1
|
Lawrence SM. Human cytomegalovirus and neonatal infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100257. [PMID: 39070527 PMCID: PMC11276932 DOI: 10.1016/j.crmicr.2024.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Human cytomegalovirus is an ancient virus that has co-evolved with humans. It establishes a life-long infection in suspectable individuals for which there is no vaccination or cure. The virus can be transmitted to a developing fetus in seropositive pregnant women, and it is the leading cause of congenital infectious disease. While the majority of infected infants remain asymptomatic at birth, congenital cytomegalovirus infection can lead to substantial long-term neurodevelopmental impairments in survivors, resulting in considerable economic and social hardships. Recent discoveries regarding cytomegalovirus pathophysiology and viral replication cycles might enable the development of innovative diagnostics and therapeutics, including an effective vaccine. This Review will detail our understanding of human cytomegalovirus infection, with an in-depth discussion regarding the viral genome and transcriptome that contributes to its pathophysiology. The neonate's clinical course will also be highlighted, including maternal and neonatal testing, treatment recommendations, and long-term outcomes.
Collapse
Affiliation(s)
- Shelley M. Lawrence
- University of Utah, College of Medicine, Department of Pediatrics, Division of Neonatology, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Poole E, Lau J, Groves I, Roche K, Murphy E, Carlan da Silva M, Reeves M, Sinclair J. The Human Cytomegalovirus Latency-Associated Gene Product Latency Unique Natural Antigen Regulates Latent Gene Expression. Viruses 2023; 15:1875. [PMID: 37766281 PMCID: PMC10536386 DOI: 10.3390/v15091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection can lead to either lytic or latent infection, which is dependent on the regulation of the viral major immediate early promoter (MIEP). Suppression of the MIEP is a pre-requisite for latency and is driven by repressive epigenetic modifications at the MIEP during latent infection. However, other viral genes are expressed during latency and this is correlated with activatory epigenetic modifications at latent gene promoters. Yet the molecular basis of the differential regulation of latent and lytic gene expression by epigenetics is unclear. LUNA, a latent viral transcript, has been suggested to be important for HCMV latency and has also been shown to be important for efficient reactivation likely through its known deSUMOylase activity. Intriguingly, we and others have also observed that LUNA enhances latency-associated expression of the viral UL138 gene. Here, we show that in the absence of LUNA, the expression of multiple latency-associated transcripts is reduced during latent infection, which is correlated with a lack of activatory marks at their promoters. Interestingly, we also show that LUNA interacts with the hematopoietic transcription factor GATA-2, which has previously been shown to bind to a number of latency-associated gene promoters, and that this interaction is dependent on the deSUMOylase domain of LUNA. Finally, we show that the deSUMOylase activity of LUNA is required for the establishment and/or maintenance of an open chromatin configuration around latency-associated gene promoters. As such, LUNA plays a key role in efficient latency-associated viral gene expression and carriage of viral genome during latent carriage.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
- Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jonathan Lau
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Ian Groves
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (I.G.); (K.R.)
| | - Kate Roche
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (I.G.); (K.R.)
| | - Eain Murphy
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (I.G.); (K.R.)
| | | | - Matthew Reeves
- Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
| |
Collapse
|
3
|
Lee S, Kim H, Hong A, Song J, Lee S, Kim M, Hwang SY, Jeong D, Kim J, Son A, Lee YS, Kim VN, Kim JS, Chang H, Ahn K. Functional and molecular dissection of HCMV long non-coding RNAs. Sci Rep 2022; 12:19303. [PMID: 36369338 PMCID: PMC9652368 DOI: 10.1038/s41598-022-23317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022] Open
Abstract
Small, compact genomes confer a selective advantage to viruses, yet human cytomegalovirus (HCMV) expresses the long non-coding RNAs (lncRNAs); RNA1.2, RNA2.7, RNA4.9, and RNA5.0. Little is known about the function of these lncRNAs in the virus life cycle. Here, we dissected the functional and molecular landscape of HCMV lncRNAs. We found that HCMV lncRNAs occupy ~ 30% and 50-60% of total and poly(A)+viral transcriptome, respectively, throughout virus life cycle. RNA1.2, RNA2.7, and RNA4.9, the three abundantly expressed lncRNAs, appear to be essential in all infection states. Among these three lncRNAs, depletion of RNA2.7 and RNA4.9 results in the greatest defect in maintaining latent reservoir and promoting lytic replication, respectively. Moreover, we delineated the global post-transcriptional nature of HCMV lncRNAs by nanopore direct RNA sequencing and interactome analysis. We revealed that the lncRNAs are modified with N6-methyladenosine (m6A) and interact with m6A readers in all infection states. In-depth analysis demonstrated that m6A machineries stabilize HCMV lncRNAs, which could account for the overwhelming abundance of viral lncRNAs. Our study lays the groundwork for understanding the viral lncRNA-mediated regulation of host-virus interaction throughout the HCMV life cycle.
Collapse
Affiliation(s)
- Sungwon Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Hyewon Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Ari Hong
- grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jaewon Song
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Sungyul Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Myeonghwan Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Sung-yeon Hwang
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Dongjoon Jeong
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Jeesoo Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Ahyeon Son
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Young-suk Lee
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - V. Narry Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Jong-seo Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Hyeshik Chang
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kwangseog Ahn
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| |
Collapse
|
4
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
5
|
Patra U, Müller S. A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity. Front Cell Dev Biol 2021; 9:696234. [PMID: 34513832 PMCID: PMC8430037 DOI: 10.3389/fcell.2021.696234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are multi-protein assemblies representing distinct sub-nuclear structures. As phase-separated molecular condensates, PML NBs exhibit liquid droplet-like consistency. A key organizer of the assembly and dynamics of PML NBs is the ubiquitin-like SUMO modification system. SUMO is covalently attached to PML and other core components of PML NBs thereby exhibiting a glue-like function by providing multivalent interactions with proteins containing SUMO interacting motifs (SIMs). PML NBs serve as the catalytic center for nuclear SUMOylation and SUMO-SIM interactions are essential for protein assembly within these structures. Importantly, however, formation of SUMO chains on PML and other PML NB-associated proteins triggers ubiquitylation and proteasomal degradation which coincide with disruption of these nuclear condensates. To date, a plethora of nuclear activities such as transcriptional and post-transcriptional regulation of gene expression, apoptosis, senescence, cell cycle control, DNA damage response, and DNA replication have been associated with PML NBs. Not surprisingly, therefore, SUMO-dependent PML NB integrity has been implicated in regulating many physiological processes including tumor suppression, metabolism, drug-resistance, development, cellular stemness, and anti-pathogen immune response. The interplay between PML NBs and viral infection is multifaceted. As a part of the cellular antiviral defense strategy, PML NB components are crucial restriction factors for many viruses and a mutual positive correlation has been found to exist between PML NBs and the interferon response. Viruses, in turn, have developed counterstrategies for disarming PML NB associated immune defense measures. On the other end of the spectrum, certain viruses are known to usurp specific PML NB components for successful replication and disruption of these sub-nuclear foci has recently been linked to the stimulation rather than curtailment of antiviral gene repertoire. Importantly, the ability of invading virions to manipulate the host SUMO modification machinery is essential for this interplay between PML NB integrity and viruses. Moreover, compelling evidence is emerging in favor of bacterial pathogens to negotiate with the SUMO system thereby modulating PML NB-directed intrinsic and innate immunity. In the current context, we will present an updated account of the dynamic intricacies between cellular PML NBs as the nuclear SUMO modification hotspots and immune regulatory mechanisms in response to viral and bacterial pathogens.
