunoreactive changes. Each set comprised 4 groups designated as sham, sham + prasugrel, I/R, and I/R + prasugrel. Post-administration of prasugrel for 3 and 5 days reduced neurological deficit scores and improved the spontaneous activity/short term spatial memory using the Y-maze paradigm. On the molecular level, prasugrel turned off SUMO2/3-inhibitory kappa (Iκ)Bα, Ubc9 and nuclear factor kappa (NF-κ)B. Besides, it inhibited malondialdehyde (MDA) and inactivated astrocytes by downregulating the glial fibrillary acidic protein (GFAP) hippocampal immune-expression. Conversely, it activated its target molecule cAMP, protein kinase (PK)A, and cAMP response element-binding protein (CREB) to enhance the brain-derived nuclear factor (BDNF) hippocampal content. Additionally, cAMP/PKA axis increased the hippocampal content of deacetylator silent information regulator 1 (SIRT1) and the micro RNA (miR)-22 gene expression. The crosstalk between these paths partakes in preserving hippocampal cellularity. Accordingly, prasugrel, regardless inhibiting platelets activity, modulated other cellular components; viz., SUMO2/3-IκBα/Ubc9/NF-κB, cAMP/PKA related trajectories, CREB/BDNF and SIRT1/miR-22 signaling, besides inhibiting GFAP and MDA to signify its anti-ischemic potential.
Collapse
Affiliation(s)
- Asmaa A Gomaa
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Azza S Awad
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
9
|
Wang X, Peng H, Huang Y, Kong W, Cui Q, Du J, Jin H. Post-translational Modifications of IκBα: The State of the Art. Front Cell Dev Biol 2020; 8:574706. [PMID: 33224945 PMCID: PMC7674170 DOI: 10.3389/fcell.2020.574706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) signaling pathway regulates a variety of biological functions in the body, and its abnormal activation contributes to the pathogenesis of many diseases, such as cardiovascular and respiratory diseases and cancers. Therefore, to ensure physiological homeostasis of body systems, this pathway is strictly regulated by IκBα transcription, IκBα synthesis, and the IκBα-dependent nuclear transport of NF-κB. Particularly, the post-translational modifications of IκBα including phosphorylation, ubiquitination, SUMOylation, glutathionylation and hydroxylation are crucial in the abovementioned regulatory process. Because of the importance of the NF-κB pathway in maintaining body homeostasis, understanding the post-translational modifications of IκBα can not only provide deeper insights into the regulation of NF-κB pathway but also contribute to the development of new drug targets and biomarkers for the diseases.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
The Role of Sumoylation in the Response to Hypoxia: An Overview. Cells 2020; 9:cells9112359. [PMID: 33114748 PMCID: PMC7693722 DOI: 10.3390/cells9112359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Sumoylation is the covalent attachment of the small ubiquitin-related modifier (SUMO) to a vast variety of proteins in order to modulate their function. Sumoylation has emerged as an important modification with a regulatory role in the cellular response to different types of stress including osmotic, hypoxic and oxidative stress. Hypoxia can occur under physiological or pathological conditions, such as ischemia and cancer, as a result of an oxygen imbalance caused by low supply and/or increased consumption. The hypoxia inducible factors (HIFs), and the proteins that regulate their fate, are critical molecular mediators of the response to hypoxia and modulate procedures such as glucose and lipid metabolism, angiogenesis, erythropoiesis and, in the case of cancer, tumor progression and metastasis. Here, we provide an overview of the sumoylation-dependent mechanisms that are activated under hypoxia and the way they influence key players of the hypoxic response pathway. As hypoxia is a hallmark of many diseases, understanding the interrelated connections between the SUMO and the hypoxic signaling pathways can open the way for future molecular therapeutic interventions.
Collapse
|
11
|
Zhao X, Yan X, Huo R, Xu T. IRF3 enhances NF-κB activation by targeting IκBα for degradation in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103632. [PMID: 31987876 DOI: 10.1016/j.dci.2020.103632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Tightly regulation of NF-κB signaling is essential to innate and adaptive immune responses, but its regulatory mechanism remains unclear in various organisms, especially teleost fish. In this study, we reported that IRF3 attenuates the inhibitory effect of IκBα on NF-κB activation in teleost fish. Overexpression of IRF3 can promote IκBα degradation, whereas its knockdown can relieve degradation of IκBα. IRF3 promoted the degradation of IκBα protein, but this effect could be inhibited by MG132 treatment. IRF3 is crucial for the polyubiquitination and proteasomal degradation of IκBα. Our findings indicate that IRF3 regulates NF-κB pathway by targeting IκBα for ubiquitination and degradation. This study provides novel evidence on the regulation of innate immune signaling pathways in teleost fish and thus provides new insights into the regulatory mechanisms in mammals.
Collapse
Affiliation(s)
- Xueyan Zhao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Ruixuan Huo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China.
| |
Collapse
|
12
|
Wu R, Fang J, Liu M, A J, Liu J, Chen W, Li J, Ma G, Zhang Z, Zhang B, Fu L, Dong JT. SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation. J Biol Chem 2020; 295:6741-6753. [PMID: 32249212 DOI: 10.1074/jbc.ra119.012338] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Indexed: 01/07/2023] Open
Abstract
SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes.
Collapse
Affiliation(s)
- Rui Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jiali Fang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Mingcheng Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun A
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jinming Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenxuan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Juan Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gui Ma
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhiqian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Baotong Zhang
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Liya Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jin-Tang Dong
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Hegde S, Soory A, Kaduskar B, Ratnaparkhi GS. SUMO conjugation regulates immune signalling. Fly (Austin) 2020; 14:62-79. [PMID: 32777975 PMCID: PMC7714519 DOI: 10.1080/19336934.2020.1808402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) are critical drivers and attenuators for proteins that regulate immune signalling cascades in host defence. In this review, we explore functional roles for one such PTM, the small ubiquitin-like modifier (SUMO). Very few of the SUMO conjugation targets identified by proteomic studies have been validated in terms of their roles in host defence. Here, we compare and contrast potential SUMO substrate proteins in immune signalling for flies and mammals, with an emphasis on NFκB pathways. We discuss, using the few mechanistic studies that exist for validated targets, the effect of SUMO conjugation on signalling and also explore current molecular models that explain regulation by SUMO. We also discuss in detail roles of evolutionary conservation of mechanisms, SUMO interaction motifs, crosstalk of SUMO with other PTMs, emerging concepts such as group SUMOylation and finally, the potentially transforming roles for genome-editing technologies in studying the effect of PTMs.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | - Amarendranath Soory
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | | | | |
Collapse
|
14
|
Pérez Berrocal DA, Witting KF, Ovaa H, Mulder MPC. Hybrid Chains: A Collaboration of Ubiquitin and Ubiquitin-Like Modifiers Introducing Cross-Functionality to the Ubiquitin Code. Front Chem 2020; 7:931. [PMID: 32039151 PMCID: PMC6987259 DOI: 10.3389/fchem.2019.00931] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023] Open
Abstract
The Ubiquitin CODE constitutes a unique post-translational modification language relying on the covalent attachment of Ubiquitin (Ub) to substrates, with Ub serving as the minimum entity to generate a message that is translated into different cellular pathways. The creation of this message is brought about by the dedicated action of writers, erasers, and readers of the Ubiquitin CODE. This CODE is greatly expanded through the generation of polyUb chains of different architectures on substrates thus regulating their fate. Through additional post-translational modification by Ub-like proteins (UbL), hybrid Ub/UbL chains, which either alter the originally encrypted message or encode a completely new one, are formed. Hybrid Ub/UbL chains are generated under both stress or physiological conditions and seem to confer improved specificity and affinity toward their cognate receptors. In such a manner, their formation must play a specific, yet still undefined role in cellular signaling and thus understanding the UbCODE message is crucial. Here, we discuss the evidence for the existence of hybrid Ub/UbL chains in addition to the current understanding of its biology. The modification of Ub by another UbL complicates the deciphering of the spatial and temporal order of events warranting the development of a hybrid chain toolbox. We discuss this unmet need and expand upon the creation of tailored tools adapted from our previously established toolkit for the Ubiquitin Proteasome System to specifically target these hybrid Ub/UbL chains.
