1
|
Kura B, Kindernay L, Singla D, Dulova U, Bartekova M. Mechanistic insight into the role of cardiac-enriched microRNAs in diabetic heart injury. Am J Physiol Heart Circ Physiol 2025; 328:H865-H884. [PMID: 40033927 PMCID: PMC12069993 DOI: 10.1152/ajpheart.00736.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cardiovascular complications, particularly diabetic cardiomyopathy (DCM), are the primary causes of morbidity and mortality among individuals with diabetes. Hyperglycemia associated with diabetes leads to cardiomyocyte hypertrophy, apoptosis, and myocardial fibrosis, culminating in heart failure (HF). Patients with diabetes face a 2-4 times greater risk of developing HF compared with those without diabetes. Consequently, there is a growing interest in exploring the molecular mechanisms that contribute to the development of DCM. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNA molecules that participate in the maintenance of physiological homeostasis through the regulation of essential processes such as metabolism, cell proliferation, and apoptosis. At the posttranscriptional level, miRNAs modulate gene expression by binding directly to genes' mRNAs. Multiple cardiac-enriched miRNAs were reported to be dysregulated under diabetic conditions. Different studies revealed the role of specific miRNAs in the pathogenesis of diabetes and related cardiovascular complications, including cardiomyocyte hypertrophy and fibrosis, mitochondrial dysfunction, metabolic impairment, inflammatory response, or cardiomyocyte death. Circulating miRNAs have been shown to represent the potential biomarkers for early detection of diabetic heart injury. A deeper understanding of miRNAs and their role in diabetes-related pathophysiological processes could lead to new therapeutic strategies for addressing cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dinender Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Ulrika Dulova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
3
|
Zalivina I, Barwari T, Yin X, Langley SR, Barallobre-Barreiro J, Wakimoto H, Zampetaki A, Mayr M, Avkiran M, Eminaga S. Inhibition of miR-199a-3p in a murine hypertrophic cardiomyopathy (HCM) model attenuates fibrotic remodeling. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100056. [PMID: 38143961 PMCID: PMC10739604 DOI: 10.1016/j.jmccpl.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder, characterized by cardiomyocyte hypertrophy, cardiomyocyte disarray and fibrosis, which has a prevalence of ∼1: 200-500 and predisposes individuals to heart failure and sudden death. The mechanisms through which diverse HCM-causing mutations cause cardiac dysfunction remain mostly unknown and their identification may reveal new therapeutic avenues. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and disease phenotype in various pathologies. We explored whether miRNAs could play a role in HCM pathogenesis and offer potential therapeutic targets. Methods and results Using high-throughput miRNA expression profiling and qPCR analysis in two distinct mouse models of HCM, we found that miR-199a-3p expression levels are upregulated in mutant mice compared to age- and treatment-matched wild-type mice. We also found that miR-199a-3p expression is enriched in cardiac non-myocytes compared to cardiomyocytes. When we expressed miR-199a-3p mimic in cultured murine primary cardiac fibroblasts and analyzed the conditioned media by proteomics, we found that several extracellular matrix (ECM) proteins (e.g., TSP2, FBLN3, COL11A1, LYOX) were differentially secreted (data are available via ProteomeXchange with identifier PXD042904). We confirmed our proteomics findings by qPCR analysis of selected mRNAs and demonstrated that miR-199a-3p mimic expression in cardiac fibroblasts drives upregulation of ECM gene expression, including Tsp2, Fbln3, Pcoc1, Col1a1 and Col3a1. To examine the role of miR-199a-3p in vivo, we inhibited its function using lock-nucleic acid (LNA)-based inhibitors (antimiR-199a-3p) in an HCM mouse model. Our results revealed that progression of cardiac fibrosis is attenuated when miR-199a-3p function is inhibited in mild-to-moderate HCM. Finally, guided by computational target prediction algorithms, we identified mRNAs Cd151 and Itga3 as direct targets of miR-199a-3p and have shown that miR-199a-3p mimic expression negatively regulates AKT activation in cardiac fibroblasts. Conclusions Altogether, our results suggest that miR-199a-3p may contribute to cardiac fibrosis in HCM through its actions in cardiac fibroblasts. Thus, inhibition of miR-199a-3p in mild-to-moderate HCM may offer therapeutic benefit in combination with complementary approaches that target the primary defect in cardiac myocytes.
Collapse
Affiliation(s)
- Irina Zalivina
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Temo Barwari
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Xiaoke Yin
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Sarah R. Langley
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Zampetaki
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Manuel Mayr
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Metin Avkiran
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Seda Eminaga
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
4
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
5
|
Varvil MS, dos Santos AP. A review on microRNA detection and expression studies in dogs. Front Vet Sci 2023; 10:1261085. [PMID: 37869503 PMCID: PMC10585042 DOI: 10.3389/fvets.2023.1261085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function by post-transcriptional regulation of gene expression. Their stability and abundance in tissue and body fluids makes them promising potential tools for both the diagnosis and prognosis of diseases and attractive therapeutic targets in humans and dogs. Studies of miRNA expression in normal and disease processes in dogs are scarce compared to studies published on miRNA expression in human disease. In this literature review, we identified 461 peer-reviewed papers from database searches using the terms "canine," "dog," "miRNA," and "microRNA"; we screened 244 for inclusion criteria and then included a total of 148 original research peer-reviewed publications relating to specific miRNA expression in canine samples. We found an overlap of miRNA expression changes between the four groups evaluated (normal processes, non-infectious and non-inflammatory conditions, infectious and/or inflammatory conditions, and neoplasia) in 39 miRNAs, 83 miRNAs in three of the four groups, 110 miRNAs in two of the three groups, where 158 miRNAs have only been reported in one of the groups. Additionally, the mechanism of action of these overlapping miRNAs varies depending on the disease process, elucidating a need for characterization of the mechanism of action of each miRNA in each disease process being evaluated. Herein we also draw attention to the lack of standardization of miRNA evaluation, consistency within a single evaluation method, and the need for standardized methods for a direct comparison.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Joshua J, Caswell JL, Monné Rodriguez JM, Kipar A, O'Sullivan ML, Wood G, Fonfara S. MicroRNA profiling of the feline left heart identifies chamber-specific expression signatures in health and in advanced hypertrophic cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100037. [PMID: 39801693 PMCID: PMC11708362 DOI: 10.1016/j.jmccpl.2023.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heart disease in humans and cats, nonetheless, the disease pathogenesis is still poorly understood. MicroRNAs are suspected to be involved in the disease process but the myocardial microRNA expression pattern in cats has not been identified. We hypothesized that microRNA profiles differ between healthy cats and cats with HCM. Small RNA sequencing on left ventricle (LV) and left atria (LA) samples from healthy cats (8 LV, 8 LA) and cats with HCM (7 LV, 5 LA) was performed. We identified 1039 differentially expressed microRNAs (False Discovery Rate <0.01, fold change >2). Cats with HCM were found to have a distinct microRNA expression profile with apparent regional heterogeneity. Comparing the HCM and control hearts, we detected 80 differentially expressed microRNAs for the HCM LV, and 37 for the LA. These included LV and LA enriched miR-21, miR-146b, and reduced miR-122-5p, which were recently suggested as key microRNAs for the HCM pathogenesis, and miR-132, which might be of therapeutic interest. Several top enriched microRNAs: miR-3958, miR-382-5p, miR-487a-5p (HCM LV); miR-chrD4_30107-3p (HCM LA); miR-3548 (HCM LV and LA) have either not been reported in the heart or only little is known. We identified potentially relevant microRNAs and further investigations into their role are required. Genes known to be targeted by the differentially expressed microRNAs were associated with inflammation and growth pathways in the HCM LV and LA, cardioprotective pathways in the LV, and fibrosis and structural changes in the LA when compared to healthy hearts.