Collapse
Affiliation(s)
- Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
STING facilitates nuclear import of herpesvirus genome during infection. Proc Natl Acad Sci U S A 2021; 118:2108631118. [PMID: 34385328 DOI: 10.1073/pnas.2108631118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Once inside the host cell, DNA viruses must overcome the physical barrier posed by the nuclear envelope to establish a successful infection. The mechanism underlying this process remains unclear. Here, we show that the herpesvirus exploits the immune adaptor stimulator of interferon genes (STING) to facilitate nuclear import of the viral genome. Following the entry of the viral capsid into the cell, STING binds the viral capsid, mediates capsid docking to the nuclear pore complex via physical interaction, and subsequently enables accumulation of the viral genome in the nucleus. Silencing STING in human cytomegalovirus (HCMV)-susceptible cells inhibited nuclear import of the viral genome and reduced the ensuing viral gene expression. Overexpressing STING increased the host cell's susceptibility to HCMV and herpes simplex virus 1 by improving the nuclear delivery of viral DNA at the early stage of infection. These observations suggest that the proviral activity of STING is conserved and exploited by the herpesvirus family. Intriguingly, in monocytes, which act as latent reservoirs of HCMV, STING deficiency negatively regulated the establishment of HCMV latency and reactivation. Our findings identify STING as a proviral host factor regulating latency and reactivation of herpesviruses.
Collapse
|
7
|
Xiao J, Deng J, Zhang Q, Ma P, Lv L, Zhang Y, Li C, Zhang Y. Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation. Arch Virol 2020; 165:1827-1835. [PMID: 32507978 DOI: 10.1007/s00705-020-04687-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
Human cytomegalovirus (HCMV) infection causes high morbidity and mortality among immunocompromised patients and can remain in a latent state in host cells. Expression of the immediate-early (IE) genes sustains HCMV replication and reactivation. As a novel genome-editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been extensively utilized to modify and edit genomic DNA. In the present study, the CRISPR/Cas9 system was used to target the IE region of the HCMV genome via specific single-guide RNAs (sgRNAs). Infection with CRISPR/Cas9/sgRNA lentiviral constructs significantly reduced viral gene expression and virion production in HFF primary fibroblasts and inhibited viral DNA production and reactivation in the THP-1 monocytic cell line. Thus, the CRISPR/Cas9/sgRNA system can accurately and efficiently target HCMV replication and reactivation and represents a novel therapeutic strategy against latent HCMV infection.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Blood Transfusion, Air Force Medical Center, PLA, 30 Fucheng Road, Beijing, 100142, P.R. China
| | - Jiang Deng
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Qian Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Ping Ma
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Liping Lv
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Yangyang Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Cuiying Li
- Department of Blood Transfusion, Air Force Medical Center, PLA, 30 Fucheng Road, Beijing, 100142, P.R. China.
| | - Yanyu Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China.
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China.
| |
Collapse
|
8
|
Mlera L, Moy M, Maness K, Tran LN, Goodrum FD. The Role of the Human Cytomegalovirus UL133-UL138 Gene Locus in Latency and Reactivation. Viruses 2020; 12:E714. [PMID: 32630219 PMCID: PMC7411667 DOI: 10.3390/v12070714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency, the means by which the virus persists indefinitely in an infected individual, is a major frontier of current research efforts in the field. Towards developing a comprehensive understanding of HCMV latency and its reactivation from latency, viral determinants of latency and reactivation and their host interactions that govern the latent state and reactivation from latency have been identified. The polycistronic UL133-UL138 locus encodes determinants of both latency and reactivation. In this review, we survey the model systems used to investigate latency and new findings from these systems. Particular focus is given to the roles of the UL133, UL135, UL136 and UL138 proteins in regulating viral latency and how their known host interactions contribute to regulating host signaling pathways towards the establishment of or exit from latency. Understanding the mechanisms underlying viral latency and reactivation is important in developing strategies to block reactivation and prevent CMV disease in immunocompromised individuals, such as transplant patients.
Collapse
Affiliation(s)
- Luwanika Mlera
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
| | - Melissa Moy
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
| | - Kristen Maness
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Linh N. Tran
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Felicia D. Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| |
Collapse
|
9
|
Where do we Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020; 8:microorganisms8050685. [PMID: 32397070 PMCID: PMC7284540 DOI: 10.3390/microorganisms8050685] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance. Here, we review past and current literature that has greatly advanced our understanding of the biology and genetics of HCMV, stressing the urgent need for innovative and safe anti-HCMV therapies and effective vaccines to treat and prevent HCMV infections, particularly in vulnerable populations.
Collapse
|
10
|
Kalejta RF, Albright ER. Expanding the Known Functional Repertoire of the Human Cytomegalovirus pp71 Protein. Front Cell Infect Microbiol 2020; 10:95. [PMID: 32226778 PMCID: PMC7080695 DOI: 10.3389/fcimb.2020.00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus pp71 protein is packaged within the tegument of infectious virions and performs multiple functions in host cells to prime them for productive, lytic replication. Here we review the known and hypothesized functions of pp71 in regulating proteolysis, infection outcome (lytic or latent), histone deposition, transcription, translation, immune evasion, cell cycle progression, and pathogenesis. We also highlight recent advances in CMV-based vaccine candidates informed by an improved understanding of pp71 function.
Collapse
Affiliation(s)
| | - Emily R. Albright
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
11
|
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral Latency-Common Themes. Pathogens 2020; 9:E125. [PMID: 32075270 PMCID: PMC7167855 DOI: 10.3390/pathogens9020125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Collapse
Affiliation(s)
- Magdalena Weidner-Glunde
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (E.K.-K.); (M.S.)
| | | | | |
Collapse
|
12
|
Lee JH, Pasquarella JR, Kalejta RF. Cell Line Models for Human Cytomegalovirus Latency Faithfully Mimic Viral Entry by Macropinocytosis and Endocytosis. J Virol 2019; 93:e01021-19. [PMID: 31391271 PMCID: PMC6803280 DOI: 10.1128/jvi.01021-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) enters primary CD34+ hematopoietic progenitor cells by macropinocytosis, where it establishes latency in part because its tegument-transactivating protein, pp71, remains associated with endosomes and is therefore unable to initiate productive, lytic replication. Here we show that multiple HCMV strains also enter cell line models used to study latency by macropinocytosis and endocytosis. In all latency models tested, tegument-delivered pp71 was found to be colocalized with endosomal markers and was not associated with the seven other cytoplasmic localization markers tested. Like the capsid-associated pp150 tegument protein, we initially detected capsid proteins in association with endosomes but later detected them in the nucleus. Inhibitors of macropinocytosis and endocytosis reduced latent viral gene expression and precluded reactivation. Importantly, we utilized electron microscopy to observe entry by macropinocytosis and endocytosis, providing additional visual corroboration of the findings of our functional studies. Our demonstration that HCMV enters cell line models for latency in a manner indistinguishable from that of its entry into primary cells illustrates the utility of these cell lines for probing the mechanisms, host genetics, and small-molecule-mediated inhibition of HCMV entry into the cell types where it establishes latency.IMPORTANCE Primary cells cultured in vitro currently provide the highest available relevance for examining molecular and genetic requirements for the establishment, maintenance, and reactivation of HCMV latency. However, their expense, heterogeneity, and intransigence to both long-term culture and molecular or genetic modification create rigor and reproducibility challenges for HCMV latency studies. There are several cell line models for latency not obstructed by deficiencies inherent in primary cells. However, many researchers view cell line studies of latency to be physiologically irrelevant because of the perception that these models display numerous and significant differences from primary cells. Here, we show that the very first step in a latent HCMV infection, entry of the virus into cells, occurs in cell line models in a manner indistinguishable from that in which it occurs in primary CD34+ hematopoietic progenitor cells. Our data argue that experimental HCMV latency is much more similar than it is different in cell lines and primary cells.
Collapse
Affiliation(s)
- Jeong-Hee Lee
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph R Pasquarella
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Gelbmann CB, Kalejta RF. The Golgi sorting motifs of human cytomegalovirus UL138 are not required for latency maintenance. Virus Res 2019; 270:197646. [PMID: 31260705 PMCID: PMC6697590 DOI: 10.1016/j.virusres.2019.197646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Human cytomegalovirus (HCMV) establishes latency within incompletely differentiated cells of the myeloid lineage. The viral protein UL138 participates in establishing and maintaining this latent state. UL138 has multiple functions during latency that include silencing productive phase viral gene transcription and modulating intracellular protein trafficking. Trafficking and subsequent downregulation of the multidrug resistance-associated protein 1 (MRP1) by UL138 is mediated by one of four Golgi sorting motifs within UL138. Here we investigate whether any of the Golgi sorting motifs of UL138 are required for the establishment and/or maintenance of HCMV latency in model cell systems in vitro. We determined that a mutant UL138 protein lacking an acidic cluster dileucine sorting motif unable to downregulate MRP1, as well as another mutant lacking all four Golgi sorting motifs still silenced viral immediate early (IE) gene expression and prevented progeny virion formation during latency. We conclude that the Golgi sorting motifs are not required for latency establishment or maintenance in model cell systems in vitro.