Collapse
Affiliation(s)
- David A Pérez Berrocal
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Katharina F Witting
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| |
Collapse
|
15
|
Xie H, Gu Y, Wang W, Wang X, Ye X, Xin C, Lu M, Reddy BA, Shu P. Silencing of SENP2 in Multiple Myeloma Induces Bortezomib Resistance by Activating NF-κB Through the Modulation of IκBα Sumoylation. Sci Rep 2020; 10:766. [PMID: 31964975 PMCID: PMC6972929 DOI: 10.1038/s41598-020-57698-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
The proteasome inhibitor bortezomib is the most successfully applied chemotherapeutic drug for treating multiple myeloma. However, its clinical efficacy reduced due to resistance development. The underlying molecular mechanisms of bortezomib resistance are poorly understood. In this study, by combining in silico analysis and sgRNA library based drug resistance screening assay, we identified SENP2 (Sentrin/SUMO-specific proteases-2) as a bortezomib sensitive gene and found its expression highly downregulated in bortezomib resistant multiple myeloma patient's samples. Furthermore, down regulation of SENP2 in multiple myeloma cell line RPMI8226 alleviated bortezomib induced cell proliferation inhibition and apoptosis, whereas, overexpression of SENP2 sensitized these cells to bortezomib treatment. We further demonstrate that knockdown of SENP2 in RPMI8226 cells increased SUMO2 conjugated IκBα that resulted in the activation of NF-κB. Taken together, we report that silencing of SENP2 and consequent activation of NF-κB through the modulation of IκBα sumoylation as a novel mechanism inducing bortezomib resistance in multiple myeloma.
Collapse
Affiliation(s)
- Hongyi Xie
- Clinical Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Yuanliang Gu
- Department of prevention and health care, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Wenjuan Wang
- Department of Hematology & Oncology, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Xuyao Wang
- Molecular Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Xiaojuan Ye
- Department of Hematology & Oncology, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Chao Xin
- Clinical Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Mengjiao Lu
- Clinical Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - B Ashok Reddy
- Division of Oncology, Liveon Biolabs, 46 & 47, Water tank Road, KIADB-Phase II, Antharasanahalli, Tumakuru, Karnataka, PIN-572106, India.
| | - Peng Shu
- Molecular Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China.
| |
Collapse
|
16
|
Shao L, Liu Y, Wang W, Li A, Wan P, Liu W, Shereen MA, Liu F, Zhang W, Tan Q, Wu K, Liu Y, Wu J. SUMO1 SUMOylates and SENP3 deSUMOylates NLRP3 to orchestrate the inflammasome activation. FASEB J 2019; 34:1497-1515. [PMID: 31914638 DOI: 10.1096/fj.201901653r] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
The NLRP3 inflammasome regulates innate immune and inflammatory responses by promoting caspase1-dependent induction of pro-inflammatory cytokines. However, aberrant inflammasome activation causes diverse diseases, and thus inflammasome activity must be tightly controlled. Here, we reveal a molecular mechanism underlying the regulation of NLRP3 inflammasome. NLRP3 interacts with SUMO-conjugating enzyme (UBC9), which subsequently promotes small ubiquitin-like modifier 1 (SUMO1) to catalyze NLRP3 SUMOylation at residue Lys204. SUMO1-catalyzed SUMOylation of NLRP3 facilitates ASC oligomerization, inflammasome activation, and interleukin-1β secretion. Moreover, this study also reveals that SUMO-specific protease 3 (SENP3) is required for the deSUMOylation of NLRP3. Interestingly, SENP3 deSUMOylates NLRP3 to attenuate ASC recruitment and speck formation, the NLRP3 inflammasome activation, as well as IL-1β cleavage and secretion. In conclusion, we reveal that SUMO1-catalyzed SUMOylation and SENP3-mediated deSUMOylation of NLRP3 orchestrate the inflammasome activation.
Collapse
Affiliation(s)
- Luyao Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pin Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Zhang
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Quiping Tan
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Mattern M, Sutherland J, Kadimisetty K, Barrio R, Rodriguez MS. Using Ubiquitin Binders to Decipher the Ubiquitin Code. Trends Biochem Sci 2019; 44:599-615. [PMID: 30819414 DOI: 10.1016/j.tibs.2019.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) by ubiquitin (Ub) are versatile, highly dynamic, and involved in nearly all aspects of eukaryote biological function. The reversibility and heterogeneity of Ub chains attached to protein substrates have complicated their isolation, quantification, and characterization. Strategies have emerged to isolate endogenous ubiquitylated targets, including technologies based on the use of Ub-binding peptides, such as tandem-repeated Ub-binding entities (TUBEs). TUBEs allow the identification and characterization of Ub chains, and novel substrates for deubiquitylases (DUBs) and Ub ligases (E3s). Here we review their impact on purification, analysis of pan or chain-selective polyubiquitylated proteins and underline the biological relevance of this information. Together with peptide aptamers and other Ub affinity-based approaches, TUBEs will contribute to unraveling the secrets of the Ub code.
Collapse
Affiliation(s)
- Michael Mattern
- Progenra Inc., 277 Great Valley Parkway, Malvern 19355, Pennsylvania, USA; These authors contributed equally
| | - James Sutherland
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain; These authors contributed equally
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Malvern 19355, Pennsylvania, USA
| | - Rosa Barrio
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain
| | - Manuel S Rodriguez
- ITAV-IPBS-UPS CNRS USR3505, 1 place Pierre Potier, Oncopole entrée B, 31106 Toulouse, France.
