1
|
Xia C, Pickett SJ, Liewald DCM, Weiss A, Hudson G, Hill WD. The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism. Nat Commun 2023; 14:3146. [PMID: 37253732 PMCID: PMC10229642 DOI: 10.1038/s41467-023-38480-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Neuroticism is a heritable trait composed of separate facets, each conferring different levels of protection or risk, to health. By examining mitochondrial DNA in 269,506 individuals, we show mitochondrial haplogroups explain 0.07-0.01% of variance in neuroticism and identify five haplogroup and 15 mitochondria-marker associations across a general factor of neuroticism, and two special factors of anxiety/tension, and worry/vulnerability with effect sizes of the same magnitude as autosomal variants. Within-haplogroup genome-wide association studies identified H-haplogroup-specific autosomal effects explaining 1.4% variance of worry/vulnerability. These H-haplogroup-specific autosomal effects show a pleiotropic relationship with cognitive, physical and mental health that differs from that found when assessing autosomal effects across haplogroups. We identify interactions between chromosome 9 regions and mitochondrial haplogroups at P < 5 × 10-8, revealing associations between general neuroticism and anxiety/tension with brain-specific gene co-expression networks. These results indicate that the mitochondrial genome contributes toward neuroticism and the autosomal links between neuroticism and health.
Collapse
Affiliation(s)
- Charley Xia
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research and Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David C M Liewald
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Alexander Weiss
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research and Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - W David Hill
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
2
|
Martel-Pelletier J, Pelletier JP. Is there a mitochondrial DNA haplogroup connection between osteoarthritis and elite athletes? A narrative review. RMD Open 2022; 8:rmdopen-2022-002602. [PMID: 36113964 PMCID: PMC9486370 DOI: 10.1136/rmdopen-2022-002602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Elite athletes are at greater risk of joint injuries linked to the subsequent risk of developing osteoarthritis (OA). Genetic factors such as mitochondrial (mt) DNA haplogroups have been associated with the incidence/progression of OA and athletic performance. This review highlights an area not yet addressed: is there a common pattern in the mtDNA haplogroups for OA occurrence in individuals and elite athletes of populations of the same descent? Haplotypes J and T confer a decreased risk of OA in Caucasian/European descent, while H and U increase this risk. Both J and T haplogroups are under-represented in Caucasian/European individuals and endurance athletes with OA, but power athletes showed a greater percentage of the J haplogroup. Caucasian/European endurance athletes had a higher percentage of haplogroup H, which is associated with increased athletic performance. In a Chinese population, haplogroup G appears to increase OA susceptibility and is over-represented in Japanese endurance athletes. In contrast, in Koreans, haplogroup B had a higher frequency of individuals with OA but was under-represented in the endurance athlete population. For Caucasian endurance athletes, it would be interesting to evaluate if those carrying haplotype H would be at an increased risk of accelerated OA, as well as the haplogroup G in Chinese and Japanese endurance athletes. The reverse might be studied for the Korean descent for haplogroup B. Knowledge of such genetic data could be used as a preliminary diagnosis to identify individuals at high risk of OA, adding prognostic information and assisting in personalising the early management of both populations.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
3
|
Valentino RR, Ramnarine C, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Kasanuki K, Murray ME, Uitti RJ, Fields JA, Botha H, Ramanan VK, Kantarci K, Lowe VJ, Jack CR, Ertekin-Taner N, Savica R, Graff-Radford J, Petersen RC, Parisi JE, Reichard RR, Graff-Radford NR, Ferman TJ, Boeve BF, Wszolek ZK, Dickson DW, Ross OA. Mitochondrial genomic variation in dementia with Lewy bodies: association with disease risk and neuropathological measures. Acta Neuropathol Commun 2022; 10:103. [PMID: 35836284 PMCID: PMC9281088 DOI: 10.1186/s40478-022-01399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is clinically diagnosed when patients develop dementia less than a year after parkinsonism onset. Age is the primary risk factor for DLB and mitochondrial health influences ageing through effective oxidative phosphorylation (OXPHOS). Patterns of stable polymorphisms in the mitochondrial genome (mtDNA) alter OXPHOS efficiency and define individuals to specific mtDNA haplogroups. This study investigates if mtDNA haplogroup background affects clinical DLB risk and neuropathological disease severity. 360 clinical DLB cases, 446 neuropathologically confirmed Lewy body disease (LBD) cases with a high likelihood of having DLB (LBD-hDLB), and 910 neurologically normal controls had European mtDNA haplogroups defined using Agena Biosciences MassARRAY iPlex technology. 39 unique mtDNA variants were genotyped and mtDNA haplogroups were assigned to mitochondrial phylogeny. Striatal dopaminergic degeneration, neuronal loss, and Lewy body counts were also assessed in different brain regions in LBD-hDLB cases. Logistic regression models adjusted for age and sex were used to assess associations between mtDNA haplogroups and risk of DLB or LBD-hDLB versus controls in a case-control analysis. Additional appropriate regression models, adjusted for age at death and sex, assessed associations of haplogroups with each different neuropathological outcome measure. No mtDNA haplogroups were significantly associated with DLB or LBD-hDLB risk after Bonferroni correction.Haplogroup H suggests a nominally significant reduced risk of DLB (OR=0.61, P=0.006) but no association of LBD-hDLB (OR=0.87, P=0.34). The haplogroup H observation in DLB was consistent after additionally adjusting for the number of APOE ε4 alleles (OR=0.59, P=0.004). Haplogroup H also showed a suggestive association with reduced ventrolateral substantia nigra neuronal loss (OR=0.44, P=0.033). Mitochondrial haplogroup H may be protective against DLB risk and neuronal loss in substantia nigra regions in LBD-hDLB cases but further validation is warranted.
Collapse
Affiliation(s)
- Rebecca R Valentino
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Chloe Ramnarine
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Neuropsychiatry, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Joseph E Parisi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - R Ross Reichard
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
4
|
The role of mtDNA haplogroups on metabolic features in narcolepsy type 1. Mitochondrion 2022; 63:37-42. [PMID: 35051655 DOI: 10.1016/j.mito.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
Narcolepsy type 1 (NT1) is due to selective loss of hypocretin (hcrt)-producing-neurons. Hcrt is a neuropeptide regulating the sleep/wake cycle, as well as feeding behavior. A subset of NT1 patients become overweight/obese, with a dysmetabolic phenotype. We hypothesized that mitochondrial DNA (mtDNA) sequence variation might contribute to the metabolic features in NT1 and we undertook an exploratory survey of mtDNA haplogroups in a cohort of well-characterized patients. We studied 246 NT1 Italian patients, fully defined for their metabolic features, including obesity, hypertension, low HDL, hypertriglyceridemia and hyperglycemia. For haplogroup assignment, the mtDNA control region was sequenced in combination with an assessment of diagnostic markers in the coding region. NT1 patients displayed the same mtDNA haplogroups (H, HV, J, K, T, U) frequency as those reported in the general Italian population. The majority of NT1 patients (64%) were overweight: amongst these, 35% were obese, 48% had low HDL cholesterol levels, and 31% had hypertriglyceridemia. We identified an association between haplogroups J, K and hypertriglyceridemia (P=0.03, 61.5% and 61.5%, respectively vs. 31.3% of the whole sample) and after correction for age and sex, we observed a reduction of these associations (OR=3.65, 95%CI=0.76-17.5, p=0.106 and 1.73, 0.52-5.69, p=0.368, respectively). The low HDL level showed a trend for association with haplogroup J (P=0.09, 83.3% vs. 47.4% of the whole sample) and after correction we observed an OR=6.73, 95%CI=0.65-69.9, p=0.110. Our study provides the first indication that mtDNA haplogroups J and K can modulate metabolic features of NT1 patients, linking mtDNA variation to the dysmetabolic phenotype in NT1.
Collapse
|
5
|
Spector LG, Spellman SR, Thyagarajan B, Beckman KB, Hoffmann C, Garbe J, Hahn T, Sucheston-Campbell L, Richardson M, De For TE, Tolar J, Verneris MR. Neither Donor nor Recipient Mitochondrial Haplotypes Are Associated with Unrelated Donor Transplant Outcomes: A Validation Study from the CIBMTR. Transplant Cell Ther 2021; 27:836.e1-836.e7. [PMID: 34174468 DOI: 10.1016/j.jtct.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022]
Abstract
Graft-versus-host-disease (GVHD) is a multistep process that involves T-cell recognition and priming toward alloantigen, expansion, acquisition of effector function, and repeated tissue injury, resulting in clinical manifestations of the disease. All of these processes have considerable metabolic demands and understanding the key role of mitochondria in cellular metabolism as it relates to GVHD has increased significantly. Mitochondrial DNA (mtDNA) haplotypes have been linked to functional differences in vitro, suggesting they have functional differences at an organismal level. We previously used mtDNA typing to assess the impact of mtDNA haplotypes on outcomes of ~400 allo-HCT patients. This pilot study identified uncommon mtDNA haplotypes potentially associated with inferior outcomes. We sought to validate pilot findings of associations between donor and recipient mitochondrial haplotypes and transplant outcome. We examined a cohort of 4143 donor-recipient pairs obtained from the Center for International Blood and Marrow Transplant Research. MtDNA was extracted from whole blood or peripheral blood mononuclear cells from donors and recipients and sequenced to discern haplotype. We used multiple regression analysis to examine the independent association of mtDNA haplotype with overall survival and grade III-IV acute GVHD (aGVHD) adjusting for known risk factors for poor transplant outcome. Neither recipient nor donor mtDNA haplotype reached groupwise significance for overall survival (P =.26 and .39, respectively) or grade III-IV aGVHD (P = .68 and.57, respectively). Adjustment for genomically determined ancestry in the subset of donor-recipient pairs for which this was available did not materially change results. We conclude that our original finding was due to chance in a small sample size and that there is essentially no evidence that mtDNA haplotype or haplotype mismatch contributes to risk of serious outcomes after allogeneic transplantation.