Collapse
Affiliation(s)
- Christopher B Gelbmann
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
14
|
Dupont L, Du L, Poulter M, Choi S, McIntosh M, Reeves MB. Src family kinase activity drives cytomegalovirus reactivation by recruiting MOZ histone acetyltransferase activity to the viral promoter. J Biol Chem 2019; 294:12901-12910. [PMID: 31273084 PMCID: PMC6721939 DOI: 10.1074/jbc.ra119.009667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/29/2019] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency and reactivation rely on a complex interplay between cellular differentiation, cell signaling pathways, and viral gene functions. HCMV reactivation in dendritic cells (DCs) is triggered by IL-6 and extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase signaling. However, activation of the same pathway fails to reactivate HCMV in other myeloid cell types, despite this signaling axis being active in those cells. We hypothesized that IL-6-induced ERK activation initiates the changes in chromatin structure required for viral reactivation but that a concomitant signal is necessary to complete the changes in chromatin structure required for gene expression to occur. Using a differential phosphoproteomics approach in cells that do or do not support IL-6-induced viral reactivation, we identified the concomitant activation of an Src family kinase (SFK), hematopoietic cell kinase (HCK), specifically in DCs in response to IL-6. Pharmacological and genetic inhibition of HCK activity indicated that HCK is required for HCMV reactivation. Furthermore, the HCK/SFK activity was linked to recruitment of the monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase to the viral promoter, which promoted histone acetylation after ERK-mediated histone phosphorylation. Importantly, pharmacological and genetic inhibition of MOZ activity prevented reactivation. These results provide an explanation for the selective activation of viral gene expression in DCs by IL-6, dependent on concomitant SFK and ERK signaling. They also reveal a previously unreported role for SFK activity in the regulation of chromatin structure at promoters in eukaryotic cells via MOZ histone acetyltransferase activity.
Collapse
Affiliation(s)
- Liane Dupont
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Lily Du
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Madeleine Poulter
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Stephanie Choi
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Megan McIntosh
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom, Supported by Wellcome Trust Grant WT/204870/Z/16/Z. To whom correspondence should be addressed. Tel.:
44-203-1086783; E-mail:
| |
Collapse
|
15
|
Crawford LB, Caposio P, Kreklywich C, Pham AH, Hancock MH, Jones TA, Smith PP, Yurochko AD, Nelson JA, Streblow DN. Human Cytomegalovirus US28 Ligand Binding Activity Is Required for Latency in CD34 + Hematopoietic Progenitor Cells and Humanized NSG Mice. mBio 2019; 10:e01889-19. [PMID: 31431555 PMCID: PMC6703429 DOI: 10.1128/mbio.01889-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection of CD34+ hematopoietic progenitor cells (CD34+ HPCs) provides a critical reservoir of virus in stem cell transplant patients, and viral reactivation remains a significant cause of morbidity and mortality. The HCMV chemokine receptor US28 is implicated in the regulation of viral latency and reactivation. To explore the role of US28 signaling in latency and reactivation, we analyzed protein tyrosine kinase signaling in CD34+ HPCs expressing US28. US28-ligand signaling in CD34+ HPCs induced changes in key regulators of cellular activation and differentiation. In vitro latency and reactivation assays utilizing CD34+ HPCs indicated that US28 was required for viral reactivation but not latency establishment or maintenance. Similarly, humanized NSG mice (huNSG) infected with TB40E-GFP-US28stop failed to reactivate upon treatment with granulocyte-colony-stimulating factor, but viral genome levels were maintained. Interestingly, HCMV-mediated changes in hematopoiesis during latency in vivo and in vitro was also dependent upon US28, as US28 directly promoted differentiation toward the myeloid lineage. To determine whether US28 constitutive activity and/or ligand-binding activity were required for latency and reactivation, we infected both huNSG mice and CD34+ HPCs in vitro with HCMV TB40E-GFP containing the US28-R129A mutation (no CA) or Y16F mutation (no ligand binding). TB40E-GFP-US28-R129A was maintained during latency and exhibited normal reactivation kinetics. In contrast, TB40E-GFP-US28-Y16F exhibited high levels of viral genome during latency and reactivation, indicating that the virus did not establish latency. These data indicate that US28 is necessary for viral reactivation and ligand binding activity is required for viral latency, highlighting the complex role of US28 during HCMV latency and reactivation.IMPORTANCE Human cytomegalovirus (HCMV) can establish latency following infection of CD34+ hematopoietic progenitor cells (HPCs), and reactivation from latency is a significant cause of viral disease and accelerated graft failure in bone marrow and solid-organ transplant patients. The precise molecular mechanisms of HCMV infection in HPCs are not well defined; however, select viral gene products are known to regulate aspects of latency and reactivation. The HCMV-encoded chemokine receptor US28, which binds multiple CC chemokines as well as CX3CR1, is expressed both during latent and lytic phases of the virus life cycle and plays a role in latency and reactivation. However, the specific timing of US28 expression and the role of ligand binding in these processes are not well defined. In this report, we determined that US28 is required for reactivation but not for maintaining latency. However, when present during latency, US28 ligand binding activity is critical to maintaining the virus in a quiescent state. We attribute the regulation of both latency and reactivation to the role of US28 in promoting myeloid lineage cell differentiation. These data highlight the dynamic and multifunctional nature of US28 during HCMV latency and reactivation.
Collapse
Affiliation(s)
- Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Andrew H Pham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Taylor A Jones
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Patricia P Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University at Shreveport, Shreveport, Louisiana, USA
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
16
|
Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, Romashova V, Roche K, Murphy E, Chilvers E, Lehner PJ, Sinclair J, Poole E. Monocytes Latently Infected with Human Cytomegalovirus Evade Neutrophil Killing. iScience 2019; 12:13-26. [PMID: 30677738 PMCID: PMC6352302 DOI: 10.1016/j.isci.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV) in vivo is in undifferentiated cells of the myeloid lineage. Although latently infected cells are known to evade host T cell responses by suppression of T cell effector functions, it is not known if they must also evade surveillance by other host immune cells. Here we show that cells latently infected with HCMV can, indeed, be killed by host neutrophils but only in a serum-dependent manner. Specifically, antibodies to the viral latency-associated US28 protein mediate neutrophil killing of latently infected cells. To address this mechanistically, a full proteomic screen was carried out on latently infected monocytes. This showed that latent infection downregulates the neutrophil chemoattractants S100A8/A9, thus suppressing neutrophil recruitment to latently infected cells. The ability of latently infected cells to inhibit neutrophil recruitment represents an immune evasion strategy of this persistent human pathogen, helping to prevent clearance of the latent viral reservoir.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Benjamin Krishna
- Genomic Medicine Institute, Lerner Research Institute, 9620 Carnegie Avenue, Cleveland, OH, USA
| | - James Williamson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Yusuf Aslam
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Neda Farahi
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alexander Wood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Veronika Romashova
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Kate Roche
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Eain Murphy
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Edwin Chilvers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
17
|
Abstract
Human cytomegalovirus (HCMV) latency and reactivation is regulated by the chromatin structure at the major immediate early promoter (MIEP) within myeloid cells. Both cellular and viral factors are known to control this promoter during latency, here we will review the known mechanisms for MIEP regulation during latency. We will then focus on the virally encoded G-protein coupled receptor, US28, which suppresses the MIEP in early myeloid lineage cells. The importance of this function is underlined by the fact that US28 is essential for HCMV latency in CD34+ progenitor cells and CD14+ monocytes. We will describe cellular signalling pathways modulated by US28 to direct MIEP suppression during latency and demonstrate how US28 is able to ‘regulate the regulators’ of HCMV latency. Finally, we will describe how cell-surface US28 can be a target for antiviral therapies directed at the latent viral reservoir.