| |
Collapse
|
18
|
Hu C, Jiang X. The SUMO-specific protease family regulates cancer cell radiosensitivity. Biomed Pharmacother 2019; 109:66-70. [DOI: 10.1016/j.biopha.2018.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
|
19
|
Barry R, John SW, Liccardi G, Tenev T, Jaco I, Chen CH, Choi J, Kasperkiewicz P, Fernandes-Alnemri T, Alnemri E, Drag M, Chen Y, Meier P. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat Commun 2018; 9:3001. [PMID: 30069026 PMCID: PMC6070540 DOI: 10.1038/s41467-018-05321-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
The NLRP3 inflammasome responds to infection and tissue damage, and rapidly escalates the intensity of inflammation by activating interleukin (IL)-1β, IL-18 and cell death by pyroptosis. How the NLRP3 inflammasome is negatively regulated is poorly understood. Here we show that NLRP3 inflammasome activation is suppressed by sumoylation. NLRP3 is sumoylated by the SUMO E3-ligase MAPL, and stimulation-dependent NLRP3 desumoylation by the SUMO-specific proteases SENP6 and SENP7 promotes NLRP3 activation. Defective NLRP3 sumoylation, either by NLRP3 mutation of SUMO acceptor lysines or depletion of MAPL, results in enhanced caspase-1 activation and IL-1β release. Conversely, depletion of SENP7 suppresses NLRP3-dependent ASC oligomerisation, caspase-1 activation and IL-1β release. These data indicate that sumoylation of NLRP3 restrains inflammasome activation, and identify SUMO proteases as potential drug targets for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Rachael Barry
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sidonie Wicky John
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Isabel Jaco
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Chih-Hong Chen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Justin Choi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Paulina Kasperkiewicz
- Division of Bioorganic Chemistry, Department of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Teresa Fernandes-Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, 19107, PA, USA
| | - Emad Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, 19107, PA, USA
| | - Marcin Drag
- Division of Bioorganic Chemistry, Department of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Yuan Chen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
20
|
DeSUMOylation switches Kaiso from activator to repressor upon hyperosmotic stress. Cell Death Differ 2018; 25:1938-1951. [PMID: 29472715 DOI: 10.1038/s41418-018-0078-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
Kaiso is a member of the BTB/POZ zinc finger family, which is involved in cancer progression, cell cycle control, apoptosis, and WNT signaling. Depending on promoter context, it may function as either a transcriptional repressor or activator. Previous studies found that Kaiso might be SUMOylated due to heat shock, but the biological significance of Kaiso SUMOylation is unclear. Here, we find that K42 is the only amino acid within Kaiso that is modified with SUMO. Kaiso is monoSUMOylated at lysine 42 in cell lines of kidney origin under normal physiological conditions. SUMOylated Kaiso can activate transcription from exogenous methylated promoters, wherein the deSUMOylated form of the protein kept the ability to be a repressor. Rapid Kaiso deSUMOylation occurs in response to hyperosmotic stress and is reversible upon return to an isotonic environment. DeSUMOylation occurs within minutes in HEK293 cells treated with 100 mM NaCl and relaxes in 3 h even in a salt-containing medium. Genomic editing of Kaiso by conversion of K42 into R42 (K42R) in HEK293 cells that resulted in fully deSUMOylated endogenous protein led to misregulation of genes associated with ion transport, blood pressure, and the immune response. TRIM25 was significantly repressed in two K42R HEK293 clones. By a series of rescue experiments with K42R and KO HEK293 cells, we show that TRIM25 is a direct transcriptional target for Kaiso. In the absence of Kaiso, the level of TRIM25 is insensitive to hyperosmotic stress. Extending our observations to animal models, we show that in response to a high salt diet, Kaiso knockout mice are characterized by significantly higher blood pressure increases when compared to wild-type animals. Thus, we propose a novel biological role for Kaiso in the regulation of homeostasis.
Collapse
|
21
|
Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Post-translational add-ons mark the path in exosomal protein sorting. Cell Mol Life Sci 2018; 75:1-19. [PMID: 29080091 PMCID: PMC11105655 DOI: 10.1007/s00018-017-2690-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are released by cells to the extracellular environment to mediate inter-cellular communication. Proteins, lipids, nucleic acids and metabolites shuttled in these vesicles modulate specific functions in recipient cells. The enrichment of selected sets of proteins in EVs compared with global cellular levels suggests the existence of specific sorting mechanisms to specify EV loading. Diverse post-translational modifications (PTMs) of proteins participate in the loading of specific elements into EVs. In this review, we offer a perspective on PTMs found in EVs and discuss the specific role of some PTMs, specifically Ubiquitin and Ubiquitin-like modifiers, in exosomal sorting of protein components. The understanding of these mechanisms will provide new strategies for biomedical applications. Examples include the presence of defined PTM marks on EVs as novel biomarkers for the diagnosis and prognosis of certain diseases, or the specific import of immunogenic components into EVs for vaccine generation.
Collapse
Affiliation(s)
- Olga Moreno-Gonzalo
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Irene Fernandez-Delgado
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Francisco Sanchez-Madrid
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
22
|
Lang V, Aillet F, Xolalpa W, Serna S, Ceccato L, Lopez-Reyes RG, Lopez-Mato MP, Januchowski R, Reichardt NC, Rodriguez MS. Analysis of defective protein ubiquitylation associated to adriamycin resistant cells. Cell Cycle 2017; 16:2337-2344. [PMID: 29099265 DOI: 10.1080/15384101.2017.1387694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA damage activated by Adriamycin (ADR) promotes ubiquitin-proteasome system-mediated proteolysis by stimulating both the activity of ubiquitylating enzymes and the proteasome. In ADR-resistant breast cancer MCF7 (MCF7ADR) cells, protein ubiquitylation is significantly reduced compared to the parental MCF7 cells. Here, we used tandem ubiquitin-binding entities (TUBEs) to analyze the ubiquitylation pattern observed in MCF7 or MCF7ADR cells. While in MCF7, the level of total ubiquitylation increased up to six-fold in response to ADR, in MCF7ADR cells only a two-fold response was found. To further explore these differences, we looked for cellular factors presenting ubiquitylation defects in MCF7ADR cells. Among them, we found the tumor suppressor p53 and its ubiquitin ligase, Mdm2. We also observed a drastic decrease of proteins known to integrate the TUBE-associated ubiquitin proteome after ADR treatment of MCF7 cells, like histone H2AX, HMGB1 or β-tubulin. Only the proteasome inhibitor MG132, but not the autophagy inhibitor chloroquine partially recovers the levels of total protein ubiquitylation in MCF7ADR cells. p53 ubiquitylation is markedly increased in MCF7ADR cells after proteasome inhibition or a short treatment with the isopeptidase inhibitor PR619, suggesting an active role of these enzymes in the regulation of this tumor suppressor. Notably, MG132 alone increases apoptosis of MCF7ADR and multidrug resistant ovarian cancer A2780DR1 and A2780DR2 cells. Altogether, our results highlight the use of ubiquitylation defects to predict resistance to ADR and underline the potential of proteasome inhibitors to treat these chemoresistant cells.