Collapse
Affiliation(s)
- Jessica Joshua
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph N1G 2W1, Ontario, Canada
| | - Jeff L. Caswell
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
| | - Josep M. Monné Rodriguez
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Pathology, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Anja Kipar
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Pathology, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - M. Lynne O'Sullivan
- University of Prince Edward Island, Department of Companion Animals, Charlottetown C1A 4P3, Prince Edward Island, Canada
| | - Geoffrey Wood
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
| | - Sonja Fonfara
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
7
|
Nguyen HD, Kim MS. Effects of heavy metals on cardiovascular diseases in pre and post-menopausal women: from big data to molecular mechanism involved. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77635-77655. [PMID: 35676585 DOI: 10.1007/s11356-022-21208-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 05/27/2023]
Abstract
To assess the link between a mixed heavy metal (cadmium, lead, and mercury) and the 10-year risk of cardiovascular diseases (CVDs) in pre- and post-menopausal Korean women aged ≥20 years, as well as identify potential molecular mechanisms of mixed heavy metal-induced CVDs. Multivariate linear regression, weighted quantile sum (WQS) regression, quantile g-computation (gqcomp), and Bayesian kernel machine regression (BKMR) models were used to examine the effects of mixed heavy metals and the 10-year risk of CVDs. The Comparative Toxicogenomics Database, MicroRNA ENrichment TURned NETwork, and the microRNA sponge generator and tester were used as the key data-mining approaches. In our BKMR analysis, we found that the overall effect of mixed heavy metals was linked to the 10-year risk of CVDs in postmenopausal women in the upper 20th percentiles and in premenopausal women in the upper 55th percentiles. Mercury was identified as the key chemical for the 10-year risk of CVDs in pre- and postmenopausal women. In silico analysis revealed that a heavy metal mixture interacted with six genes associated with CVD development. Physical interactions (77.6%) were found to be the most common among CVD-related genes induced by the heavy metals studied. Several pathways have been identified as the main molecular mechanisms that could be affected by studied heavy metals and are implicated in the development of CVDs (e.g., lipid and lipoprotein metabolism, lipoprotein metabolism, cholesterol metabolism, and cardiovascular disease). ALB, APOE, ATF5, and CREB3L3 were the key genes and transcription factors related to CVDs induced by the mixture of the investigated heavy metals, respectively. The two miRNAs with the highest interaction and expression in the development of CVDs were hsa-miR-199a-5p and hsa-miR-199a-3p. We also designed and tested miRNA sponge sequences for these miRNAs. The cutoff thresholds for each heavy metal level linked with the 10-year risk of CVDs were described. A mixture of heavy metal exposures, especially mercury, was more strongly linked with the 10-year risk of CVDs in postmenopausal women than in premenopausal women. Early interventions in postmenopausal women should be considered to reduce CVD risks.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
8
|
Medina L, Guerrero-Muñoz J, Castillo C, Liempi A, Fernández-Moya A, Araneda S, Ortega Y, Rivas C, Maya JD, Kemmerling U. Differential microRNAs expression during ex vivo infection of canine and ovine placental explants with Trypanosoma cruzi and Toxoplasma gondii. Acta Trop 2022; 235:106651. [PMID: 35964709 DOI: 10.1016/j.actatropica.2022.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Trypanosoma cruzi and Toxoplasma gondii are two zoonotic parasites that constitute significant human and animal health threats, causing a significant economic burden worldwide. Both parasites can be transmitted congenitally, but transmission rates for T. gondii are high, contrary to what has been observed for T. cruzi. The probability of congenital transmission depends on complex interactions between the pathogen and the host, including the modulation of host cell gene expression by miRNAs. During ex vivo infection of canine and ovine placental explants, we evaluated the expression of 3 miRNAs (miR-30e-3p, miR-3074-5p, and miR-127-3p) previously associated with parasitic and placental diseases and modulated by both parasites. In addition, we identified the possible target genes of the miRNAs by using computational prediction tools and performed GO and KEGG enrichment analyses to identify the biological functions and associated pathologies. The three miRNAs are differentially expressed in the canine and ovine placenta in response to T. cruzi and T. gondii. We conclude that the observed differential expression and associated functions might explain, at least partially, the differences in transmission rates and susceptibility to parasite infection in different species.
Collapse
Affiliation(s)
- Lisvaneth Medina
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jesús Guerrero-Muñoz
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandro Fernández-Moya
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Yessica Ortega
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Cristian Rivas
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Zeng N, Huang YQ, Yan YM, Hu ZQ, Zhang Z, Feng JX, Guo JS, Zhu JN, Fu YH, Wang XP, Zhang MZ, Duan JZ, Zheng XL, Xu JD, Shan ZX. Diverging targets mediate the pathological roleof miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1035-1050. [PMID: 34786209 PMCID: PMC8571541 DOI: 10.1016/j.omtn.2021.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 01/29/2023]
Abstract
MicroRNA-199a-5p (miR-199a-5p) and -3p are enriched in the myocardium, but it is unknown whether miR-199a-5p and -3p are co-expressed in cardiac remodeling and what roles they have in cardiac hypertrophy and fibrosis. We show that miR-199a-5p and -3p are co-upregulated in the mouse and human myocardium with cardiac remodeling and in Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs) and cardiac fibroblasts (CFs). miR-199a-5p and -3p could aggravate cardiac hypertrophy and fibrosis in vivo and in vitro. PPAR gamma coactivator 1 alpha (Ppargc1a) and sirtuin 1 (Sirt1) were identified as target genes to mediate miR-199a-5p in promoting both cardiac hypertrophy and fibrosis. However, miR-199a-3p aggravated cardiac hypertrophy and fibrosis through targeting RB transcriptional corepressor 1 (Rb1) and Smad1, respectively. Serum response factor and nuclear factor κB p65 participated in the upregulation of miR-199a-5p and -3p in Ang-II-treated NMVCs and mouse CFs, and could be conversely elevated by miR-199a-5p and -3p. Together, Ppargc1a and Sirt1, Rb1 and Smad1 mediated the pathological effect of miR-199a-5p and -3p by promoting cardiac hypertrophy and fibrosis, respectively. This study suggests a possible new strategy for cardiac remodeling therapy by inhibiting miR-199a-5p and -3p.
Collapse
Affiliation(s)
- Ni Zeng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yu-Qing Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Yu-Min Yan
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Qin Hu
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Zhuo Zhang
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Jia-Xin Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Ji-Shen Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yong-Heng Fu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Xi-Pei Wang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meng-Zhen Zhang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jin-Zhu Duan
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jin-Dong Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhi-Xin Shan
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| |
Collapse
|
10
|
Martyniak A, Andrysiak K, Motais B, Coste S, Podkalicka P, Ferdek P, Stępniewski J, Dulak J. Generation of microRNA-378a-deficient hiPSC as a novel tool to study its role in human cardiomyocytes. J Mol Cell Cardiol 2021; 160:128-141. [PMID: 34329686 DOI: 10.1016/j.yjmcc.2021.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
microRNA-378a (miR-378a) is one of the most highly expressed microRNAs in the heart. However, its role in the human cardiac tissue has not been fully understood. It was observed that miR-378a protects cardiomyocytes from hypertrophic growth by regulation of IGF1R and the expression of downstream kinases. Increased levels of miR-378a were reported in the serum of Duchenne muscular dystrophy (DMD) patients and female carriers of DMD gene-associated mutations with developed cardiomyopathy. In order to shed more light on the role of miR-378a in human cardiomyocytes and its potential involvement in DMD-related cardiomyopathy, we generated two human induced pluripotent stem cell (hiPSC) models; one with deletion of miR-378a and the second one with deletion of DMD exon 50 leading to the DMD phenotype. Our results indicate that lack of miR-378a does not influence the pluripotency of hiPSC and their ability to differentiate into cardiomyocytes (hiPSC-CM). miR-378a-deficient hiPSC-CM exhibited, however, significantly bigger size compared to the isogenic control cells, indicating the role of this miRNA in the hypertrophic growth of human cardiomyocytes. In accordance, the level of NFATc3, phosphoAKT, phosphoERK and ERK was higher in these cells compared to the control counterparts. A similar effect was achieved by silencing miR-378a with antagomirs. Of note, the percentage of cells with nuclear localization of NFATc3 was higher in miR-378a-deficient hiPSC-CM. Analysis of electrophysiological properties and Ca2+ oscillations revealed the decrease in the spike slope velocity and lower frequency of calcium spikes in miR-378a-deficient hiPSC-CM. Interestingly, the level of miR-378a increased gradually during cardiac differentiation of hiPSC. Of note, it was low until day 15 in differentiating DMD-deficient hiPSC-CM and then rose to a similar level as in the isogenic control counterparts. In summary, our findings confirmed the utility of hiPSC-based models for deciphering the role of miR-378a in the control and diseased human cardiomyocytes.
Collapse
Affiliation(s)
- Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Benjamin Motais
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Solène Coste
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paweł Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
11
|
Khongnomnan K, Saengchoowong S, Mayuramart O, Nimsamer P, Pisitkun T, Poovorawan Y, Payungporn S. Hsa-miR-30e-3p inhibits influenza B virus replication by targeting viral NA and NP genes. Exp Biol Med (Maywood) 2020; 245:1664-1671. [PMID: 32878461 PMCID: PMC7802381 DOI: 10.1177/1535370220953151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
Influenza B virus is a member of the Orthomyxoviridae family which can infect humans and causes influenza. Although it is not pandemic like influenza A virus, it nevertheless affects millions of people worldwide annually. MicroRNAs are small non-coding RNAs regulating gene expression at posttranscriptional level. They play various important roles in cellular processes including response to viral infection. MiRNA profiles from our previous study suggested that miR-30e-3p was one of the upregulated miRNAs that responded to influenza B virus infection. In this study, in silico prediction and in vitro investigation proved that this miRNA can directly target NA and NP genes of the influenza B virus and inhibit its replication. This finding might be useful for using miRNA as an alternative therapeutics for influenza virus infection.
