1
|
Hunter A, Thorpe SE, McCarthy AH, Manno C. Microplastic hotspots mapped across the Southern Ocean reveal areas of potential ecological impact. Sci Rep 2024; 14:31599. [PMID: 39738175 PMCID: PMC11685641 DOI: 10.1038/s41598-024-79816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism). Then we account for cumulative effects by identifying which areas with potential elevated microplastic-biota interaction are already subject to climate change related stresses (ocean warming and acidification). Our analysis indicates that biologically productive coastal areas in proximity to populated facilities are where microplastics pose most risk to the ecosystem, and that the northern Antarctic Peninsula is likely to be the main risk hotspot. This study is the first to map the threat of microplastics to the Southern Ocean ecosystem in a multi-stressor context, locating where microplastic monitoring programmes and mitigation measures may be considered a matter of urgency.
Collapse
Affiliation(s)
- Aidan Hunter
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
| | - Sally E Thorpe
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK
| | - Arlie H McCarthy
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Ammerländer Heerstraße 213, 26129, Oldenburg, Germany
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
| | - Clara Manno
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
| |
Collapse
|
2
|
Kim MS, Lee YH, Lee Y, Byeon E, Kim DH, Wang M, Hagiwara A, Aranda M, Wu RSS, Park HG, Lee JS. Transgenerational adaptation to ocean acidification determines the susceptibility of filter-feeding rotifers to nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132593. [PMID: 37776776 DOI: 10.1016/j.jhazmat.2023.132593] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
The adaptation of marine organisms to the impending challenges presented by ocean acidification (OA) is essential for their future survival, and mechanisms underlying OA adaptation have been reported in several marine organisms. In the natural environment, however, marine organisms are often exposed to a combination of environmental stressors, and the interactions between adaptive responses have yet to be elucidated. Here, we investigated the susceptibility of filter-feeding rotifers to short-term (ST) and long-term (LT) (≥180 generations) high CO2 conditions coupled with nanoplastic (NPs) exposure (ST+ and LT+). Adaptation of rotifers to elevated CO2 caused differences in ingestion and accumulation of NPs, resulting in a significantly different mode of action on in vivo endpoints between the ST+ and LT+ groups. Moreover, microRNA-mediated epigenetic regulation was strongly correlated with the varied adaptive responses between the ST+ and LT+ groups, revealing novel regulatory targets and pathways. Our results indicate that pre-exposure history to increased CO2 levels is an important factor in the susceptibility of rotifers to NPs.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rudolf Shiu Sun Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Johnston NM, Murphy EJ, Atkinson A, Constable AJ, Cotté C, Cox M, Daly KL, Driscoll R, Flores H, Halfter S, Henschke N, Hill SL, Höfer J, Hunt BPV, Kawaguchi S, Lindsay D, Liszka C, Loeb V, Manno C, Meyer B, Pakhomov EA, Pinkerton MH, Reiss CS, Richerson K, Jr. WOS, Steinberg DK, Swadling KM, Tarling GA, Thorpe SE, Veytia D, Ward P, Weldrick CK, Yang G. Status, Change, and Futures of Zooplankton in the Southern Ocean. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.624692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research.