Collapse
|
18
|
Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. mBio 2018; 9:mBio.01560-18. [PMID: 30206173 PMCID: PMC6134100 DOI: 10.1128/mbio.01560-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HCMV is an important human pathogen that establishes lifelong latent infection in myeloid progenitor cells and reactivates frequently to cause significant disease in immunocompromised people. Our observation that viral gene expression is first turned on and then turned off to establish latency suggests that there is a host defense, which may be myeloid cell specific, responsible for transcriptional silencing of viral gene expression. Our observation that TNF-α induces reactivation independently of differentiation provides insight into molecular mechanisms that control reactivation. We used the Kasumi-3 model to study human cytomegalovirus (HCMV) latency and reactivation in myeloid progenitor cells. Kasumi-3 cells were infected with HCMV strain TB40/Ewt-GFP, flow sorted for green fluorescent protein-positive (GFP+) cells, and cultured for various times to monitor establishment of latency, as judged by repression of viral gene expression (RNA/DNA ratio) and loss of virus production. We found that, in the vast majority of cells, latency was established posttranscriptionally in the GFP+ infected cells: transcription was initially turned on and then turned off. We also found that some of the GFP− cells were infected, suggesting that latency might be established in these cells at the outset of infection. We were not able to test this hypothesis because some GFP− cells expressed lytic genes and thus it was not possible to separate them from GFP− quiescent cells. In addition, we found that the pattern of expression of lytic genes that have been associated with latency, including UL138, US28, and RNA2.7, was the same as that of other lytic genes, indicating that there was no preferential expression of these genes once latency was established. We confirmed previous studies showing that tumor necrosis factor alpha (TNF-α) induced reactivation of infectious virus, and by analyzing expression of the progenitor cell marker CD34 as well as myeloid cell differentiation markers in IE+ cells after treatment with TNF-α, we showed that TNF-α induced transcriptional reactivation of IE gene expression independently of differentiation. TNF-α-mediated reactivation in Kasumi-3 cells was correlated with activation of NF-κB, KAP-1, and ATM.
Collapse
|
19
|
Poole EL, Kew VG, Lau JC, Murray MJ, Stamminger T, Sinclair JH, Reeves MB. A Virally Encoded DeSUMOylase Activity Is Required for Cytomegalovirus Reactivation from Latency. Cell Rep 2018; 24:594-606. [PMID: 30021158 PMCID: PMC6077246 DOI: 10.1016/j.celrep.2018.06.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/03/2018] [Accepted: 06/11/2018] [Indexed: 02/02/2023] Open
Abstract
A subset of viral genes is required for the long-term latent infection of hematopoietic cells by human cytomegalovirus (HCMV). Here, we show that a latency-associated gene product (LUNA) promotes the disruption of cellular PML bodies during latency. Mutation and inhibitor studies reveal that LUNA encodes a deSUMOylase activity responsible for this disruption. Specifically, LUNA encodes a conserved Asp-Cys-Gly motif common to all deSUMOylases. Importantly, mutation of the putative catalytic cysteine is sufficient to reverse LUNA-mediated PML dispersal and markedly reduces the efficiency of viral reactivation. The depletion of PML from cells is sufficient to rescue the reactivation of the LUNA-deficient viruses, arguing that targeting PML is an important biological role of LUNA. Finally, we demonstrate that reactivation of naturally latent HCMV is blocked by deSUMOylase inhibitors. Thus, latent HCMV primes the cellular environment for efficient reactivation via the activity of a virally encoded deSUMOylase.
Collapse
Affiliation(s)
- Emma L. Poole
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Verity G. Kew
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Jonathan C.H. Lau
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Matthew J. Murray
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK
| | | | - John H. Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK,Corresponding author
| | - Matthew B. Reeves
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK,Corresponding author
| |
Collapse
|
20
|
Human Cytomegalovirus Encodes a Novel FLT3 Receptor Ligand Necessary for Hematopoietic Cell Differentiation and Viral Reactivation. mBio 2018; 9:mBio.00682-18. [PMID: 29691342 PMCID: PMC5915732 DOI: 10.1128/mbio.00682-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of human cytomegalovirus (HCMV) to reactivate from latent infection of hematopoietic progenitor cells (HPCs) is intimately linked to cellular differentiation. HCMV encodes UL7 that our group has shown is secreted from infected cells and induces angiogenesis. In this study, we show that UL7 is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R), a well-known critical factor in HPC differentiation. We observed that UL7 directly binds Flt-3R and induces downstream signaling cascades, including phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways. Importantly, we show that UL7 protein induces differentiation of both CD34+ HPCs and CD14+ monocytes. Last, we show that an HCMV mutant lacking UL7 fails to reactivate in CD34+ HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.IMPORTANCE Human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant recipients. CD34+ hematopoietic progenitor cells (HPCs) represent a critical reservoir of latent HCMV in the transplant population, thereby providing a source of virus for dissemination to visceral organs. HCMV reactivation has been linked to HPC/myeloid cellular differentiation; however, the mechanisms involved in these events are poorly understood at the molecular level. In this study, we show that a viral protein is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R) and that the binding of HCMV UL7 to the Flt-3R triggers HPC and monocyte differentiation. Moreover, the loss of UL7 prevents viral reactivation in HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.
Collapse
|
21
|
Murray MJ, Peters NE, Reeves MB. Navigating the Host Cell Response during Entry into Sites of Latent Cytomegalovirus Infection. Pathogens 2018; 7:pathogens7010030. [PMID: 29547547 PMCID: PMC5874756 DOI: 10.3390/pathogens7010030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The host cell represents a hostile environment that viruses must counter in order to establish infection. Human cytomegalovirus (HCMV) is no different and encodes a multitude of functions aimed at disabling, re-directing or hijacking cellular functions to promulgate infection. However, during the very early stages of infection the virus relies on the outcome of interactions between virion components, cell surface receptors and host signalling pathways to promote an environment that supports infection. In the context of latent infection—where the virus establishes an infection in an absence of many gene products specific for lytic infection—these initial interactions are crucial events. In this review, we will discuss key host responses triggered by viral infection and how, in turn, the virus ameliorates the impact on the establishment of non-lytic infections of cells. We will focus on strategies to evade intrinsic antiviral and innate immune responses and consider their impact on viral infection. Finally, we will consider the hypothesis that the very early events upon viral infection are important for dictating the outcome of infection and consider the possibility that events that occur during entry into non-permissive cells are unique and thus contribute to the establishment of latency.
Collapse
Affiliation(s)
- Matthew J Murray
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK.
| | - Nicholas E Peters
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK.
| | | |
Collapse
|
22
|
Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection. mBio 2017; 8:mBio.01754-17. [PMID: 29208743 PMCID: PMC5717388 DOI: 10.1128/mbio.01754-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR), which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP) kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells. Human cytomegalovirus (HCMV) is a betaherpesvirus and a leading cause of morbidity and mortality among immunosuppressed individuals. HCMV can establish latent infection, where the viral genome is maintained in an infected cell, without production of infectious virus. A number of genes, including US28, are expressed by HCMV during latent infection. US28 has been shown to activate many cellular signaling pathways during lytic infection, promoting lytic gene expression and virus production. As such, the role of US28 remains unclear and seems at odds with latency. Here, we show that US28 has the opposite phenotype in cells that support latent infection—it attenuates cellular signaling, thereby maintaining latency. Inhibition of US28 with a small-molecule inhibitor causes HCMV latent infection to reactivate, allowing latently infected cells to be detected and killed by the immune system. This approach could be used to treat latent HCMV to clear it from human transplants.