Collapse
Affiliation(s)
- Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Suthat Saengchoowong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Oraphan Mayuramart
- Biomedical Science Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattaraporn Nimsamer
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Grifone R, Shao M, Saquet A, Shi DL. RNA-Binding Protein Rbm24 as a Multifaceted Post-Transcriptional Regulator of Embryonic Lineage Differentiation and Cellular Homeostasis. Cells 2020; 9:E1891. [PMID: 32806768 PMCID: PMC7463526 DOI: 10.3390/cells9081891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins control the metabolism of RNAs at all stages of their lifetime. They are critically required for the post-transcriptional regulation of gene expression in a wide variety of physiological and pathological processes. Rbm24 is a highly conserved RNA-binding protein that displays strongly regionalized expression patterns and exhibits dynamic changes in subcellular localization during early development. There is increasing evidence that it acts as a multifunctional regulator to switch cell fate determination and to maintain tissue homeostasis. Dysfunction of Rbm24 disrupts cell differentiation in nearly every tissue where it is expressed, such as skeletal and cardiac muscles, and different head sensory organs, but the molecular events that are affected may vary in a tissue-specific, or even a stage-specific manner. Recent works using different animal models have uncovered multiple post-transcriptional regulatory mechanisms by which Rbm24 functions in key developmental processes. In particular, it represents a major splicing factor in muscle cell development, and plays an essential role in cytoplasmic polyadenylation during lens fiber cell terminal differentiation. Here we review the advances in understanding the implication of Rbm24 during development and disease, by focusing on its regulatory roles in physiological and pathological conditions.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Audrey Saquet
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| | - De-Li Shi
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| |
Collapse
|
13
|
Chiba K, Ishizaka T, Yoshimatsu Y, Mikamoto K, Maeda Y, Iguchi T, Shirai M, Yamaguchi T, Goto K, Sakurai K, Tamai S, Kataoka H, Hasegawa M, Mori K. Comprehensive analysis of cardiac function, blood biomarkers and histopathology for milrinone-induced cardiotoxicity in cynomolgus monkeys. J Pharmacol Toxicol Methods 2020; 103:106870. [PMID: 32353509 DOI: 10.1016/j.vascn.2020.106870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
The objective of this study was to elucidate the underlying cardiotoxic mechanism of milrinone, a cAMP phosphodiesterase 3 inhibitor, by evaluating cardiac functions, blood biomarkers including cardiac troponin I (cTnI), microRNAs (miR-1, miR-133a and miR-499a) and various endogenous metabolites, and histopathology in conscious cynomolgus monkeys. Milrinone at doses of 0, 3 and 30 mg/kg were orally administered to monkeys (n = 3-4/group), and the endpoints were evaluated 1 to 24 h post-dosing. Milrinone caused myocardial injuries characterized by myocardial degeneration/necrosis, cell infiltration and hemorrhage 24 h after drug administration. Cardiac functional analysis revealed that milrinone dose-dependently increased the maximum upstroke velocity of the left ventricular pressure and heart rate, and decreased the QA interval and systemic blood pressure 1-4 h post-dosing, being associated with pharmacological action of the drug. In the blood biomarker analysis, only plasma cTnI was dose-dependently increased 4-7 h after drug administration, suggesting that cTnI is the most sensitive biomarker for early detection of milrinone-induced myocardial injuries. In the metabolomics analysis, high dose of milrinone induced transient changes in lipid metabolism, amino acid utilization and oxidative stress, together with the pharmacological action of increased cAMP and lipolysis 1 h post-dosing before the myocardial injuries were manifested by increased cTnI levels. Taken together, milrinone showed acute positive inotropic and multiple metabolic changes including excessive pharmacological actions, resulting in myocardial injuries. Furthermore, a comprehensive analysis of cardiac functions, blood biomarkers and histopathology can provide more appropriate information for overall assessment of preclinical cardiovascular safety.
Collapse
Affiliation(s)
- Katsuyoshi Chiba
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Tomomichi Ishizaka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yu Yoshimatsu
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kei Mikamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yu Maeda
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Makoto Shirai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Takashi Yamaguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Koichi Goto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Ken Sakurai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Satoshi Tamai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Hiroko Kataoka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Miki Hasegawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
14
|
The role of MicroRNAs on endoplasmic reticulum stress in myocardial ischemia and cardiac hypertrophy. Pharmacol Res 2019; 150:104516. [DOI: 10.1016/j.phrs.2019.104516] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
|
15
|
Dal-Pra S, Hodgkinson CP, Dzau VJ. Induced cardiomyocyte maturation: Cardiac transcription factors are necessary but not sufficient. PLoS One 2019; 14:e0223842. [PMID: 31622977 PMCID: PMC6797484 DOI: 10.1371/journal.pone.0223842] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 01/06/2023] Open
Abstract
The process by which fibroblasts are directly reprogrammed into cardiomyocytes involves two stages; initiation and maturation. Initiation represents the initial expression of factors that induce fibroblasts to transdifferentiate into cardiomyocytes. Following initiation, the cell undergoes a period of maturation before becoming a mature cardiomyocyte. We wanted to understand the role of cardiac development transcription factors in the maturation process. We directly reprogram fibroblasts into cardiomyocytes by a combination of miRNAs (miR combo). The ability of miR combo to induce cardiomyocyte-specific genes in fibroblasts was lost following the knockdown of the cardiac transcription factors Gata4, Mef2C, Tbx5 and Hand2 (GMTH). To further clarify the role of GMTH in miR combo reprogramming we utilized a modified CRISPR-Cas9 approach to activate endogenous GMTH genes. Importantly, both miR combo and the modified CRISPR-Cas9 approach induced comparable levels of GMTH expression. While miR combo was able to reprogram fibroblasts into cardiomyocyte-like cells, the modified CRISPR-Cas9 approach could not. Indeed, we found that cardiomyocyte maturation only occurred with very high levels of GMT expression. Taken together, our data indicates that while endogenous cardiac transcription factors are insufficient to reprogram fibroblasts into mature cardiomyocytes, endogenous cardiac transcription factors are necessary for expression of maturation genes.
Collapse
Affiliation(s)
- Sophie Dal-Pra
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Conrad P. Hodgkinson
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Victor J. Dzau
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zhang Z, Wang W, Liu JB, Wang Y, Hao JD, Huang YJ, Gao Y, Jiang H, Yuan B, Zhang JB. ssc-miR-204 regulates porcine preadipocyte differentiation and apoptosis by targeting TGFBR1 and TGFBR2. J Cell Biochem 2019; 121:609-620. [PMID: 31353638 DOI: 10.1002/jcb.29306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) take part in a variety of biological processes by regulating target genes. Transforming growth factor β receptor 1 (TGFBR1) and TGFBR2 are crucial members of the TGF-β family and are serine/threonine kinase receptors. The aim of this study was to explore the functions of ssc-miR-204 in porcine preadipocyte differentiation and apoptosis with regard to the TGFβ/Smad pathway. We identified miRNAs predicted to target TGFBR1 and TGFBR2 using a database and selected ssc-miR-204 as a candidate miRNA. ssc-miR-204 overexpression dramatically reduced the levels of TGFBR1 and TGFBR2. However, after transfection with ssc-miR-204 inhibitor, TGFBR1 and TGFBR2 levels were dramatically increased. ssc-miR-204 overexpression dramatically promoted porcine preadipocyte differentiation and apoptosis. After transfection with ssc-miR-204 inhibitor, porcine preadipocyte differentiation and apoptosis were dramatically inhibited. After transfection with ssc-miR-204 mimics, Smad2, Smad3, Smad4, p-Smad2, and p-Smad3 protein levels significantly decreased, and adipogenesis was regulated by inhibiting the TGF-β/Smad3 signaling pathway. Taken together, these results verified that ssc-miR-204 regulates porcine preadipocyte differentiation and apoptosis by targeting TGFBR1 and TGFBR2.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian-Bo Liu
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Ying Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jin-Dong Hao
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yi-Jie Huang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jia-Bao Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Mercurio V, Palazzuoli A, Correale M, Lombardi C, Passantino A, Ravera A, Ruocco G, Sciatti E, Triggiani M, Lagioia R, Scrutinio D, Tocchetti CG, Nodari S. Right heart dysfunction: from pathophysiologic insights to therapeutic options: a translational overview. J Cardiovasc Med (Hagerstown) 2018; 19:613-623. [PMID: 30048301 DOI: 10.2459/jcm.0000000000000700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
: The right ventricle has become increasingly studied in cardiovascular research. In this article, we describe specific pathophysiological characteristics of the right ventricle, with special focus on functional and molecular modifications as well as therapeutic strategies in right ventricular dysfunction, underlining the differences with the left ventricle. Then we analyze the main imaging modalities to assess right ventricular function in different clinical settings. Finally, we acknowledge main therapeutic advances for treatment of right heart diseases.
Collapse
Affiliation(s)
- Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples
| | - Alberto Palazzuoli
- Department of Internal Medicine, Cardiovascular Diseases Unit, University of Siena, Siena
| | | | - Carlo Lombardi
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Andrea Passantino
- Istituti Clinici Scientifici Maugeri. Istituto di Cassano delle Murge. I.R.C.C.S., Cassano Murge, Bari, Italy
| | - Alice Ravera
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Gaetano Ruocco
- Department of Internal Medicine, Cardiovascular Diseases Unit, University of Siena, Siena
| | - Edoardo Sciatti
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Marco Triggiani
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Rocco Lagioia
- Istituti Clinici Scientifici Maugeri. Istituto di Cassano delle Murge. I.R.C.C.S., Cassano Murge, Bari, Italy
| | - Domenico Scrutinio
- Istituti Clinici Scientifici Maugeri. Istituto di Cassano delle Murge. I.R.C.C.S., Cassano Murge, Bari, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples
| | - Savina Nodari
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| |
Collapse
|
18
|
A Hearty Dose of Noncoding RNAs: The Imprinted DLK1-DIO3 Locus in Cardiac Development and Disease. J Cardiovasc Dev Dis 2018; 5:jcdd5030037. [PMID: 29996488 PMCID: PMC6162432 DOI: 10.3390/jcdd5030037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
The imprinted Dlk1-Dio3 genomic region harbors a noncoding RNA cluster encoding over fifty microRNAs (miRNAs), three long noncoding RNAs (lncRNAs), and a small nucleolar RNA (snoRNA) gene array. These distinct noncoding RNAs (ncRNAs) are thought to arise from a single polycistronic transcript that is subsequently processed into individual ncRNAs, each with important roles in diverse cellular contexts. Considering these ncRNAs are derived from a polycistron, it is possible that some coordinately regulate discrete biological processes in the heart. Here, we provide a comprehensive summary of Dlk1-Dio3 miRNAs and lncRNAs, as they are currently understood in the cellular and organ-level context of the cardiovascular system. Highlighted are expression profiles, mechanistic contributions, and functional roles of these ncRNAs in heart development and disease. Notably, a number of these ncRNAs are implicated in processes often perturbed in heart disease, including proliferation, differentiation, cell death, and fibrosis. However, most literature falls short of characterizing precise mechanisms for many of these ncRNAs, warranting further investigation. Taken together, the Dlk1-Dio3 locus represents a largely unexplored noncoding regulator of cardiac homeostasis, harboring numerous ncRNAs that may serve as therapeutic targets for cardiovascular disease.