Collapse
Affiliation(s)
- Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota.
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Milwaukee, Wisconsin
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota
| | - Cody Hoffmann
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota
| | - John Garbe
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota
| | - Theresa Hahn
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Michaela Richardson
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Todd E De For
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Michael R Verneris
- University of Colorado Denver, Children's Cancer and Blood Disorders, Denver, Colorado
| |
Collapse
|
6
|
Mazzaccara C, Mirra B, Barretta F, Caiazza M, Lombardo B, Scudiero O, Tinto N, Limongelli G, Frisso G. Molecular Epidemiology of Mitochondrial Cardiomyopathy: A Search Among Mitochondrial and Nuclear Genes. Int J Mol Sci 2021; 22:ijms22115742. [PMID: 34072184 PMCID: PMC8197938 DOI: 10.3390/ijms22115742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial Cardiomyopathy (MCM) is a common manifestation of multi-organ Mitochondrial Diseases (MDs), occasionally present in non-syndromic cases. Diagnosis of MCM is complex because of wide clinical and genetic heterogeneity and requires medical, laboratory, and neuroimaging investigations. Currently, the molecular screening for MCM is fundamental part of MDs management and allows achieving the definitive diagnosis. In this article, we review the current genetic knowledge associated with MDs, focusing on diagnosis of MCM and MDs showing cardiac involvement. We searched for publications on mitochondrial and nuclear genes involved in MCM, mainly focusing on genetic screening based on targeted gene panels for the molecular diagnosis of the MCM, by using Next Generation Sequencing. Here we report twelve case reports, four case-control studies, eleven retrospective studies, and two prospective studies, for a total of twenty-nine papers concerning the evaluation of cardiac manifestations in mitochondrial diseases. From the analysis of published causal mutations, we identified 130 genes to be associated with mitochondrial heart diseases. A large proportion of these genes (34.3%) encode for key proteins involved in the oxidative phosphorylation system (OXPHOS), either as directly OXPHOS subunits (22.8%), and as OXPHOS assembly factors (11.5%). Mutations in several mitochondrial tRNA genes have been also reported in multi-organ or isolated MCM (15.3%). This review highlights the main disease-genes, identified by extensive genetic analysis, which could be included as target genes in next generation panels for the molecular diagnosis of patients with clinical suspect of mitochondrial cardiomyopathies.
Collapse
Affiliation(s)
- Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
- Correspondence: ; Tel.: +39-0817-462-422
| | - Bruno Mirra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Martina Caiazza
- Monaldi Hospital, AO Colli, 80131 Naples, Italy; (M.C.); (G.L.)
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Giuseppe Limongelli
- Monaldi Hospital, AO Colli, 80131 Naples, Italy; (M.C.); (G.L.)
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| |
Collapse
|
7
|
González MDM, Santos C, Alarcón C, Ramos A, Cos M, Catalano G, Acebes JJ, Aluja MP. Mitochondrial DNA haplogroups J and T increase the risk of glioma. Mitochondrion 2021; 58:95-101. [PMID: 33675980 DOI: 10.1016/j.mito.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
The presence of different sets of mitochondrial polymorphisms generated by the accumulation of mutations in different maternal lineages has allowed differentiating mitochondrial haplogroups in human populations. These polymorphisms, in turn, may have effects at the phenotypic level, considering a possible contribution of these germinal mutations to the development of certain diseases such as cancer. The main goal of the present study is to establish a possible association between mitochondrial haplogroups and the risk of suffering glioma. Blood samples were obtained from 32 patients from Catalonia (Spain) diagnosed with different grades of glioma (II, III and IV), according to the World Health Organization. The mitochondrial genome was amplified and sequenced using MiSeq 2000 (Illumina). The HaploGrep tool implemented in mtDNA-Server v.1.0.5 was used for the identification of mitochondrial haplogroups. Data obtained in the present study was further pooled with data from previous European studies including glioma patients from Galicia (Spain) and Italy. Results for the Catalonian samples showed an association between individuals with haplogroup J and the increased risk of suffering glioma, with a significant increase of the frequency of individuals with this haplogroup (25%) regarding the general population (7%). Combining different sets of patients with European origin, it appears that individuals with haplogroups J and T have a significantly higher risk of suffering glioma (p < 0.001; OR: 2.407 and p = 0.007; OR: 1.82, respectively). This is the first study that establishes an association between different mitochondrial haplogroups and the risk of suffering glioma, highlighting the role of mitochondrial variants in this disease.
Collapse
Affiliation(s)
- María Del Mar González
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Carlos Alarcón
- Servicio de Neurocirugía, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain; Servicio de Neurocirugía, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Amanda Ramos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Mònica Cos
- Sección de Neurorradiología, Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Giulio Catalano
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Juan José Acebes
- Servicio de Neurocirugía, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Pilar Aluja
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| |
Collapse
|
8
|
Mitochondria: The Retina's Achilles' Heel in AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:237-264. [PMID: 33848005 DOI: 10.1007/978-3-030-66014-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Strong experimental evidence from studies in human donor retinas and animal models supports the idea that the retinal pathology associated with age-related macular degeneration (AMD) involves mitochondrial dysfunction and consequent altered retinal metabolism. This chapter provides a brief overview of mitochondrial structure and function, summarizes evidence for mitochondrial defects in AMD, and highlights the potential ramifications of these defects on retinal health and function. Discussion of mitochondrial haplogroups and their association with AMD brings to light how mitochondrial genetics can influence disease outcome. As one of the most metabolically active tissues in the human body, there is strong evidence that disruption in key metabolic pathways contributes to AMD pathology. The section on retinal metabolism reviews cell-specific metabolic differences and how the metabolic interdependence of each retinal cell type creates a unique ecosystem that is disrupted in the diseased retina. The final discussion includes strategies for therapeutic interventions that target key mitochondrial pathways as a treatment for AMD.
Collapse
|
9
|
Valentino RR, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Uitti RJ, Wszolek ZK, Dickson DW, Ross OA. Association of mitochondrial genomic background with risk of Multiple System Atrophy. Parkinsonism Relat Disord 2020; 81:200-204. [PMID: 33189969 DOI: 10.1016/j.parkreldis.2020.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Multiple system atrophy (MSA) is a rare, sporadic, and progressive neurodegenerative disease which is characterized neuropathologically by alpha-synuclein aggregates in oligodendroglia, and clinically by parkinsonism, ataxia, and autonomic dysfunction. Mitochondrial health influences neurodegeneration and defects in mitochondria, particularly in oxidative phosphorylation, are reported in MSA. Mitochondrial DNA (mtDNA) codes for 13 critical OXPHOS proteins, however no study has investigated if mtDNA variation, in the form of mitochondrial haplogroups, influences MSA risk. Therefore, in this study we investigated the association of mtDNA haplogroups with MSA risk in a case-control manner. METHODS 176 pathologically confirmed MSA cases and 910 neurologically healthy controls from Mayo Clinic Jacksonville were genotyped for 39 unique mtDNA variants using Agena Biosciences MassARRAY iPlex technology. Mitochondrial haplogroups were assigned to mitochondrial phylogeny, and logistic regression models that were adjusted for age and sex were used to assess associations between mitochondrial haplogroups and risk of MSA. RESULTS After adjusting for multiple testing (P<0.0019 considered significant), no mitochondrial haplogroups were significantly associated with MSA risk. However, several nominally significant (P<0.05) associations were observed; haplogroup I was associated with a decreased risk of MSA (OR=0.09, P=0.021), while an increased risk of MSA was observed for haplogroups H3 (OR=2.43, P=0.017) and T1 and T2 (OR=2.04, P=0.007). CONCLUSION This study investigated whether population-specific mtDNA variation is associated with risk of MSA, and our nominally significant findings suggest mitochondrial haplogroup background may influence MSA risk. Validation of these findings and additional meta-analytic studies will be important.
Collapse
Affiliation(s)
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA.
| |
Collapse
|
10
|
Blanco FJ, Rego-Pérez I. Mitochondrial DNA in osteoarthritis disease. Clin Rheumatol 2020; 39:3255-3259. [DOI: 10.1007/s10067-020-05406-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/01/2022]
|
11
|
Ischemic Stroke Risk Associated with Mitochondrial Haplogroup F in the Asian Population. Cells 2020; 9:cells9081885. [PMID: 32796743 PMCID: PMC7463505 DOI: 10.3390/cells9081885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dysfunction is involved in the pathogenesis of atherosclerosis, the primary risk factor for ischemic stroke. This study aims to explore the role of mitochondrial genomic variations in ischemic stroke, and to uncover the nuclear genes involved in this relationship. Eight hundred and thirty Taiwanese patients with a history of ischemic stroke and 966 normal controls were genotyped for their mitochondrial haplogroup (Mthapg). Cytoplasmic hybrid cells (cybrids) harboring different Mthapgs were used to observe functional differences under hypoxia-ischemia. RNA sequencing (RNASeq) was conducted to identify the particularly elevated mRNA. The patient study identified an association between Mthapg F1 and risk of ischemic stroke (OR 1.72:1.27-2.34, p = 0.001). The cellular study further demonstrated an impeded induction of hypoxic inducible factor 1α in the Mthapg F1 cybrid after hypoxia-ischemia. Additionally, the study demonstrated that Mthapg F cybrids were associated with an altered mitochondrial function, including decreased oxygen consumption, higher mitochondrial ROS production, and lower mitochondrial membrane potential. Mthapg F cybrids were also noted to be prone to inflammation, with increased expression of several inflammatory cytokines and elevated matrix metalloproteinase 9. The RNASeq identified significantly elevated expressions of angiopoietin-like 4 in Mthapg F1 cybrids after hypoxia-ischemia. Our study demonstrates an association between Mthapg F and susceptibility to ischemic stroke.