Collapse
|
23
|
Kew VG, Wills MR, Reeves MB. LPS promotes a monocyte phenotype permissive for human cytomegalovirus immediate-early gene expression upon infection but not reactivation from latency. Sci Rep 2017; 7:810. [PMID: 28400599 PMCID: PMC5429787 DOI: 10.1038/s41598-017-00999-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of myeloid cells is closely linked with the differentiation status of the cell. Haematopoietic progenitors and CD14+ monocytes are usually non-permissive for lytic gene expression which can lead to the establishment of latent infections. In contrast, differentiation to macrophage or dendritic cell (DC) phenotypes promotes viral reactivation or renders them permissive for lytic infection. The observation that high doses of Lipopolysaccharide (LPS) drove rapid monocyte differentiation in mice led us to investigate the response of human monocytes to HCMV following LPS stimulation in vitro. Here we report that LPS triggers a monocyte phenotype permissiveness for lytic infection directly correlating with LPS concentration. In contrast, addition of LPS directly to latently infected monocytes was not sufficient to trigger viral reactivation which is likely linked with the failure of the monocytes to differentiate to a DC phenotype. Interestingly, we observe that this effect on lytic infection of monocytes is transient, appears to be dependent on COX-2 activation and does not result in a full productive infection. Thus LPS stimulated monocytes are partially permissive lytic gene expression but did not have long term impact on monocyte identity regarding their differentiation and susceptibility for the full lytic cycle of HCMV.
Collapse
Affiliation(s)
- V G Kew
- Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - M R Wills
- Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - M B Reeves
- Institute of Immunity & Transplantation, UCL Division of Infection & Immunity, Royal Free Hospital, London, NW3 2PF, UK.
| |
Collapse
|
24
|
Krishna BA, Spiess K, Poole EL, Lau B, Voigt S, Kledal TN, Rosenkilde MM, Sinclair JH. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein. Nat Commun 2017; 8:14321. [PMID: 28148951 PMCID: PMC5296658 DOI: 10.1038/ncomms14321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/16/2016] [Indexed: 12/26/2022] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- B A Krishna
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - K Spiess
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - E L Poole
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - B Lau
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - S Voigt
- Department of Infectious Diseases, Robert Koch Institute, Nordufer 20, Berlin 13353, Germany.,Department of Pediatric Oncology/Hematology/SCT, Charité-Universitätsmedizin, Berlin 13353, Germany
| | - T N Kledal
- Section for Virology, The National Veterinary Institute, Technical University of Denmark, Frederiksberg DK-1870, Denmark
| | - M M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - J H Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| |
Collapse
|
25
|
Reed A, Lin L, Ostertag-Hill C, Wang Q, Wu Z, Miller-Morgan T, Jin L. Detection of ORF6 protein associated with latent KHV infection. Virology 2016; 500:82-90. [PMID: 27771562 DOI: 10.1016/j.virol.2016.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
Abstract
Koi herpesvirus (KHV) is highly pathogenic to Cyprinus carpio. KHV can also become latent in recovered fish and reactivate from latency under stressful conditions. Understanding KHV latency is important for development of strategies against herpesvirus latent infection. Our previous studies found KHV ORF6 mRNA is detectable during latent infection. In this study, ORF6 protein expression was investigated by a polyclonal antibody specific to ORF6 peptide. Positive staining by an immunofluorescence assay was observed in both KHV infected CCB (common carp brain) cells and IgM+ white blood cells (WBCs) from recovered KHV+ koi. Proteins at the expected size, 68kDa, and several different sizes can be detected during productive infection. Five potential sumoylation sites were identified in the ORF6 protein. Our study demonstrated that ORF6 protein is expressed in both productive infection and latent infection and may have different post-translational modifications during productive infection.
Collapse
Affiliation(s)
- Aimee Reed
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa Lin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Claire Ostertag-Hill
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Qing Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Zhixing Wu
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Tim Miller-Morgan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Aquatic Animal Health Program, Oregon Sea Grant, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
26
|
Van Damme E, Thys K, Tuefferd M, Van Hove C, Aerssens J, Van Loock M. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types. PLoS One 2016; 11:e0164843. [PMID: 27760232 PMCID: PMC5070835 DOI: 10.1371/journal.pone.0164843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/01/2016] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential of HCMV to adapt to or influence different cellular environments to promote its own survival.
Collapse
Affiliation(s)
- Ellen Van Damme
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kim Thys
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Carl Van Hove
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marnix Van Loock
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
- * E-mail:
| |
Collapse
|
27
|
Abstract
Herpesviruses have evolved exquisite virus-host interactions that co-opt or evade a number of host pathways to enable the viruses to persist. Persistence of human cytomegalovirus (CMV), the prototypical betaherpesvirus, is particularly complex in the host organism. Depending on host physiology and the cell types infected, CMV persistence comprises latent, chronic, and productive states that may occur concurrently. Viral latency is a central strategy by which herpesviruses ensure their lifelong persistence. Although much remains to be defined about the virus-host interactions important to CMV latency, it is clear that checkpoints composed of viral and cellular factors exist to either maintain a latent state or initiate productive replication in response to host cues. CMV offers a rich platform for defining the virus-host interactions and understanding the host biology important to viral latency. This review describes current understanding of the virus-host interactions that contribute to viral latency and reactivation.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
28
|
Lau B, Poole E, Van Damme E, Bunkens L, Sowash M, King H, Murphy E, Wills M, Van Loock M, Sinclair J. Human cytomegalovirus miR-UL112-1 promotes the down-regulation of viral immediate early-gene expression during latency to prevent T-cell recognition of latently infected cells. J Gen Virol 2016; 97:2387-2398. [PMID: 27411311 DOI: 10.1099/jgv.0.000546] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus, a member of the herpesvirus family, can cause significant morbidity and mortality in immune compromised patients resulting from either primary lytic infection or reactivation from latency. Latent infection is associated with a restricted viral transcription programme compared to lytic infection which consists of defined protein coding RNAs but also includes a number of virally encoded microRNAs (miRNAs). One of these, miR-UL112-1, is known to target the major lytic IE72 transcript but, to date, a functional role for miR-UL112-1 during latent infection has not been shown. To address this, we have analysed latent infection in myeloid cells using a virus in which the target site for miR-UL112-1 in the 3' UTR of IE72 was removed such that any IE72 RNA present during latent infection would no longer be subject to regulation by miR-UL112-1 through the RNAi pathway. Our data show that removal of the miR-UL112-1 target site in IE72 results in increased levels of IE72 RNA in experimentally latent primary monocytes. Furthermore, this resulted in induction of immediate early (IE) gene expression that is detectable by IE-specific cytotoxic T-cells (CTLs); no such CTL recognition of monocytes latently infected with wild-type virus was observed. We also recapitulated these findings in the more tractable THP-1 cell line model of latency. These observations argue that an important role for miR-UL112-1 during latency is to ensure tight control of lytic viral immediate early (IE) gene expression thereby preventing recognition of latently infected cells by the host's potent pre-existing anti-viral CTL response.
Collapse
Affiliation(s)
- Betty Lau
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Emma Poole
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ellen Van Damme
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Lieve Bunkens
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Madeleine Sowash
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Harry King
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Eain Murphy
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Wills
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Marnix Van Loock
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - John Sinclair
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
29
|
Human Cytomegalovirus US28 Is Important for Latent Infection of Hematopoietic Progenitor Cells. J Virol 2015; 90:2959-70. [PMID: 26719258 DOI: 10.1128/jvi.02507-15] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) resides latently in hematopoietic progenitor cells (HPCs). During latency, only a subset of HCMV genes is transcribed, including one of the four virus-encoded G protein-coupled receptors (GPCRs), US28. Although US28 is a multifunctional lytic protein, its function during latency has remained undefined. We generated a panel of US28 recombinant viruses in the bacterial artificial chromosome (BAC)-derived clinical HCMV strain TB40/E-mCherry. We deleted the entire US28 open reading frame (ORF), deleted all four of the viral GPCR ORFs, or deleted three of the HCMV GPCRs but not the US28 wild-type protein. Using these recombinant viruses, we assessed the requirement for US28 during latency in the Kasumi-3 in vitro latency model system and in primary ex vivo-cultured CD34(+) HPCs. Our data suggest that US28 is required for latency as infection with viruses lacking the US28 ORF alone or in combination with the remaining HCMV-encoded GPCR results in transcription from the major immediate early promoter, the production of extracellular virions, and the production of infectious virus capable of infecting naive fibroblasts. The other HCMV GPCRs are not required for this phenotype as a virus expressing only US28 but not the remaining virus-encoded GPCRs is phenotypically similar to that of wild-type latent infection. Finally, we found that US28 copurifies with mature virions and is expressed in HPCs upon virus entry although its expression at the time of infection does not complement the US28 deletion latency phenotype. This work suggests that US28 protein functions to promote a latent state within hematopoietic progenitor cells. IMPORTANCE Human cytomegalovirus (HCMV) is a widespread pathogen that, once acquired, remains with its host for life. HCMV remains latent, or quiescent, in cells of the hematopoietic compartment and upon immune challenge can reactivate to cause disease. HCMV-encoded US28 is one of several genes expressed during latency although its biological function during this phase of infection has remained undefined. Here, we show that US28 aids in promoting experimental latency in tissue culture.