Collapse
Affiliation(s)
- Valérie Lang
- a Inbiomed , Mikeletegi Pasealekua , San Sebastian-Donostia , Spain
| | - Fabienne Aillet
- a Inbiomed , Mikeletegi Pasealekua , San Sebastian-Donostia , Spain
| | - Wendy Xolalpa
- a Inbiomed , Mikeletegi Pasealekua , San Sebastian-Donostia , Spain
| | - Sonia Serna
- b Glycotechnology Laboratory , CIC biomaGUNE , Miramon Pasealekua , San Sebastian-Donostia , Spain
| | - Laurie Ceccato
- c Institut des Technologies Avancées en sciences du Vivant (ITAV) 1 Place Pierre Potier , Université de Toulouse , CNRS , UPS , Toulouse , France.,d Institut de Pharmacologie et de Biologie Structurale (IPBS) , 205 Route de Narbonne , Université de Toulouse , CNRS , UPS , Toulouse , France
| | - Rosa G Lopez-Reyes
- c Institut des Technologies Avancées en sciences du Vivant (ITAV) 1 Place Pierre Potier , Université de Toulouse , CNRS , UPS , Toulouse , France.,d Institut de Pharmacologie et de Biologie Structurale (IPBS) , 205 Route de Narbonne , Université de Toulouse , CNRS , UPS , Toulouse , France
| | | | - Radosław Januchowski
- e Department of Histology and Embryology , Poznan University of Medical Sciences , Swiecickiego 6 St., Poznan , Poland
| | - Niels-Christian Reichardt
- b Glycotechnology Laboratory , CIC biomaGUNE , Miramon Pasealekua , San Sebastian-Donostia , Spain.,f CIBER de Bioingenierıa , Biomateriales y Nanomedicina (CIBER-BBN) , San Sebastian-Donostia , Spain
| | - Manuel S Rodriguez
- a Inbiomed , Mikeletegi Pasealekua , San Sebastian-Donostia , Spain.,c Institut des Technologies Avancées en sciences du Vivant (ITAV) 1 Place Pierre Potier , Université de Toulouse , CNRS , UPS , Toulouse , France.,d Institut de Pharmacologie et de Biologie Structurale (IPBS) , 205 Route de Narbonne , Université de Toulouse , CNRS , UPS , Toulouse , France
| |
Collapse
|
23
|
Garvin AJ, Morris JR. SUMO, a small, but powerful, regulator of double-strand break repair. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160281. [PMID: 28847818 PMCID: PMC5577459 DOI: 10.1098/rstb.2016.0281] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
The response to a DNA double-stranded break in mammalian cells is a process of sensing and signalling the lesion. It results in halting the cell cycle and local transcription and in the mediation of the DNA repair process itself. The response is launched through a series of post-translational modification signalling events coordinated by phosphorylation and ubiquitination. More recently modifications of proteins by Small Ubiquitin-like MOdifier (SUMO) isoforms have also been found to be key to coordination of the response (Morris et al. 2009 Nature462, 886-890 (doi:10.1038/nature08593); Galanty et al. 2009 Nature462, 935-939 (doi:10.1038/nature08657)). However our understanding of the role of SUMOylation is slight compared with our growing knowledge of how ubiquitin drives signal amplification and key chromatin interactions. In this review we consider our current knowledge of how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and SUMO-interacting proteins contribute to directing altered chromatin states and to repair-protein kinetics at a double-stranded DNA lesion in mammalian cells. We also consider the gaps in our understanding.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Hochrainer K. Protein Modifications with Ubiquitin as Response to Cerebral Ischemia-Reperfusion Injury. Transl Stroke Res 2017; 9:157-173. [DOI: 10.1007/s12975-017-0567-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
|
25
|
Ubiquitin-Conjugating Enzyme 9 Phosphorylation as a Novel Mechanism for Potentiation of the Inflammatory Response. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:2326-36. [PMID: 27561301 DOI: 10.1016/j.ajpath.2016.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
Lipopolysaccharide (LPS), a bacterial endotoxin, induces inflammation in macrophages via activation of NF-κB signaling. Sumoylation is a post-translational modification mediated by the small ubiquitin-like modifier, SUMO. Ubiquitin-conjugating enzyme 9 (UBC9) is the only known SUMO conjugating enzyme. LPS treatment lowers SUMO-1 and UBC9 mRNA levels in primary astrocytes. UBC9 can degrade NF-κB inhibitor α (Ikbα) via a SUMO2/3-ubiquitin pathway. However, UBC9 may also promote Ikbα stability by SUMO-1 conjugation that further regulates NF-κB signaling. The role of UBC9 in liver inflammation is unknown. We reported that CDK1-mediated phosphorylation of UBC9 enhanced its stability. Herein, we describe an anti-inflammatory role of UBC9 that is lost when it is phosphorylated during inflammation. LPS exposure caused induction in UBC9 phosphorylation and CDK1 activation specifically in Kupffer cells in vivo and in RAW264.7 macrophages in vitro. Silencing or overexpression experiments in vitro and in vivo showed that UBC9 was required to blunt the proinflammatory response elicited by LPS. LPS stimulation raised the binding of phospho-UBC9 but not the unphosphorylated counterpart, to Ikbα in RAW264.7 macrophages. Hence, phospho-UBC9 may promote NF-κB signaling by regulating Ikbα and this may be a novel mechanism that deregulates liver inflammatory signaling.
Collapse
|
26
|
D'Ignazio L, Batie M, Rocha S. Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines 2017; 5:E21. [PMID: 28536364 PMCID: PMC5489807 DOI: 10.3390/biomedicines5020021] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer is often characterised by the presence of hypoxia and inflammation. Paramount to the mechanisms controlling cellular responses under such stress stimuli, are the transcription factor families of Hypoxia Inducible Factor (HIF) and Nuclear Factor of κ-light-chain-enhancer of activated B cells (NF-κB). Although, a detailed understating of how these transcription factors respond to their cognate stimulus is well established, it is now appreciated that HIF and NF-κB undergo extensive crosstalk, in particular in pathological situations such as cancer. Here, we focus on the current knowledge on how HIF is activated by inflammation and how NF-κB is modulated by hypoxia. We summarise the evidence for the possible mechanism behind this activation and how HIF and NF-κB function impacts cancer, focusing on colorectal, breast and lung cancer. We discuss possible new points of therapeutic intervention aiming to harness the current understanding of the HIF-NF-κB crosstalk.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Michael Batie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| |
Collapse
|
27
|
Fang S, Yuan J, Shi Q, Xu T, Fu Y, Wu Z, Guo W. Downregulation of UBC9 promotes apoptosis of activated human LX-2 hepatic stellate cells by suppressing the canonical NF-κB signaling pathway. PLoS One 2017; 12:e0174374. [PMID: 28358817 PMCID: PMC5373541 DOI: 10.1371/journal.pone.0174374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/08/2017] [Indexed: 12/22/2022] Open
Abstract
UBC9, the only known E2-conjugating enzyme involved in SUMOylation, is a key regulator in fibrosis. However, the roles of UBC9 in liver fibrosis remain unclear. Therefore, in this study, we investigated the roles of UBC9 in HSC apoptosis and liver fibrogenesis. Our results showed that the UBC9 levels in activated LX-2 cells, HepG2 and SMMC-7721 were increased compared with LO2, and the expression of UBC9 in activated LX-2 cells, HepG2 and SMMC-7721 were no significant differences. The expression of UBC9 was effectively down-regulated by the UBC9-shRNA plasmid, and this effect was accompanied by the attenuated expression of the myofibroblast markers smooth muscle actin (α-SMA) and Collagen I. Downregulation of UBC9 also promotes activated HSCs apoptosis by up-regulating cell apoptosis-related proteins. Further, knockdown of UBC9 in activated HSCs inhibited cell viability and caused cell cycle arrest in the G2 phase. Moreover, knockdown of UBC9 suppressed the activation of NF-κB signaling pathways. In conclusion, these results demonstrated that down-regulation of UBC9 expression induced activated LX-2 cell apoptosis and promoted cells to return to a quiescent state by inhibiting the NF-κB signaling pathway. These results provide novel mechanistic insights for the anti-fibrotic effect of UBC9.
Collapse
Affiliation(s)
- Sufen Fang
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhua Yuan
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Shi
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiantian Xu
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Fu
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Wu
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wuhua Guo
- Department of interventional radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- * E-mail:
| |
Collapse
|
28
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
29
|
Methionine adenosyltransferase α2 sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells. Oncotarget 2016; 6:37706-23. [PMID: 26416353 PMCID: PMC4741959 DOI: 10.18632/oncotarget.5342] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022] Open
Abstract
Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and inhibits apoptosis via Bcl-2 by unknown mechanism. Methionine adenosyltransferase 2A (MAT2A) encodes for MATα2, the catalytic subunit of the MATII isoenzyme that synthesizes S-adenosylmethionine (SAMe). Ubc9, Bcl-2 and MAT2A expression are up-regulated in several malignancies. Exogenous SAMe decreases Ubc9 and MAT2A expression and is pro-apoptotic in liver and colon cancer cells. Here we investigated whether there is interplay between Ubc9, MAT2A and Bcl-2. We used human colon and liver cancer cell lines RKO and HepG2, respectively, and confirmed key finding in colon cancer specimens. We found MATα2 can regulate Bcl-2 expression at multiple levels. MATα2 binds to Bcl-2 promoter to activate its transcription. This effect is independent of SAMe as MATα2 catalytic mutant was also effective. MATα2 also directly interacts with Bcl-2 to enhance its protein stability. MATα2's effect on Bcl-2 requires Ubc9 as MATα2's stability is influenced by sumoylation at K340, K372 and K394. Overexpressing wild type (but not less stable MATα2 sumoylation mutants) protected from 5-fluorouracil-induced apoptosis in both colon and liver cancer cells. Colon cancer have higher levels of sumoylated MATα2, total MATα2, Ubc9 and Bcl-2 and higher MATα2 binding to the Bcl-2 P2 promoter. Taken together, Ubc9's protective effect on apoptosis may be mediated at least in part by sumoylating and stabilizing MATα2 protein, which in turn positively maintains Bcl-2 expression. These interactions feed forward to further enhance growth and survival of the cancer cell.