Collapse
|
12
|
Andrews SJ, Fulton-Howard B, Patterson C, McFall GP, Gross A, Michaelis EK, Goate A, Swerdlow RH, Pa J. Mitonuclear interactions influence Alzheimer's disease risk. Neurobiol Aging 2020; 87:138.e7-138.e14. [PMID: 31784277 PMCID: PMC7205324 DOI: 10.1016/j.neurobiolaging.2019.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
We examined the associations between mitochondrial DNA haplogroups (MT-hgs; mitochondrial haplotype groups defined by a specific combination of single nucleotide polymorphisms labeled as letters running from A to Z) and their interactions with a polygenic risk score composed of nuclear-encoded mitochondrial genes (nMT-PRS) with risk of dementia and age of onset (AOO) of dementia. MT-hg K (Odds ratio [OR]: 2.03 [95% CI: 1.04, 3.97]) and a 1 SD larger nMT-PRS (OR: 2.2 [95% CI: 1.68, 2.86]) were associated with elevated odds of dementia. Significant antagonistic interactions between the nMT-PRS and MT-hg K (OR: 0.45 [95% CI: 0.22, 0.9]) and MT-hg T (OR: 0.22 [95% CI: 0.1, 0.49]) were observed. Individual MT-hgs were not associated with AOO; however, a significant antagonistic interactions was observed between the nMT-PRS and MT-hg T (Hazard ratio: 0.62 [95% CI: 0.42, 0.91]) and a synergistic interaction between the nMT-PRS and MT-hg V (Hazard ratio: 2.28 [95% CI: 1.19, 4.35]). These results suggest that MT-hgs influence dementia risk and that variants in the nuclear and mitochondrial genome interact to influence the AOO of dementia.
Collapse
Affiliation(s)
- Shea J Andrews
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fulton-Howard
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Patterson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - G Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Alden Gross
- Department of Epidemiology, JHSPH Center on Aging and Health, Baltimore, MD, USA
| | - Elias K Michaelis
- Higuchi Biosciences Center and Alzheimer's Disease Center, University of Kansas, Lawrence, KS, USA
| | - Alison Goate
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell H Swerdlow
- Department of Neurology, Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, USA
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Dolinko AH, Chwa M, Atilano SR, Kenney MC. African and Asian Mitochondrial DNA Haplogroups Confer Resistance Against Diabetic Stresses on Retinal Pigment Epithelial Cybrid Cells In Vitro. Mol Neurobiol 2020; 57:1636-1655. [PMID: 31811564 PMCID: PMC7123578 DOI: 10.1007/s12035-019-01834-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023]
Abstract
Diabetic retinopathy (DR) is the most common cause of blindness for individuals under the age of 65. This loss of vision can be due to ischemia, neovascularization, and/or diabetic macular edema, which are caused by breakdown of the blood-retina barrier at the level of the retinal pigment epithelium (RPE) and inner retinal vasculature. The prevalence of diabetes and its complications differ between Caucasian-Americans and certain minority populations, such as African-Americans and Asian-Americans. Individuals can be classified by their mitochondrial haplogroups, which are collections of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) representing ancient geographic origins of populations. In this study, we compared the responses of diabetic human RPE cybrids, cell lines containing identical nuclei but mitochondria from either European (maternal European) or maternal African or Asian individuals, to hypoxia and high glucose levels. The African and Asian diabetic ([Afr+Asi]/DM) cybrids showed (1) resistance to both hyperglycemic and hypoxic stresses; (2) downregulation of pro-apoptotic indicator BAX; (3) upregulation of DNA methylation genes, such as DNMT3A and DNMT3B; and (4) resistance to DNA demethylation by the methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) compared to European diabetic (Euro/DM) cybrids. Our findings suggest that mitochondria from African and Asian diabetic subjects possess a "metabolic memory" that confers resistance against hyperglycemia, hypoxia, and demethylation, and that this "metabolic memory" can be transferred into the RPE cybrid cell lines in vitro.
Collapse
Affiliation(s)
- Andrew H Dolinko
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Ophthalmology Research, Gavin Herbert Eye Institute, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Road, Irvine, CA, 92697, USA
| | - Marilyn Chwa
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Shari R Atilano
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M Cristina Kenney
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Ophthalmology Research, Gavin Herbert Eye Institute, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Road, Irvine, CA, 92697, USA.
| |
Collapse
|
14
|
The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 2020; 114:104412. [PMID: 32113905 DOI: 10.1016/j.yexmp.2020.104412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Coronary heart disease (CHD) is the major cause of death in modern society. CHD is characterized by atherosclerosis, which could lead to vascular cavity stenosis or obstruction, resulting in ischemic cardiac conditions such as angina and myocardial infarction. In terms of the mitochondrion, the main function is to produce adenosine triphosphate (ATP) for cells. And the alterations (including mutations, altered copy number and haplogroups) of mitochondrial DNA (mtDNA) are associated with the abnormal expression of oxidative phosphorylation (OXPHOS) system, resulting in mitochondrial dysfunction, then leading to perturbation on the electron transport chain and increased ROS generation and reduction in ATP level, contributing to ATP-producing disorders and oxidative stress, which may further accelerate development or vulnerability of atherosclerosis and myocardial ischemic injury. Therefore, the mtDNA defects may play an important role in making an early diagnosis, identifying disease-specific biomarkers and therapeutic targets, and predicting outcomes for patients with atherosclerosis and CHD. In this review, we aim to summarize the contribution of mtDNA mutations, altered mtDNA copy number and mtDNA haplogroups on the occurrence and development of CHD.
Collapse
|
15
|
Environmental factors modulated ancient mitochondrial DNA variability and the prevalence of rheumatic diseases in the Basque Country. Sci Rep 2019; 9:20380. [PMID: 31892727 PMCID: PMC6938509 DOI: 10.1038/s41598-019-56921-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
Among the factors that would explain the distribution of mitochondrial lineages in Europe, climate and diseases may have played an important role. A possible explanation lies in the nature of the mitochondrion, in which the energy generation process produces reactive oxygen species that may influence the development of different diseases. The present study is focused on the medieval necropolis of San Miguel de Ereñozar (13th-16th centuries, Basque Country), whose inhabitants presented a high prevalence of rheumatic diseases and lived during the Little Ice Age (LIA). Our results indicate a close relationship between rheumatic diseases and mitochondrial haplogroup H, and specifically between spondyloarthropathies and sub-haplogroup H2. One possible explanation may be the climate change that took place in the LIA that favoured those haplogroups that were more energy-efficient, such as haplogroup H, to endure lower temperatures and food shortage. However, it had a biological trade-off: the increased risk of developing rheumatic diseases.
Collapse
|
16
|
Barshad G, Zlotnikov-Poznianski N, Gal L, Schuldiner M, Mishmar D. Disease-causing mutations in subunits of OXPHOS complex I affect certain physical interactions. Sci Rep 2019; 9:9987. [PMID: 31292494 PMCID: PMC6620328 DOI: 10.1038/s41598-019-46446-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial complex I (CI) is the largest multi-subunit oxidative phosphorylation (OXPHOS) protein complex. Recent availability of a high-resolution human CI structure, and from two non-human mammals, enabled predicting the impact of mutations on interactions involving each of the 44 CI subunits. However, experimentally assessing the impact of the predicted interactions requires an easy and high-throughput method. Here, we created such a platform by cloning all 37 nuclear DNA (nDNA) and 7 mitochondrial DNA (mtDNA)-encoded human CI subunits into yeast expression vectors to serve as both 'prey' and 'bait' in the split murine dihydrofolate reductase (mDHFR) protein complementation assay (PCA). We first demonstrated the capacity of this approach and then used it to examine reported pathological OXPHOS CI mutations that occur at subunit interaction interfaces. Our results indicate that a pathological frame-shift mutation in the MT-ND2 gene, causing the replacement of 126 C-terminal residues by a stretch of only 30 amino acids, resulted in loss of specificity in ND2-based interactions involving these residues. Hence, the split mDHFR PCA is a powerful assay for assessing the impact of disease-causing mutations on pairwise protein-protein interactions in the context of a large protein complex, thus offering a possible mechanistic explanation for the underlying pathogenicity.
Collapse
Affiliation(s)
- Gilad Barshad
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
17
|
Is mitochondrial DNA profiling predictive for athletic performance? Mitochondrion 2019; 47:125-138. [PMID: 31228565 DOI: 10.1016/j.mito.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA encodes some proteins of the oxidative phosphorylation enzymatic complex, playing an important role in aerobic ATP production; therefore, it can contribute to the ability to respond to endurance exercise training. The accumulation of mitochondrial mutations and the migratory processes of populations have given a great contribution to the development of haplogroups with a different distribution in the world. Several studies have shown the important role of gene polymorphisms in aerobic performance. In this review, some mitochondrial haplogroups and multiple rare alleles were taken into consideration and could be linked to the athlete's physical performance of different ethnic groups.