Collapse
|
30
|
Lee SH, Albright ER, Lee JH, Jacobs D, Kalejta RF. Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein. SCIENCE ADVANCES 2015; 1:e1501164. [PMID: 26702450 PMCID: PMC4681346 DOI: 10.1126/sciadv.1501164] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/08/2015] [Indexed: 05/10/2023]
Abstract
Intrinsic immune defenses mediated by restriction factors inhibit productive viral infections. Select viruses rapidly establish latent infections and, with gene expression profiles that imply cell-autonomous intrinsic defenses, may be the most effective immune control measure against latent reservoirs. We illustrate that lysine-specific demethylases (KDMs) are restriction factors that prevent human cytomegalovirus from establishing latency by removing repressive epigenetic modifications from histones associated with the viral major immediate early promoter (MIEP), stimulating the expression of a viral lytic phase target of cell-mediated adaptive immunity. The viral UL138 protein negates this defense by preventing KDM association with the MIEP. The presence of an intrinsic defense against latency and the emergence of a cognate neutralizing viral factor indicate that "arms races" between hosts and viruses over lifelong colonization exist at the cellular level.
Collapse
|
31
|
Wu SE, Miller WE. The human cytomegalovirus lytic cycle is induced by 1,25-dihydroxyvitamin D3 in peripheral blood monocytes and in the THP-1 monocytic cell line. Virology 2015; 483:83-95. [PMID: 25965798 DOI: 10.1016/j.virol.2015.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/12/2015] [Accepted: 04/02/2015] [Indexed: 12/11/2022]
Abstract
Human cytomegalovirus (HCMV) resides in a latent form in hematopoietic progenitors and undifferentiated cells within the myeloid lineage. Maturation and differentiation along the myeloid lineage triggers lytic replication. Here, we used peripheral blood monocytes and the monocytic cell line THP-1 to investigate the effects of 1,25-dihydroxyvitamin D3 on HCMV replication. Interestingly, 1,25-dihydroxyvitamin D3 induces lytic replication marked by upregulation of HCMV gene expression and production of infectious virus. Moreover, we demonstrate that the effects of 1,25-dihydroxyvitamin D3 correlate with maturation/differentiation of the monocytes and not by directly stimulating the MIEP. These results are somewhat surprising as 1,25-dihydroxyvitamin D3 typically boosts immunity to bacteria and viruses rather than driving the infectious life cycle as it does for HCMV. Defining the signaling pathways kindled by 1,25-dihydroxyvitamin D3 will lead to a better understanding of the underlying molecular mechanisms that determine the fate of HCMV once it infects cells in the myeloid lineage.
Collapse
Affiliation(s)
- Shu-En Wu
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, United States
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, United States.
| |
Collapse
|
32
|
Poole E, Lau JCH, Sinclair J. Latent infection of myeloid progenitors by human cytomegalovirus protects cells from FAS-mediated apoptosis through the cellular IL-10/PEA-15 pathway. J Gen Virol 2015; 96:2355-2359. [PMID: 25957098 PMCID: PMC4681070 DOI: 10.1099/vir.0.000180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Latent infection of primary CD34+ progenitor cells by human cytomegalovirus (HCMV) results in their increased survival in the face of pro-apoptotic signals. For instance, we have shown previously that primary myeloid cells are refractory to FAS-mediated killing and that cellular IL-10 (cIL-10) is an important survival factor for this effect. However, how cIL-10 mediates this protection is unclear. Here, we have shown that cIL-10 signalling leading to upregulation of the cellular factor PEA-15 mediates latency-associated protection of CD34+ progenitor cells from the extrinsic death pathway.
Collapse
Affiliation(s)
- Emma Poole
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Jonathan C H Lau
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
33
|
Human cytomegalovirus modulates monocyte-mediated innate immune responses during short-term experimental latency in vitro. J Virol 2014; 88:9391-405. [PMID: 24920803 DOI: 10.1128/jvi.00934-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The ability of human cytomegalovirus (HCMV) to establish lifelong persistence and reactivate from latency is critical to its success as a pathogen. Here we describe a short-term in vitro model representing the events surrounding HCMV latency and reactivation in circulating peripheral blood monocytes that was developed in order to study the immunological consequence of latent virus carriage. Infection of human CD14(+) monocytes by HCMV resulted in the immediate establishment of latency, as evidenced by the absence of particular lytic gene expression, the transcription of latency-associated mRNAs, and the maintenance of viral genomes. Latent HCMV induced cellular differentiation to a macrophage lineage, causing production of selective proinflammatory cytokines and myeloid-cell chemoattractants that most likely play a role in virus dissemination in the host. Analysis of global cellular gene expression revealed activation of innate immune responses and the modulation of protein and lipid synthesis to accommodate latent HCMV infection. Remarkably, monocytes harboring latent virus exhibited selective responses to secondary stimuli known to induce an antiviral state. Furthermore, when challenged with type I and II interferon, latently infected cells demonstrated a blockade of signaling at the level of STAT1 phosphorylation. The data demonstrate that HCMV reprograms specific cellular pathways in monocytes, most notably innate immune responses, which may play a role in the establishment of, maintenance of, and reactivation from latency. The modulation of innate immune responses is likely a viral evasion strategy contributing to viral dissemination and pathogenesis in the host. IMPORTANCE HCMV has the ability to establish a lifelong infection within the host, a phenomenon termed latency. We have established a short-term model system in human peripheral blood monocytes to study the immunological relevance of latent virus carriage. Infection of CD14(+) monocytes by HCMV results in the generation of latency-specific transcripts, maintenance of viral genomes, and the capacity to reenter the lytic cycle. During short-term latency in monocytes the virus initiates a program of differentiation to inflammatory macrophages that coincides with the modulation of cytokine secretion and specific cellular processes. HCMV-infected monocytes are hindered in their capacity to exert normal immunoprotective mechanisms. Additionally, latent virus disrupts type I and II interferon signaling at the level of STAT1 phosphorylation. This in vitro model system can significantly contribute to our understanding of the molecular and inflammatory factors that initiate HCMV reactivation in the host and allow the development of strategies to eradicate virus persistence.
Collapse
|
34
|
Sinclair J, Poole E. Human cytomegalovirus latency and reactivation in and beyond the myeloid lineage. Future Virol 2014. [DOI: 10.2217/fvl.14.34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
ABSTRACT: After primary infection with human cytomegalovirus (HCMV), which rarely causes any serious clinical problems in the immune competent, the virus persists subclinically for the lifetime of the host due, at least in part, to its ability to undergo latent infection. By contrast, HCMV can be a serious cause of morbidity, and in some cases mortality, upon primary infection of, or reactivation in, immune suppressed individuals. While current antivirals that target its lytic lifecycle have helped enormously in managing HCMV disease, to date, there are no available antivirals that target latent infection. In this review, we discuss research using natural and experimental models of latency that has led to some understanding of how HCMV latency is maintained, and reactivation controlled, in the myeloid lineage. Such analyses are now beginning to inform us of novel rationales that could allow the development of novel antivirals to target latency, itself.