Collapse
|
30
|
Tsai CY, Li FCH, Wu CHY, Chang AYW, Chan SHH. Sumoylation of IkB attenuates NF-kB-induced nitrosative stress at rostral ventrolateral medulla and cardiovascular depression in experimental brain death. J Biomed Sci 2016; 23:65. [PMID: 27658615 PMCID: PMC5034413 DOI: 10.1186/s12929-016-0283-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/02/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Small ubiquitin-related modifier (SUMO) is a group of proteins that participates in post-translational modifications. One known SUMO target is the transcription factor nuclear factor-kB (NF-kB) that plays a pivotal role in many disease processes; sumoylation inactivates NF-kB by conjugation with inhibitors of NF-kB (IkB). Our laboratory demonstrated previously that transcriptional upregulation of nitric oxide synthase II (NOS II) by NF-kB, leading to nitrosative stress by the formation of peroxynitrite in the rostral ventrolateral medulla (RVLM), underpins the defunct brain stem cardiovascular regulation that precedes brain death. Based on an experimental endotoxemia model, this study evaluated the hypothesis that sumoylation plays a pro-life role in brain death by interacting with the NF-kB/NOS II/peroxynitrite signaling pathway in the RVLM. RESULTS In Sprague-Dawley rats, intravenous administration of Escherichia coli lipopolysaccharide (LPS; 10 mg kg-1) elicited an augmentation of SUMO-1 and ubiquitin-conjugase 9 (Ubc9) mRNA or protein levels, alongside SUMO-1-conjugated proteins in the RVLM. Immunoneutralization of SUMO-1 or Ubc9 in the RVLM significantly potentiated the already diminished sumoylation of IkBα and intensified NF-kB activation and NOS II/peroxynitrite expression in this brain stem substrate, together with exacerbated fatality, cardiovascular depression and reduction of an experimental index of a life-and-death signal detected from arterial pressure that disappears in comatose patients signifying failure of brain stem cardiovascular regulation before brain death. CONCLUSION We conclude that sumoylation of IkB in the RVLM ameliorates the defunct brain stem cardiovascular regulation that underpins brain death in our experimental endotoxemia modal by reducing nitrosative stress via inhibition of IkB degradation that diminishes the induction of the NF-kB/NOS II/peroxynitrite signaling cascade.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Faith C. H. Li
- Institute of Physiology, National Cheng Kung University, Tainan, Taiwan Republic of China
| | - Carol H. Y. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Alice Y. W. Chang
- Institute of Physiology, National Cheng Kung University, Tainan, Taiwan Republic of China
| | - Samuel H. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| |
Collapse
|
31
|
Bi X, Song J, Gao J, Zhao J, Wang M, Scipione CA, Koschinsky ML, Wang ZV, Xu S, Fu G. Activation of liver X receptor attenuates lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-κB pathway and SUMOylation. J Cell Mol Med 2016; 20:2249-2258. [PMID: 27489081 PMCID: PMC5134410 DOI: 10.1111/jcmm.12903] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
The liver X receptor (LXR) is a cholesterol‐sensing nuclear receptor that has an established function in lipid metabolism; however, its role in inflammation is elusive. In this study, we showed that the LXR agonist GW3965 exhibited potent anti‐inflammatory activity by suppressing the firm adhesion of monocytes to endothelial cells. To further address the mechanisms underlying the inhibition of inflammatory cell infiltration, we evaluated the effects of LXR agonist on interleukin‐8 (IL‐8) secretion and nuclear factor‐kappa B (NF‐κB) activation in human umbilical vein endothelial cells (HUVECs). The LXR agonist significantly inhibited lysophosphatidylcholine (LPC)‐induced IL‐8 production in a dose‐dependent manner without appreciable cytotoxicity. Western blotting and the NF‐κB transcription activity assay showed that the LXR agonist inhibited p65 binding to the IL‐8 promoter in LPC‐stimulated HUVECs. Interestingly, knockdown of the indispensable small ubiquitin‐like modifier (SUMO) ligases Ubc9 and Histone deacetylase 4 (HDAC4) reversed the increase in IL‐8 induced by LPC. Furthermore, the LPC‐induced degradation of inhibitory κBα was delayed under the conditions of deficient SUMOylation or the treatment of LXR agonist. After enhancing SUMOylation by knockdown SUMO‐specific protease Sentrin‐specific protease 1 (SENP1), the inhibition of GW3965 was rescued on LPC‐mediated IL‐8 expression. These findings indicate that LXR‐mediated inflammatory gene repression correlates to the suppression of NF‐κB pathway and SUMOylation. Our results suggest that LXR agonist exerts the anti‐atherosclerotic role by attenuation of the NF‐κB pathway in endothelial cells.
Collapse
Affiliation(s)
- Xukun Bi
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiale Song
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jing Gao
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Juanjuan Zhao
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Meihui Wang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Corey A Scipione
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiming Xu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Guosheng Fu
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
32
|
Hannoun Z, Maarifi G, Chelbi-Alix MK. The implication of SUMO in intrinsic and innate immunity. Cytokine Growth Factor Rev 2016; 29:3-16. [PMID: 27157810 DOI: 10.1016/j.cytogfr.2016.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022]
Abstract
Since its discovery, SUMOylation has emerged as a key post-translational modification involved in the regulation of host-virus interactions. SUMOylation has been associated with the replication of a large number of viruses, either through the direct modification of viral proteins or through the modulation of cellular proteins implicated in antiviral defense. SUMO can affect protein function via covalent or non-covalent binding. There is growing evidence that SUMO regulates several host proteins involved in intrinsic and innate immunity, thereby contributing to the process governing interferon production during viral infection; as well as the interferon-activated Jak/STAT pathway. Unlike the interferon-mediated innate immune response, intrinsic antiviral resistance is mediated by constitutively expressed antiviral proteins (defined as restriction factors), which confer direct viral resistance through a variety of mechanisms. The aim of this review is to evaluate the role of SUMO in intrinsic and innate immunity; highlighting the involvement of the TRIM family proteins, with a specific focus on the mechanism through which SUMO affects i- interferon production upon viral infection, ii-interferon Jak/STAT signaling and biological responses, iii-the relationship between restriction factors and RNA viruses.
Collapse
Affiliation(s)
- Zara Hannoun
- INSERM UMR-S 1124, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
33
|
D'Ignazio L, Rocha S. Hypoxia Induced NF-κB. Cells 2016; 5:cells5010010. [PMID: 27005664 PMCID: PMC4810095 DOI: 10.3390/cells5010010] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022] Open
Abstract
As Nuclear Factor-κB (NF-κB) is a major transcription factor responding to cellular stress, it is perhaps not surprising that is activated by hypoxia, or decreased oxygen availability. However, how NF-κB becomes activated in hypoxia is still not completely understood. Several mechanisms have been proposed and this review will focus on the main findings highlighting the molecules that have been identified in the process of hypoxia induced NF-κB. In addition, we will discuss the role of NF-κB in the control of the cellular response to hypoxia.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow street, Dundee DD1 5EH, UK.