Collapse
|
19
|
miR-21-5p as a potential biomarker of inflammatory infiltration in the heart upon acute drug-induced cardiac injury in rats. Toxicol Lett 2018; 286:31-38. [PMID: 29355689 DOI: 10.1016/j.toxlet.2018.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/09/2023]
Abstract
Investigation of genomic changes in cardiotoxicity can provide novel biomarkers and insights into molecular mechanisms of drug-induced cardiac injury (DICI). The main objective of this study was to identify and characterize dysregulated microRNAs (miRNAs) in the heart associated with cardiotoxicity. Wistar rats were dosed once with either isoproterenol (1.5 mg/kg, i.p), allylamine (100 mg/kg, p.o.) or the respective vehicle controls. Heart tissue was collected at 24 h, 48 h and 72 h post-drug administration and used for histopathological assessment, miRNA profiling, immunohistochemical analysis and in situ hybridization. Multiplex analysis of 68 miRNAs in the heart revealed a significant upregulation of several miRNAs (miR-19a-3p, miR-142-3p, miR-155-5p, miR-208b-3p, miR-21-5p) after isoproterenol and one miRNA (miR-21-5p) after allylamine administration. Localization of miR-21-5p was specific to inflammatory cell infiltrates in the heart after both treatments. Immunohistochemical analysis of Stat3, a known miR-21-5p regulator, also confirmed its upregulation in cardiomyocytes and inflammatory cell infiltrates. The toxicity signatures based on miRNA networks, identified in vivo, can potentially be used as mechanistic biomarkers as well as to study cardiotoxicity in vitro in order to develop sensitive tools for early hazard identification and risk assessment.
Collapse
|
20
|
Berridge BR, Schultze AE, Heyen JR, Searfoss GH, Sarazan RD. Technological Advances in Cardiovascular Safety Assessment Decrease Preclinical Animal Use and Improve Clinical Relevance. ILAR J 2017; 57:120-132. [PMID: 28053066 DOI: 10.1093/ilar/ilw028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/09/2016] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular (CV) safety liabilities are significant concerns for drug developers and preclinical animal studies are predominately where those liabilities are characterized before patient exposures. Steady progress in technology and laboratory capabilities is enabling a more refined and informative use of animals in those studies. The application of surgically implantable and telemetered instrumentation in the acute assessment of drug effects on CV function has significantly improved historical approaches that involved anesthetized or restrained animals. More chronically instrumented animals and application of common clinical imaging assessments like echocardiography and MRI extend functional and in-life structural assessments into the repeat-dose setting. A growing portfolio of circulating CV biomarkers is allowing longitudinal and repeated measures of cardiac and vascular injury and dysfunction better informing an understanding of temporal pathogenesis and allowing earlier detection of undesirable effects. In vitro modeling systems of the past were limited by their lack of biological relevance to the in vivo human condition. Advances in stem cell technology and more complex in vitro modeling platforms are quickly creating more opportunity to supplant animals in our earliest assessments for liabilities. Continuing improvement in our capabilities in both animal and nonanimal modeling should support a steady decrease in animal use for primary liability identification and optimize the translational relevance of the animal studies we continue to do.
Collapse
Affiliation(s)
- Brian R Berridge
- Brian R. Berridge, DVM, PhD, is a Senior GSK Fellow and Head of Worldwide Animal Research Strategy at GlaxoSmithKline in King of Prussia, Pennsylvania. A. Eric Schultze, DVM, PhD, is a Senior Research Advisor-Pathologist at Lilly Research Laboratories in Indianapolis, Indiana. Jon R. Heyen, MS, is a Senior Principal Scientist at Pfizer in La Jolla, California. George H. Searfoss, MS, is a Consultant Toxicologist at Lilly Research Laboratories in Indianapolis, Indiana. R. Dustan Sarazan, DVM, PhD, is a cardiovascular consultant currently residing in Rhinelander, Wisconsin
| | - A Eric Schultze
- Brian R. Berridge, DVM, PhD, is a Senior GSK Fellow and Head of Worldwide Animal Research Strategy at GlaxoSmithKline in King of Prussia, Pennsylvania. A. Eric Schultze, DVM, PhD, is a Senior Research Advisor-Pathologist at Lilly Research Laboratories in Indianapolis, Indiana. Jon R. Heyen, MS, is a Senior Principal Scientist at Pfizer in La Jolla, California. George H. Searfoss, MS, is a Consultant Toxicologist at Lilly Research Laboratories in Indianapolis, Indiana. R. Dustan Sarazan, DVM, PhD, is a cardiovascular consultant currently residing in Rhinelander, Wisconsin
| | - Jon R Heyen
- Brian R. Berridge, DVM, PhD, is a Senior GSK Fellow and Head of Worldwide Animal Research Strategy at GlaxoSmithKline in King of Prussia, Pennsylvania. A. Eric Schultze, DVM, PhD, is a Senior Research Advisor-Pathologist at Lilly Research Laboratories in Indianapolis, Indiana. Jon R. Heyen, MS, is a Senior Principal Scientist at Pfizer in La Jolla, California. George H. Searfoss, MS, is a Consultant Toxicologist at Lilly Research Laboratories in Indianapolis, Indiana. R. Dustan Sarazan, DVM, PhD, is a cardiovascular consultant currently residing in Rhinelander, Wisconsin
| | - George H Searfoss
- Brian R. Berridge, DVM, PhD, is a Senior GSK Fellow and Head of Worldwide Animal Research Strategy at GlaxoSmithKline in King of Prussia, Pennsylvania. A. Eric Schultze, DVM, PhD, is a Senior Research Advisor-Pathologist at Lilly Research Laboratories in Indianapolis, Indiana. Jon R. Heyen, MS, is a Senior Principal Scientist at Pfizer in La Jolla, California. George H. Searfoss, MS, is a Consultant Toxicologist at Lilly Research Laboratories in Indianapolis, Indiana. R. Dustan Sarazan, DVM, PhD, is a cardiovascular consultant currently residing in Rhinelander, Wisconsin
| | - R Dustan Sarazan
- Brian R. Berridge, DVM, PhD, is a Senior GSK Fellow and Head of Worldwide Animal Research Strategy at GlaxoSmithKline in King of Prussia, Pennsylvania. A. Eric Schultze, DVM, PhD, is a Senior Research Advisor-Pathologist at Lilly Research Laboratories in Indianapolis, Indiana. Jon R. Heyen, MS, is a Senior Principal Scientist at Pfizer in La Jolla, California. George H. Searfoss, MS, is a Consultant Toxicologist at Lilly Research Laboratories in Indianapolis, Indiana. R. Dustan Sarazan, DVM, PhD, is a cardiovascular consultant currently residing in Rhinelander, Wisconsin
| |
Collapse
|
21
|
Ohe K, Yoshida M, Nakano-Kobayashi A, Hosokawa M, Sako Y, Sakuma M, Okuno Y, Usui T, Ninomiya K, Nojima T, Kataoka N, Hagiwara M. RBM24 promotes U1 snRNP recognition of the mutated 5' splice site in the IKBKAP gene of familial dysautonomia. RNA (NEW YORK, N.Y.) 2017; 23:1393-1403. [PMID: 28592461 PMCID: PMC5558909 DOI: 10.1261/rna.059428.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
The 5' splice site mutation (IVS20+6T>C) of the inhibitor of κ light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) gene in familial dysautonomia (FD) is at the sixth intronic nucleotide of the 5' splice site. It is known to weaken U1 snRNP recognition and result in an aberrantly spliced mRNA product in neuronal tissue, but normally spliced mRNA in other tissues. Aberrantly spliced IKBKAP mRNA abrogates IKK complex-associated protein (IKAP)/elongator protein 1 (ELP1) expression and results in a defect of neuronal cell development in FD. To elucidate the tissue-dependent regulatory mechanism, we screened an expression library of major RNA-binding proteins (RBPs) with our mammalian dual-color splicing reporter system and identified RBM24 as a regulator. RBM24 functioned as a cryptic intronic splicing enhancer binding to an element (IVS20+13-29) downstream from the intronic 5' splice site mutation in the IKBKAP gene and promoted U1 snRNP recognition only to the mutated 5' splice site (and not the wild-type 5' splice site). Our results show that tissue-specific expression of RBM24 can explain the neuron-specific aberrant splicing of IKBKAP exon 20 in familial dysautonomia, and that ectopic expression of RBM24 in neuronal tissue could be a novel therapeutic target of the disease.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
- Training Program of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society (LIMS), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mayumi Yoshida
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motoyasu Hosokawa
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukiya Sako
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Maki Sakuma
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukiko Okuno
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomomi Usui
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kensuke Ninomiya
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Batkai S, Bär C, Thum T. MicroRNAs in right ventricular remodelling. Cardiovasc Res 2017; 113:1433-1440. [DOI: 10.1093/cvr/cvx153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
|
23
|
Li S, Li H, Xu Y, Lv X. Identification of candidate biomarkers for epithelial ovarian cancer metastasis using microarray data. Oncol Lett 2017; 14:3967-3974. [PMID: 28943904 DOI: 10.3892/ol.2017.6707] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/08/2017] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a common cancer in women worldwide. The present study assessed effective biomarkers for the prognosis of EOC metastasis. The GSE30587 dataset, containing 9 EOC primary tumor samples and 9 matched omental metastasis samples, was analyzed. Following normalization, the differentially expressed genes (DEGs) between these samples were identified using the limma package for R. Subsequently, pathway enrichment analysis was performed using ClueGO, and a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes database. The microRNA (mRNA/miR)-target network was established using the multiMiR package. A set of 272 DEGs was identified in metastatic EOC samples, including 189 upregulated and 83 downregulated genes. Collagen type I α 1 chain (COL1A1), COL1A2, collagen type XI α 1 chain (COL11A1) and thrombospondin (THBS)1 were enriched in the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), focal adhesion and extracellular matrix (ECM)-receptor interaction signaling pathways. THBS1 and tissue inhibitor of metalloproteinase (TIMP)3 were two dominant nodes in the PPI network and were key in the miRNA-target network, being targeted by hsa-miR-1. Multiple DEGs and miRNAs were identified as potential biomarkers for the prognosis of EOC metastasis in the present study, which likely affected metastasis by regulating the PI3K/Akt, ECM-receptor interaction and cell adhesion signaling pathways. In addition, THBS1 and TIMP3 were identified as potential targets of hsa-miR-1.