Collapse
|
4
|
Osma N, Vargas CA, Algueró-Muñíz M, Bach LT, Gómez M, Horn HG, Ludwig A, Packard TT, Riebesell U, Romero-Kutzner V, Taucher J, Fernández-Urruzola I. Ocean acidification induces distinct metabolic responses in subtropical zooplankton under oligotrophic conditions and after simulated upwelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152252. [PMID: 34896493 DOI: 10.1016/j.scitotenv.2021.152252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification (OA) is one of the most critical anthropogenic threats to marine ecosystems. While significant ecological responses of plankton communities to OA have been revealed mainly by small-scale laboratory approaches, the interactive effect of OA-related changes on zooplankton metabolism and their biogeochemical implications in the natural environment still remains less well understood. Here, we explore the responses of zooplankton respiration and ammonium excretion, two key processes in the nutrient cycling, to high pCO2 levels in a 9-week in situ mesocosm experiment conducted during the autumn oligotrophic season in the subtropical northeast Atlantic. By simulating an upwelling event halfway through the study, we further evaluated the combined effects of OA and nutrient availability on the physiology of micro-and mesozooplankton. OA conditions generally resulted in a reduction in the biomass-specific metabolic and enzymatic rates, particularly in the mesozooplankton community. The situation reversed after the nutrient-rich deep-water addition, which initially promoted a diatom bloom and increased heterotrophic activities in all mesocosms. Under high pCO2 conditions (>800 μatm), however, the nutrient fertilization triggered the proliferation of the harmful alga Vicicitus globosus, with important consequences for the metabolic performance of the two zooplankton size classes. Here, the zooplankton contribution to the remineralization of organic matter and nitrogen regeneration dropped by 30% and 24%, respectively, during the oligotrophic period, and by 40% and 70% during simulated upwelling. Overall, our results indicate a potential reduction in the biogeochemical role of zooplankton under future ocean conditions, with more evident effects on the large mesozooplankton and during high productivity events.
Collapse
Affiliation(s)
- Natalia Osma
- Millennium Institute of Oceanography (IMO), Universidad de Concepción, Concepción, Chile; Department of Aquatic Systems, Faculty of Environmental Science, Universidad de Concepción, Concepción, Chile.
| | - Cristian A Vargas
- Millennium Institute of Oceanography (IMO), Universidad de Concepción, Concepción, Chile; Department of Aquatic Systems, Faculty of Environmental Science, Universidad de Concepción, Concepción, Chile; Coastal Socio-Ecological Millennium Institute (SECOS), Universidad de Concepción, Concepción, Chile
| | - María Algueró-Muñíz
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Lennart T Bach
- Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Henriette G Horn
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Andrea Ludwig
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Theodore T Packard
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Vanesa Romero-Kutzner
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jan Taucher
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | |
Collapse
|
5
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
6
|
Prado-Cabrero A, Nolan JM. Omega-3 nutraceuticals, climate change and threats to the environment: The cases of Antarctic krill and Calanus finmarchicus. AMBIO 2021; 50:1184-1199. [PMID: 33502683 PMCID: PMC8068752 DOI: 10.1007/s13280-020-01472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The nutraceutical market for EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) is promoting fishing for Euphasia superba (Antarctic krill) in the Southern Ocean and Calanus finmarchicus in Norwegian waters. This industry argues that these species are underexploited, but they are essential in their ecosystems, and climate change is altering their geographical distribution. In this perspective, we advocate the cessation of fishing for these species to produce nutraceuticals with EPA and DHA. We argue that this is possible because, contrary to what this industry promotes, the benefits of these fatty acids only seem significant to specific population groups, and not for the general population. Next, we explain that this is desirable because there is evidence that these fisheries may interact with the impact of climate change. Greener sources of EPA and DHA are already available on the market, and their reasonable use would ease pressure on the Arctic and Antarctic ecosystems.