Collapse
Affiliation(s)
- John Sinclair
- Department of Medicine, Box 157, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Emma Poole
- Department of Medicine, Box 157, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
35
|
Van Damme E, Van Loock M. Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 2014; 5:218. [PMID: 24904534 PMCID: PMC4032930 DOI: 10.3389/fmicb.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the largest viral genomes known. The 235 kB genome is divided in a unique long (UL) and a unique short (US) region which are flanked by terminal and internal repeats. The expression of HCMV genes is highly complex and involves the production of protein coding transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of many of these transcripts is unknown, they are suggested to play a direct or regulatory role in the delicately orchestrated processes that ensure HCMV replication and life-long persistence. This review focuses on annotating the complete viral genome based on three sources of information. First, previous reviews were used as a template for the functional keywords to ensure continuity; second, the Uniprot database was used to further enrich the functional database; and finally, the literature was manually curated for novel functions of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle. This functional annotation highlights still poorly understood regions of the genome but more importantly it can give insight in functional clusters and/or may be helpful in the analysis of future transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| | - Marnix Van Loock
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| |
Collapse
|
36
|
Duan YL, Ye HQ, Zavala AG, Yang CQ, Miao LF, Fu BS, Seo KS, Davrinche C, Luo MH, Fortunato EA. Maintenance of large numbers of virus genomes in human cytomegalovirus-infected T98G glioblastoma cells. J Virol 2014; 88:3861-73. [PMID: 24453365 PMCID: PMC3993548 DOI: 10.1128/jvi.01166-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/14/2014] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED After infection, human cytomegalovirus (HCMV) persists for life. Primary infections and reactivation of latent virus can both result in congenital infection, a leading cause of central nervous system birth defects. We previously reported long-term HCMV infection in the T98G glioblastoma cell line (1). HCMV infection has been further characterized in T98Gs, emphasizing the presence of HCMV DNA over an extended time frame. T98Gs were infected with either HCMV Towne or AD169-IE2-enhanced green fluorescent protein (eGFP) strains. Towne infections yielded mixed IE1 antigen-positive and -negative (Ag(+)/Ag(-)) populations. AD169-IE2-eGFP infections also yielded mixed populations, which were sorted to obtain an IE2(-) (Ag(-)) population. Viral gene expression over the course of infection was determined by immunofluorescent analysis (IFA) and reverse transcription-PCR (RT-PCR). The presence of HCMV genomes was determined by PCR, nested PCR (n-PCR), and fluorescence in situ hybridization (FISH). Compared to the HCMV latency model, THP-1, Towne-infected T98Gs expressed IE1 and latency-associated transcripts for longer periods, contained many more HCMV genomes during early passages, and carried genomes for a greatly extended period of passaging. Large numbers of HCMV genomes were also found in purified Ag(-) AD169-infected cells for the first several passages. Interestingly, latency transcripts were observed from very early times in the Towne-infected cells, even when IE1 was expressed at low levels. Although AD169-infected Ag(-) cells expressed no detectable levels of either IE1 or latency transcripts, they also maintained large numbers of genomes within the cell nuclei for several passages. These results identify HCMV-infected T98Gs as an attractive new model in the study of the long-term maintenance of virus genomes in the context of neural cell types. IMPORTANCE Our previous work showed that T98G glioblastoma cells were semipermissive to HCMV infection; virus trafficked to the nucleus, and yet only a proportion of cells stained positive for viral antigens, thus allowing continual subculturing and passaging. The cells eventually transitioned to a state where viral genomes were maintained without viral antigen expression or virion production. Here we report that during long-term T98G infection, large numbers of genomes were maintained within all of the cells' nuclei for the first several passages (through passage 4 [P4]), even in the presence of continual cellular division. Surprisingly, genomes were maintained, albeit at a lower level, through day 41. This is decidedly longer than in any other latency model system that has been described to date. We believe that this system offers a useful model to aid in unraveling the cellular components involved in viral genome maintenance (and presumably replication) in cells carrying long-term latent genomes in a neural context.
Collapse
Affiliation(s)
- Ying-Liang Duan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han-Qing Ye
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Anamaria G. Zavala
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Cui-Qing Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ling-Feng Miao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bi-Shi Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Keun Seok Seo
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | |
Collapse
|
37
|
Daley-Bauer LP, Roback LJ, Wynn GM, Mocarski ES. Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. Cell Host Microbe 2014; 15:351-62. [PMID: 24629341 PMCID: PMC3989205 DOI: 10.1016/j.chom.2014.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/10/2013] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
Peripheral blood myelomonocytic cells are important for cytomegalovirus dissemination to distal organs such as salivary glands where persistent replication and shedding dictates transmission patterns. We find that this process is markedly enhanced by the murine cytomegalovirus (MCMV)-encoded CC chemokine, MCK2, which promotes recruitment of CX3CR1(hi) patrolling monocytes to initial infection sites in the mouse. There, these cells become infected and traffic via the bloodstream to distal sites. In contrast, inflammatory monocytes, the other major myelomonocytic subset, remain virus negative. CX3CR1 deficiency prevents patrolling monocyte migration on the vascular endothelium and interrupts MCMV dissemination to the salivary glands independent of antiviral NK and T cell immune control. In this manner, CX3CR1(hi) patrolling monocytes serve as immune-privileged vehicles to transport MCMV via the bloodstream to distal organs. MCMV commandeers patrolling monocytes to mediate systemic infection and seed a persistent reservoir essential for horizontal transmission.
Collapse
Affiliation(s)
- Lisa P Daley-Bauer
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Linda J Roback
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Grace M Wynn
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
38
|
Stevenson EV, Collins-McMillen D, Kim JH, Cieply SJ, Bentz GL, Yurochko AD. HCMV reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon. Viruses 2014; 6:782-807. [PMID: 24531335 PMCID: PMC3939482 DOI: 10.3390/v6020782] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/14/2022] Open
Abstract
The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV) infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host.
Collapse
Affiliation(s)
- Emily V Stevenson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Donna Collins-McMillen
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Jung Heon Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Stephen J Cieply
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Gretchen L Bentz
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
39
|
Shen ZZ, Pan X, Miao LF, Ye HQ, Chavanas S, Davrinche C, McVoy M, Luo MH. Comprehensive analysis of human cytomegalovirus microRNA expression during lytic and quiescent infection. PLoS One 2014; 9:e88531. [PMID: 24533100 PMCID: PMC3922878 DOI: 10.1371/journal.pone.0088531] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) encodes microRNAs (miRNAs) that function as post-transcriptional regulators of gene expression during lytic infection in permissive cells. Some miRNAs have been shown to suppress virus replication, which could help HCMV to establish or maintain latent infection. However, HCMV miRNA expression has not been comprehensively examined and compared using cell culture systems representing permissive (lytic) and semi-permissive vs. non-permissive (latent-like) infection. METHODS Viral miRNAs levels and expression kinetics during HCMV infection were determined by miRNA-specific stem-loop RT-PCR. HCMV infected THP-1 (non-permissive), differentiated THP-1 (d-THP-1, semi-permissive) and human embryo lung fibroblasts (HELs, fully-permissive) were examined. The impact of selected miRNAs on HCMV infection (gene expression, genome replication and virus release) was determined by Western blotting, RT-PCR, qPCR, and plaque assay. RESULTS Abundant expression of 15 HCMV miRNAs was observed during lytic infection in HELs; highest peak inductions (11- to 1502-fold) occurred at 48 hpi. In d-THP-1s, fourteen mRNAs were detected with moderate induction (3- to 288-fold), but kinetics of expression was generally delayed for 24 h relative to HELs. In contrast, only three miRNAs were induced to low levels (3- to 4-fold) during quiescent infection in THP-1s. Interestingly, miR-UL70-3p was poorly induced in HEL (1.5-fold), moderately in THP-1s (4-fold), and strongly (58-fold) in d-THP-1s, suggesting a potentially specific role for miR-UL70-3p in THP-1s and d-THP-1s. MiR-US33, -UL22A and -UL70 were further evaluated for their impact on HCMV replication in HELs. Ectopic expression of miR-UL22A and miR-UL70 did not affect HCMV replication in HELs, whereas miR-US33 inhibited HCMV replication and reduced levels of HCMV US29 mRNA, confirming that US29 is a target of miR-US33. CONCLUSIONS Viral miRNA expression kinetics differs between permissive, semi-permissive and quiescent infections, and miR-US33 down-regulates HCMV replication. These results suggest that miR-US33 may function to impair entry into lytic replication and hence promote establishment of latency.