Collapse
Affiliation(s)
- Su Li
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hua Li
- Department of Obstetrics and Gynecology, The People's Hospital of Zhangqiu, Zhangqiu, Shandong 250014, P.R. China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Shandong Coal Taishan Sanatorium, Taian, Shandong 271000, P.R. China
| | - Xiaomei Lv
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
24
|
Lai CTM, Ng EKO, Chow PC, Kwong A, Cheung YF. Circulating MicroRNA in patients with repaired tetralogy of Fallot. Eur J Clin Invest 2017; 47:574-582. [PMID: 28664568 DOI: 10.1111/eci.12778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging data suggest that heart-related microRNAs (miRs) may serve as circulating biomarkers of myocardial injury. We aimed to determine the circulating profile of miRs in patients with volume-overloaded right ventricles after repair of tetralogy (TOF). MATERIALS AND METHODS A total of 104 TOF patients and 70 controls were recruited. The study was conducted in two phases: (1) determination of circulating heart-related miRs described in left heart diseases (miR-1, miR-133a, miR-208a, miR-208b and miR423-5p) by quantitative real-time PCR in 49 patients and 30 controls and followed by validation in an independent cohort of 55 patients and 40 controls; (2) expression profiling of serum samples from eight patients and eight controls, followed by validation. Alteration in circulating miRNA expression was related to cardiac functional indices as assessed by 2D speckle tracking and 3D echocardiography. RESULTS No significant differences in serum levels of left heart-associated miRNAs were found between patients and controls. Of the candidate 19 miRNAs identified by profiling, upregulation of miR-99b and down-regulation of miR-766 were validated. However, no correlations were found between miRs levels and echo indices. CONCLUSION In young adults with repaired TOF and volume-overloaded right ventricles, circulating levels of miR-99b and miR-766, but not left heart-associated miRNAs, were significantly altered.
Collapse
Affiliation(s)
- Clare T M Lai
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Enders K O Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Pak-Cheong Chow
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yiu-Fai Cheung
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Doxorubicin and Liposomal Doxorubicin Differentially Affect Expression of miR-208a and let-7g in Rat Ventricles and Atria. Cardiovasc Toxicol 2016; 17:355-359. [DOI: 10.1007/s12012-016-9393-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Thompson KL, Boitier E, Chen T, Couttet P, Ellinger-Ziegelbauer H, Goetschy M, Guillemain G, Kanki M, Kelsall J, Mariet C, de La Moureyre–Spire C, Mouritzen P, Nassirpour R, O’Lone R, Pine PS, Rosenzweig BA, Sharapova T, Smith A, Uchiyama H, Yan J, Yuen PS, Wolfinger R. Absolute Measurement of Cardiac Injury-Induced microRNAs in Biofluids across Multiple Test Sites. Toxicol Sci 2016; 154:115-125. [DOI: 10.1093/toxsci/kfw143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
27
|
Koenig EM, Fisher C, Bernard H, Wolenski FS, Gerrein J, Carsillo M, Gallacher M, Tse A, Peters R, Smith A, Meehan A, Tirrell S, Kirby P. The beagle dog MicroRNA tissue atlas: identifying translatable biomarkers of organ toxicity. BMC Genomics 2016; 17:649. [PMID: 27535741 PMCID: PMC4989286 DOI: 10.1186/s12864-016-2958-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/21/2016] [Indexed: 01/28/2023] Open
Abstract
Background MicroRNAs (miRNA) are varied in length, under 25 nucleotides, single-stranded noncoding RNA that regulate post-transcriptional gene expression via translational repression or mRNA degradation. Elevated levels of miRNAs can be detected in systemic circulation after tissue injury, suggesting that miRNAs are released following cellular damage. Because of their remarkable stability, ease of detection in biofluids, and tissue specific expression patterns, miRNAs have the potential to be specific biomarkers of organ injury. The identification of miRNA biomarkers requires a systematic approach: 1) determine the miRNA tissue expression profiles within a mammalian species via next generation sequencing; 2) identify enriched and/or specific miRNA expression within organs of toxicologic interest, and 3) in vivo validation with tissue-specific toxicants. While miRNA tissue expression has been reported in rodents and humans, little data exists on miRNA tissue expression in the dog, a relevant toxicology species. The generation and evaluation of the first dog miRNA tissue atlas is described here. Results Analysis of 16 tissues from five male beagle dogs identified 106 tissue enriched miRNAs, 60 of which were highly enriched in a single organ, and thus may serve as biomarkers of organ injury. A proof of concept study in dogs dosed with hepatotoxicants evaluated a qPCR panel of 15 tissue enriched miRNAs specific to liver, heart, skeletal muscle, pancreas, testes, and brain. Dogs with elevated serum levels of miR-122 and miR-885 had a correlative increase of alanine aminotransferase, and microscopic analysis confirmed liver damage. Other non-liver enriched miRNAs included in the screening panel were unaffected. Eli Lilly authors created a complimentary Sprague Dawely rat miRNA tissue atlas and demonstrated increased pancreas enriched miRNA levels in circulation, following caerulein administration in rat and dog. Conclusion The dog miRNA tissue atlas provides a resource for biomarker discovery and can be further mined with refinement of dog genome annotation. The 60 highly enriched tissue miRNAs identified within the dog miRNA tissue atlas could serve as diagnostic biomarkers and will require further validation by in vivo correlation to histopathology. Once validated, these tissue enriched miRNAs could be combined into a powerful qPCR screening panel to identify organ toxicity during early drug development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2958-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik M Koenig
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| | - Craig Fisher
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Hugues Bernard
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Francis S Wolenski
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Joseph Gerrein
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Mary Carsillo
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Matt Gallacher
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Aimy Tse
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Rachel Peters
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Aaron Smith
- Eli Lilly and Company, 893 S. Delaware, Indianapolis, IN, 46285, USA
| | - Alexa Meehan
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Stephen Tirrell
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Patrick Kirby
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| |
Collapse
|
28
|
Liu H, Li G, Zhao W, Hu Y. Inhibition of MiR-92a May Protect Endothelial Cells After Acute Myocardial Infarction in Rats: Role of KLF2/4. Med Sci Monit 2016; 22:2451-62. [PMID: 27411964 PMCID: PMC4957625 DOI: 10.12659/msm.897266] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background This study was designed to investigate the effects of microRNA-92 (miR-92), Kruppel-like factor 2 (KLF2), and Kruppel-like factor 4 (KLF4) on endothelial injury after acute myocardial infarction (AMI). Material/Methods Blood samples were collected from 50 AMI patients for detection of cardiac troponin I (cTnI), heart-type fatty acid-binding protein (H-FABP), and von Willebrand factor (vWF). The Sprague-Dawley rat models of AMI (n=30) were established by ligating their left anterior descending coronary artery. The cardiac markers of AMI patients and rat models were analyzed with enzyme-linked immunosorbent assay and immunohistochemistry. Human umbilical vein endothelial cells were processed into 5 groups: control, negative control, miR-92a inhibitors, miR-92a inhibitors + KLF2 small interfering RNA (siRNA), and miR-92a inhibitors + KLF4 siRNA. Cell proliferation and apoptosis were detected using MTT assay and flow cytometry. RT-PCR and Western blot were conducted to analyze KLF2 and KLF4 expressions. Results AMI patients exhibited significantly higher expression of both endothelial injury markers (e.g., cTnI, H-FABP, vWF) and miR-92a in blood samples, when compared with controls (P<0.05). Model rats also had similar expressional tendencies, along with lower KLF2 and KLF4 expressions (P<0.05). Further, it could be observed in cellular experiments that treatment of miR-92a mimics can further upregulate endothelial injury markers, and miR-92a and both KLF2 and KLF4 were downregulated by miR-92a mimics (all, P<0.05). Also, the luciferase activity assay confirmed the direct binding of miR-92a to 3′ UTR of KLF2/4. Conclusions MiR-92a was involved in the endothelial injury process after AMI and was able to suppress KLF2 and KLF4 expression.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Clinical Laboratory Medicine, The Central Hospital of Nanyang, Nanyang, Henan, China (mainland)
| | - Guofen Li
- Cell Morphology Inspection of Clinical Laboratory Medicine, The Central Hospital of Nanyang, Nanyang, Henan, China (mainland)
| | - Wenxue Zhao
- Department of Cardiology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yibo Hu
- Department of Cardiopulmonary Exercise Testing, The Central Hospital of Nanyang, Nanyang, Henan, China (mainland)
| |
Collapse
|
29
|
Kakimoto Y, Tanaka M, Kamiguchi H, Hayashi H, Ochiai E, Osawa M. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. Int J Cardiol 2016; 211:43-8. [PMID: 26974694 DOI: 10.1016/j.ijcard.2016.02.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. METHODS AND RESULTS We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. CONCLUSIONS Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
30
|
De Luca T, Pelosi A, Trisciuoglio D, D'Aguanno S, Desideri M, Farini V, Di Martile M, Bellei B, Tupone MG, Candiloro A, Regazzo G, Rizzo MG, Del Bufalo D. miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Mol Carcinog 2015; 55:2304-2312. [PMID: 26599548 DOI: 10.1002/mc.22437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 11/08/2022]
Abstract