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow street, Dundee DD1 5EH, UK.
| |
Collapse
|
34
|
Alugubelly N, Hercik K, Kibler P, Nanduri B, Edelmann MJ. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:562-9. [PMID: 26854600 DOI: 10.1016/j.bbapap.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. STATEMENT OF SIGNIFICANCE OF THE STUDY We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Kamil Hercik
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Peter Kibler
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Abstract
Mass spectrometry (MS) has become the method of choice for the large-scale analysis of protein ubiquitylation. There exist a number of proposed methods for mapping ubiquitin sites, each with different pros and cons. We present here a protocol for the MS analysis of the ubiquitin-proteome captured by TUBEs and subsequent data analysis. Using dedicated software and algorithms, specific information on the presence of ubiquitylated peptides can be obtained from the MS search results. In addition, a quantitative and functional analysis of the ubiquitylated proteins and their interacting partners helps to unravel the biological and molecular processes they are involved in.
Collapse
|
36
|
Emmerich CH, Cohen P. Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting. Biochem Biophys Res Commun 2015; 466:1-14. [PMID: 26325464 PMCID: PMC4709362 DOI: 10.1016/j.bbrc.2015.08.109] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
Immunoblotting is a powerful technique for the semi-quantitative analysis of ubiquitylation events, and remains the most commonly used method to study this process due to its high specificity, speed, sensitivity and relatively low cost. However, the ubiquitylation of proteins is complex and, when the analysis is performed in an inappropriate manner, it can lead to the misinterpretation of results and to erroneous conclusions being reached. Here we discuss the advantages and disadvantages of the methods currently in use to analyse ubiquitin chains and protein ubiquitylation, and describe the procedures that we have found to be most useful for optimising the quality and reliability of the data that we have generated. We also highlight commonly encountered problems and the pitfalls inherent in some of these methods. Finally, we introduce a set of recommendations to help researchers obtain high quality data, especially those new to the field of ubiquitin signalling. The specific topics addressed in this article include sample preparation, the separation, detection and identification of particular ubiquitin chains by immunoblotting, and the analysis of ubiquitin chain topology through the combined use of ubiquitin-binding proteins and ubiquitin linkage-specific deubiquitylases.
Collapse
Affiliation(s)
- Christoph H Emmerich
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
37
|
Escobar-Ramirez A, Vercoutter-Edouart AS, Mortuaire M, Huvent I, Hardivillé S, Hoedt E, Lefebvre T, Pierce A. Modification by SUMOylation Controls Both the Transcriptional Activity and the Stability of Delta-Lactoferrin. PLoS One 2015; 10:e0129965. [PMID: 26090800 PMCID: PMC4474976 DOI: 10.1371/journal.pone.0129965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Delta-lactoferrin is a transcription factor, the expression of which is downregulated or silenced in case of breast cancer. It possesses antitumoral activities and when it is re-introduced in mammary epithelial cancer cell lines, provokes antiproliferative effects. It is posttranslationally modified and our earlier investigations showed that the O-GlcNAcylation/phosphorylation interplay plays a major role in the regulation of both its stability and transcriptional activity. Here, we report the covalent modification of delta-lactoferrin with the small ubiquitin-like modifier SUMO-1. Mutational and reporter gene analyses identified five different lysine residues at K13, K308, K361, K379 and K391 as SUMO acceptor sites. The SUMOylation deficient M5S mutant displayed enhanced transactivation capacity on a delta-lactoferrin responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of delta-lactoferrin. K13, K308 and K379 are the main SUMO sites and among them, K308, which is located in a SUMOylation consensus motif of the NDSM-like type, is a key SUMO site involved in repression of delta-lactoferrin transcriptional activity. K13 and K379 are both targeted by other posttranslational modifications. We demonstrated that K13 is the main acetylation site and that favoring acetylation at K13 reduced SUMOylation and increased delta-lactoferrin transcriptional activity. K379, which is either ubiquitinated or SUMOylated, is a pivotal site for the control of delta-lactoferrin stability. We showed that SUMOylation competes with ubiquitination and protects delta-lactoferrin from degradation by positively regulating its stability. Collectively, our results indicate that multi-SUMOylation occurs on delta-lactoferrin to repress its transcriptional activity. Reciprocal occupancy of K13 by either SUMO-1 or an acetyl group may contribute to the establishment of finely regulated mechanisms to control delta-lactoferrin transcriptional activity. Moreover, competition between SUMOylation and ubiquitination at K379 coordinately regulates the stability of delta-lactoferrin toward proteolysis. Therefore SUMOylation of delta-lactoferrin is a novel mechanism controlling both its activity and stability.
Collapse
Affiliation(s)
- Adelma Escobar-Ramirez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Anne-Sophie Vercoutter-Edouart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Marlène Mortuaire
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Isabelle Huvent
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Stephan Hardivillé
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Esthelle Hoedt
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Annick Pierce
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| |
Collapse
|
38
|
Liew K, Yong PVC, Navaratnam V, Lim YM, Ho ASH. Differential proteomic analysis on the effects of 2-methoxy-1,4-naphthoquinone towards MDA-MB-231 cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:517-527. [PMID: 25981917 DOI: 10.1016/j.phymed.2015.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/31/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND We have previously reported the anti-metastatic effects of 2-methoxy-1,4-naphthoquinone (MNQ) against MDA-MB-231 cell line. PURPOSE To investigate the molecular mechanism underlying the anti-metastatic effects of MNQ towards MDA-MB-231 cell line via the comparative proteomic approach. STUDY DESIGN/METHODS Differentially expressed proteins in MNQ-treated MDA-MB-231 cells were identified by using two-dimensional gel electrophoresis coupled with tandem mass spectrometry. Proteins and signalling pathways associated with the identified MNQ-altered proteins were studied by using Western blotting. RESULTS Significant modulation of MDA-MB-231 cell proteome was observed upon treatment with MNQ in which the expressions of 19 proteins were found to be downregulated whereas another eight were upregulated (>1.5 fold, p < 0.05). The altered proteins were mainly related to cytoskeletal functions and regulations, mRNA processing, protein modifications and oxidative stress response. Notably, two of the downregulated proteins, protein S100-A4 (S100A4) and laminin-binding protein (RPSA) are known to play key roles in driving metastasis and were verified using Western blotting. Further investigation using Western blotting also revealed that MNQ decreased the activations of pro-metastatic ERK1/2 and NF-κB signalling pathways. Moreover, MNQ was shown to stimulate the expression of the metastatic suppressor, E-cadherin. CONCLUSION This study reports a proposed mechanism by which MNQ exerts its anti-metastatic effects against MDA-MB-231 cell line. The findings from this study offer new insights on the potential of MNQ to be developed as a novel anti-metastatic agent.
Collapse
Affiliation(s)
- Kitson Liew
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Phelim Voon Chen Yong
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Visweswaran Navaratnam
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
| | - Anthony Siong Hock Ho
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
39
|
Analysis of PTEN ubiquitylation and SUMOylation using molecular traps. Methods 2015; 77-78:112-8. [DOI: 10.1016/j.ymeth.2014.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
|
40
|
SUMO2 overexpression enhances the generation and function of interleukin-17-producing CD8⁺ T cells in mice. Cell Signal 2015; 27:1246-52. [PMID: 25762490 DOI: 10.1016/j.cellsig.2015.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/12/2022]
Abstract
Small ubiquitin-like modifier (SUMO) 2 is a small protein that controls the activity and stability of other proteins by SUMOylation. In this study, T cell-specific SUMO2 overexpressing transgenic mice were generated to study the effect of SUMO2 on T lymphocytes. SUMO2 overexpression promoted differentiation of interleukin (IL)-17-producing CD8(+) T cells, and significantly suppressed the growth of EL4 tumor cells in vivo. Moreover, the tumor tissue from SUMO2-overexpressing mice had higher interferon (IFN)-γ and granzyme B mRNA levels. Although SUMO2 overexpression did not increase IFN-γ or granzyme B production in cytotoxic T lymphocytes, IL-12 treatment restored and increased IFN-γ secretion in IL-17-producing CD8(+) T cells. SUMO2 overexpression also increased gene expression of chemokines, CCL4, and CXCL10, which attract cytotoxic T lymphocytes to tumor tissues. Additionally, SUMO2-overexpressing T cells exhibited increased STAT3 phosphorylation, implying a SUMO2 target which up-regulates STAT3 activity governing IL-17A-producing CD8(+) T cell differentiation and antitumor immune responses.