Collapse
|
18
|
Wu XL, Xu J, Li H, Ferretti R, He J, Qiu J, Xiao Q, Simpson B, Michell T, Kachman SD, Tait RG, Bauck S. Evaluation of genotyping concordance for commercial bovine SNP arrays using quality-assurance samples. Anim Genet 2019; 50:367-371. [PMID: 31172566 DOI: 10.1111/age.12800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2019] [Indexed: 11/29/2022]
Abstract
SNP arrays are widely used in genetic research and agricultural genomics applications, and the quality of SNP genotyping data is of paramount importance. In the present study, SNP genotyping concordance and discordance were evaluated for commercial bovine SNP arrays based on two types of quality assurance (QA) samples provided by Neogen GeneSeek. The genotyping discordance rates (GDRs) between chips were on average between 0.06% and 0.37% based on the QA type I data and between 0.05% and 0.15% based on the QA type II data. The average genotyping error rate (GER) pertaining to single SNP chips, based on the QA type II data, varied between 0.02% and 0.08% per SNP and between 0.01% and 0.06% per sample. These results indicate that genotyping concordance rate was high (i.e. from 99.63% to 99.99%). Nevertheless, mitochondrial and Y chromosome SNPs had considerably elevated GDRs and GERs compared to the SNPs on the 29 autosomes and X chromosome. The majority of genotyping errors resulted from single allotyping errors, which also included the opposite instances for allele 'dropout' (i.e. from AB to AA or BB). Simultaneous allotyping errors on both alleles (e.g. mistaking AA for BB or vice versa) were relatively rare. Finally, a list of SNPs with a GER greater than 1% is provided. Interpretation of association effects of these SNPs, for example in genome-wide association studies, needs to be taken with caution. The genotyping concordance information needs to be considered in the optimal design of future bovine SNP arrays.
Collapse
Affiliation(s)
- X-L Wu
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE, 68504, USA.,Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - J Xu
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE, 68504, USA.,Department of Statistics, University of Nebraska, Lincoln, NE, 68583, USA
| | - H Li
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE, 68504, USA.,Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - R Ferretti
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - J He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - J Qiu
- Quality Assurance, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - Q Xiao
- Quality Assurance, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - B Simpson
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - T Michell
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - S D Kachman
- Department of Statistics, University of Nebraska, Lincoln, NE, 68583, USA
| | - R G Tait
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - S Bauck
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| |
Collapse
|
19
|
Zhao D, Ding Y, Lin H, Chen X, Shen W, Gao M, Wei Q, Zhou S, Liu X, He N. Mitochondrial Haplogroups N9 and G Are Associated with Metabolic Syndrome Among Human Immunodeficiency Virus-Infected Patients in China. AIDS Res Hum Retroviruses 2019; 35:536-543. [PMID: 30950284 DOI: 10.1089/aid.2018.0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Increasing evidence shows that mitochondrial DNA (mtDNA) variations have an important effect on metabolic disorders, but such studies have not been conducted in HIV-infected patients in Asia. We investigated the distribution of mtDNA haplogroups and their correlation with metabolic disorders in HIV-infected patients. A cross-sectional survey was performed among 296 HIV patients older than the age of 40 years in a rural prefecture, Eastern China. The entire mtDNA sequence was amplified by polymerase chain reaction using four overlapping pairs of primers that have been standardly used. In this sample, mtDNA haplogroups B, D, M7, and F were the most dominant haplogroups. The overall prevalence of metabolic syndrome (MetS) was 36.1%, and was highest (77.8%) among those with haplogroup G and lowest (21.4%) among those with haplogroup M8. In multivariable analysis, haplogroups G and N9 were significantly associated with the presence of MetS [adjusted odds ratio (aOR) = 13.5, 95% confidence interval (CI): 1.9-94.7; aOR = 8.1, 95% CI: 1.8-36.1; respectively]. Moreover, patients with haplogroup G had increased odds of elevated glycated hemoglobin (HbA1c) (aOR = 10.1, 95% CI: 1.4-71.1), patients with haplogroup N9 had increased odds of elevated triglycerides (aOR = 13.5, 95% CI: 2.4-76.8). No significant association between mtDNA haplogroups and other MetS components was observed. Our data demonstrate the association between mtDNA haplogroups and MetS in HIV-infected patients. The Asian-specific mtDNA haplogroups G and N9 may confer higher risk for the development of MetS in HIV-infected patients, which requires further longitudinal investigation.
Collapse
Affiliation(s)
- Dan Zhao
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technology Assessment of Ministry of Health, Fudan University, Shanghai, China
| | - Yingying Ding
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Haijiang Lin
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Xiaoxiao Chen
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Meiyang Gao
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Qian Wei
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Sujuan Zhou
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Xing Liu
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Na He
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technology Assessment of Ministry of Health, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Mitochondrial haplogroups are not associated with diabetic retinopathy in a large Australian and British Caucasian sample. Sci Rep 2019; 9:612. [PMID: 30679766 PMCID: PMC6345891 DOI: 10.1038/s41598-018-37388-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial haplogroups H1, H2 and UK have previously been reported to be associated with proliferative diabetic retinopathy (PDR) in Caucasian patients with diabetes. We aimed to replicate this finding with a larger sample and expand the analysis to include different severities of DR, and diabetic macular edema (DME). Caucasian participants (n = 2935) with either type 1 or type 2 diabetes from the Australian Registry of Advanced Diabetic Retinopathy were enrolled in this study. Twenty-two mitochondrial single nucleotide polymorphisms were genotyped by MassArray and haplogroups reconstructed using Haplogrep. Chi square tests and logistic regressions were used to test associations between haplogroup and DR phenotypes including any DR, non-proliferative DR (NPDR), proliferative DR (PDR) and DME. After stratifying the samples in type 1 and type 2 diabetes groups, and adjusting for sex, age, diabetes duration, concurrent HbA1c and hypertension, neither haplogroups H1, H2, UK, K or JT were associated with any DR, NPDR, PDR or DME.
Collapse
|
21
|
Chinnery PF, Gomez-Duran A. Oldies but Goldies mtDNA Population Variants and Neurodegenerative Diseases. Front Neurosci 2018; 12:682. [PMID: 30369864 PMCID: PMC6194173 DOI: 10.3389/fnins.2018.00682] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
mtDNA is transmitted through the maternal line and its sequence variability, which is population specific, is assumed to be phenotypically neutral. However, several studies have shown associations between the variants defining some genetic backgrounds and the susceptibility to several pathogenic phenotypes, including neurodegenerative diseases. Many of these studies have found that some of these variants impact many of these phenotypes, including the ones defining the Caucasian haplogroups H, J, and Uk, while others, such as the ones defining the T haplogroup, have phenotype specific associations. In this review, we will focus on those that have shown a pleiotropic effect in population studies in neurological diseases. We will also explore their bioenergetic and genomic characteristics in order to provide an insight into the role of these variants in disease. Given the importance of mitochondrial population variants in neurodegenerative diseases a deeper analysis of their effects might unravel new mechanisms of disease and help design new strategies for successful treatments.
Collapse
Affiliation(s)
- Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Medical Research Council-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Medical Research Council-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
22
|
Jiménez-Morales S, Pérez-Amado CJ, Langley E, Hidalgo-Miranda A. Overview of mitochondrial germline variants and mutations in human disease: Focus on breast cancer (Review). Int J Oncol 2018; 53:923-936. [PMID: 30015870 DOI: 10.3892/ijo.2018.4468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
High lactate production in cells during growth under oxygen-rich conditions (aerobic glycolysis) is a hallmark of tumor cells, indicating the role of mitochondrial function in tumorigenesis. In fact, enhanced mitochondrial biogenesis and impaired quality control are frequently observed in cancer cells. Mitochondrial DNA (mtDNA) encodes 13 subunits of oxidative phosphorylation (OXPHOS), is present in thousands of copies per cell, and has a very high mutation rate. Mutations in mtDNA and nuclear DNA (nDNA) genes encoding proteins that are important players in mitochondrial biogenesis and function are involved in oncogenic processes. A wide range of germline mtDNA polymorphisms, as well as tumor mtDNA somatic mutations have been identified in diverse cancer types. Approximately 72% of supposed tumor-specific somatic mtDNA mutations reported, have also been found as polymorphisms in the general population. The ATPase 6 and NADH dehydrogenase subunit genes of mtDNA are the most commonly mutated genes in breast cancer (BC). Furthermore, nuclear genes playing a role in mitochondrial biogenesis and function, such as peroxisome proliferators-activated receptor gamma coactivator-1 (PGC-1), fumarate hydratase (FH) and succinate dehydrogenase (SDH) are frequently mutated in cancer. In this review, we provide an overview of the mitochondrial germline variants and mutations in cancer, with particular focus on those found in BC.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| | - Carlos J Pérez-Amado
- Biochemistry Sciences Program, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Elizabeth Langley
- Department of Basic Research, National Cancer Institute, 14080 Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| |
Collapse
|
23
|
Cybrid Models of Pathological Cell Processes in Different Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4647214. [PMID: 29983856 PMCID: PMC6015674 DOI: 10.1155/2018/4647214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 05/02/2018] [Indexed: 11/22/2022]
Abstract
Modelling of pathological processes in cells is one of the most sought-after technologies of the 21st century. Using models of such processes may help to study the pathogenetic mechanisms of various diseases. The aim of the present study was to analyse the literature, dedicated to obtaining and investigating cybrid models. Besides, the possibility of modeling pathological processes in cells and treatment of different diseases using the models was evaluated. Methods of obtaining Rho0 cell cultures showed that, during their creation, mainly a standard technique, based on the use of mtDNA replication inhibitors (ethidium bromide), was applied. Cybrid lines were usually obtained by PEG fusion. Most frequently, platelets acted as donors of mitochondria. According to the analysis of the literature data, cybrid cell cultures can be modeled to study the dysfunction of the mitochondrial genome and molecular cellular pathological processes. Such models can be very promising for the development of therapeutic approaches to the treatment of various human diseases.