Melanoma, the most lethal form of skin cancer, is frequently associated with alterations in several genes, among which the Bcl-2 oncogene plays an important role in progression, chemosensitivity and angiogenesis. Also microRNA (miRNA) are emerging as modulators of melanoma development and progression, and among them, miR-211, located within the melastatin-1/TRPM1 (transient receptor potential cation channel, subfamily M, member 1 protein) gene, is prevalently expressed in the melanocyte lineage and acts as oncosuppressor. Using several human melanoma cell lines and their Bcl-2 stably overexpressing derivatives, we evaluated whether there was a correlation between expression of Bcl-2 and miR-211. Western blot analysis and quantitative real-time polymerase chain reaction demonstrated reduced expression of pri-miR-211, miR-211, TRPM1, and MLANA levels, after Bcl-2 overexpression, associated with increased expression of well-known miR-211 target genes. Overexpression of mature miR-211 in Bcl-2 overexpressing cells rescued Bcl-2 ability to increase cell migration. A decreased nuclear localization of microphthalmia-associated transcription factor (MITF), a co-regulator of both miR-211 and TRPM1, and a reduced MITF recruitment at the TRPM1 and MLANA promoters were also evidenced in Bcl-2 overexpressing cells by immunofluorescence and chromatin immunoprecipitation experiments, respectively. Reduction of Bcl-2 expression by small interference RNA confirmed the ability of Bcl-2 to modulate miR-211 and TRPM1 expression. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Teresa De Luca
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pelosi
- Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Marianna Desideri
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Farini
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, Rome, Italy
| | - Maria Grazia Tupone
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Candiloro
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Giulia Rizzo
- Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
31
|
Laganà A, Veneziano D, Spata T, Tang R, Zhu H, Mohler PJ, Kilic A. Identification of General and Heart-Specific miRNAs in Sheep (Ovis aries). PLoS One 2015; 10:e0143313. [PMID: 26599010 PMCID: PMC4657999 DOI: 10.1371/journal.pone.0143313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small regulatory RNAs crucial for modulation of signaling pathways in multiple organs. While the link between miRNAs and heart disease has grown more readily apparent over the past three years, these data are primarily limited to small animal models or cell-based systems. Here, we performed a high-throughput RNA sequencing (RNAseq) analysis of left ventricle and other tissue from a pre-clinical ovine model. We identified 172 novel miRNA precursors encoding a total of 264 mature miRNAs. Notably, 84 precursors were detected in both the left ventricle and other tissues. However, 10 precursors, encoding 11 mature sequences, were specific to the left ventricle. Moreover, the total 168 novel miRNA precursors included 22 non-conserved ovine-specific sequences. Our data identify and characterize novel miRNAs in the left ventricle of sheep, providing fundamental new information for our understanding of protein regulation in heart and other tissues.
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
- * E-mail: (AL); (AK)
| | - Dario Veneziano
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Tyler Spata
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Richard Tang
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Peter J. Mohler
- The Davis Heart and Lung Research Institute, Departments of Physiology & Cell Biology and Internal Medicine, The Ohio State University Medical Center, Columbus, OH, United States of America
| | - Ahmet Kilic
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
- * E-mail: (AL); (AK)
| |
Collapse
|
32
|
Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 2015; 9:1153-76. [PMID: 26501795 PMCID: PMC5712454 DOI: 10.2217/bmm.15.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much evidence has documented that microRNAs (miRNAs) play an important role in the modulation of interindividual variability in the production of drug metabolizing enzymes and transporters (DMETs) and nuclear receptors (NRs) through multidirectional interactions involving environmental stimuli/stressors, the expression of miRNA molecules and genetic polymorphisms. MiRNA expression has been reported to be affected by drugs and miRNAs themselves may affect drug metabolism and toxicity. In cancer research, miRNA biomarkers have been identified to mediate intrinsic and acquired resistance to cancer therapies. In drug safety assessment, miRNAs have been found associated with cardiotoxicity, hepatotoxicity and nephrotoxicity. This review article summarizes published studies to show that miRNAs can serve as early biomarkers for the evaluation of drug efficacy and drug safety.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental & Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - William Mattes
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
33
|
Shi Q, Yang X. Circulating MicroRNA and Long Noncoding RNA as Biomarkers of Cardiovascular Diseases. J Cell Physiol 2015; 231:751-5. [PMID: 26308238 DOI: 10.1002/jcp.25174] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023]
Abstract
Although >85% of the human genome is transcribed, only <2% is transcribed into protein-coding RNA (messenger RNA, mRNA). Many thousands of noncoding RNAs are transcribed and recognized as functional RNAs with diverse sizes, structures, and biological functions. Based on size, noncoding RNA can be generally divided into two subgroups: short noncoding RNA (<200 nucleotides including microRNA or miRNA) and long noncoding RNA (lncRNA, >200 nucleotides). It is now clear that these RNAs fulfil critical roles as transcriptional and post-transcriptional regulators and as guides of chromatin-modifying complexes. Although not translated into protein, noncoding RNAs can regulate cardiac function through diverse mechanisms and their dysregulation is increasingly linked with cardiovascular pathophysiology. Furthermore, a series of recent studies have discovered that noncoding RNAs can be found in the bloodstream and some species are remarkably stable. This has raised the possibility that such noncoding RNAs may be measured in body fluids and serve as novel diagnostic biomarkers. Here, we summarize the current knowledge of noncoding RNAs' function and biomarker potential in cardiac diseases, concentrating mainly on circulating miRNAs and lncRNAs. J. Cell. Physiol. 231: 751-755, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
34
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
35
|
Bonet F, Dueñas Á, López-Sánchez C, García-Martínez V, Aránega AE, Franco D. MiR-23b and miR-199a impair epithelial-to-mesenchymal transition during atrioventricular endocardial cushion formation. Dev Dyn 2015. [PMID: 26198058 DOI: 10.1002/dvdy.24309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Valve development is a multistep process involving the activation of the cardiac endothelium, epithelial-mesenchymal transition (EMT) and the progressive alignment and differentiation of distinct mesenchymal cell types. Several pathways such as Notch/delta, Tgf-beta and/or Vegf signaling have been implicated in crucial steps of valvulogenesis. We have previously demonstrated discrete changes in microRNAs expression during cardiogenesis, which are predicted to target Bmp- and Tgf-beta signaling. We now analyzed the expression profile of 20 candidate microRNAs in atrial, ventricular, and atrioventricular canal regions at four different developmental stages. RESULTS qRT-PCR analyses of microRNAs demonstrated a highly dynamic and distinct expression profiles within the atrial, ventricular, and atrioventricular canal regions of the developing chick heart. miR-23b, miR-199a, and miR-15a displayed increased expression during early AVC development whereas others such as miR-130a and miR-200a display decreased expression levels. Functional analyses of miR-23b, miR-199a, and miR-15a overexpression led to in vitro EMT blockage. Molecular analyses demonstrate that distinct EMT signaling pathways are impaired after microRNA expression, including a large subset of EMT-related genes that are predicted to be targeted by these microRNAs. CONCLUSIONS Our data demonstrate that miR-23b and miR-199a over-expression can impair atrioventricular EMT.
Collapse
Affiliation(s)
- Fernando Bonet
- Cardiovascular Research Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Ángel Dueñas
- Cardiovascular Research Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Carmen López-Sánchez
- Department of Anatomy and Embryology, Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Virginio García-Martínez
- Department of Anatomy and Embryology, Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Amelia E Aránega
- Cardiovascular Research Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| |
Collapse
|
36
|
|
37
|
miR-27 and miR-125 Distinctly Regulate Muscle-Enriched Transcription Factors in Cardiac and Skeletal Myocytes. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221592 PMCID: PMC4499371 DOI: 10.1155/2015/391306] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are noncoding RNAs of approximately 22–24 nucleotides which are capable of interacting with the 3′ untranslated region of coding RNAs (mRNAs), leading to mRNA degradation and/or protein translation blockage. In recent years, differential microRNA expression in distinct cardiac development and disease contexts has been widely reported, yet the role of individual microRNAs in these settings remains largely unknown. We provide herein evidence of the role of miR-27 and miR-125 regulating distinct muscle-enriched transcription factors. Overexpression of miR-27 leads to impair expression of Mstn and Myocd in HL1 atrial cardiomyocytes but not in Sol8 skeletal muscle myoblasts, while overexpression of miR-125 resulted in selective upregulation of Mef2d in HL1 atrial cardiomyocytes and downregulation in Sol8 cells. Taken together our data demonstrate that a single microRNA, that is, miR-27 or miR-125, can selectively upregulate and downregulate discrete number of target mRNAs in a cell-type specific manner.