Collapse
|
41
|
Ge L, Zhu MM, Yang JY, Wang F, Zhang R, Zhang JH, Shen J, Tian HF, Wu CF. Differential proteomic analysis of the anti-depressive effects of oleamide in a rat chronic mild stress model of depression. Pharmacol Biochem Behav 2015; 131:77-86. [PMID: 25641667 DOI: 10.1016/j.pbb.2015.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 01/12/2023]
Abstract
Depression is a complex psychiatric disorder, and its etiology and pathophysiology are not completely understood. Depression involves changes in many biogenic amine, neuropeptide, and oxidative systems, as well as alterations in neuroendocrine function and immune-inflammatory pathways. Oleamide is a fatty amide which exhibits pharmacological effects leading to hypnosis, sedation, and anti-anxiety effects. In the present study, the chronic mild stress (CMS) model was used to investigate the antidepressant-like activity of oleamide. Rats were exposed to 10weeks of CMS or control conditions and were then subsequently treated with 2weeks of daily oleamide (5mg/kg, i.p.), fluoxetine (10mg/kg, i.p.), or vehicle. Protein extracts from the hippocampus were then collected, and hippocampal maps were generated by way of two-dimensional gel electrophoresis (2-DE). Altered proteins induced by CMS and oleamide were identified through mass spectrometry and database searches. Compared to the control group, the CMS rats exhibited significantly less body weight gain and decreased sucrose consumption. Treatment with oleamide caused a reversal of the CMS-induced deficit in sucrose consumption. In the proteomic analysis, 12 protein spots were selected and identified. CMS increased the levels of adenylate kinase isoenzyme 1 (AK1), nucleoside diphosphate kinase B (NDKB), histidine triad nucleotide-binding protein 1 (HINT1), acyl-protein thioesterase 2 (APT-2), and glutathione S-transferase A4 (GSTA4). Compared to the CMS samples, seven spots changed significantly following treatment with oleamide, including GSTA4, glutathione S-transferase A6 (GSTA6), GTP-binding nuclear protein Ran (Ran-GTP), ATP synthase subunit d, transgelin-3, small ubiquitin-related modifier 2 (SUMO2), and eukaryotic translation initiation factor 5A-1 (eIF5A1). Of these seven proteins, the level of eIF5A1 was up-regulated, whereas the remaining proteins were down-regulated. In conclusion, oleamide has antidepressant-like properties in the CMS rat model. The identification of proteins altered by CMS and oleamide treatment provides support for targeting these proteins in the development of novel therapies for depression.
Collapse
Affiliation(s)
- Lin Ge
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ming-Ming Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Fang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jing-Hai Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jing Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Beijing Cancer Hospital & Institute, Beijing 100142, PR China
| | - Hui-Fang Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Beijing Cancer Hospital & Institute, Beijing 100142, PR China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
42
|
Scott D, Oldham NJ, Strachan J, Searle MS, Layfield R. Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 2014; 15:844-61. [PMID: 25327553 DOI: 10.1002/pmic.201400341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
Ubiquitin-binding domains (UBDs) are modular units found within ubiquitin-binding proteins that mediate the non-covalent recognition of (poly)ubiquitin modifications. A variety of mechanisms are employed in vivo to achieve polyubiquitin linkage and chain length selectivity by UBDs, the structural basis of which have in some instances been determined. Here, we review current knowledge related to ubiquitin recognition mechanisms at the molecular level and explore how such information has been exploited in the design and application of UBDs in isolation or artificially arranged in tandem as tools to investigate ubiquitin-modified proteomes. Specifically, we focus on the use of UBDs to directly purify or detect (poly)ubiquitin-modified proteins and more broadly for the targeted manipulation of ubiquitin-mediated processes, highlighting insights into ubiquitin signalling that have been provided.
Collapse
Affiliation(s)
- Daniel Scott
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
43
|
Wondrak GT, Lobato-Gil S, Aillet F, Lang V, Rodriguez MS. The Ubiquitin-Proteasome System (UPS) as a Cancer Drug Target: Emerging Mechanisms and Therapeutics. STRESS RESPONSE PATHWAYS IN CANCER 2014. [PMCID: PMC7121086 DOI: 10.1007/978-94-017-9421-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) plays an important role in the setting of the cellular response to multiple stress signals. Although the primary function of ubiquitin was initially associated with proteolysis, it is now considered as a key regulator of protein function controlling, among other functions, signalling cascades, transcription, apoptosis or oncogenesis. Failure at any level of the UPS is associated with the development of multiple pathologies including metabolic problems, immune diseases, inflammation and cancer. The successful use of the proteasome inhibitor Bortezomib (Velcade) in the treatment of multiple myeloma (MM) and mantle cell lymphoma (MCL) revealed the potential of the UPS as pharmacological target. Ten years later, new inhibitors tackling not only the proteasome but also different subsets of enzymes which conjugate or de-conjugate ubiquitin or ubiquitin-like molecules, have been developed. Most of them are excellent tools to characterize better the emerging molecular mechanisms regulating distinct critical cellular processes. Some of them have been launched already while many others are still in pre-clinical development. This chapter updates some of the most successful efforts to develop and characterize inhibitors of the UPS which tackle mechanisms involved in cancer. Particular attention has been dedicated to updating the status of the clinical trials of these inhibitors.
Collapse
Affiliation(s)
- Georg T. Wondrak
- Dept. of Pharmacology and Toxicology, Univ. of Arizona, College of Pharm. & The Univ. of Arizona Cancer Ctr., Tucson, Arizona USA
| | | | | | | | | |
Collapse
|
44
|
Espinosa L, Bigas A, Mulero MC. Novel functions of chromatin-bound IκBα in oncogenic transformation. Br J Cancer 2014; 111:1688-92. [PMID: 25233399 PMCID: PMC4453743 DOI: 10.1038/bjc.2014.84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/19/2013] [Accepted: 01/24/2014] [Indexed: 01/30/2023] Open
Abstract
The nuclear factor-κB (NF-κB) signalling pathway participates in a multitude of biological processes, which imply the requirement of a complex and precise regulation. IκB (for Inhibitor of kappaB) proteins, which bind and retain NF-κB dimers in the cytoplasm, are the main contributors to negative regulation of NF-κB under non-stimulation conditions. Nevertheless, increasing evidences indicate that IκB proteins exert specific nuclear roles that directly contribute to the control of gene transcription. In particular, hypophosphorylated IκBβ can bind the promoter region of TNFα leading to persistent gene transcription in macrophages and contributing to the regulation of the inflammatory response. Recently, we demonstrated that phosphorylated and SUMOylated IκBα reside in the nucleus of the cells where it binds to chromatin leading to specific transcriptional repression. Mechanistically, IκBα associates and regulates Polycomb Repressor Complex activity, a function that is evolutionary conserved from flies to mammals, as indicate the homeotic phenotype of Drosophila mutants. Here we discuss the implications of chromatin-bound IκBα function in the context of tumorigenesis.