Collapse
|
24
|
Duhn PH, Sode J, Hagen CM, Christiansen M, Locht H. Mitochondrial haplogroups in patients with rheumatoid arthritis: No association with disease and disease manifestations. PLoS One 2017; 12:e0188492. [PMID: 29261674 PMCID: PMC5737896 DOI: 10.1371/journal.pone.0188492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To describe the distribution of specific mitochondrial DNA (mtDNA) haplogroups (hgs) in a cohort of patients with rheumatoid arthritis (RA). METHODS Two-hundred nineteen consecutive patients with RA had mtDNA isolated from their blood, sequenced and haplotyped. Patients were diagnosed according to the American College of Rheumatology (ACR)/European league against Rheumatism (EULAR) criteria. Demographic and clinical data were retrieved from the Danish nationwide database (DANBIO). Logistic regression analyses were performed to test for associations. RESULTS One-hundred eighty-four patients were eligible for analysis. Haplogroup frequencies were: H (n = 88; 47.8%), U (n = 37; 20.1%), T (n = 22; 12.0%), J (n = 16; 8.7%), K (n = 11; 5.9%), HV (n = 6; 3.3%) and V (n = 4; 2.2%). The distribution of individual hgs was identical to the background population. Radiographic erosions were significantly associated with hg clusters JT (OR = 2.37, 95% confidence interval (CI): 1.07-5.53, p = 0.038). Significantly fewer patients from hg cluster JT received biological treatment (OR = 0.17, 95% CI: 0.03-0.87, p = 0.038). Albeit, none of these associations were significant when corrected for multiple tests. CONCLUSION There was no significant association between mtDNA hgs and presence of RA or disease manifestations. There was an, albeit insignificant, overrepresentation of patients with hg JT among patients with erosive disease; however, slightly fewer patients in the JT group were treated with biological drugs.
Collapse
Affiliation(s)
- Pernille Hurup Duhn
- Department of Rheumatology Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg, Denmark
- * E-mail:
| | - Jacob Sode
- Department of Rheumatology Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg, Denmark
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
- Institute of Regional Health Research, Center Sønderjylland, University of Southern Denmark, Campusvej, Odense M, Denmark
| | - Christian Munch Hagen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
- Department of Biomedical Sciences, Faculty of Health and Life Science, University of Copenhagen, Blegdamsvej, Copenhagen N, Denmark
| | - Henning Locht
- Department of Rheumatology Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg, Denmark
| |
Collapse
|
25
|
Bregman JA, Herren DJ, Estopinal CB, Chocron IM, Harlow PA, Warden C, Brantley MA, Samuels DC. Mitochondrial Haplogroups Affect Severity But Not Prevalence of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 58:1346-1351. [PMID: 28245487 PMCID: PMC5341621 DOI: 10.1167/iovs.16-20616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose We previously reported European mitochondrial haplogroup H to be a risk factor for and haplogroup UK to be protective against proliferative diabetic retinopathy (PDR) among Caucasian patients with diabetic retinopathy (DR). The purpose of this study was to determine whether these haplogroups are also associated with the risk of having DR among Caucasian patients with diabetes. Methods Deidentified medical records for 637 Caucasian patients with diabetes (223 with DR) were obtained from BioVU, Vanderbilt University's electronic, deidentified DNA databank. An additional 197 Caucasian patients with diabetes (98 with DR) were enrolled from the Vanderbilt Eye Institute (VEI). We tested for an association between European mitochondrial haplogroups and DR status. Results The percentage of diabetes patients with DR did not differ across the haplogroups (P = 0.32). The percentage of patients with nonproliferative DR (NPDR; P = 0.0084) and with PDR (P = 0.027) significantly differed across the haplogroups. In logistic regressions adjusting for sex, age, diabetes type, duration of diabetes, and hemoglobin A1c, neither haplogroup H nor haplogroup UK had a significant effect on DR compared with diabetic controls. Haplogroup UK was a significant risk factor (OR = 1.72 [1.13–2.59], P = 0.010) for NPDR compared with diabetic controls in the unadjusted analysis, but not in the adjusted analysis (OR = 1.29 [0.79–2.10], P = 0.20). Conclusions Mitochondrial haplogroups H and UK were associated with severity, but not presence, of DR. These data argue that the effect of these haplogroups is related to ischemia and neovascularization, the defining features of PDR.
Collapse
Affiliation(s)
- Jana A Bregman
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David J Herren
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher B Estopinal
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Isaac M Chocron
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Paula A Harlow
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Cassandra Warden
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David C Samuels
- Vanderbilt Genetics Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
26
|
Samuels DC, Kallianpur AR, Ellis RJ, Bush WS, Letendre S, Franklin D, Grant I, Hulgan T. European Mitochondrial DNA Haplogroups are Associated with Cerebrospinal Fluid Biomarkers of Inflammation in HIV Infection. Pathog Immun 2017; 1:330-351. [PMID: 28317034 PMCID: PMC5351881 DOI: 10.20411/pai.v1i2.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Mitochondrial DNA (mtDNA) haplogroups are ancestry-related patterns of single-nucleotide polymorphisms that are associated with differential mitochondrial function in model systems, neurodegenerative diseases in HIV-negative populations, and chronic complications of HIV infection, including neurocognitive impairment. We hypothesized that mtDNA haplogroups are associated with neuroinflammation in HIV-infected adults. Methods: CNS HIV Antiretroviral Therapy Effects Research (CHARTER) is a US-based observational study of HIV-infected adults who underwent standardized neurocognitive assessments. Participants who consented to DNA collection underwent whole blood mtDNA sequencing, and a subset also underwent lumbar puncture. IL-6, IL-8, TNF-α (high-sensitivity), and IP-10 were measured in cerebrospinal fluid (CSF) by immunoassay. Multivariable regression of mtDNA haplogroups and log-transformed CSF biomarkers were stratified by genetic ancestry using whole-genome nuclear DNA genotyping (European [EA], African [AA], or Hispanic ancestry [HA]), and adjusted for age, sex, antiretroviral therapy (ART), detectable CSF HIV RNA, and CD4 nadir. A total of 384 participants had both CSF cytokine measures and genetic data (45% EA, 44% AA, 11% HA, 22% female, median age 43 years, 74% on ART). Results: In analyses stratified by the 3 continental ancestry groups, no haplogroups were significantly associated with the 4 biomarkers. In the subgroup of participants with undetectable plasma HIV RNA on ART, European haplogroup H participants had significantly lower CSF TNF-α (P = 0.001). Conclusions: Lower CSF TNF-α may indicate lower neuroinflammation in the haplogroup H participants with well-controlled HIV on ART.
Collapse
Affiliation(s)
- David C Samuels
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Asha R Kallianpur
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | | | | | | | | | - Igor Grant
- University of California San Diego, San Diego, CA
| | - Todd Hulgan
- Infectious Diseases, Vanderbilt University, Nashville, TN
| |
Collapse
|
27
|
Fernández-Moreno M, Soto-Hermida A, Vázquez-Mosquera ME, Cortés-Pereira E, Pértega S, Relaño S, Oreiro-Villar N, Fernández-López C, Blanco FJ, Rego-Pérez I. A replication study and meta-analysis of mitochondrial DNA variants in the radiographic progression of knee osteoarthritis. Rheumatology (Oxford) 2016; 56:263-270. [PMID: 27864563 DOI: 10.1093/rheumatology/kew394] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/03/2016] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To conduct a replication study and meta-analysis involving the study of mtDNA variants in the radiographic progression of OA in different cohorts worldwide, including Cohort Hip and Cohort Knee (CHECK), the OA Initiative and a cohort from Spain. METHODS The influence of the haplogroups in the rate of radiographic progression at 96 months in 431 subjects from CHECK was assessed in terms of Kellgren and Lawrence (KL) grade. Progression was defined as a change from KL ⩾ 1 at baseline to any higher grade during the follow-up. Extended Cox proportional hazard models were used to analyse the influence of mtDNA variants in the rate of radiographic knee OA progression. A subsequent meta-analysis of 1603 subjects following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted to combine the data of individual studies. A sensitivity analysis was performed to validate the stability of the results. RESULTS CHECK subjects carrying the haplogroup T showed the lowest rate of radiographic knee OA progression [hazard ratio (HR) 0.645 (95% CI 0.419, 0.978); P < 0.05]. When pooled, subjects within the superhaplogroup JT showed the same trend [HR 0.707 (95% CI 0.501, 0.965); P < 0.05]. BMI [HR 1.046 (95% CI 1.018, 1.073); P < 0.05] and bilateral OA [HR 2.266 (95% CI 1.733, 2.954); P < 0.05] at baseline are risk factors for radiographic knee OA progression as well. In the meta-analysis there was a reduced rate of radiographic progression in subjects with haplogroup T [HR 0.612 (95% CI 0.454, 0.824); P = 0.001] or in the superhaplogroup JT [HR 0.765 (95% CI 0.624, 0.938); P = 0.009]. Sensitivity analysis revealed that the results were robust. CONCLUSION The mtDNA variants in the superhaplogroup JT associate with a reduced rate of radiographic OA progression. The mtDNA polymorphisms in the superhaplogroup JT emerge as potential complementary genetic biomarkers for disease progression.
Collapse
Affiliation(s)
- Mercedes Fernández-Moreno
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias.,CIBER-BBN Instituto de Salud Carlos III, INIBIC-CHUAC
| | - Angel Soto-Hermida
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias
| | - María E Vázquez-Mosquera
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias
| | - Estefanía Cortés-Pereira
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias
| | | | - Sara Relaño
- Plataforma de Genómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, A Coruña, 15006, España, Spain
| | - Natividad Oreiro-Villar
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias
| | - Carlos Fernández-López
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias
| | - Francisco J Blanco
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias
| | - Ignacio Rego-Pérez
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias
| |
Collapse
|
28
|
Siegismund CS, Schäfer I, Seibel P, Kühl U, Schultheiss HP, Lassner D. Mitochondrial haplogroups and expression studies of commonly used human cell lines. Mitochondrion 2016; 30:236-47. [PMID: 27562426 DOI: 10.1016/j.mito.2016.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/29/2016] [Accepted: 08/19/2016] [Indexed: 02/02/2023]
Abstract
We developed a multiplex fragment length analysis (MFLA) for clearly assigning mitochondrial haplogroups mostly endemic in Europe for future cardiac diagnostics. As a technical proof, 23 commonly used human cell lines were haplotyped as reference standards. The functional analysis on mtDNA copies per cell revealed no correlation to haplogroups but a relatively high rate of mitochondria per cell and at the same time a very low expression of all mitochondrial and some nuclear encoded mitochondrial related genes. Established MFLA is an easy to handle method for analysing European mitochondrial haplogroups to perform epidemic studies and elucidate correlations to distinct diseases.