Collapse
Affiliation(s)
- Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Carriganore, Waterford, Ireland
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Carriganore, Waterford, Ireland
| |
Collapse
|
7
|
Johnson KM, Hofmann GE. Combined stress of ocean acidification and warming influence survival and drives differential gene expression patterns in the Antarctic pteropod, Limacina helicina antarctica. CONSERVATION PHYSIOLOGY 2020; 8:coaa013. [PMID: 32257214 PMCID: PMC7098371 DOI: 10.1093/conphys/coaa013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/12/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
The ecologically important thecosome pteropods in the Limacina spp. complex have recently been the focus of studies examining the impacts global change factors - e.g., ocean acidification (OA) and ocean warming (OW) - on their performance and physiology. This focus is driven by conservation concerns where the health of pteropod populations is threatened by the high susceptibility of their shells to dissolution in low aragonite saturation states associated with OA and how coupling of these stressors may push pteropods past the limits of physiological plasticity. In this manipulation experiment, we describe changes in the transcriptome of the Antarctic pteropod, Limacina helicina antarctica, to these combined stressors. The conditions used in the laboratory treatments met or exceeded those projected for the Southern Ocean by the year 2100. We made two general observations regarding the outcome of the data: (1) Temperature was more influential than pH in terms of changing patterns of gene expression, and (2) these Antarctic pteropods appeared to have a significant degree of transcriptomic plasticity to respond to acute abiotic stress in the laboratory. In general, differential gene expression was observed amongst the treatments; here, for example, transcripts associated with maintaining protein structure and cell proliferation were up-regulated. To disentangle the effects of OA and OW, we used a weighted gene co-expression network analysis to explore patterns of change in the transcriptome. This approach identified gene networks associated with OW that were enriched for transcripts proposed to be involved in increasing membrane fluidity at warmer temperatures. Together these data provide evidence that L.h.antarctica has a limited capacity to acclimate to the combined conditions of OA and OW used in this study. This reduced scope of acclimation argues for continued study of how adaptation to polar aquatic environments may limit the plasticity of present-day populations in responding to future environmental change.
Collapse
Affiliation(s)
- Kevin M Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620 USA
| |
Collapse
|
8
|
Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill. Sci Rep 2019; 9:12375. [PMID: 31451724 PMCID: PMC6710253 DOI: 10.1038/s41598-019-48665-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Euphausia superba (Antarctic krill) is a keystone species in the Southern Ocean, but little is known about how it will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), alters the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels mimicking near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). Total lipid mass (mg g-1 DM) of krill was unaffected by near-future pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of 18:2n-6 (up to 1.2% increase), 20:4n-6 (up to 0.8% increase), lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios, and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.
Collapse
|
9
|
Adult Antarctic krill proves resilient in a simulated high CO 2 ocean. Commun Biol 2018; 1:190. [PMID: 30456311 PMCID: PMC6233221 DOI: 10.1038/s42003-018-0195-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/10/2018] [Indexed: 11/08/2022] Open
Abstract
Antarctic krill (Euphausia superba) have a keystone role in the Southern Ocean, as the primary prey of Antarctic predators. Decreases in krill abundance could result in a major ecological regime shift, but there is limited information on how climate change may affect krill. Increasing anthropogenic carbon dioxide (CO2) emissions are causing ocean acidification, as absorption of atmospheric CO2 in seawater alters ocean chemistry. Ocean acidification increases mortality and negatively affects physiological functioning in some marine invertebrates, and is predicted to occur most rapidly at high latitudes. Here we show that, in the laboratory, adult krill are able to survive, grow, store fat, mature, and maintain respiration rates when exposed to near-future ocean acidification (1000-2000 μatm pCO2) for one year. Despite differences in seawater pCO2 incubation conditions, adult krill are able to actively maintain the acid-base balance of their body fluids in near-future pCO2, which enhances their resilience to ocean acidification.