Collapse
Affiliation(s)
- L Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| | - A Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| | - M C Mulero
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| |
Collapse
|
45
|
Gupta MK, Gulick J, Liu R, Wang X, Molkentin JD, Robbins J. Sumo E2 enzyme UBC9 is required for efficient protein quality control in cardiomyocytes. Circ Res 2014; 115:721-9. [PMID: 25097219 DOI: 10.1161/circresaha.115.304760] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Impairment of proteasomal function is pathogenic in several cardiac proteinopathies and can eventually lead to heart failure. Loss of proteasomal activity often results in the accumulation of large protein aggregates. The ubiquitin proteasome system (UPS) is primarily responsible for cellular protein degradation, and although the role of ubiquitination in this process is well studied, the function of an ancillary post-translational modification, SUMOylation, in protein quality control is not fully understood. OBJECTIVE To determine the role of ubiquitin-conjugating enzyme 9 (UBC9), a small ubiquitin-like modifier-conjugating enzyme, in cardiomyocyte protein quality control. METHODS AND RESULTS Gain- and loss-of-function approaches were used to determine the importance of UBC9. Overexpression of UBC9 enhanced UPS function in cardiomyocytes, whereas knockdown of UBC9 by small interfering RNA caused significant accumulations of aggregated protein. UPS function and relative activity was analyzed using a UPS reporter protein consisting of a short degron, CL1, fused to the COOH-terminus of green fluorescent protein (GFPu). Subsequently, the effects of UBC9 on UPS function were tested in a proteotoxic model of desmin-related cardiomyopathy, caused by cardiomyocyte-specific expression of a mutated αB crystallin, CryAB(R120G). CryAB(R120G) expression leads to aggregate formation and decreased proteasomal function. Coinfection of UBC9-adenovirus with CryAB(R120G) virus reduced the proteotoxic sequelae, decreasing overall aggregate concentrations. Conversely, knockdown of UBC9 significantly decreased UPS function in the model and resulted in increased aggregate levels. CONCLUSIONS UBC9 plays a significant role in cardiomyocyte protein quality control, and its activity can be exploited to reduce toxic levels of misfolded or aggregated proteins in cardiomyopathy.
Collapse
Affiliation(s)
- Manish K Gupta
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - James Gulick
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Ruijie Liu
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Xuejun Wang
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Jeffery D Molkentin
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Jeffrey Robbins
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.).
| |
Collapse
|
46
|
Verma P, Tapadia MG. Epithelial immune response in Drosophila malpighian tubules: interplay between Diap2 and ion channels. J Cell Physiol 2014; 229:1078-95. [PMID: 24374974 DOI: 10.1002/jcp.24541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/12/2013] [Indexed: 11/12/2022]
Abstract
Systemic immune response via the Immune deficiency pathway requires Drosophila inhibitor of apoptosis protein 2 to activate the NF-κB transcription factor Relish. Malpighian tubules (MTs), simple epithelial tissue, are the primary excretory organs, performing additional role in providing protection to Drosophila against pathogenic infections. MTs hold a strategic position in Drosophila as one of the larval tissues that are carried over to adults, unlike other larval tissues that are histolysed during pupation. In this paper we show that Diap2 is an important regulator of local epithelial immune response in MTs and depletion of Diap2 from MTs, increases susceptibility of flies to infection. In the absence of Diap2, activation and translocation of Relish to the nucleus is abolished and as a consequence the production of IMD pathway dependent AMPs are reduced. Ion channels, (Na(+)/K(+))-ATPase and V-ATPase, are important for the immune response of MTs and expression of AMPs and the IMD pathway genes are impaired on inhibition of transporters, and they restrict the translocation of Relish into the nucleus. We show that Diap2 could be regulating ion channels, as loss of Diap2 consequently reduces the expression of ion channels and affects the balance of ion concentrations which results in reduced uric acid deposition. Thus Diap2 seems to be a key regulator of epithelial immune response in MTs, perhaps by modulating ion channels.
Collapse
Affiliation(s)
- Puja Verma
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
47
|
Abstract
SUMO-modified proteins are recognized by SUMO interacting motifs (SIMs), thus triggering diverse cellular responses. Here SIMs were used to develop SUMO-traps to capture endogenous SUMOylated proteins. Our results show that these small peptides are transferable motifs that maintain their SUMO binding capacity when fused to the heterologous carrier protein GST. The tandem disposition of SIMs increases the binding capacity of SUMO-traps to specifically interact with polySUMO but not poly-Ubiquitin chains. We demonstrate that this SUMO capturing system purifies SUMOylated proteins such as IκBα, PTEN, PML or p53 in vitro and in vivo. These properties can be used to explore the many critical functions regulated by protein SUMOylation.
Collapse
|
48
|
Abstract
In this issue of Cancer Cell, Mulero and colleagues describe an NF-κB independent transcriptional repression function for SUMOylated IκBα. This compelling and provocative model links IκBα to the activity of the Polycomb repressors and provides a mechanism to link inflammatory signaling to skin homeostasis.
Collapse
Affiliation(s)
- Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
49
|
Huang W, Xu L, Zhou X, Gao C, Yang M, Chen G, Zhu J, Jiang L, Gan H, Gou F, Feng H, Peng J, Xu Y. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells. Biochem Biophys Res Commun 2013; 438:568-74. [PMID: 23911785 DOI: 10.1016/j.bbrc.2013.07.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023]
Abstract
The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6mmol/L), high glucose groups (10, 20, and 30mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p<0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p<0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which could be mostly reversed by adding MG132 (p<0.05). The present results support the hypothesis that high glucose may activate NF-κB inflammatory signaling through IκBα sumoylation and ubiquitination.
Collapse
Affiliation(s)
- Wei Huang
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li R, Wei J, Jiang C, Liu D, Deng L, Zhang K, Wang P. Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res 2013; 73:5742-53. [PMID: 23884910 DOI: 10.1158/0008-5472.can-13-0538] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proto-oncogene Akt plays essential roles in cell proliferation and tumorigenesis. Full activation of Akt is regulated by phosphorylation, ubiquitination, and acetylation. Here we report that SUMOylation of Akt is a novel mechanism for its activation. Systematically analyzing the role of lysine residues in Akt activation revealed that K276, which is located in a SUMOylation consensus motif, is essential for Akt activation. Ectopic or endogenous Akt1 could be modified by SUMOylation. RNA interference-mediated silencing of UBC9 reduced Akt SUMOylation, which was promoted by SUMO E3 ligase PIAS1 and reversed by the SUMO-specific protease SENP1. Although multiple sites on Akt could be SUMOylated, K276 was identified as a major SUMO acceptor site. K276R or E278A mutation reduced SUMOylation of Akt but had little effect on its ubiquitination. Strikingly, these mutations also completely abolished Akt kinase activity. In support of these results, we found that expression of PIAS1 and SUMO1 increased Akt activity, whereas expression of SENP1 reduced Akt1 activity. Interestingly, the cancer-derived mutant E17K in Akt1 that occurs in various cancers was more efficiently SUMOylated than wild-type Akt. Moreover, SUMOylation loss dramatically reduced Akt1 E17K-mediated cell proliferation, cell migration, and tumorigenesis. Collectively, our findings establish that Akt SUMOylation provides a novel regulatory mechanism for activating Akt function.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Apoptosis
- Blotting, Western
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fluorescent Antibody Technique
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Phosphorylation
- Protein Inhibitors of Activated STAT/antagonists & inhibitors
- Protein Inhibitors of Activated STAT/genetics
- Protein Inhibitors of Activated STAT/metabolism
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sumoylation
- Ubiquitin-Conjugating Enzymes/antagonists & inhibitors
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitination
- Wound Healing
Collapse
Affiliation(s)
- Rong Li
- Authors' Affiliation: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|