Collapse
Affiliation(s)
| | - Ingo Schäfer
- University of Leipzig, Centre for Biotechnology and Biomedicine (BBZ), Molecular Cell Therapy, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Peter Seibel
- University of Leipzig, Centre for Biotechnology and Biomedicine (BBZ), Molecular Cell Therapy, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Uwe Kühl
- Institute for Cardiac Diagnostics and Therapy (IKDT), Moltkestr. 31, D-12203 Berlin, Germany; Department of Cardiology, Campus Virchow, Charité - University Hospital Berlin, Augustenburger Platz 1, D-13353, Germany
| | - Heinz-Peter Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Moltkestr. 31, D-12203 Berlin, Germany
| | - Dirk Lassner
- Institute for Cardiac Diagnostics and Therapy (IKDT), Moltkestr. 31, D-12203 Berlin, Germany
| |
Collapse
|
29
|
Poynter JN, Richardson M, Langer E, Hooten AJ, Roesler M, Hirsch B, Nguyen PL, Cioc A, Warlick E, Ross JA. Association between mitochondrial DNA haplogroup and myelodysplastic syndromes. Genes Chromosomes Cancer 2016; 55:688-93. [PMID: 27121678 DOI: 10.1002/gcc.22370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 11/06/2022] Open
Abstract
Polymorphisms in mitochondrial DNA (mtDNA) are used to group individuals into haplogroups reflecting human global migration and are associated with multiple diseases, including cancer. Here, we evaluate the association between mtDNA haplogroup and risk of myelodysplastic syndromes (MDS). Cases were identified by the Minnesota Cancer Surveillance System. Controls were identified through the Minnesota State driver's license/identification card list. Because haplogroup frequencies vary by race and ethnicity, we restricted analyses to non-Hispanic whites. We genotyped 15 mtSNPs that capture common European mitochondrial haplogroup variation. We used SAS v.9.3 (SAS Institute, Cary, NC) to calculate odds ratios (OR) and 95% confidence intervals (CI) overall and stratified by MDS subtype and IPSS-R risk category. We were able to classify 215 cases with confirmed MDS and 522 controls into one of the 11 common European haplogroups. Due to small sample sizes in some subgroups, we combined mt haplogroups into larger bins based on the haplogroup evolutionary tree, including HV (H + V), JT (J + T), IWX (I + W + X), UK (U + K), and Z for comparisons of cases and controls. Using haplogroup HV as the reference group, we found a statistically significant association between haplogroup JT and MDS (OR = 0.58, 95% CI 0.36, 0.92, P = 0.02). No statistically significant heterogeneity was observed in subgroup analyses. In this population-based study of MDS, we observed an association between mtDNA haplogroup JT and risk of MDS. While previously published studies provide biological plausibility for the observed association, further studies of the relationship between mtDNA variation and MDS are warranted in larger sample sizes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jenny N Poynter
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michaela Richardson
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Erica Langer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Anthony J Hooten
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michelle Roesler
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Betsy Hirsch
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Phuong L Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Adina Cioc
- VA Medical Center, Minneapolis, Minnesota
| | - Erica Warlick
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Julie A Ross
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
30
|
Thaker K, Chwa M, Atilano SR, Coskun P, Cáceres-Del-Carpio J, Udar N, Boyer DS, Jazwinski SM, Miceli MV, Nesburn AB, Kuppermann BD, Kenney MC. Increased expression of ApoE and protection from amyloid-beta toxicity in transmitochondrial cybrids with haplogroup K mtDNA. Neurobiol Dis 2016; 93:64-77. [PMID: 27109188 DOI: 10.1016/j.nbd.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial (mt) DNA haplogroups, defined by specific single nucleotide polymorphism (SNP) patterns, represent populations of diverse geographic origins and have been associated with increased risk or protection of many diseases. The H haplogroup is the most common European haplogroup while the K haplogroup is highly associated with the Ashkenazi Jewish population. Transmitochondrial cybrids (cell lines with identical nuclei, but mtDNA from either H (n=8) or K (n=8) subjects) were analyzed by the Seahorse flux analyzer, quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC). Cybrids were treated with amyloid-β peptides and cell viabilities were measured. Other cybrids were demethylated with 5-aza-2'-deoxycytidine (5-aza-dC) and expression levels for APOE and NFkB2 were measured. Results show K cybrids have (a) significantly lower mtDNA copy numbers, (b) higher expression levels for MT-DNA encoded genes critical for oxidative phosphorylation, (c) lower Spare Respiratory Capacity, (d) increased expression of inhibitors of the complement pathway and important inflammasome-related genes; and (e) significantly higher levels of APOE transcription that were independent of methylation status. After exposure to amyloid-β1-42 peptides (active form), H haplogroup cybrids demonstrated decreased cell viability compared to those treated with amyloid-β42-1 (inactive form) (p<0.0001), while this was not observed in the K cybrids (p=0.2). K cybrids had significantly higher total global methylation levels and differences in expression levels for two acetylation genes and four methylation genes. Demethylation with 5-aza-dC altered expression levels for NFkB2, while APOE transcription patterns were unchanged. Our findings support the hypothesis that mtDNA-nuclear retrograde signaling may mediate expression levels of APOE, a key factor in many age-related diseases. Future studies will focus on identification of the mitochondrial-nuclear retrograde signaling mechanism(s) contributing to these mtDNA-mediated differences.
Collapse
Affiliation(s)
- Kunal Thaker
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Shari R Atilano
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Pinar Coskun
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| | | | - Nitin Udar
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA, United States
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Michael V Miceli
- Tulane Center for Aging and Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Anthony B Nesburn
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Baruch D Kuppermann
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, United States.
| |
Collapse
|
31
|
Billing-Ross P, Germain A, Ye K, Keinan A, Gu Z, Hanson MR. Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med 2016; 14:19. [PMID: 26791940 PMCID: PMC4719218 DOI: 10.1186/s12967-016-0771-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/05/2016] [Indexed: 01/28/2023] Open
Abstract
Background Mitochondrial dysfunction has been hypothesized to occur in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a disease characterized by fatigue, cognitive difficulties, pain, malaise, and exercise intolerance. We investigated whether haplogroup, single nucleotide polymorphisms (SNPs), or heteroplasmy of mitochondrial DNA (mtDNA) were associated with health status and/or symptoms. Methods Illumina sequencing of PCR-amplified mtDNA was performed to analyze sequence and extent of heteroplasmy of mtDNAs of 193 cases and 196 age- and gender-matched controls from DNA samples collected by the Chronic Fatigue Initiative. Association testing was carried out to examine possible correlations of mitochondrial sequences with case/control status and symptom constellation and severity as reported by subjects on Short Form-36 and DePaul Symptom Questionnaires. Results No ME/CFS subject exhibited known disease-causing mtDNA mutations. Extent of heteroplasmy was low in all subjects. Although no association between mtDNA SNPs and ME/CFS vs. healthy status was observed, haplogroups J, U and H as well as eight SNPs in ME/CFS cases were significantly associated with individual symptoms, symptom clusters, or symptom severity. Conclusions Analysis of mitochondrial genomes in ME/CFS cases indicates that individuals of a certain haplogroup or carrying specific SNPs are more likely to exhibit certain neurological, inflammatory, and/or gastrointestinal symptoms. No increase in susceptibility to ME/CFS of individuals carrying particular mitochondrial genomes or SNPs was observed. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0771-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul Billing-Ross
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| | - Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Kaixiong Ye
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Alon Keinan
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
32
|
Ebner S, Mangge H, Langhof H, Halle M, Siegrist M, Aigner E, Paulmichl K, Paulweber B, Datz C, Sperl W, Kofler B, Weghuber D. Mitochondrial Haplogroup T Is Associated with Obesity in Austrian Juveniles and Adults. PLoS One 2015; 10:e0135622. [PMID: 26322975 PMCID: PMC4556186 DOI: 10.1371/journal.pone.0135622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
Background Recent publications have reported contradictory data regarding mitochondrial DNA (mtDNA) variation and its association with body mass index. The aim of the present study was to compare the frequencies of mtDNA haplogroups as well as control region (CR) polymorphisms of obese juveniles (n = 248) and obese adults (n = 1003) versus normal weight controls (njuvenile = 266, nadults = 595) in a well-defined, ethnically homogenous, age-matched comparative cohort of Austrian Caucasians. Methodology and Principal Findings Using SNP analysis and DNA sequencing, we identified the nine major European mitochondrial haplogroups and CR polymorphisms. Of these, only the T haplogroup frequency was increased in the juvenile obese cohort versus the control subjects [11.7% in obese vs. 6.4% in controls], although statistical significance was lost after adjustment for sex and age. Similar data were observed in a local adult cohort, in which haplogroup T was found at a significantly higher frequency in the overweight and obese subjects than in the normal weight group [9.7% vs. 6.2%, p = 0.012, adjusted for sex and age]. When all obese subjects were considered together, the difference in the frequency of haplogroup T was even more clearly seen [10.1% vs. 6.3%, p = 0.002, OR (95% CI) 1.71 (1.2–2.4), adjusted for sex and age]. The frequencies of the T haplogroup-linked CR polymorphisms C16294T and the C16296T were found to be elevated in both the juvenile and the adult obese cohort compared to the controls. Nevertheless, no mtDNA haplogroup or CR polymorphism was robustly associated with any of several investigated metabolic and cardiovascular parameters (e.g., blood pressure, blood glucose concentration, triglycerides, cholesterol) in all obese subjects. Conclusions and Significance By investigation of this large ethnically and geographically homogenous cohort of Middle European Caucasians, only mtDNA haplogroup T was identified as an obesity risk factor.