Collapse
|
10
|
Wang Y, Hu M, Wu F, Storch D, Pörtner HO. Elevated pCO 2 Affects Feeding Behavior and Acute Physiological Response of the Brown Crab Cancer pagurus. Front Physiol 2018; 9:1164. [PMID: 30246790 PMCID: PMC6110915 DOI: 10.3389/fphys.2018.01164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/03/2018] [Indexed: 11/25/2022] Open
Abstract
Anthropogenic climate change exposes marine organisms to CO2 induced ocean acidification (OA). Marine animals may make physiological and behavioral adaptations to cope with OA. Elevated pCO2 may affect metabolism, feeding, and energy partition of marine crabs, and thereby affect their predator-prey dynamics with mussels. Therefore, we examined the effects of simulated future elevated pCO2 on feeding behavior and energy metabolism of the brown crab Cancer pagurus. Following 54 days of pre-acclimation to control CO2 levels (360 μatm) at 11°C, crabs were exposed to consecutively increased oceanic CO2 levels (2 weeks for 1200 and 2300 μatm, respectively) and subsequently returned to control CO2 level (390 μatm) for 2 weeks in order to study their potential to acclimate elevated pCO2 and recovery performance. Standard metabolic rate (SMR), specific dynamic action (SDA) and feeding behavior of the crabs were investigated during each experimental period. Compared to the initial control CO2 conditions, the SMRs of CO2 exposed crabs were not significantly increased, but increased significantly when the crabs were returned to normal CO2 levels. Conversely, SDA was significantly reduced under high CO2 and did not return to control levels during recovery. Under high CO2, crabs fed on smaller sized mussels than under control CO2; food consumption rates were reduced; foraging parameters such as searching time, time to break the prey, eating time, and handling time were all significantly longer than under control CO2, and prey profitability was significantly lower than that under control conditions. Again, a two-week recovery period was not sufficient for feeding behavior to return to control values. PCA results revealed a positive relationship between feeding/SDA and pH, but negative relationships between the length of foraging periods and pH. In conclusion, elevated pCO2 caused crab metabolic rate to increase at the expense of SDA. Elevated pCO2 affected feeding performance negatively and prolonged foraging periods. These results are discussed in the context of how elevated pCO2 may impair the competitiveness of brown crabs in benthic communities.
Collapse
Affiliation(s)
- Youji Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Menghong Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Fangli Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Daniela Storch
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hans-Otto Pörtner
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
11
|
Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification. BMC Genomics 2017; 18:812. [PMID: 29061120 PMCID: PMC5653985 DOI: 10.1186/s12864-017-4161-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/05/2017] [Indexed: 01/30/2023] Open
Abstract
Background Ocean acidification (OA), a change in ocean chemistry due to the absorption of atmospheric CO2 into surface oceans, challenges biogenic calcification in many marine organisms. Ocean acidification is expected to rapidly progress in polar seas, with regions of the Southern Ocean expected to experience severe OA within decades. Biologically, the consequences of OA challenge calcification processes and impose an energetic cost. Results In order to better characterize the response of a polar calcifier to conditions of OA, we assessed differential gene expression in the Antarctic pteropod, Limacina helicina antarctica. Experimental levels of pCO2 were chosen to create both contemporary pH conditions, and to mimic future pH expected in OA scenarios. Significant changes in the transcriptome were observed when juvenile L. h. antarctica were acclimated for 21 days to low-pH (7.71), mid-pH (7.9) or high-pH (8.13) conditions. Differential gene expression analysis of individuals maintained in the low-pH treatment identified down-regulation of genes involved in cytoskeletal structure, lipid transport, and metabolism. High pH exposure led to increased expression and enrichment for genes involved in shell formation, calcium ion binding, and DNA binding. Significant differential gene expression was observed in four major cellular and physiological processes: shell formation, the cellular stress response, metabolism, and neural function. Across these functional groups, exposure to conditions that mimic ocean acidification led to rapid suppression of gene expression. Conclusions Results of this study demonstrated that the transcriptome of the juvenile pteropod, L. h. antarctica, was dynamic and changed in response to different levels of pCO2. In a global change context, exposure of L. h. antarctica to the low pH, high pCO2 OA conditions resulted in a suppression of transcripts for genes involved in key physiological processes: calcification, metabolism, and the cellular stress response. The transcriptomic response at both acute and longer-term acclimation time frames indicated that contemporary L. h. antarctica may not have the physiological plasticity necessary for adaptation to OA conditions expected in future decades. Lastly, the differential gene expression results further support the role of shelled pteropods such as L. h. antarctica as sentinel organisms for the impacts of ocean acidification. Electronic supplementary material The online version of this article (10.1186/s12864-017-4161-0) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Overwintering individuals of the Arctic krill Thysanoessa inermis appear tolerant to short-term exposure to low pH conditions. Polar Biol 2017. [DOI: 10.1007/s00300-017-2194-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Wu F, Wang T, Cui S, Xie Z, Dupont S, Zeng J, Gu H, Kong H, Hu M, Lu W, Wang Y. Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica. MARINE POLLUTION BULLETIN 2017; 120:99-108. [PMID: 28479147 DOI: 10.1016/j.marpolbul.2017.04.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