Collapse
Affiliation(s)
- Zhang-Zhou Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xing Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ling-Feng Miao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Han-Qing Ye
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | | | - Michael McVoy
- Department of Pediatrics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, United States of America
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
40
|
Sinclair JH, Reeves MB. Human cytomegalovirus manipulation of latently infected cells. Viruses 2013; 5:2803-24. [PMID: 24284875 PMCID: PMC3856416 DOI: 10.3390/v5112803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/28/2022] Open
Abstract
Primary infection with human cytomegalovirus (HCMV) results in the establishment of a lifelong infection of the host which is aided by the ability of HCMV to undergo a latent infection. One site of HCMV latency in vivo is in haematopoietic progenitor cells, resident in the bone marrow, with genome carriage and reactivation being restricted to the cells of the myeloid lineage. Until recently, HCMV latency has been considered to be relatively quiescent with the virus being maintained essentially as a “silent partner” until conditions are met that trigger reactivation. However, advances in techniques to study global changes in gene expression have begun to show that HCMV latency is a highly active process which involves expression of specific latency-associated viral gene products which orchestrate major changes in the latently infected cell. These changes are argued to help maintain latent infection and to modulate the cellular environment to the benefit of latent virus. In this review, we will discuss these new findings and how they impact not only on our understanding of the biology of HCMV latency but also how they could provide tantalising glimpses into mechanisms that could become targets for the clearance of latent HCMV.
Collapse
Affiliation(s)
- John H. Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK; E-Mail:
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)207-794-0500 (ext. 33109)
| |
Collapse
|
41
|
Myeloblastic cell lines mimic some but not all aspects of human cytomegalovirus experimental latency defined in primary CD34+ cell populations. J Virol 2013; 87:9802-12. [PMID: 23824798 DOI: 10.1128/jvi.01436-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a significant human pathogen that achieves lifelong persistence by establishing latent infections in undifferentiated cells of the myeloid lineage, such as CD34(+) hematopoietic progenitor cells. When latency is established, viral lytic gene expression is silenced in part by a cellular intrinsic defense consisting of Daxx and histone deacetylases (HDACs) because pp71, the tegument transactivator that travels to the nucleus and inactivates this defense at the start of a lytic infection in differentiated cells, remains in the cytoplasm. Because the current in vitro and ex vivo latency models have physiological and practical limitations, we evaluated two CD34(+) myeloblastic cell lines, KG-1 and Kasumi-3, for their ability to establish, maintain, and reactivate HCMV experimental latent infections. Tegument protein pp71 was cytoplasmic, and immediate-early (IE) genes were silenced as in primary CD34(+) cells. However, in contrast to what occurs in primary CD34(+) cells ex vivo or in NT2 and THP-1 in vitro model systems, viral IE gene expression from the laboratory-adapted AD169 genome was not induced in the presence of HDAC inhibitors in either KG-1 or Kasumi-3 cells. Furthermore, while the clinical strain FIX was able to reactivate from Kasumi-3 cells, AD169 was not, and neither strain reactivated from KG-1 cells. Thus, KG-1 and Kasumi-3 experimental latent infections differ in important parameters from those in primary CD34(+) cell populations. Aspects of latency illuminated through the use of these myeloblastoid cell lines should not be considered independently but integrated with results obtained in primary cell systems when paradigms for HCMV latency are proposed.
Collapse
|
42
|
Reeves M, Sinclair J. Regulation of human cytomegalovirus transcription in latency: beyond the major immediate-early promoter. Viruses 2013; 5:1395-413. [PMID: 23736881 PMCID: PMC3717713 DOI: 10.3390/v5061395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/04/2023] Open
Abstract
Lytic infection of differentiated cell types with human cytomegalovirus (HCMV) results in the temporal expression of between 170–200 open reading frames (ORFs). A number of studies have demonstrated the temporal regulation of these ORFs and that this is orchestrated by both viral and cellular mechanisms associated with the co-ordinated recruitment of transcription complexes and, more recently, higher order chromatin structure. Importantly, HCMV, like all herpes viruses, establishes a lifelong latent infection of the host—one major site of latency being the undifferentiated haematopoietic progenitor cells resident in the bone marrow. Crucially, the establishment of latency is concomitant with the recruitment of cellular enzymes that promote extensive methylation of histones bound to the major immediate early promoter. As such, the repressive chromatin structure formed at the major immediate early promoter (MIEP) elicits inhibition of IE gene expression and is a major factor involved in maintenance of HCMV latency. However, it is becoming increasingly clear that a distinct subset of viral genes is also expressed during latency. In this review, we will discuss the mechanisms that control the expression of these latency-associated transcripts and illustrate that regulation of these latency-associated promoters is also subject to chromatin mediated regulation and that the instructive observations previously reported regarding the negative regulation of the MIEP during latency are paralleled in the regulation of latent gene expression.
Collapse
Affiliation(s)
- Matthew Reeves
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
43
|
Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathog 2013; 9:e1003366. [PMID: 23717203 PMCID: PMC3662700 DOI: 10.1371/journal.ppat.1003366] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/02/2013] [Indexed: 12/15/2022] Open
Abstract
The parameters involved in human cytomegalovirus (HCMV) latent infection in CD14 (+) and CD34 (+) cells remain poorly identified. Using next generation sequencing we deduced the transcriptome of HCMV latently infected CD14 (+) and CD34 (+) cells in experimental as well as natural latency settings. The gene expression profile from natural infection in HCMV seropositive donors closely matched experimental latency models, and included two long non-coding RNAs (lncRNAs), RNA4.9 and RNA2.7 as well as the mRNAs encoding replication factors UL84 and UL44. Chromatin immunoprecipitation assays on experimentally infected CD14 (+) monocytes followed by next generation sequencing (ChIP-Seq) were employed to demonstrate both UL84 and UL44 proteins interacted with the latent viral genome and overlapped at 5 of the 8 loci identified. RNA4.9 interacts with components of the polycomb repression complex (PRC) as well as with the MIE promoter region where the enrichment of the repressive H3K27me3 mark suggests that this lncRNA represses transcription. Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE), which identifies nucleosome-depleted viral DNA, was used to confirm that latent mRNAs were associated with actively transcribed, FAIRE analysis also showed that the terminal repeat (TR) region of the latent viral genome is depleted of nucleosomes suggesting that this region may contain an element mediating viral genome maintenance. ChIP assays show that the viral TR region interacts with factors associated with the pre replication complex and a plasmid subclone containing the HCMV TR element persisted in latently infected CD14 (+) monocytes, strongly suggesting that the TR region mediates viral chromosome maintenance. Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus where infection is usually subclinical. HCMV initial infection is followed by the establishment of latency in CD34 (+) myeloid cells and CD14 (+) monocytes. Primary infection or reactivation from latency can be associated with significant morbidity and mortality can occur in immune compromised patients. Latency is marked by the persistence of the viral genome, lack of production of infectious virus and the expression of only a few previously recognized latency associated transcripts. Despite the significant interest in HCMV latent infection, little is known regarding the mechanism involved in establishment or maintenance of the viral chromosome. We have now identified the transacting factors present in latently infected CD14 (+) monocytes and CD34 (+) progenitor cells as well as identification of a region of the HCMV genome, the terminal repeat locus that mediates viral DNA maintenance. This is a major step toward understanding the mechanism of HCMV latent infection.
Collapse
|
44
|
Epigenetic control of cytomegalovirus latency and reactivation. Viruses 2013; 5:1325-45. [PMID: 23698401 PMCID: PMC3712310 DOI: 10.3390/v5051325] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/19/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022] Open
Abstract
Cytomegalovirus (CMV) gene expression is repressed in latency due to heterochromatinization of viral genomes. In murine CMV (MCMV) latently infected mice, viral genomes are bound to histones with heterochromatic modifications, to enzymes that mediate these modifications, and to adaptor proteins that may recruit co-repressor complexes. Kinetic analyses of repressor binding show that these repressors are recruited at the earliest time of infection, suggesting that latency may be the default state. Kidney transplantation leads to epigenetic reprogramming of latent viral chromatin and reactivation of immediate early gene expression. Inflammatory signaling pathways, which activate transcription factors that regulate the major immediate early promoter (MIEP), likely mediate the switch in viral chromatin.
Collapse
|