Collapse
Affiliation(s)
- Sabine Ebner
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Martin Halle
- Department of Prevention, Rehabilitation and Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Else Kröner-Fresenius-Zentrum, Klinikum rechts der Isar, Munich, Germany
| | - Monika Siegrist
- Department of Prevention, Rehabilitation and Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elmar Aigner
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
| | - Katharina Paulmichl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Oberndorf, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
- * E-mail:
| |
Collapse
|
33
|
Levin L, Blumberg A, Barshad G, Mishmar D. Mito-nuclear co-evolution: the positive and negative sides of functional ancient mutations. Front Genet 2014; 5:448. [PMID: 25566330 PMCID: PMC4274989 DOI: 10.3389/fgene.2014.00448] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022] Open
Abstract
Most cell functions are carried out by interacting factors, thus underlying the functional importance of genetic interactions between genes, termed epistasis. Epistasis could be under strong selective pressures especially in conditions where the mutation rate of one of the interacting partners notably differs from the other. Accordingly, the order of magnitude higher mitochondrial DNA (mtDNA) mutation rate as compared to the nuclear DNA (nDNA) of all tested animals, should influence systems involving mitochondrial-nuclear (mito-nuclear) interactions. Such is the case of the energy producing oxidative phosphorylation (OXPHOS) and mitochondrial translational machineries which are comprised of factors encoded by both the mtDNA and the nDNA. Additionally, the mitochondrial RNA transcription and mtDNA replication systems are operated by nDNA-encoded proteins that bind mtDNA regulatory elements. As these systems are central to cell life there is strong selection toward mito-nuclear co-evolution to maintain their function. However, it is unclear whether (A) mito-nuclear co-evolution befalls only to retain mitochondrial functions during evolution or, also, (B) serves as an adaptive tool to adjust for the evolving energetic demands as species' complexity increases. As the first step to answer these questions we discuss evidence of both negative and adaptive (positive) selection acting on the mtDNA and nDNA-encoded genes and the effect of both types of selection on mito-nuclear interacting factors. Emphasis is given to the crucial role of recurrent ancient (nodal) mutations in such selective events. We apply this point-of-view to the three available types of mito-nuclear co-evolution: protein-protein (within the OXPHOS system), protein-RNA (mainly within the mitochondrial ribosome), and protein-DNA (at the mitochondrial replication and transcription machineries).
Collapse
Affiliation(s)
- Liron Levin
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Gilad Barshad
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| |
Collapse
|
34
|
Soto-Hermida A, Fernández-Moreno M, Oreiro N, Fernández-López C, Pértega S, Cortés-Pereira E, Rego-Pérez I, Blanco FJ. Mitochondrial DNA (mtDNA) haplogroups influence the progression of knee osteoarthritis. Data from the Osteoarthritis Initiative (OAI). PLoS One 2014; 9:e112735. [PMID: 25390621 PMCID: PMC4229258 DOI: 10.1371/journal.pone.0112735] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the influence of the mtDNA haplogroups on knee osteoarthritis progression in Osteoarthritis Initiative (OAI) participants through longitudinal data from radiographs and magnetic resonance imaging (MRI). METHODS Four-year knee osteoarthritis progression was analyzed as increase in Kellgren and Lawrence (KL) grade, in addition to increase in OARSI atlas grade for joint space narrowing (JSN), osteophytes and subchondral sclerosis in the tibia medial compartment of 891 Caucasian individuals from the progression subcohort. The influence of the haplogroups on the rate of structural progression was also assessed as the four-year change in minimum joint space width (mJSW in millimetres) in both knees of (n = 216) patients with baseline unilateral medial-tibiofemoral JSN. Quantitative cartilage measures from longitudinal MRI data were those related to cartilage thickness and volume with a 24 month follow-up period (n = 381). RESULTS During the four-year follow-up period, knee OA patients with the haplogroup T showed the lowest increase in KL grade (Hazard Risk [HR] = 0.499; 95% Confidence Interval [CI]: 0.261-0.819; p<0.05) as well as the lowest cumulative probability of progression for JSN (HR = 0.547; 95% CI: 0.280-0.900; p<0.05), osteophytes (HR = 0.573; 95% CI: 0.304-0.893; p<0.05) and subchondral sclerosis (HR = 0.549; 95% CI: 0.295-0.884; p<0.05). They also showed the lowest decline in mJSW (standardized response means (SRM) = -0.39; p = 0.037) in those knees without baseline medial JSN (no-JSN knees). Normalized cartilage volume loss was significantly lower in patients carrying the haplogroup T at medial tibia femoral (SRM = -0.33; p = 0.023) and central medial femoral (SRM = -0.27; p = 0.031) compartments. Cartilage thickness loss was significantly lower in carriers of haplogroup T at central medial tibia-femoral (SRM = -0.42; p = 0.011), medial tibia femoral (SRM = -0.32; p = 0.018), medial tibia anterior (SRM = +0.31; p = 0.013) and central medial femoral (SRM = -0.19; p = 0.013) compartments. CONCLUSIONS Mitochondrial genome seems to play a role in the progression of knee osteoarthritis. mtDNA variation could improve identification of patients predisposed to faster or severe progression of the disease.
Collapse
Affiliation(s)
- Angel Soto-Hermida
- Grupo de Genómica, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
| | - Mercedes Fernández-Moreno
- Grupo de Genómica, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
| | - Natividad Oreiro
- Grupo de Genómica, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
| | - Carlos Fernández-López
- Grupo de Genómica, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
| | - Sonia Pértega
- Unidad de Epidemiología. Instituto de Investigacion Biomedica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
| | - Estefania Cortés-Pereira
- Grupo de Genómica, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
| | - Ignacio Rego-Pérez
- Grupo de Genómica, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
- * E-mail: (FJB); (IRP)
| | - Francisco J. Blanco
- Grupo de Genómica, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
- * E-mail: (FJB); (IRP)
| |
Collapse
|
35
|
An exploratory analysis of mitochondrial haplotypes and allogeneic hematopoietic cell transplantation outcomes. Biol Blood Marrow Transplant 2014; 21:81-8. [PMID: 25300867 DOI: 10.1016/j.bbmt.2014.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022]
Abstract
Certain mitochondrial haplotypes (mthaps) are associated with disease, possibly through differences in oxidative phosphorylation and/or immunosurveillance. We explored whether mthaps are associated with allogeneic hematopoietic cell transplantation (HCT) outcomes. Recipient (n = 437) and donor (n = 327) DNA were genotyped for common European mthaps (H, J, U, T, Z, K, V, X, I, W, and K2). HCT outcomes for mthap matched siblings (n = 198), all recipients, and all donors were modeled using relative risks (RR) and 95% confidence intervals and compared with mthap H, the most common mitochondrial haplotypes. Siblings with I and V were significantly more likely to die within 5 years (RR = 3.0; 95% confidence interval [CI], 1.2 to 7.9; and RR = 4.6; 95% CI, 1.8 to 12.3, respectively). W siblings experienced higher acute graft-versus-host disease (GVHD) grades II to IV events (RR = 2.1; 95% CI, 1.1 to 2.4) with no events for those with K or K2. Similar results were observed for all recipients combined, although J recipients experienced lower GVHD and higher relapse. Patients with I donors had a 2.7-fold (1.2 to 6.2) increased risk of death in 5 years, whereas few patients with K2 or W donors died. No patients with K2 donors and few patients with U donors relapsed. Mthap may be an important consideration in HCT outcomes, although validation and functional studies are needed. If confirmed, it may be feasible to select donors based on mthap to increase positive or decrease negative outcomes.
Collapse
|
36
|
May-Panloup P, Desquiret V, Morinière C, Ferré-L'Hôtellier V, Lemerle S, Boucret L, Lehais S, Chao de la Barca J, Descamps P, Procaccio V, Reynier P. Mitochondrial macro-haplogroup JT may play a protective role in ovarian ageing. Mitochondrion 2014; 18:1-6. [DOI: 10.1016/j.mito.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
|
37
|
Estopinal CB, Chocron IM, Parks MB, Wade EA, Roberson RM, Burgess LG, Brantley MA, Samuels DC. Mitochondrial haplogroups are associated with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci 2014; 55:5589-95. [PMID: 25118268 DOI: 10.1167/iovs.14-15149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To determine if specific mitochondrial haplogroups associate with nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). METHODS Deidentified medical records for Caucasian patients with diabetic retinopathy (DR; 153 NPDR and 138 PDR) were obtained from BioVU, Vanderbilt University's electronic, deidentified DNA databank. An independent cohort of Caucasian patients with DR (44 NPDR and 57 PDR) from the Vanderbilt Eye Institute (VEI) was used for validation. We tested for an association between mitochondrial haplogroups and PDR among patients with DR. RESULTS In the BioVU cohort, PDR frequency among Caucasian DR patients differed significantly by mitochondrial haplogroup (P = 0.027). Replication in the VEI cohort confirmed this association (P = 0.0064). In the combined cohort, patients from the common haplogroup H were more likely to have PDR (odds ratio [OR] = 2.0 [95% confidence interval (CI) = 1.3-3.0], P = 0.0012), while patients from haplogroup Uk were less likely to have PDR (OR = 0.5 [95% CI = 0.3-0.8], P = 0.0049). In logistic regression analyses, the addition of diabetes duration, hemoglobin A1c (HgbA1c) levels, and hypertension had no effect on the associations of haplogroups H and Uk with PDR. CONCLUSIONS In this study, DR patients from mitochondrial haplogroup H were more likely to have PDR, while DR patients from haplogroup Uk were less likely to have PDR. The association was independent of the major clinical variables affecting PDR. The mitochondrial haplogroups were as strong a risk factor for PDR as were elevated HgbA1c levels.