We examined prey selection and foraging behaviors of the crab Charybdis japonica exposed to four combinations of pH (7.3 and 8.1) and temperature (18°C and 25°C). The order of prey selection by C. japonica was Potamocorbula laevis, Ruditapes philippinarum, Tegillarca granosa and Mactra veneriformis. Under high pCO2, times for searching, breaking, eating and handling were all significantly longer than those at the normal pCO2, and the prey profitability and predation rate under high pCO2 were significantly lower than normal pCO2. Moreover, temperature significantly influenced the foraging behaviors, but its effects were not as strong as those of pH; times for searching, eating and handling under high temperature were significantly lower than the low temperature, and the prey predation rates under high temperature was significantly higher than low temperature. In conclusion, high pCO2 negatively affected the foraging behavior, but high temperature actively stimulated the foraging behaviors of crabs.
Collapse
Affiliation(s)
- Fangli Wu
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Ting Wang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Shuaikang Cui
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Zhe Xie
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure - Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Huaxin Gu
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Hui Kong
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Menghong Hu
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Weiqun Lu
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| | - Youji Wang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China; Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure - Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden; National Marine Biosciences International Joint Research Center, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.
| |
Collapse
|
14
|
Coello-Camba A, Llabrés M, Duarte CM, Agustí S. Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth. Polar Biol 2017. [DOI: 10.1007/s00300-017-2123-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Turner LM, Ricevuto E, Massa Gallucci A, Lorenti M, Gambi MC, Calosi P. Metabolic responses to high pCO 2 conditions at a CO 2 vent site in juveniles of a marine isopod species assemblage. MARINE BIOLOGY 2016; 163:211. [PMID: 27729710 PMCID: PMC5030223 DOI: 10.1007/s00227-016-2984-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions.
Collapse
Affiliation(s)
- Lucy M. Turner
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA UK
- Department of Marine Sciences, University of Gothenburg, Box 460, 405 30 Göteborg, Sweden
| | - Elena Ricevuto
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn - Benthic Ecology Centre, 80121 Ischia, Naples Italy
| | - Alexia Massa Gallucci
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn - Benthic Ecology Centre, 80121 Ischia, Naples Italy
| | - Maurizio Lorenti
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn - Benthic Ecology Centre, 80121 Ischia, Naples Italy
| | - Maria-Cristina Gambi
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn - Benthic Ecology Centre, 80121 Ischia, Naples Italy
| | - Piero Calosi
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA UK
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1 Canada
| |
Collapse
|
16
|
Nagelkerken I, Munday PL. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. GLOBAL CHANGE BIOLOGY 2016; 22:974-89. [PMID: 26700211 DOI: 10.1111/gcb.13167] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/05/2015] [Indexed: 05/04/2023]
Abstract
Biological communities are shaped by complex interactions between organisms and their environment as well as interactions with other species. Humans are rapidly changing the marine environment through increasing greenhouse gas emissions, resulting in ocean warming and acidification. The first response by animals to environmental change is predominantly through modification of their behaviour, which in turn affects species interactions and ecological processes. Yet, many climate change studies ignore animal behaviour. Furthermore, our current knowledge of how global change alters animal behaviour is mostly restricted to single species, life phases and stressors, leading to an incomplete view of how coinciding climate stressors can affect the ecological interactions that structure biological communities. Here, we first review studies on the effects of warming and acidification on the behaviour of marine animals. We demonstrate how pervasive the effects of global change are on a wide range of critical behaviours that determine the persistence of species and their success in ecological communities. We then evaluate several approaches to studying the ecological effects of warming and acidification, and identify knowledge gaps that need to be filled, to better understand how global change will affect marine populations and communities through altered animal behaviours. Our review provides a synthesis of the far-reaching consequences that behavioural changes could have for marine ecosystems in a rapidly changing environment. Without considering the pervasive effects of climate change on animal behaviour we will limit our ability to forecast the impacts of ocean change and provide insights that can aid management strategies.