Collapse
|
38
|
Li Q, Freeman LM, Rush JE, Laflamme DP. Expression Profiling of Circulating MicroRNAs in Canine Myxomatous Mitral Valve Disease. Int J Mol Sci 2015; 16:14098-108. [PMID: 26101868 PMCID: PMC4490541 DOI: 10.3390/ijms160614098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have shown promise as noninvasive biomarkers in cardiac disease. This study was undertaken to investigate the miRNA expression profile in dogs with myxomatous mitral valve disease (MMVD). 277 miRNAs were quantified using RT-qPCR from six normal dogs (American College of Veterinary Internal Medicine Stage A), six dogs with MMVD mild to moderate cardiac enlargement (ACVIM Stage B1/B2) and six dogs with MMVD and congestive heart failure (ACVIM Stage C/D). Eleven miRNAs were differentially expressed (False Discovery Rate < 0.05). Dogs in Stage B1/B2 or C/D had four upregulated miRNAs, including three cfa-let-7/cfa-miR-98 family members, while seven others were downregulated, compared to Stage A. Expression of six of the 11 miRNAs also were significantly different between dogs in Stage C/D and those in Stage B1/B2. The expression changes were greater as disease severity increased. These miRNAs may be candidates for novel biomarkers and may provide insights into genetic regulatory pathways in canine MMVD.
Collapse
Affiliation(s)
- Qinghong Li
- Nestle Purina Research, Saint Louis, MO 63164, USA.
| | - Lisa M Freeman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - John E Rush
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | | |
Collapse
|
39
|
Kim JY, Park YK, Lee KP, Lee SM, Kang TW, Kim HJ, Dho SH, Kim SY, Kwon KS. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging (Albany NY) 2015; 6:524-44. [PMID: 25063768 PMCID: PMC4153621 DOI: 10.18632/aging.100677] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle degenerates progressively, losing mass (sarcopenia) over time, which leads to reduced physical ability and often results in secondary diseases such as diabetes and obesity. The regulation of gene expression by microRNAs is a key event in muscle development and disease. To understand genome‐wide changes in microRNAs and mRNAs during muscle aging, we sequenced microRNAs and mRNAs from mouse gastrocnemius muscles at two different ages (6 and 24 months). Thirty‐four microRNAs (15 up‐regulated and 19 down‐regulated) were differentially expressed with age, including the microRNAs miR‐206 and ‐434, which were differentially expressed in aged muscle in previous studies. Interestingly, eight microRNAs in a microRNA cluster at the imprinted Dlk1‐Dio3 locus on chromosome 12 were coordinately down‐regulated. In addition, sixteen novel microRNAs were identified. Integrative analysis of microRNA and mRNA expression revealed that microRNAs may contribute to muscle aging through the positive regulation of transcription, metabolic processes, and kinase activity. Many of the age‐related microRNAs have been implicated in human muscular diseases. We suggest that genome‐wide microRNA profiling will expand our knowledge of microRNA function in the muscle aging process.
Collapse
|
40
|
MicroRNA profiling of pericardial fluid samples from patients with heart failure. PLoS One 2015; 10:e0119646. [PMID: 25763857 PMCID: PMC4357463 DOI: 10.1371/journal.pone.0119646] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/01/2015] [Indexed: 12/20/2022] Open
Abstract
AIMS Multicellular organisms maintain vital functions through intercellular communication. Release of extracellular vesicles that carry signals to even distant target organs is one way of accomplishing this communication. MicroRNAs can also be secreted from the cells in exosomes and act as paracrine signalling molecules. In addition, microRNAs have been implicated in the pathogenesis of a large number of diseases, including cardiovascular diseases, and are considered as promising candidate biomarkers due to their relative stability and easy quantification from clinical samples. Pericardial fluid contains hormones secreted by the heart and is known to reflect the cardiac function. In this study, we sought to investigate whether pericardial fluid contains microRNAs and if so, whether they could be used to distinguish between different cardiovascular pathologies and disease stages. METHODS AND RESULTS Pericardial fluid was collected from heart failure patients during open-heart surgery. MicroRNA profiles of altogether 51 patients were measured by quantitative real-time PCR (qPCR) using Exiqon human panels I and II. On the average, 256 microRNAs were detected per sample, and 70 microRNAs out of 742 profiled microRNAs were detected in every sample. The five most abundant microRNAs in pericardial fluid were miR-21-5p, miR-451a, miR-125b-5p, let-7b-5p and miR-16-5p. No specific signatures for cardiovascular pathologies or clinically assessed heart failure stages could be detected from the profiles and, overall, microRNA profiles of the samples were found to be very similar despite the heterogeneity in the study population. CONCLUSION Measured microRNA profiles did not separate the samples according to the clinical features of the patients. However, several previously identified heart failure marker microRNAs were detected. The pericardial fluid microRNA profile appeared to be a result of an active and selective secretory process indicating that microRNAs may act as paracrine signalling factors by mediating the local crosstalk between cardiac cells.
Collapse
|
41
|
Dimitrakopoulou K, Vrahatis AG, Bezerianos A. Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism. BMC Genomics 2015; 16:147. [PMID: 25887273 PMCID: PMC4367845 DOI: 10.1186/s12864-015-1256-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background The avalanche of integromics and panomics approaches shifted the deciphering of aging mechanisms from single molecular entities to communities of them. In this orientation, we explore the cardiac aging mechanisms – risk factor for multiple cardiovascular diseases - by capturing the micronome synergism and detecting longevity signatures in the form of communities (modules). For this, we developed a meta-analysis scheme that integrates transcriptome expression data from multiple cardiac-specific independent studies in mouse and human along with proteome and micronome interaction data in the form of multiple independent weighted networks. Modularization of each weighted network produced modules, which in turn were further analyzed so as to define consensus modules across datasets that change substantially during lifespan. Also, we established a metric that determines - from the modular perspective - the synergism of microRNA-microRNA interactions as defined by significantly functionally associated targets. Results The meta-analysis provided 40 consensus integromics modules across mouse datasets and revealed microRNA relations with substantial collective action during aging. Three modules were reproducible, based on homology, when mapped against human-derived modules. The respective homologs mainly represent NADH dehydrogenases, ATP synthases, cytochrome oxidases, Ras GTPases and ribosomal proteins. Among various observations, we corroborate to the involvement of miR-34a (included in consensus modules) as proposed recently; yet we report that has no synergistic effect. Moving forward, we determined its age-related neighborhood in which HCN3, a known heart pacemaker channel, was included. Also, miR-125a-5p/-351, miR-200c/-429, miR-106b/-17, miR-363/-92b, miR-181b/-181d, miR-19a/-19b, let-7d/-7f, miR-18a/-18b, miR-128/-27b and miR-106a/-291a-3p pairs exhibited significant synergy and their association to aging and/or cardiovascular diseases is supported in many cases by a disease database and previous studies. On the contrary, we suggest that miR-22 has not substantial impact on heart longevity as proposed recently. Conclusions We revised several proteins and microRNAs recently implicated in cardiac aging and proposed for the first time modules as signatures. The integromics meta-analysis approach can serve as an efficient subvening signature tool for more-oriented better-designed experiments. It can also promote the combinational multi-target microRNA therapy of age-related cardiovascular diseases along the continuum from prevention to detection, diagnosis, treatment and outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1256-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Aristidis G Vrahatis
- Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece. .,Department of Computer Engineering and Informatics, University of Patras, Patras, 26500, Greece.
| | - Anastasios Bezerianos
- Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece. .,Singapore Institute for Neurotechnology (SINAPSE), Center of Life Sciences, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
42
|
Katoh M. Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol 2014; 2:61. [PMID: 25364765 PMCID: PMC4207049 DOI: 10.3389/fcell.2014.00061] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases and cancers are the leading causes of morbidity and mortality in the world. MicroRNAs (miRNAs) are short non-coding RNAs that primarily repress target mRNAs. Here, miR-24, miR-125b, miR-195, and miR-214 were selected as representative cardio-miRs that are upregulated in human heart failure. To bridge the gap between miRNA studies in cardiology and oncology, the targets and functions of these miRNAs in cardiovascular diseases and cancers will be reviewed. ACVR1B, BCL2, BIM, eNOS, FGFR3, JPH2, MEN1, MYC, p16, and ST7L are miR-24 targets that have been experimentally validated in human cells. ARID3B, BAK1, BCL2, BMPR1B, ERBB2, FGFR2, IL6R, MUC1, SITR7, Smoothened, STAT3, TET2, and TP53 are representative miR-125b targets. ACVR2A, BCL2, CCND1, E2F3, GLUT3, MYB, RAF1, VEGF, WEE1, and WNT7A are representative miR-195 targets. BCL2L2, ß-catenin, BIM, CADM1, EZH2, FGFR1, NRAS, PTEN, TP53, and TWIST1 are representative miR-214 targets. miR-125b is a good cardio-miR that protects cardiomyocytes; miR-195 is a bad cardio-miR that elicits cardiomyopathy and heart failure; miR-24 and miR-214 are bi-functional cardio-miRs. By contrast, miR-24, miR-125b, miR-195, and miR-214 function as oncogenic or tumor suppressor miRNAs in a cancer (sub)type-dependent manner. Circulating miR-24 is elevated in diabetes, breast cancer and lung cancer. Circulating miR-195 is elevated in acute myocardial infarction, breast cancer, prostate cancer and colorectal adenoma. Circulating miR-125b and miR-214 are elevated in some cancers. Cardio-miRs and onco-miRs bear some similarities in functions and circulation profiles. miRNAs regulate WNT, FGF, Hedgehog and other signaling cascades that are involved in orchestration of embryogenesis and homeostasis as well as pathogenesis of human diseases. Because circulating miRNA profiles are modulated by genetic and environmental factors and are dysregulated by genetic and epigenetic alterations in somatic cells, circulating miRNA association studies (CMASs) within several thousands of cases each for common non-cancerous diseases and major cancers are necessary for miRNA-based diagnostics.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center Tokyo, Japan
| |
Collapse
|
43
|
Abstract
Cardiac stress leads to remodelling of cardiac tissue, which often progresses to heart failure and death. Part of the remodelling process is the formation of fibrotic tissue, which is caused by exaggerated activity of cardiac fibroblasts leading to excessive extracellular matrix production within the myocardium. Noncoding RNAs (ncRNAs) are a diverse group of endogenous RNA-based molecules, which include short (∼22 nucleotides) microRNAs and long ncRNAs (of >200 nucleotides). These ncRNAs can regulate important functions in many cardiovascular cells types. This Review focuses on the role of ncRNAs in cardiac fibrosis; specifically, ncRNAs as therapeutic targets, factors for direct fibroblast transdifferentation, their use as diagnostic and prognostic markers, and their potential to function as paracrine modulators of cardiac fibrosis and remodelling.