Collapse
Affiliation(s)
- Christopher B Estopinal
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Isaac M Chocron
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Megan B Parks
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Emily A Wade
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rachel M Roberson
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - L Goodwin Burgess
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David C Samuels
- Center for Human Genetics Research and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
38
|
Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis. Rheumatol Int 2014; 35:337-44. [PMID: 25086630 DOI: 10.1007/s00296-014-3104-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
Abstract
Not all patients with osteoarthritis (OA) show the same disease progression, as some of them remain relatively stable over time, while others progress to severe structural deterioration of the joint. In this sense, the main goal of both genetic and protein biomarkers in OA is to predict not only the risk of OA at an earlier stage of the disease but also which OA patients are more likely to progress to severe disease. Taking into account the incidence of the mitochondria and the mtDNA haplogroups in the pathogenesis of OA, the main objective of this work was to evaluate the incidence of the mtDNA haplogroups in the radiographic progression of the OA disease in a well-characterized follow-up cohort of Spanish patients. DNA from 281 OA patients from Hospital Universitario A Coruña was isolated to determine the European mtDNA haplogroups. Knee or hip radiographs from all affected joints were obtained at two time points with at least 36 months apart. Radiographs were evaluated using the Kellgren/Lawrence (K/L) scale; radiographic OA progression was defined as any radiographic worsening of the K/L joint score. Statistical analyses included Kaplan-Meier survival curves and Cox regression models. Patients belonging to the cluster TJ showed a slower radiographic OA progression than patients in the cluster KU (p = 0.036). Moreover, patients carrying the most common mtDNA haplogroup H are more apt to require total joint replacement surgery than non-H patients (p = 0.049). The inherited mitochondrial variants influence the radiographic progression of OA and could be considered among the genetic variants taken into account when the radiographic progression of OA is analyzed.
Collapse
|
39
|
Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Cáceres-del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Vawter M, Jazwinski SM, Miceli M, Wallace DC, Udar N. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum Mol Genet 2014; 23:3537-51. [PMID: 24584571 PMCID: PMC4049308 DOI: 10.1093/hmg/ddu065] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other 'modifiers' may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt-nuclear interactions.
Collapse
Affiliation(s)
- M Cristina Kenney
- Gavin Herbert Eye Institute, Department of Pathology and Laboratory Medicine,
| | | | | | | | | | | | | | | | - Anthony B Nesburn
- Gavin Herbert Eye Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | | | - Marquis Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | | | - Michael Miceli
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| | - Douglas C Wallace
- Children's Hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
40
|
Burgstaller JP, Johnston IG, Jones NS, Albrechtová J, Kolbe T, Vogl C, Futschik A, Mayrhofer C, Klein D, Sabitzer S, Blattner M, Gülly C, Poulton J, Rülicke T, Piálek J, Steinborn R, Brem G. MtDNA segregation in heteroplasmic tissues is common in vivo and modulated by haplotype differences and developmental stage. Cell Rep 2014; 7:2031-2041. [PMID: 24910436 DOI: 10.1016/j.celrep.2014.05.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/11/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022] Open
Abstract
The dynamics by which mitochondrial DNA (mtDNA) evolves within organisms are still poorly understood, despite the fact that inheritance and proliferation of mutated mtDNA cause fatal and incurable diseases. When two mtDNA haplotypes are present in a cell, it is usually assumed that segregation (the proliferation of one haplotype over another) is negligible. We challenge this assumption by showing that segregation depends on the genetic distance between haplotypes. We provide evidence by creating four mouse models containing mtDNA haplotype pairs of varying diversity. We find tissue-specific segregation in all models over a wide range of tissues. Key findings are segregation in postmitotic tissues (important for disease models) and segregation covering all developmental stages from prenatal to old age. We identify four dynamic regimes of mtDNA segregation. Our findings suggest potential complications for therapies in human populations: we propose "haplotype matching" as an approach to avoid these issues.
Collapse
Affiliation(s)
- Joerg Patrick Burgstaller
- Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, 3430 Tulln, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Iain G Johnston
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jana Albrechtová
- Research Facility Studenec, Academy of Sciences of the Czech Republic, Květná 8, 60365 Brno, Czech Republic
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.,Department for Agrobiotechnology, IFA Tulln, University of Natural Resources and Applied Life Sciences, Tulln 3430, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Andreas Futschik
- Department of Statistics, University of Vienna, 1010 Vienna, Austria
| | - Corina Mayrhofer
- Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, 3430 Tulln, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Dieter Klein
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sonja Sabitzer
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mirjam Blattner
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Christian Gülly
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Jaroslav Piálek
- Research Facility Studenec, Academy of Sciences of the Czech Republic, Květná 8, 60365 Brno, Czech Republic
| | - Ralf Steinborn
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Gottfried Brem
- Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, 3430 Tulln, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
41
|
Wiley L, Ashok D, Martin-Ruiz C, Talbot DCS, Collerton J, Kingston A, Davies K, Chinnery PF, Catt M, Jagger C, Kirkwood TBL, von Zglinicki T. Reactive oxygen species production and mitochondrial dysfunction in white blood cells are not valid biomarkers of ageing in the very old. PLoS One 2014; 9:e91005. [PMID: 24614678 PMCID: PMC3948743 DOI: 10.1371/journal.pone.0091005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022] Open
Abstract
Reliable and valid biomarkers of ageing (BoA) are needed to understand mechanisms, test interventions and predict the timing of adverse health events associated with ageing. Since increased reactive oxygen species (ROS) production and mitochondrial dysfunction are consequences of cellular senescence and may contribute causally to the ageing of organisms, we focused on these parameters as candidate BoA. Superoxide levels, mitochondrial mass and mitochondrial membrane potential in human peripheral blood mononuclear cells (PBMCs) and subpopulations (lymphocytes and monocytes) were measured in participants from the Newcastle 85+ study, a population-based study of the very old (aged 85 years and older). The intra- and inter-assay precision expressed as coefficient of variation (CV) for all parameters was acceptable (3% to 12% and 5 to 22% respectively). All parameters were stable in the short-term (1 week interval) in a sample of control individuals in the PBMCs and lymphocyte subpopulation, however they were unstable in the monocyte subpopulation; this rendered monocytes unreliable for further analysis. There was a significant association between superoxide levels and mitochondrial mass (positive in lymphocytes, p = 0.01) and between superoxide levels and mitochondrial membrane potential (negative in PBMCs, p = 0.01; positive in lymphocytes, p = 0.05). There were also significant associations between superoxide levels and mitochondrial parameters with other markers of oxidative stress-induced cellular senescence (p≤0.04), however some were in the opposite direction to expected. No associations were found between the measured parameters and age-related outcomes, including cognitive impairment, disability, co-morbidity and survival - questioning the validity of these parameters as candidate BoA in the very old.
Collapse
Affiliation(s)
- Laura Wiley
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Deepthi Ashok
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Carmen Martin-Ruiz
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Duncan C. S. Talbot
- Unilever Discover, Colworth Science Park, Sharnbrook, Bedfordshire, United Kingdom
| | - Joanna Collerton
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Andrew Kingston
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Karen Davies
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Patrick F. Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Catt
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Carol Jagger
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Thomas B. L. Kirkwood
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Thomas von Zglinicki
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Gaweda-Walerych K, Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson's disease. Curr Genomics 2014; 14:543-59. [PMID: 24532986 PMCID: PMC3924249 DOI: 10.2174/1389202914666131210211033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD)
pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we
review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular
mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3,
POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation
factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked
to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between
mitochondrial and nuclear genetic variants and related proteins are discussed.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| | - Cezary Zekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| |
Collapse
|
43
|
Horan MP, Cooper DN. The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. Hum Genet 2013; 133:435-58. [DOI: 10.1007/s00439-013-1402-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/23/2013] [Indexed: 12/17/2022]
|
44
|
Moreno-Loshuertos R, Pérez-Martos A, Fernández-Silva P, Enríquez JA. Length variation in the mouse mitochondrial tRNA(Arg) DHU loop size promotes oxidative phosphorylation functional differences. FEBS J 2013; 280:4983-98. [PMID: 23910637 DOI: 10.1111/febs.12466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/07/2013] [Accepted: 07/22/2013] [Indexed: 01/24/2023]
Abstract
The efficiency of the cellular oxidative phosphorylation system was recently shown to be modulated by common mitochondrial tRNA(A) (rg) haplotypes. The molecular mechanism by which some mt-Tr haplotypes induce these functional differences remains undetermined. Common polymorphisms in mouse mt-Tr genes affect the size of the dihydrouridine loop in the mature tRNA, producing loops of between five and seven nucleotides, the largest being a rare variant among mammals. Here, we analyzed a new mt-Tr variant identified in C3H mice, and found that it is mitochondrial tRNA loop size, but not the specific sequence, that is responsible for the observed differences in cellular respiration. We further found that the sensitivity of mitochondrial protein synthesis to specific inhibitors is dependent on the mt-Tr gene haplotype, and confirmed that the differences in oxidative phosphorylation performance are masked by a reactive oxygen species-induced compensatory increase in mitochondrial biogenesis.
Collapse
|