Collapse
Affiliation(s)
- Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, DX 650 418, Adelaide, SA, 5005, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
| |
Collapse
|
17
|
Feeding and Food Processing in Antarctic Krill (Euphausia superba Dana). BIOLOGY AND ECOLOGY OF ANTARCTIC KRILL 2016. [DOI: 10.1007/978-3-319-29279-3_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Thor P, Dupont S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. GLOBAL CHANGE BIOLOGY 2015; 21:2261-71. [PMID: 25430823 DOI: 10.1111/gcb.12815] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 05/09/2023]
Abstract
Ocean acidification (OA) caused by anthropogenic CO2 emission is projected for thousands of years to come, and significant effects are predicted for many marine organisms. While significant evolutionary responses are expected during such persistent environmental change, most studies consider only short-term effects. Little is known about the transgenerational effects of parental environments or natural selection on the capacity of populations to counter detrimental OA effects. In this study, six laboratory populations of the calanoid copepod Pseudocalanus acuspes were established at three different CO2 partial pressures (pCO2 of 400, 900 and 1550 μatm) and grown for two generations at these conditions. Our results show evidence of alleviation of OA effects as a result of transgenerational effects in P. acuspes. Second generation adults showed a 29% decrease in fecundity at 900 μatm CO2 compared to 400 μatm CO2 . This was accompanied by a 10% increase in metabolic rate indicative of metabolic stress. Reciprocal transplant tests demonstrated that this effect was reversible and the expression of phenotypic plasticity. Furthermore, these tests showed that at a pCO2 exceeding the natural range experienced by P. acuspes (1550 μatm), fecundity would have decreased by as much as 67% compared to at 400 μatm CO2 as a result of this plasticity. However, transgenerational effects partly reduced OA effects so that the loss of fecundity remained at a level comparable to that at 900 μatm CO2 . This also relieved the copepods from metabolic stress, and respiration rates were lower than at 900 μatm CO2 . These results highlight the importance of tests for transgenerational effects to avoid overestimation of the effects of OA.
Collapse
Affiliation(s)
- Peter Thor
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | | |
Collapse
|
19
|
Haigh R, Ianson D, Holt CA, Neate HE, Edwards AM. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific. PLoS One 2015; 10:e0117533. [PMID: 25671596 PMCID: PMC4324998 DOI: 10.1371/journal.pone.0117533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/23/2014] [Indexed: 11/29/2022] Open
Abstract
As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.
Collapse
Affiliation(s)
- Rowan Haigh
-
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Debby Ianson
-
Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, British Columbia, V8L 4B2, Canada
- * E-mail:
| | - Carrie A. Holt
-
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Holly E. Neate
-
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
-
Department of Biology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - Andrew M. Edwards
-
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
-
Department of Biology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, British Columbia, V8W 2Y2, Canada
| |
Collapse
|
20
|
Bellini N, Cox MJ, Harper DJ, Stott SR, Ashok PC, Dholakia K, Kawaguchi S, King R, Horton T, Brown CTA. The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba. PLoS One 2014; 9:e110367. [PMID: 25310589 PMCID: PMC4195727 DOI: 10.1371/journal.pone.0110367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3.
Collapse
Affiliation(s)
- Nicola Bellini
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Martin J. Cox
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Danielle J. Harper
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Sebastian R. Stott
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Praveen C. Ashok
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - So Kawaguchi
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Robert King
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Tammy Horton
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, United Kingdom
| | - Christian T. A. Brown
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
- * E-mail:
| |
Collapse
|