Collapse
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
44
|
Zhu X, He Z, Hu Y, Wen W, Lin C, Yu J, Pan J, Li R, Deng H, Liao S, Yuan J, Wu J, Li J, Li M. MicroRNA-30e* suppresses dengue virus replication by promoting NF-κB-dependent IFN production. PLoS Negl Trop Dis 2014; 8:e3088. [PMID: 25122182 PMCID: PMC4133224 DOI: 10.1371/journal.pntd.0003088] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/30/2014] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3'-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo.
Collapse
Affiliation(s)
- Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenjian He
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weitao Wen
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cuiji Lin
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Pan
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ran Li
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haijing Deng
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaowei Liao
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
45
|
The Effects and Mechanism of miR-92a and miR-126 on Myocardial Apoptosis in Mouse Ischemia-Reperfusion Model. Cell Biochem Biophys 2014; 70:1901-6. [DOI: 10.1007/s12013-014-0149-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Thum T, Batkai S. MicroRNAs in right ventricular (dys)function (2013 Grover Conference series). Pulm Circ 2014; 4:185-90. [PMID: 25006437 DOI: 10.1086/675981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/16/2013] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs (miRNAs) are molecules increasingly investigated for both diagnostic and therapeutic strategies. Whereas information about their role in the left ventricle has been studied for many years, there is scarce information about the right ventricle. We thus here review known details about the expression, regulation, and function of miRNAs in right heart diseases. Current identified therapeutic strategies using miRNA modulators to treat pulmonary hypertension and thus also having beneficial effects on the right ventricle are also discussed. Finally, the current knowledge about the diagnostic and predictive use of circulating miRNAs in patients with pulmonary hypertension and right ventricular failure is presented. There is strong hope that the increasing knowledge about miRNAs in the right heart will finally help to improve the treatment of patients with pulmonary and right ventricular heart diseases.
Collapse
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany ; Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Nyholm AM, Lerche CM, Manfé V, Biskup E, Johansen P, Morling N, Thomsen BM, Glud M, Gniadecki R. miR-125b induces cellular senescence in malignant melanoma. BMC DERMATOLOGY 2014; 14:8. [PMID: 24762088 PMCID: PMC4021480 DOI: 10.1186/1471-5945-14-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 04/16/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Micro RNAs (miRs) have emerged as key regulators during oncogenesis. They have been found to regulate cell proliferation, differentiation, and apoptosis. Mir-125b has been identified as an oncomir in various forms of tumours, but we have previously proposed that miR-125b is a suppressor of lymph node metastasis in cutaneous malignant melanoma. Our goal was therefore to further examine this theory. METHODS We used in-situ-hybridization to visualise miR-125b expression in primary tumours and in lymph node metastasis. Then using a miRVector plasmid containing a miR-125b-1 insert we transfected melanoma cell line Mel-Juso and then investigated the effect of the presence of a stable overexpression of miR-125b on growth by western blotting, flow cytometry and β-galactosidase staining. The tumourogenicity of the transfected cells was tested using a murine model and the tumours were further examined with in-situ-hybridization. RESULTS In primary human tumours and in lymph node metastases increased expression of miR-125b was found in single, large tumour cells with abundant cytoplasm. A stable overexpression of miR-125b in human melanoma cell line Mel-Juso resulted in a G0/G1 cell cycle block and emergence of large cells expressing senescence markers: senescence-associated beta-galactosidase, p21, p27 and p53. Mel-Juso cells overexpressing miR-125b were tumourigenic in mice, but the tumours exhibited higher level of cell senescence and decreased expression of proliferation markers, cyclin D1 and Ki67 than the control tumours. CONCLUSIONS Our results confirm the theory that miR-125b functions as a tumour supressor in cutaneous malignant melanoma by regulating cellular senescence, which is one of the central mechanisms protecting against the development and progression of malignant melanoma.
Collapse
Affiliation(s)
- Anne Marie Nyholm
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Catharina M Lerche
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Valentina Manfé
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Edyta Biskup
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Peter Johansen
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birthe Mørk Thomsen
- Department of Pathology, University of Copenhagen, Faculty of Health and Medical Sciences, Bispebjerg Hospital, Copenhagen, Denmark
| | - Martin Glud
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Robert Gniadecki
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
48
|
Zhou J, Dong X, Zhou Q, Wang H, Qian Y, Tian W, Ma D, Li X. microRNA expression profiling of heart tissue during fetal development. Int J Mol Med 2014; 33:1250-60. [PMID: 24604530 DOI: 10.3892/ijmm.2014.1691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/18/2014] [Indexed: 01/08/2023] Open
Abstract
microRNAs (miRNAs) are important both in early cardiogenesis and in the process of heart maturation. The aim of this study was to determine the stage-specific expression of miRNAs in human fetal heart in order to identify valuable targets for further study of heart defects. Affymetrix microarrays were used to obtain miRNA expression profiles from human fetal heart tissue at 5, 7, 9 and 23 weeks of gestation. To identify differentially expressed miRNAs at each time-point, linear regression analysis by the R limma algorithm was employed. Hierarchical clustering analysis was conducted with Cluster 3.0 software. Gene Ontology analysis was carried out for miRNAs from different clusters. Commonalities in miRNA families and genomic localization were identified, and the differential expression of selected miRNAs from different clusters was verified by quantitative polymerase chain reaction (qPCR). A total of 703 miRNAs were expressed in human fetal heart. Of these, 288 differentially expressed miRNAs represented 5 clusters with different expression trends. Several clustered miRNAs also shared classification within miRNA families or proximal genomic localization. qPCR confirmed the expression patterns of selected miRNAs. miRNAs within the 5 clusters were predicted to target genes vital for heart development and to be involved in cellular signaling pathways that affect heart structure formation and heart-associated cellular events. In conclusion, to the best of our knowledge, this is the first miRNA expression profiling study of human fetal heart tissue. The stage-specific expression of specific miRNAs suggests potential roles at distinct time-points during fetal heart development.
Collapse
Affiliation(s)
- Jizi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P.R. China
| | - Xinran Dong
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P.R. China
| | - Huijun Wang
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yanyan Qian
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Weidong Tian
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Duan Ma
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
49
|
Leite-Moreira AF, Lourenço AP, Balligand JL, Bauersachs J, Clerk A, De Windt LJ, Heymans S, Hilfiker-Kleiner D, Hirsch E, Iaccarino G, Kaminski KA, Knöll R, Mayr M, Tarone G, Thum T, Tocchetti CG. ESC Working Group on Myocardial Function Position Paper: how to study the right ventricle in experimental models. Eur J Heart Fail 2014; 16:509-18. [PMID: 24574252 DOI: 10.1002/ejhf.66] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 01/17/2014] [Indexed: 11/09/2022] Open
Abstract
The right ventricle has become an increasing focus in cardiovascular research. In this position paper, we give a brief overview of the specific pathophysiological features of the right ventricle, with particular emphasis on functional and molecular modifications as well as therapeutic strategies in chronic overload, highlighting the differences from the left ventricle. Importantly, we put together recommendations on promising topics of research in the field, experimental study design, and functional evaluation of the right ventricle in experimental models, from non-invasive methodologies to haemodynamic evaluation and ex vivo set-ups.
Collapse
Affiliation(s)
- Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Al. Prof. Hernani Monteiro, 4200 319, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Giudice J, Cooper TA. RNA-binding proteins in heart development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:389-429. [PMID: 25201112 DOI: 10.1007/978-1-4939-1221-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) are key players of posttranscriptional regulation occurring during normal tissue development. All tissues examined thus far have revealed the importance of RBPs in the regulation of complex networks involved in organ morphogenesis, maturation, and function. They are responsible for controlling tissue-specific gene expression by regulating alternative splicing, mRNA stability, translation, and poly-adenylation. The heart is the first organ form during embryonic development and is also the first to acquire functionality. Numerous remodeling processes take place during late cardiac development since fetal heart first adapts to birth and then undergoes a transition to adult functionality. This physiological remodeling involves transcriptional and posttranscriptional networks that are regulated by RBPs. Disruption of the normal regulatory networks has been shown to cause cardiomyopathy in humans and animal models. Here we review the complexity of late heart development and the current information regarding how RBPs control aspects of postnatal heart development. We also review how activities of RBPs are modulated adding complexity to the regulation of developmental networks.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA,
| | | |
Collapse
|